Scope of Tutorial

The purpose of thistutorial isto provide an introduction to reinforcement learning (RL) at alevel easily
understood by students and researchersin awide range of disciplines. The intent is not to present a
rigorous mathematical discussion that requires agreat deal of effort on the part of the reader, but rather
to present a conceptual framework that might serve as an introduction to a more rigorous study of RL (A
good on-line technical survey of RL can be found in the Journal of Artificia Intelligence Research.
Alternatively, a postscript version is available). The fundamental principles and techniques used to solve
RL problems are presented. The most popular RL algorithms are presented and interactively
demonstrated using WebSim, a Java-based simulation development environment. Section 1 presents an
overview of RL and provides a simple example to develop intuition of the underlying dynamic
programming mechanism. In Section 2 the parts of a reinforcement learning problem are discussed.
These include the environment, reinforcement function, and value function. Section 3 gives a description
of the most widely used reinforcement learning algorithms. These include TD(4 ) and both the residual
and direct forms of value iteration, Q-learning, and advantage learning. In Section 4 some of the
ancillary issuesin RL are briefly discussed, such as choosing an exploration strategy and an appropriate
discount factor. The conclusion is given in Section 5. Finally, Section 6 isaglossary of commonly used
terms followed by references in Section 7 and a bibliography of RL applicationsin Section 8. The
tutorial structure is such that each section builds on the information provided in previous sections. It is
assumed that the reader has some knowledge of learning algorithms that rely on gradient descent (such
as the backpropagation of errors algorithm).

1 Introduction

There are many unsolved problems that computers could solve if the appropriate software existed. Flight
control systems for aircraft, automated manufacturing systems, and sophisticated avionics systems all
present difficult, nonlinear control problems. Many of these problems are currently unsolvable, not
because current computers are too slow or have too little memory, but simply becauseit is too difficult
to determine what the program should do. If a computer could learn to solve the problems through trial
and error, that would be of great practical value.

Reinforcement Learning is an approach to machine intelligence that combines two disciplines to
successfully solve problems that neither discipline can address individually. Dynamic Programming isa
field of mathematics that has traditionally been used to solve problems of optimization and control.
However, traditional dynamic programming is limited in the size and complexity of the problemsit can
address.

Supervised learning is a general method for training a parameterized function approximator, such as a
neural network, to represent functions. However, supervised learning requires sample input-output pairs
from the function to be learned. In other words, supervised learning requires a set of questions with the
right answers. For example, we might not know the best way to program a computer to recognize an
infrared picture of atank, but we do have alarge collection of infrared pictures, and we do know
whether each picture contains atank or not. Supervised learning could look at all the examples with
answers, and learn how to recognize tanks in general.

Unfortunately, there are many situations where we don t know the correct answers that supervised



learning requires. For example, in aflight control system, the question would be the set of all sensor
readings at a given time, and the answer would be how the flight control surfaces should move during
the next millisecond. Simple neural networks can t learn to fly the plane unless thereis a set of known
answers, so if we don t know how to build a controller in the first place, ssmple supervised learning won-
help.

For these reasons there has been much interest recently in a different approach known as reinforcement
learning (RL). Reinforcement learning is not atype of neural network, nor isit an aternative to neura
networks. Rather, it is an orthogonal approach that addresses a different, more difficult question.
Reinforcement learning combines the fields of dynamic programming and supervised learning to yield
powerful machine-learning systems. Reinforcement learning appeal s to many researchers because of its
generality. In RL, the computer is simply given agoal to achieve. The computer then learns how to
achieve that goal by trial-and-error interactions with its environment. Thus, many researchers are
pursuing this form of machine intelligence and are excited about the possibility of solving problems that
have been previously unsolvable.

To provide the intuition behind reinforcement learning consider the problem of learning to ride a
bicycle. The goal given to the RL system is simply to ride the bicycle without falling over. In the first
trial, the RL system begins riding the bicycle and performs a series of actions that result in the bicycle
being tilted 45 degrees to the right. At this point their are two actions possible: turn the handle bars left
or turn them right. The RL system turns the handle bars to the left and immediately crashes to the
ground, thus receiving a negative reinforcement. The RL system has just learned not to turn the handle
bars left when tilted 45 degrees to theright. In the next trial the RL system performs a series of actions
that again result in the bicycle being tilted 45 degreesto the right. The RL system knows not to turn the
handle bars to the left, so it performs the only other possible action: turn right. It immediately crashesto
the ground, again receiving a strong negative reinforcement. At this point the RL system has not only
learned that turning the handle bars right or left when tilted 45 degrees to theright is bad, but that the
"state" of being titled 45 degreesto theright is bad. Again, the RL system begins another trial and
performs a series of actions that result in the bicycle being tilted 40 degreesto the right. Two actions are
possible: turn right or turn left. The RL system turns the handle bars left which resultsin the bicycle
being tilted 45 degrees to the right, and ultimately results in a strong negative reinforcement. The

RL system has just learned not to turn the handle bars to the left when titled 40 degreesto the right. By
performing enough of these trial-and-error interactions with the environment, the RL system will
ultimately learn how to prevent the bicycle from ever falling over.

