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Abstract

The bin packing and the cutting stock problems are two well-known NP-hard combi-
natorial optimisation problems. Only very small instances can be solved exactly, so
for real-world problems we have to rely on heuristic solution methods. In recent years,
researchers have started to apply evolutionary approaches to these problems, including
genetic algorithms and evolutionary programming. In this dissertation, | try to solve
the bin packing and the cutting stock problem using ant colony optimisation, a new
class of meta-heuristics introduced by Dorigo in 1992. This meta-heuristic isinspired
by the path-finding abilities of real ant colonies. It combines an artificial pheromone
trail with simple heuristic information to stochastically build new solutions. | show that
this approach gives good results, especially when combined with local search, and that
it can outperform existing evolutionary approaches. A disadvantage of the method is
that it is quite sensitive to the rel ative weighing of the heuristic information as opposed
to the pheromone trail information.
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Chapter 1
Introduction

The Bin Packing Problem (BPP) and the Cutting Stock Problem (CSP) are two classes
of well-known NP-hard combinatorial optimisation problems (see [Dyckhoff, 1990]
for an overview). Inthe BPP, the aim isto combine itemsinto bins of a certain capacity
so as to minimise the total number of bins, whereas in the CSP, the aim isto cut items
from stocks of a certain length, minimising the total number of stocks. Obviously
these two problem classes are very much related, and the approach proposed in this
work will be able to tackle both of them.

Exact solution methods for the BPP and the CSP can only be used for very small
problem instances. For real-world problems, heuristic solution methods have to be
used. Traditional solution methodsfor the BPP includefast heuristics ([Dyckhoff, 1990])
and the reduction algorithm of Martello and Toth ([Martello and Toth, 1990]). CSP
instances are traditionally solved with sequential heuristics or methods based on lin-
ear programming ([Haessler and Sweeney, 1991]). In the ongoing search for better
solution methods for both problem classes, researchers have recently shown a lot of
interest for evolutionary approaches, such as genetic algorithms ([Falkenauer, 1996,
Hinterding and Khan, 1995, Reeves, 1996, Vink, 1997]) and evol utionary programming
([Liang et al., 2001]). The most successful of these new approaches is Falkenauer’s
hybrid grouping genetic algorithm ([Falkenauer, 1996]), which combines a grouping
based genetic algorithm with a simple local search inspired by Martello and Toth's
work.

In this dissertation, | propose an Ant Colony Optimisation (ACO) approach to the
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Chapter 1. Introduction 2

BPP and the CSP. ACO is a new meta-heuristic for combinatorial optimisation and
other problems. The first ACO algorithm was developed by Dorigo as his PhD thesis
in 1992, and published under the name Ant System (AS) in [Dorigo et a., 1996]. It
was an application for the Travelling Salesman Problem (TSP), loosely based on the
path-finding abilities of real ants. It uses a colony of artificial ants which stochasti-
cally build new solutions using a combination of heuristic information and an artificial
pheromone trail. This pheromone trail is reinforced according to the quality of the
solutions built by the ants. AS was able to find optimal solutionsfor some smaller TSP
instances. After its first publication, many researchers have proposed improvements
to the original AS, and applied it successfully to a whole range of different problems
(see [Bonabeau et a., 1999] or [Dorigo and Stiitzle, 2001] for an overview). No one
has used it for the BPP or the CSP, however, apart from a hybrid approach by Bilchev,
who uses ACO to combine genetic algorithms and a many-agent search model for the
BPP (see[Bilchev, 1996]).

Apart from a pure ACO approach, | aso develop a hybrid ACO algorithm. This
approach combines the ACO meta-heuristic with a local search algorithm similar to
the one used by Falkenauer. Each ant’s solution is improved by moving some of the
items around, and the improved solutions are used to update the pheromone trail. The
reason for trying such an approach is the knowledge that ACO and local search are
complementary ([Dorigo and Stiitzle, 2001]). ACO performs a rather coarse-grained
search, providing good starting pointsfor local search to refine the results.