2 The Parts Of A Reinforcement L earning
Problem

In the standard reinforcement learning model an agent interacts with its environment. This interaction
takes the form of the agent sensing the environment, and based on this sensory input choosing an action
to perform in the environment. The action changes the environment in some manner and this change is
communicated to the agent through a scalar reinforcement signal. There are three fundamental parts of a
reinforcement learning problem: the environment, the reinforcement function, and the value function.

The Environment



Every RL system learns a mapping from situations to actions by trial-and-error interactions with a
dynamic environment. This environment must at least be partially observable by the reinforcement
learning system, and the observations may come in the form of sensor readings, symbolic descriptions,
or possibly "mental” situations (e.g., the situation of being lost). The actions may be low level (e.g.,
voltage to motors), high level (e.g., accept job offer), or even "menta” (e.g., shift in focus of attention).
If the RL system can observe perfectly all the information in the environment that might influence the
choice of action to perform, then the RL system chooses actions based on true "states" of the
environment. Thisideal caseisthe best possible basis for reinforcement learning and, in fact, isa
necessary condition for much of the associated theory.

The Reinforcement Function

As stated previously, RL systems learn a mapping from situations to actions by trial-and-error
interactions with a dynamic environment. The "goal" of the RL system is defined using the concept of a
reinforcement function, which is the exact function of future reinforcements the agent seeksto
maximize. In other words, there exists a mapping from state/action pairs to reinforcements; after
performing an action in a given state the RL agent will receive some reinforcement (reward) in the form
of ascalar value. The RL agent learns to perform actions that will maximize the sum of the
reinforcements received when starting from some initial state and proceeding to aterminal state.

It isthe job of the RL system designer to define a reinforcement function that properly defines the goals
of the RL agent. Although complex reinforcement functions can be defined, there are at least three
noteworthy classes often used to construct reinforcement functions that properly define the desired
goals.

Pure Delayed Reward and Avoidance Problems

In the Pure Delayed Reward class of functions the reinforcements are all zero except at the terminal
state. The sign of the scalar reinforcement at the terminal state indicates whether the terminal stateisa
goal state (areward) or a state that should be avoided (a penalty). For example, if one wanted an RL



agent to learn to play the game of backgammon, the system could be defined as follows. The situation
(state) would be the configuration of the playing board (the location of each player’s pieces). In this case

there are approximately 1020 different possible states. The actions available to the agent are the set of
legal moves. The reinforcement function is defined to be zero after every turn except when an action
resultsin awin or aloss, in which case the agent receives a +1 reinforcement for awin, and a-1
reinforcement for aloss. Because the agent is trying to maximize the reinforcement, it will learn that the
states corresponding to awin are goal states and states resulting in aloss are to be avoided.

Another example of a pure delayed reward reinforcement function can be found in the standard cart-pole
or inverted pendulum problem. A cart supporting a hinged, inverted pendulum is placed on afinite track.
The goal of the RL agent isto learn to balance the pendulum in an upright position without hitting the
end of the track. The situation (state) is the dynamic state of the cart pole system. Two actions are
available to the agent in each state: move the cart left, or move the cart right. The reinforcement function
is zero everywhere except for the states in which the pole falls or the cart hits the end of the track, in
which case the agent receives a -1 reinforcement. Again, because the agent is trying to maximize total
reinforcement, the agent will learn the sequence of actions necessary to balance the pole and avoid the -1
reinforcement.
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Minimum Timeto Goal

Reinforcement functionsin this class cause an agent to perform actions that generate the shortest path or
trajectory to agoal state. An example is an experiment commonly known as the " Car on the hill"
problem. The problem is defined as that of a stationary car being positioned between two steep inclines.
The goal of the driver (RL agent) isto successfully drive up the incline on the right to reach a goal state
at the top of the hill. The state of the environment is the car’s position and velocity. Three actions are



available to the agent in each state: forward thrust, backward thrust, or no thrust at all. The dynamics of
the system are such that the car does not have enough thrust to simply drive up the hill. Rather, the
driver must learn to use momentum to his advantage to gain enough velocity to successfully climb the
hill. The reinforcement function is-1 for ALL state transitions except the transition to the goal state, in
which case a zero reinforcement is returned. Because the agent wishes to maximize reinforcement, it
learns to choose actions that minimize the time it takes to reach the goa state, and in so doing learns the
optimal strategy for driving the car up the hill.

Games

Thus far it has been assumed that the learning agent always attempts to maximize the reinforcement
function. This need not be the case. The learning agent could just as easily learn to minimize the
reinforcement function. This might be the case when the reinforcement is a function of limited resources
and the agent must learn to conserve these resources while achieving agoal (e.g., an airplane executing a
maneuver while conserving as much fuel as possible).