This dissertation is organised as follows. Chapter 2 introduces the two combinato-
rial optimisation problems, and describes the most important existing solution methods
for them. Chapter 3 gives a general introduction to ACO algorithms, describing AS
and some of its extensions and applications. Chapter 4 contains a detailed explanation
of how we applied ACO to the BPP and the CSP, and how the approach was augmented
with local search. Chapter 5 gives an overview of the experimental results. In that sec-
tion, the ACO approaches are compared to Martello and Toth's reduction algorithm
and Falkenauer’s hybrid grouping genetic algorithm for the BPP and to Liang et Al’s
evolutionary programming approach for the CSP. Chapter 6 concludes with asummary
of the project and an overview of possible future work on this subject.



Chapter 2
Packing Bins and Cutting Stock

This chapter introduces the combinatorial optimisation problems that are tackled in
this dissertation: the bin packing problem (BPP) and the cutting stock problem (CSP).
The first section contains a description of both problems. The second section gives an
overview of traditional solution methods for the BPP, and the third does the same for
the CSP. The fourth section describes some of the evolutionary approaches that exist
for both problems.

2.1 The Problem Descriptions

The BPP and the CSP are two well-known NP-hard combinatorial optimisation prob-
lems. Inthetraditional one-dimensional BPP, aset Sof itemsisgiven, each of acertain
weight w;. Theitems have to be packed into bins of afixed maximum capacity C. The
aim is to combine the items in such a way that as few bins as possible are needed.
In the traditional one-dimensional CSP, a set S of items, each of a certain length |}, is
requested. These items have to be cut from stocks of afixed length L. Again the aim
iIsto combine the itemsin such a way that as few stocks as possible are needed.

From the above descriptions, it is clear that these two problems are very simi-
lar. They both belong to the large group of cutting and packing problems. Dyckhoff
describes a common logical structure for this group of problems ([Dyckhoff, 1990]).
Thereisawaysaset of small itemsand astock of large objects. Theam isto combine
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the small items into patterns and assign the patterns to large objects. Other problems
that follow this structure are for example the vehicle loading problem, the knapsack
problem, the multiprocessor scheduling problem and even the multi-period capital bud-
geting problem.

In hiswork, Dyckhoff proposes a typology for cutting and packing problems. He
distinguishes along four criteria. The first is the dimensionality: one-, two-, three-
or N-dimensional problems. The second criterion is the kind of assignment: whether
you want to place all the small items into a number of large objects of your choice
(like in the BPP and the CSP), or you have a fixed number of large objects, and have
to make an optimal selection from the small items (like in the knapsack problem?).
The third criterion is the assortment of large objects. is there only one object, or are
there several of the same figure, or are there objects of different figures. The last
criterion is the assortment of small items: are there few items, or many items of many
different figures, or many items of relatively few different figures, or do all the items
have congruent figures.

When classifying the BPP and the CSP according to this typology, Dyckhoff only
makes a distinction between them based on the last criterion, the assortment of small
items. In the BPP there are typically many items of many different sizes, whereas in
the CSP, the items are usually only of a few different sizes (so there are many items
of the same size). This means that the difference between the two problem typesis a
rather subjective and gradual one. Still, this difference is important enough to dictate
totally different solution approaches, as will become clear in the next two sections.

Bischoff and Wascher ([Bischoff and Wascher, 1995]) give a number of reasons
why cutting and packing problemsare an interesting topic of research. First, thereisthe
applicability of the research: cutting and packing problems are encountered in many
industries, such as steel, glass and paper manufacturing. Additionally, as pointed out in
[Dyckhoff, 1990], there are many other industrial problems that seem to be different,
but have a very similar structure, such as capital budgeting, processor scheduling and
VLSI design. A second reason is the diversity of real-world problems. even though

LIn the knapsack problem you are given a set S of small items, each of a certain weight w; and a
certain benefit b;. Thereisonelarge object of afixed capacity C, and the aim isto make a selection from
the small itemsto fill the large object so that the total sum of benefitsis optimal.
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cutting and packing problems have acommon structure, there can be alot of interesting
differences between them. A last reason is the complexity of the problems. Most
cutting and packing problems are NP-complete. This is definitely the case for the
traditional one-dimensional BPP and CSP, which are studied in this dissertation. Exact
optimal solutions can therefore only be found for very small problem sizes. Real world
problems are solved using heuristics, and the search for better heuristic procedures
stays amajor research issuein thisfield.