An alternative reinforcement function would be used in the context of a game environment, when there
are two or more players with opposing goals. In agame scenario, the RL system can learn to generate
optimal behavior for the players involved by finding the maximin, minimax, or saddlepoint of the
reinforcement function. For example, a missile might be given the goal of minimizing the distance to a
given target (in this case an airplane). The airplane would be given the opposing goal of maximizing the
distance to the missile. The agent would evaluate the state for each player and would choose an action
independent of the other players action. These actions would then be executed in parallel.

Because the actions are chosen independently and executed simultaneously, the RL agent learns to
choose actions for each player that would generate the best outcome for the given player in a"worst
case" scenario. The agent will perform actions for the missile that will minimize the maximum distance
to the airplane assuming the airplane will choose the action that maximizes the same distance. The agent
will perform actions for the airplane that will maximize the minimum distance to the missile assuming
the missile will perform the action that will minimize the same distance. A more detailed discussion of
this alternative can be found in Harmon, Baird, and Klopf (1994), Harmon and Baird (1996), and
Littman(1994).

TheValue Function

In previous sections the environment and the reinforcement function are discussed. However, the issue
of how the agent learns to choose "good" actions, or even how we might measure the utility of an action
is not explained. First, two terms are defined. A policy determines which action should be performed in
each state; a policy isamapping from states to actions. The value of a state is defined as the sum of the
reinforcements received when starting in that state and following some fixed policy to atermina state.
The optimal policy would therefore be the mapping from states to actions that maximizes the sum of the
reinforcements when starting in an arbitrary state and performing actions until atermina stateis
reached. Under this definition the value of a state is dependent upon the policy. The value functionisa
mapping from states to state values and can be approximated using any type of function approximator
(e.g., multi-layered perceptron, memory based system, radial basis functions, look-up table, etc.).



Figurel

An example of avalue function can be seen using a simple Markov decision process with 16 states. The
state space can be visualized using a 4x4 grid. Each square represents a state. The reinforcement
function is -1 everywhere (i.e., the agent receives areinforcement of -1 on each transition). There are 4
actions possible in each state: north, south, east, west. The goal states are the upper left corner and the
lower right corner. The value function for the random policy is shown in Figure 1. For each state the
random policy randomly chooses one of the four possible actions. The numbersin the states represent
the expected values of the states. For example, when starting in the lower left corner and following a
random policy, on average there will be 22 transitions to other states before the terminal state is reached.

Figure?2

Figure3



The optimal value function is shown in Figure 2. Again, starting in the lower left corner, calculating the
sum of the reinforcements when performing the optimal policy (the policy that will maximize the sum of
the reinforcements), the value of that state is -3 because it takes only 3 transitions to reach aterminal
state. If we are given the optimal value function, then it becomes atrivial task to extract the optimal
policy. For example, one can start in any state in Figure 2 and simply choose the action that maximizes
the immediate reinforcement received. In other words, one can perform aone level deep breadth-first
search over actions to find the action that will maximize the immediate reward. The optimal policy for
the value function shown in Figure 3is given in Figure 2.

This leads usto the fundamental question of ailmost all of reinforcement learning research: How do we
devise an algorithm that will efficiently find the optimal value function?

3 Approximating the Value Function

Reinforcement learning is a difficult problem because the learning system may perform an action and
not be told whether that action was good or bad. For example, alearning auto-pilot program might be
given control of asimulator and told not to crash. It will have to make many decisions each second and
then, after acting on thousands of decisions, the aircraft might crash. What should the system learn from
this experience? Which of its many actions were responsible for the crash? Assigning blame to
individual actionsis the problem that makes reinforcement learning difficult. Surprisingly, thereisa
solution to this problem. It is based on afield of mathematics called dynamic programming (Bertsekas,
1995), and it involves just two basic principles. First, if an action causes something bad to happen
immediately, such as crashing the plane, then the system learns not to do that action in that situation
again. So whatever action the system performed one millisecond before the crash, it will avoid doing in
the future. But that principle doesn’t help for all the earlier actions which didn’t lead to immediate
disaster.

The second principleisthat if all the actionsin a certain situation leads to bad results, then that situation
should be avoided. So if the system has experienced a certain combination of altitude and airspeed many
different times, whereby trying a different action each time, and all actions led to something bad, then it
will learn that the situation itself is bad. Thisis a powerful principle, because the learning system can
now learn without crashing. In the future, any time it chooses an action that leads to this particul ar
situation, it will immediately learn that particular action is bad, without having to wait for the crash.

By using these two principles, alearning system can learn to fly a plane, control arobot, or do any
number of tasks. It can first learn on a simulator, then fine tune on the actual system. Thistechniqueis
generaly referred to as dynamic programming, and a slightly closer analysis will reveal how dynamic
programming can generate the optimal value function.

The Essence of Dynamic Programming

Initially, the approximation of the optimal value function is poor. In other words, the mapping from
states to state values is not valid. The primary objective of learning isto find the correct mapping. Once
thisis completed, the optimal policy can easily be extracted. At this point some notation needs to be
introduced : V*(x,) isthe optimal value function where x, is the state vector; V(x,) is the approximation

of the optimal value function; ¥ isadiscount factor in the range [0,1] that causes immediate



reinforcement to have more importance (weighted more heavily) than future reinforcement. (A more
complete discussion of ¥ is presented in Section 4.)

In general, V(x,) will beinitialized to random values and will contain no information about the optimal
vaue function V*(x,). This means that the approximation of the optimal value function in agiven state
is equal to the true value of that state V*(x;) plus some error in the approximation, as expressed in
equation (1)

Fix,) =elx,) +¥ *(x,) (1)

where g(x,) is the error in the approximation of the value of the state occupied at timet. Likewisg, the

approximation of the value of the state reached after performing some action at timet is the true value of
the state occupied at time t+1 plus some error in the approximation, as expressed in equation (2).

V() = X V%) (2)

As stated previously, the value of state X, for the optimal policy is the sum of the reinforcements when
starting from state x; and performing optimal actions until aterminal state is reached. By this definition,
asimple relationship exists between the values of successive states, X, and x,, ;. Thisrelationship is
defined by the Bellman equation and is expressed in equation (3). The discount factor ¥ is used to

exponentially decrease the weight of reinforcements received in the future (A discussion of the function
of ¥inthisequation can be found in Section 4).

F*(x,) =rix,)+ #*(x,,) )
The approximation V(x,) also has the same relationship, as shown in equation (4). By substituting the
right-hand side of equations (1) and (2) into equation (4) we get equation (5) and expanding yields
eguation (6).

Fix,) =r(x,)+ #(x,,) 4
e(x, )+ *(x,) =rix,) + :y[e(xmj +V*(xr+1}) (5)
e(x, )+ ¥ (x,) = rix,) + #ix, )+ #F *(x,,)) (6)

Using equation (3), V*(x,) is subtracted from both sides of equation (6) to reveal the relationship in the
errors of successive states. This relationship is expressed in equation (7).

2(x,) = #(x,,) (7)



Figure4

The significance of this relationship can be seen by using the simple Markov chain shown in Figure 4. In
Figure 4 the state labeled T isthe terminal state. The true value of this state is known a priori. In other
words, the error in the approximation of the state labeled T, (T), is 0 by definition. An analogy might
be the state in which amissile ultimately hits or misses its target. The true value of this state is known:
+1for ahit, -1 for amiss. The process of learning is the process of finding an approximation V(x,) that
makes equations (3) and (7) true for al states x;. If the approximation error in state 3 is afactor of

- smaller than the error in state T, which is by definition O, then the approximation error in state 3 must

aso be 0. If equation (7) istrue for all x;, then the approximation error in each state x; is necessarily 0,

ergo V(x,)=V*(x,) for al x;.
Q ol) = »(2)
o1) = 2%e(3)
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The importance of the discount factor # can be seen by using another smple Markov chain that has no
terminal state (Figure 5). Using asimilar argument as that used for Figure 4 one can see that when
equation (7) is satisfied the approximation error must be O for all states. The only difference in the prior
example and in this case is that the error in any given state must be afactor of # 6 smaller than itself
(because there are 6 states in the cycle). Therefore, equation (7) can only be satisfied if the
approximation error is0 in every state.

Therefore, as stated earlier, the process of learning is the process of finding a solution to equation (4) for
al states x; (which is also a solution to equation (7)). Severa learning algorithms have been developed

for precisely this task.

Value lteration

If it is assumed that the function approximator used to represent V* is alookup table (each state has a
corresponding element in the table whose entry is the approximated state value), then one can find the
optimal value function by performing sweeps through state space, updating the value of each state
according to equation (8) until a sweep through state space is performed in which there are no changes
to state values (the state values have converged).

AV (x,) = muax[r(xr i+ e, ) - Fix) ®



In equation (8) u isthe action performed in state X, and causes atransition to state X, 1, and r(x;,u) isthe
reinforcement received when performing action u in state x,. Figure 6 illustrates the update.

Figure'6

Figure 6 depicts the scope of a single update to the approximation of the value of x;. Specific to this
example, there are two actions possible in state x;, and each of these actions leads to a different
successor state x;, 4. In avalue iteration update, one must first find the action that returns the maximum

value. The only way to accomplish thisisto actually perform an action and calcul ate the sum of the
reinforcement received and the (possibly discounted) approximated value of the successor state V(X ).

This must be done for all actions u in agiven state x;, and is not possible without amodel of the

dynamics of the system. For example, in the case of arobot deciding to choose between paths to follow,
it is not possible to choose one path, observe the successor state, and then return to the starting state to
explore the results of the next available action. Instead, the robot must in simulation perform these
actions and observe the results. Then, based on the simulation results, the robot may choose the action
that results in the maximum value.

One should note that the right side of equation (8) is simply the difference in the two sides of the
Bellman equation defined in equation (4), with the exception that we have generalized the equation to
allow for Markov decision processes (multiple actions possible in a given state) rather than Markov
chains (single action possible in every state). This expression is the Bellman residual, and is formally
defined by equation (9).

e(x,) = maxlr i, W+ ) TV o
E(x,) isthe error function defined by the Bellman residual over al of state space. Each update (equation
(8)) reduces the value of E(x,), and in the limit as the number of updates goes to infinity E(x;)=0. When
E(x,)=0, equation (4) is satisfied and V(x,)=V*(x,). Learning is accomplished.