In this dissertation, only the traditional one-dimensional BPP and CSP are consid-
ered. As mentioned above, there are many interesting variants possible. The problem
can for example have multiple stock or bin sizes. Also, it is possible to have multiple
objectives. An example of thisisthe CSP with contiguity (see[Liang et a., 2001]). In
a CSP with contiguity, you want to minimisethe number of stocks and in the sametime
the number of outstanding orders. In concrete, this means that once you have started
cutting items of a certain length, you want to finish all the items of that length as soon
aspossible. Another interesting extension isthe case with multiple stock lengthswhere
the different types of stock are available at different locations, so that thereis afreight
cost associated with each stock length (see [Haessler and Sweeney, 1991]). Findly,
thereisaso alot of interest in two- and three-dimensional BPP's and CSP's.

2.2 Traditional Solution Methods for the BPP

BPP instances are usually solved with fast heuristic algorithms. The best of these
is first fit decreasing (FFD). In this heuristic, the items are first placed in order of
non-increasing weight. Then they are picked up one by one and placed into the first
bin that is still empty enough to hold them. If no bin is left the item can fit in, a
new bin is started. Thisalgorithm is described in figure 2.1. Another often used fast
heuristicisbest fit decreasing (BFD). Thisheuristicisdescribed infigure 2.2. Theonly
difference with FFD, isthat the items are not placed in the first bin that can hold them,
but in the best-filled bin that can hold them. This makes the algorithm dslightly more
complicated, but surprisingly enough, no better. Both heuristics have a guaranteed
worst case performance of 1ﬁ,loPT + 4, in which OPT is the number of bins in the
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1. Sort the itemsin order of non-increasing weight.

2. Removethefirst item, and place it in the first bin that has enough
space left to hold it. If no bin isempty enough, start a new bin.

3. Repeat step 2 until all itemsare placed in abin.

Figure 2.1: The First Fit Decreasing algorithm.

1. Sort the itemsin order of non-increasing weight.

2. Remove the first item, and place it in the best-filled bin that still
has enough space left to hold it. If no bin is empty enough, start
anew bin.

3. Repeat step 2 until all itemsare placed in abin.

Figure 2.2: The Best Fit Decreasing algorithm.

optimal solution to the problem ([Coffman et al., 1996]).

Apart from these fast algorithms, the BPP can also be solved with Martello and
Toth's Reduction Algorithm (RA) ([Martello and Toth, 1990]). This is slower (cer-
tainly for bigger problems), but gives excellent results. The basis of RA is the notion
of dominating bins: when you havetwo binsB1 and By, and thereisasubset {i1, ..., i }
of By and a partition {Py,...,R} of By, so that for each item i}, there is a smaller or
equal corresponding partition Pj, then B, is said to dominate B; (see figure 2.3). This
means that a solution which contains B; will not have more bins than a solution con-
taining B2. The RA triesto find bins that dominate all other bins. When such abinis
found, the problemisreduced by removing theitems of the dominating bin. In order to
avoid that the algorithm runsinto exponential time, only dominating bins of maximum
three items are considered.
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Figure 2.3: B> dominates B;. Figure after [Falkenauer, 1996].

2.3 Traditional Solution Methods for the CSP

As described before, the difference between the BPP and the CSP only lies in the
assortment of small items: in a BPP the items are usually of many different sizes,
whereas in a CSP, the items are only of a few different sizes. This means that for
a CSP, there is a structure in the demand: the same pattern of small items can be
used several times to cut stock. So it makes sense to solve the problem in two steps:
first build patterns, and then decide how many times to use each pattern. Traditional
solution methods for the CSP follow this approach.

Two types of heuristic solution methods can be distinguished: linear programming
(LP) based procedures and sequential heuristics. Most of the LP-based methods are
inspired by the column generation method devel oped by Gilmore and Gomory in 1961
([Gilmore and Gomory, 1961]). Thismethod is based on the L P-rel axation of the prob-
lem:

Minimise ¥ X;
Subjectto ¥ AjXj >R foralli (2.1)
Xj>0
Variable X; indicates the number of times pattern j isused. Ajj indicates how many
timesitem i appearsin pattern j, and R; isthe requested number of itemi. So there are
I constraints indicating that for each item the demand has to be met. When solving an
LP like this, one can also find the shadow price U; of each constraint i. The shadow
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price of a constraint indicates how much the goal function could be decreased if the
right-hand side of that constraint would be relaxed by one unit. So, because constraint
I indicates the demand requirements for item i, its shadow price U; in fact indicates
how much difficulties the algorithm has to reach the item’s demand with the patterns
considered so far. Thisinformation is then used in an integer programming model to
make a new pattern (equation 2.2). The goal of this model is to fill the stock length
with items while maximising the total benefit thiswill giveto the LP model (indicated
by the shadow prices U;).

Maximise Y;UiA
Subjectto Y LA <L (2.2
A >0 A isan integer

In this equation, A; indicates the number of timesitem i is used in the pattern, L;
is the length of item i and L is the stock length. The newly generated pattern is then
again used to solvethe LP-model of equation 2.1. More detail s about this can be found
in [Haessler and Sweeney, 1991] and [Winston, 1993].

An aternative for these LP-based solution methods are the sequential heuristic
procedures (SHP). They construct a solution by making one pattern at the time until
all order requirements are satisfied. When making a pattern, other goals than waste
minimisation can be taken into account. This is an advantage over LP approaches.
There are also hybrid procedures possible, where an SHP is combined with an LP. For
more details about this, see [Haessler and Sweeney, 1991].

2.4 Evolutionary Approaches

In recent years, people have tried various sorts of evolutionary approaches for the BPP
and the CSP (e.g. see [Falkenauer and Delchambre, 1992, Hinterding and Khan, 1995,
Reeves, 1996, Vink, 1997]). This section givesa short introduction to Falkenauer’s hy-
brid grouping genetic algorithm (HGGA) for the BPP ([Falkenauer, 1996]) and Liang
et Al.’s evolutionary programming approach (EP) for the CSP ([Liang et a., 2001]),
because these are the algorithms the ACO approach of this project is compared to in
chapter 5.
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Falkenauer's HGGA is one of the most successful solution methods around for
the BPP. It uses a grouping approach: the genetic algorithm (GA) works with whole
bins rather than with individual items (for a complete example, see figure 2.4). When
performing crossover, two crossover points are chosen. The bins of the second parent
between the crossover pointsare inserted into thefirst parent, at itsfirst crossover point.
Obviously, there will be bins with overlapping items. These bins are deleted from the
new solution, and their non-overlapping items become free. Before theseitems are re-
injected into the solution, asimplelocal optimisation is performed (henceitisahybrid
GA). Thislocal searchisinspired by Martello and Toth’s ideas about dominating bins:
considering one by one the bins in the solution, the algorithm tries to replace up to
three itemsin a bin by one or two of the free itemsin such away that the total content
of the bin increases without exceeding the maximum capacity. In this way, existing
bins are made fuller, and free items are made smaller, so they are easier to fit into the
bins. When this local optimisation phase is finished, the remaining free items are re-
inserted into the solution using the FFD heuristic. The mutation operator works more
or less in the same way: afew bins are eliminated at random and their items become
free. These free items are again used for local optimisation, and the remaining items
are re-inserted with the FFD heuristic. HGGA works extremely well and manages to
outperform Martello and Toth’s Reduction Algorithm. | am not sure how well it would
work for the CSP, however. HGGA works with item numbers instead of item sizes.
For the BPP, most items have a unique size, but in the CSP, many items can have the
same size, so items with different numbers will in fact be the same.

Compared to al this, Liang et Al.’'sEP for the CSP isavery simple agorithm. Itis
partly based on experiences by Hinterding and Khan ([Hinterding and Khan, 1995]).
In that work, both a grouping GA and an order-based GA are used. Hinterding and
Khan report that the grouping GA works better than the order-based GA, and that the
performance of the order-based GA degrades when crossover is applied. Therefore,
Liang et Al. use an order-based approach without crossover (see figure 2.5 for a com-
plete example). Order-based means that solutions are represented within the EP as
permutations of the items. Liang et Al. work with item sizes instead of item numbers,
astheir solutionisaimed at the CSP where many different items can have the same size.
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HGGA works with item numbersinstead of sizes:

[tem numbers: 0,1,2.3,4,5,6,7,8,9,10
The chromosomes are expressed in bins:
Thefirst parent: {0,1}{2}{3,4,5}{6,7,8}{9, 10}
The second parent: {0,2}{4,7}{5,9}{1,3,8}{6,10}
Two crossover points are chosen:
For the first parent: {0,1}{2} | {3,4,5}{6,7,8} | {9,10}
For the second parent: {0,2} | {4,7}{5,9} | {1,3,8}{6,10}
The bins between the second parent’s points are entered at the first parent’sfirst point:
The child: {0,1}{2}{4,7}{5,9}{3,4,5}{6,7,8}{9,10}
Bins with double items are eliminated and their items which were not double become free:
The remaining bins: {0,1}{2}{4,7}{5,9}
Thefreeitems: 3,6,8,10

The algorithm tries to replace itemsin the bins with free items to make the bins fuller.
A possible result could be:

Remaining bins: {0,3}{2}{4,10}{5,9}
Freeitems: 1,6,7,8
Finally, the remaining items are put into the bins using FFD (see figure 2.1):
A possible result: {0,3}{1,2}{4,10}{5,7,9}{6,8}
Mutation opens bins at random:
Remaining bins: {0,3}{1,2}{6,8}
Freeitems: 4,5,7,9,10
The remaining items are again placed back into the solution with FFD:
A possible find result: {0,3}{1,2,4}{6,7,8}{5,9, 10}

Figure 2.4: An example of the working of Falkenauer's HGGA.
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The EP works with item lengths instead of item numbers:

Theitems: 3,3,4,4,5,6,6,6
A chromosome is represented as an ordered list of items:
A chromosome: 54633466

Decoding is done by cutting every time just before exceeding the stock length:
Decoding for stock length12: 54|633|46|6
Mutation swaps twice three items around:

Swapping two items: 53643466
Swapping three items: 56643463
Swapping twicethreeitems. 66653443
Decoding again: 66|65|344]3

Figure 2.5: An example of the working of Liang et Al’'s EP algorithm.

The decoding of a chromosome happens by going through the item list, and making a
cut every time astock sizeis matched or the available stock size is exceeded. Mutation
in this EP happens by swapping elements around: every parent produces one child by
swapping twice three elements around. After the new children are formed, the new
population is selected from the whole set of parents and children. Liang et Al. formu-
late aversion of their algorithm for CSP’'s with and without contiguity. Their program
is also able to solve multiple stock length problems. When compared to Hinterding
and Khan's grouping GA (their best algorithm), the EP always gives comparable or
better results.



Chapter 3

An Introduction to Ant Colony

Optimisation

Ant Colony Optimisation (ACO) is amulti-agent meta-heuristic for combinatorial op-
timisation and other problems. It isinspired by the capability of real ants to find the
shortest path between their nest and afood source. Thefirst ACO algorithmwas called
Ant System (AS). It was an application to solvethe travelling salesman problem (TSP),
developed in 1992 by Marco Dorigo as his PhD thesis ([Dorigo, 1992]). AS became
very popular after its publication in 1996 (see [Dorigo et a., 1996]). Many researchers
have since developed improvements to the original algorithm, and applied them to a
range of different problems (see [Dorigo and Stiitzle, 2001]).

This chapter gives an introduction to ACO algorithms. The first section contains
details about the path-finding behaviour of real ants that forms the biological inspira-
tion for these algorithms. The second section shows how this behaviour was imple-
mented artificially in the original AS to solve the travelling salesman problem. The
third section gives an overview of improvements that have been made to the original
algorithm, and the last section showsavariety of other problemsthat have been tackled
with ACO agorithms.

12
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Figure 3.1: Real ants presented with a double bridge. Figure adapted from
[Dorigo and Gambardella, 1997b].

3.1 The biological inspiration

ACO agorithmswere originally inspired by the foraging behaviour of real ants. Many
ant species leave a pheromone trail behind when walking between the nest and a food
source, attracting in this way other ants to follow them. This process where an ant’s
path is influenced by the pheromone trail left behind by another ant is called recruit-
ment.

Recruitment has a very interesting consegquence, investigated by Deneubourg and
colleaguesin the late 1980’'s (a detailed description of their experiments can be found
in [Bonabeau et al., 1999]). They placed a double bridge between a nest of Argentine
ants and a food source, to investigate the trail-laying trail-following behaviour of the
ants. The most interesting experiment was when they gave the bridges different lengths
(seefigure 3.1). The antswere |eft free to move and choose any of the two bridges, and
in the beginning they chose randomly. In most experiments, however, it turned out that
after awhile all ants would end up using the shorter bridge. So even though individual
ants have very limited vision and memory, the colony as a whole manages to find out
which path is the shortest.