Residual Gradient Algorithms
Thus far it has been assumed our function approximator is alookup table. Theis normally the casein

classical dynamic programming. However, this assumption severely limits the size and complexity of
the problems solvable. Many real-world problems have extremely large or even continuous state spaces.



In practiceit is not possible to represent the value function for such problems using alookup table.
Hence, an extension to classical value iteration isto use a function approximator that can generalize and
interpolate values of states never before seen. For example, one might use a neural network for the
approximation V(x,,w,) of V*(x,), where w, is the parameter vector. The resulting network parameter

update is given in equation (10).

,_f;“/'(xr W :r:'
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i, = —a[mfx(r(x,,u) + ;V':xm:w::') _V':xp“’::'] (10)

It is useful to draw an analogy to the update equation used in supervised learning algorithms when first
examining equation (10). In this context, « isthe learning rate, muax(r(xf,u) + ,f(xm,wf)) isthe desired

(Xp, Wyl

output of the network, V(x,,w,) isthe actual output of the network, and al isthe gradient of the

f
output of the network with respect to the parameter vector. It "appears’ that we are performing updates
that will minimize the Bellman residual, but thisis not necessarily the case. The "target” value
(, ("p“) . ﬁ’(xf 1 ,wf)) isafunction of the parameter vector w at timet. Once the update to w, is

max
n

performed, the target has changed because it is now afunction of a different parameter vector (the vector
at timet+1). It is possible that the Bellman residual has actually been increased rather than decreased.
The error function on which gradient descent is being performed changes with every update to the
parameter vector. This can result in the values of the network parameter vector oscillating or even
growing to infinity.

One solution to this problem is to perform gradient descent on the mean squared Bellman residual.
Because this defines an unchanging error function on which gradient descent can be performed,
convergence to alocal minimum is guaranteed. This means that we can get the benefit of the generality
of neura networks while still guaranteeing convergence. The resulting parameter update is given in
equation (11).

I:’ly(xﬂlrwrj _ iy(x:rrwr:'

iﬁr iﬁr t (11)
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The resulting method is referred to as aresidual gradient algorithm because gradient descent is
performed on the mean squared Bellman residual. Therefore, equation (11) is the update equation for
residual value iteration, and equation (10) is the update equation for direct value iteration. It is
important to note that if the MDP is non-deterministic then it becomes necessary to generate
independent successor states to guarantee convergence to the correct answer. For a more detailed
discussion see Baird (1995); Harmon, Baird, and Klopf (1995); and Harmon and Baird (1996).

Q-Learning

Q-learning (Watkins, 1989 and 1992) is another extension to traditional dynamic programming (value
iteration) that solves the following problem.

A deterministic Markov decision process is one in which the state transitions are deterministic (an action



performed in state x, always transitions to the same successor state X, ). Alternatively, in a

non-deterministic Markov decision process, a probability distribution function defines a set of potential
successor states for agiven action in agiven state. If the MDP is non-deterministic, then value iteration
requires that we find the action that returns the maximum expected value (the sum of the reinforcement
and the integral over al possible successor states for the given action). For example, to find the expected
value of the successor state associated with a given action, one must perform that action an infinite
number of times, taking the integral over the values of all possible successor states for that action. The
reason thisis necessary is demonstrated in Figure 7.

Figure7

In Figure 7 there are two possible actions in state x. Each action returns a reinforcement of 0. Action u,

causes atransition to one of two possible successor states with equal probability. The sameistrue for
action u,. The values of the successor states are 0 and 1 for both actions. Value iteration requires that the

value of state x be equal to the maximum over actions of the sum of reinforcement and the expected
value of the successor state. By taking an infinite number of samples of successor states for action uy,
one would be able to calculate that the actual expected value is 0.5. The same s true for action u,.
Therefore, the value of state x is 0.5 However, if one were to naively perform value iteration on this

MDP by taking a single sample of the successor state associated with each action instead of the integral,
then x would converge to avalue of 0.75. Clearly the wrong answer.

Theoretically, value iteration is possible in the context of non-deterministic MDPs. However, in practice
it is computationally impossible to calculate the necessary integrals without added knowledge or some
degree of modification. Q-learning solves the problem of having to take the max over a set of integrals.

Rather than finding a mapping from states to state values (asin value iteration), Q-learning finds a
mapping from state/action pairs to values (called Q-values). Instead of having an associated value
function, Q-learning makes use of the Q-function. In each state, there is a Q-value associated with each
action. The definition of a Q-value is the sum of the (possibly discounted) reinforcements received when
performing the associated action and then following the given policy thereafter. Likewise, the definition
of an optimal Q-valueisthe sum of the reinforcements received when performing the associated action
and then following the optimal policy thereafter.

In the context of Q-learning, the value of a state is defined to be the maximum Q-vauein the given
state. Given this definition it is easy to derive the equivalent of the Bellman equation (equation 4) for
Q-learning.