The key to this ability lies in the use of the pheromone trails. When the ants are
first presented with the two bridges, they obviously don’t know where to go, and they
choose one at random. So we can assume that 50% of the ants choose the long bridge,
and 50% the short bridge. It is clear, however, that ants using the short bridge will
reach the food faster, and will be back faster. This means that after they have returned
to the nest, the short bridge will contain more pheromone than the long one. When
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new ants have to make a decision, they will favour the short bridge, resulting in even
more pheromone. And so, after awhile, the whole colony will be going back and forth
over the short bridge.

So the path-finding capabilities of the ant colony emerge from the behaviour of
individual ants. The process is characterised by a positive feedback loop, in which
ants are influenced to perform the same actions as others did before them. This
kind of process that reinforces itself via positive feedback is called auto-catalytic (see
[Dorigo et al., 1996]). The interesting aspect is that individually very limited agents
are able to achieve something far beyond their own capabilities through a very sim-
ple form of cooperation as a group. The pheromone trail fulfils the task of collective
memory, and guides the colony towards an optimal path.

3.2 Ant System

The first ACO algorithm was called Ant System (AS). It was developed by Marco
Dorigo as his PhD thesis in 1992, and published in [Dorigo et a., 1996]. It was an
application to solve the travelling salesman problem (TSP), inspired by the real ant
behaviour described above. Theoriginal AS consisted of three different ant algorithms:
ant-density, ant-quantity and ant-cycle. Most publications, however, identify AS with
ant-cycle, the most successful of the three (see [Dorigo and Caro, 1999]). | will do
the same, and refer the interested reader to [Dorigo et al., 1996] for details about ant-
density and ant-quantity.

The TSP isdefined asfollows. Thereisaset of citiesC, and a set of connectionsL,
fully connecting the cities. With each connection between a city i and a city |, a cost
d(i, j) isassociated. The costs can be symmetric (the cost 8(i, j) isthesame as d(j,i))
or asymmetric (in this case we speak of the asymmetric TSP). The goa of the TSP is
to find aclosed tour that visitsal of the cities exactly once, while minimising the total
cost of the connections used. It is clear that this problem bears some resemblance to
the problem that the real ants have to solve: to find an optimal path. Apart from that,
another reason why the TSP was chosen as the first ACO implementation, isthat it is
one of the most studied NP-hard problemsin combinatorial optimisation.
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The working of AS is based on the use of artificial pheromone: on top of its cost,
each connection has an amount of pheromone (i, j) associated with it. Thisisanum-
ber that defines the desirability of a connection. Ants use this information probabilis-
tically to build solutions, and update it afterwards.

ASworks asfollows. Each ant is placed in arandomly chosen initia city. Starting
from there, it moves from city to city, building a solution to the TSP. When choosing
the next city to move to, an ant considers only those citiesit has not visited yet (so the
artificial ants have a memory, unlike their natural counterparts). It chooses from those
cities using the random-proportional rule given in equation (3.1). Thisrule gives the
probability that ant k in city i chooses city | next.

pk(i. ) = { S lalnigp 1 1€ X0 (31)
0 otherwise

In this equation, (i, j) is the pheromone between i and j and n\(i, j) isasimple
heuristic guiding the ant. The value of the heuristic isthe inverse of the cost: ﬁ So
the preference of ant kin city i for city j is partly defined by the pheromone between i
and j, and partly by the heuristic favourability of j after i. It isthe parameter 3 that de-
fines the relative importance of the heuristic information as opposed to the pheromone
information. Therole of the heuristic isto help the construction by providing problem
specific information. Ji(i) is the set of cities that have not been visited yet by ant k
in city i. The use of this set Jx makes it actually very easy to implement constraints
in AS: if certain choices would lead to an infeasible solution, you just exclude them
from the set. Also, for very large problem instances, it is possible to narrow Ji down
by excluding choices that are certainly not optimal, thereby speeding up the algorithm
significantly.