Olx, 0, ) =rix,,u, )+ ;?n&ax (X1, 04,)
rel

(12)



Q-learning differs from value iteration in that it doesn’t require that in a given state each action be
performed and the expected values of the successor states be calculated. While value iteration performs
an update that is analogous to a one level breadth-first search, Q-learning takes a single-step sample of a
Monte-Carlo roll-out. This process is demonstrated in Figure 8.

PN

Figure8

The update equation in Figure 8 is valid when using a lookup table to represent the Q-function. The
Q-vaueisaprediction of the sum of the reinforcements one will receive when performing the
associated action and then following the given policy. To update that prediction Q(x;,u,) one must

perform the associated action u,, causing atransition to the next state x,, ; and returning a scalar
reinforcement r(x;,u,). Then one need only find the maximum Q-value in the new state to have all the

necessary information for revising the prediction (Q-value) associated with the action just performed.
Q-learning does not require one to calculate the integral over all possible successor states in the case that
the state transitions are non-deterministic. The reason is that a single sample of a successor state for a
given action is an unbiased estimate of the expected value of the successor state. In other words, after
many updates the Q-value associated with a particular action will converge to the expected sum of all
reinforcements received when performing that action and following the optimal policy thereafter.

Residual Gradient and Direct Q-learning (WebSim &#-Demo)

Asitis possible to represent the value function with a neural network in the context of value iteration, so
it is possible to represent the Q-function with a neural network in the context of Q-learning. The
information presented in the discussion of value iteration concerning convergence to a stable value
function is also applicable to guaranteeing convergence to a stable Q-function. Equation (13) isthe
update equation for direct Q-learning where ais the learning rate, and equation (14) is the update
equation for residual gradient Q-learning.
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Advantage L earning

Although Q-learning is a significant improvement over value iteration, it is still limited in scopein at
least one important way. The number of training iterations necessary to sufficiently represent the
optimal Q-function when using function approximators that generalize scales poorly with the size of the
time interval between states. The greater the number of actions per unit time (the smaller the increment
in time between actions) the greater the number of training iterations required to adequately represent
the optimal Q-function. The explanation for thisis demonstrated with a simple example. Figure 9
depicts a Markov decision process with 1000 states. State O isthe initial state and has a single action
available, transition to state 1. State 999 is an absorbing state.
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Figure9

In states 1..998 there are two actions available, transition to either the state immediately to the right or
immediately to the left. For example, in state 1, the action of going left will transition to state 0, and the
action of going right will transition to state 2. Each transition incurs a cost (reinforcement) of 1. The
objective isto minimize the total cost accumulated in transitioning from state to state until the absorbing
states is reached. The optimal Q-value for each action is represented by the numbers next to each state.
For example, in state 2 the optimal Q-value for the action of going left is 1000, and the optimal Q-value
for the action of going right is 998. The optimal policy can easily be found in each state by choosing to
perform the action with the minimum Q-value.

When using a function approximator that generalizes over state/action pairs (any function approximator
other than alookup table or equivalent), it is possible to encounter practical limitationsin the number of
training iterations required to accurately approximate the optimal Q-function. Asthe timeinterval
between states decreases in size, the required precision in the approximation of the optimal Q-function
increases exponentially. For example, the optimal Q-function associated with the MDP in Figure 9 is
linear and can be represented by a simple linear function approximator. However, it requires an
unreasonably large number of training iterations to achieve the level of precision necessary to generate
the optimal policy. The reason for the large number of training iterationsis simple. The differencein the
Q-valuesin agiven state is small relative to the difference in the Q-values across states (aratio of
approximately 1:1000). For example, the difference in the Q-valuesin state 1 is 2 (1001-999=2). The
difference in the minimum Q-valuesin states 1 and 998 is 998 (999-1=998). The approximation of the
optimal Q-function must achieve a degree of precision such that the tiny differencesin Q-valuesin a
single state are represented. Because the differences in Q-values across states have a greater impact on
the mean squared error, during training the network learns to represent these differences first. The
differencesin the Q-valuesin agiven state have only atiny effect on the mean squared error and
therefore get lost in the noise. To represent the differencesin Q-valuesin agiven state requires much



greater precision than to represent the Q-values across states. As the ratio of the timeinterval to the
number of states decreases it becomes necessary to approximate the optimal Q-function with increasing
precision. In the limit, infinite precision is necessary.

Advantage learning (Baird, 1993; Harmon and Baird, 1996) does not share the scaling problem of
Q-learning. Similar to Q-learning, advantage learning learns afunction of state/action pairs. However, in
advantage |learning the value associated with each action is called an advantage. Therefore, advantage
learning finds an advantage function rather than a Q-function or value function. The value of a stateis
defined to be the value of the maximum advantage in that state. For the state/action pair (x,u) an
advantage is defined as the sum of the value of the state plus the utility (advantage) of performing action
u rather than the action currently considered best. For optimal actions this utility is zero, meaning the
value of the action is also the value of the state; for sub-optimal actions the utility is negative,
representing the degree of sub-optimality relative to the optimal action. The equivalent of the Bellman
equation for advantage learning is given in equation (15).
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where ¥ isthe discount factor per time step, K isatime unit scaling factor, and <> represents the
expected value over all possible results of performing action u in state x to receive immediate

reinforcement r and to transition to anew state x;, ;.

Residual Gradient and Direct Advantage L earning (WebSim &#-Demo )

The number of training iterations required in Q-learning scales poorly as the ratio of the timeinterval
between states to the number of states grows small. Advantage learning can find a sufficiently accurate
approximation to the advantage function in anumber of training iterations that is independent of this
ratio. The update equations for direct advantage learning and residual advantage learning are given in
equations (16) and (17) respectively. Again, the reader is referred to the subsection in the discussion of
value iteration devoted to residual gradient algorithms. For a further discussion of advantage learning
see Harmon and Baird (1996).
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TD(4) (WebSim Efl-Demo )

Consider the Markov chain in Figure 10. Theinitia stateis 0 and the terminal state is 999. Each state
transition returns a cost (reinforcement) of 1 and the value of state 999 is defined to be 0. Because thisis
aMarkov chain it is not sensible to suggest that the RL system learn to minimize or maximize
reinforcement. Instead, we are concerned exclusively with predicting the total reinforcement received
when starting from state n where nis a state in the range [1..998].
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Figure 10

Value iteration, Q-learning, and advantage learning can all solve this problem. However, TD(.1) can
solve it faster. In the context of Markov chains, TD(1) isidentical to value iteration with the exception
that TD(4 ) updates the value of the current state based on a weighted combination of the values of
future states, as opposed to using only the value of the immediate successor state. Recall that in value
iteration the "target" value of the current state is the sum of the reinforcement and the value of the
successor state, in other words, the right side of the Bellman equation (Equation 18).

Fixgw,) = rix, )+ #(x, . w,) (18)

Notice that the "target” is also based on an estimate V(x,, 1,w,), and this estimate can be based on zero

information. Indeed, thisis the case much of the time and can be demonstrated using Figure 10. Assume
that the value function for this Markov chain is represented using a lookup table. In this case, our lookup
table has 1000 elements, each corresponding to a state, and the entry in each element is the value of the
corresponding state. Before learning begins entries are initialized to random values. The process of
learning starts by updating the value of state O to be the sum of the reinforcement received on transition
from state O to state 1 and the value of state 1. Remember, at this point the value of state 1 is arbitrary.
Thisistruefor all states except the terminal state (999) which, by definition, has a value of 0. Because
theinitial values of states are arbitrary (with the exception of the terminal state), the entire first sweep
through the Markov chain (epoch) of training results in the improvement of the approximation of the
value function only in state 998. In the first epoch, only in state 998 is the update to the approximation
based on something other than an arbitrary value. Thisisterribly inefficient. In fact, not until 999 epochs
of training have been performed will the approximation of the value of state O contain any degree of
"truth" (the approximation is based on something other than an arbitrary value). In epoch 2 of training,
the approximation of the value of state 997 is updated based on an approximation of the value of state
998 that has asits basis the true value of state 999, rather than an arbitrary value. In epoch 3, the
approximation of the value of state 996 will be updated based on "truth” rather than an arbitrary value.



Each epoch moves "truth" back one step in the chain.

The approximation of the value of state x; is updated based on the approximation of the value of the
state one step into the future, x,, 4. If the value of a state were based on a weighted average of the values

of future states, then "truth" would be propagated "back in time" much more efficiently. In our example
above, if instead of updating the value of a state based exclusively on the value of the immediate
successor state one used the next 2 successor states as the basis of the update, then the number of epochs
performed before the value of state O is no longer based on an arbitrary value is reduced from 1000 to
500. If the value approximation of state 0 is based on aweighted combination of values of the
succeeding 500 states, then only 2 epochs are required before the value approximation of state O is based
on something other than an arbitrary value.

Thisis precisely the function of TD(4) (Sutton, 1988) for 0<4 <1. Instead of updating avalue
approximation based solely on the approximated value of the immediate successor state, TD(.1 ) basis
the update on an exponential weighting of values of future states. A isthe weighting factor. TD(0), the
case of A =0, isidentical to value iteration for the example problem stated above. TD(1) updates the
value approximation of state n based solely on the value of the terminal state.

The parameter update for TD(.A ) isgiven in equation (19).
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Anincremental form of this equation can be derived as follows. Given that g, is the value of the sumin
(19) for t, we can compute g, 1, using only current information, as
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Notice that equation (19) does not have amax or min term. This suggeststhat TD(1) isused exclusively
in the context of prediction (Markov chains). One way to extend the use of TD(4 ) to the domain of
Markov decision processes is to perform updates according to equation (19) while calculating the sum
according to equation (20) when following the current policy. When a step of exploration is performed
(choosing an action that is not currently considered "best"), the sum of past gradients g in equation (20)
should be set to 0. The intuition behind this method follows. The value of a state X, is defined as the sum

of the reinforcements received when starting in x, and following the current policy until aterminal state

is reached. During training, the current policy is the best approximation to the optimal policy generated
thus far. On occasion one must perform actions that don’t agree with the current policy so that better
approximations to the optimal policy can be realized. However, one might not want the value of the
resulting state propagated through the chain of past states. Thiswould corrupt the value approximations
for these states by introducing information that is not consistent with the definition of a state value.



One further note. TD(4) for 4 =0isequivalent to value iteration. Likewise, the discussion of residual
gradient algorithmsis applicableto TD(.1 ) when 4 =0. However, thisis not the case for 0<4 <1. No
algorithms exist that guarantee convergence for TD(.4 ) for 0<.1 <1 when using ageneral function
approximator.

4 Miscellaneous | ssues

Exploration

As stated earlier, the fundamental question in reinforcement learning research is: How do we devise an
algorithm that will efficiently find the optimal value function? It was shown that the optimal value
function is a solution to the set of equations defined by the Bellman equation (Equation 4). The process
of learning was subsequently described as the process of improving an approximation of the optimal
value function by incrementally finding a solution to this set of equations. One should notice that the
Bellman equation is defined over all of state space. The optimal value function satisfies this equation for
ALL x in state space. This requirement introduces the need for exploration. Exploration is defined as

intentionally choosing to perform an action that is not considered "best" for the express purpose of
acquiring knowledge of unseen (or little seen) states. In order to identify a (sub-)optimal approximation,
state space must be sufficiently explored.

For example, arobot facing an unknown environment has to spend some time acquiring knowledge of
its environment. Alternatively, experience acquired during exploration must also be considered during
action selection to minimize the costs (negative reinforcements) associated with learning. Although the
robot must explore its environment, it should avoid collisions with obstacles. However, the robot does
not know which actions will result in collision until all of state space has been explored. On the other
hand, it is possible that a policy that is "sufficiently” good will be recognized without having to explore
all of state space. There is afundamental trade-off between exploration and exploitation (using
previously acquired knowledge to direct the choice of action). Therefore, it isimportant to use
exploration techniques that will maximize the knowledge gained during learning while minimizing the
costs of exploration and learning time.

For agood introduction to the issues of efficient exploration see Thrun (1992).

Discounted vs. Non-Discounted

The discount factor } isanumber in the range of [0..1] and is used to weight near term reinforcement
more heavily than distant future reinforcement. For the purpose of discussion, the update equation for
value iteration is shown again as equation (21). The closer ¥ isto 1 the greater the weight of future
reinforcements. The weighting of future reinforcements has a half-life of = =10g0.5/1og ¥ . For ¥ =0,
the value of a state is based exclusively on the immediate reinforcement received for performing the
associated action. For finite horizon Markov decision processes (an MDP that terminates) it is not
strictly necessary to use adiscount factor. In this case (+ =1), the value of state x; is based on the total

reinforcement received when starting in state x; and following the given policy.
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In the case of infinite horizon Markov decision processes (an MDP that never terminates), a discount
factor is required. Without the use of a discount factor, the sum of the reinforcements received would be
infinite for every state. The use of a discount factor limits the maximum value of a state to be on the

order of %{_ .

5 Conclusion

Reinforcement learning appeals to many researchers because of its generality. Any problem domain that
can be cast as aMarkov decision process can potentially benefit from this technigue. In fact, many
researchers view reinforcement learning not as a technique, but rather a particular type of problem that is
amenabl e to solution by the algorithms described above. Reinforcement learning is an extension of
classical dynamic programming in that it greatly enlarges the set of problems that can practically be
solved. Unlike supervised learning, reinforcement learning systems do not require explicit input-output
pairs for training. By combining dynamic programming with neural networks, many are optimistic that
classes of problems previously unsolvable will finally be solved.
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6 Glossary

policy - a mapping from states to actions.

reinforcement - a scalar variable that communicates the change in the environment to the reinforcement
learning system. For example, if an RL system isacontroller for amissile, the reinforcement signal
might be the distance between the missile and the target (In which case, the RL system would learn to
minimize reinforcement).

Markov decision process - An MDP consists of a set of states X; a set of start states Sthat is a subset of
X; aset of actions A; areinforcement function R where R(x,a) is the expected immediate reinforcement
for taking action a in state x; and an action model P where P(X [x,a) gives the probability that executing
action aiin state x will lead to state X'. Note: It is arequirement that the choice of action be dependent
solely on the current state observation x. If knowledge of prior actions or states affects the current choice
of action then the decision process is not Markov.

deterministic - In the context of states, there is a one-to-one mapping from state/action pairs to successor
states. In other words, with probability one, the transition from state x after performing action a will
awaysresult in state xX'.



non-deterministic - In the context of states, there exists a probability distribution function P(X' [x,a) that
gives the probability that executing action a in state x will lead to state x'.

state - The condition of a physical system as specified by a set of appropriate variables.

unbiased estimate - The expected (mean) error in the estimate is zero.
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