Once all ants have built atour, the pheromonetrail isupdated. Thisis done accord-
ing to the global updating rule:

r(i,nzp-r<i,1>+k§mk(i,1> (32)
=1
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| (33)
0 otherwise

Al ) = { £ if (i,]) € tour of antk

Equation (3.2) consists of two parts. The left part makes the pheromone on all
edges decay. The speed of this decay is defined by p, the evaporation parameter. The
right part increases the pheromone on all the edges visited by ants. The amount of
pheromone that an ant k deposits on an edge is defined by Ly, the length of the tour
created by that ant. In thisway, the increase of pheromone for an edge depends on the
number of ants that use this edge, and the quality of the solutions found by those ants.

It is easy to see the link between AS and reinforcement learning (for more in-
formation on this field, see [Sutton and Barto, 1998]): better solutions get a higher
pheromone reinforcement, and new solutions are guided by this. Just like in rein-
forcement learning, it is important to balance exploration and exploitation. The AS
algorithm described above leaves little opportunity for this. Most of the extensions of
AS (which we will describe in the next section) focus exactly on doing this. In this
way they try to improve the original AS, which performs well on small problems, but
cannot compete with other algorithms on larger problems.

It is also easy to see the similarities with evolutionary algorithms (EA). Both ap-
proaches use a population of problem solutions, and use the information available in
this population to stochastically build a new population of solutions. A main difference
isthat EA only useinformation availablein thelast popul ation, whereas AS hasamem-
ory about earlier solutionsin the pheromone trail. The one EA approach that is closest
to ASis population based incremental learning (PBIL) ([Balujaand Caruana, 1995]).
In PBIL, avector with real numbersis kept, and it is used to stochastically generate a
new population: every real number in the vector expresses the probability to generate
a1 rather than a 0 in that position in a new vector of bits for the population. So the
role of this generating vector is similar to the role of the pheromone trail in AS. An
important difference is the fact that in PBIL al the components of the generating vec-
tor are evaluated independently. This means that this approach only works well when
the solution can be split into independent components.*

1This paragraph was mainly based on [Dorigo et al., 1999].
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3.3 Extensions to Ant System

Many improvements to the original AS have been proposed. Most of these offer a
stronger exploitation of previously found good solutions. They also give more oppor-
tunities to balance exploitation and exploration. This section contains a description of
the most important extensionsto AS. The focusis mainly on MAX-MIN Ant System,
asthat isthe variant used in the rest of this dissertation.

The first improvement to AS was the dlitist strategy proposed together with the
original ASin [Dorigo et a., 1996]. It added to the normal pheromone trail updating
of equation 3.2 an extra updating for the best solution found since the start of the
algorithm. This greatly enhances exploitation. A similar approach can be found in
AS ank, arank-based version of AS presented in [Bullnheimer et a., 1999]. There the
pheromone is only updated for the best solution since the start of the algorithm (the
global-best solution) and the m best solutions of the last iteration (the iteration-best
solutions). The updates of the iteration-best solutions are weighed according to their
rank.

A third improved version of AS is Ant Colony System (ACS) (for details, see
[Dorigo and Gambardella, 1997a] and [Dorigo and Gambardella, 1997b]). It is even
more elitist than the previous two, as the updating is only done by the best ant. This
causes strong exploitation, which is even enhanced by the fact that equation 3.1 is used
deterministically with a probability go: with chance qp, an ant k in city i deterministi-
cally chooses the city j with the highest value for py(i, j). With chance 1—qq, it uses
pk(i, j) probabilistically to choose a city, likein AS. All thisincreased exploitation is
balanced by local updating: every ant of the colony takesabit of pheromone away from
the branchesit usesinitssolution. Inthisway, following antsare lesslikely to build the
same solution. ACS is based on Ant-Q (see [Dorigo and Gambardella, 1996]), which
focused on the link with reinforcement learning. Ant-Q was more complicated than
ACS without performing better.

The ACO agorithmwhichismainly used inthisproject, isMAX-MIN Ant System
(MMAYS), proposed by Stitzle and Hoos in [ Stitzle and Hoos, 2000]. For the building
of a solution, MMAS follows equation 3.1 of the traditional AS. The difference with
AS lies in the way the pheromone trail is updated. Like in ACS, only the best ant is
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allowed to update the pheromone trail. So equation 3.2 is replaced by equation 3.4.
AP (i, j) inthis equation is defined like Aty (i, j) in equation 3.3.

(i, j) = p.(i, ) + AT, ) (3.4)

Using only the best ant for updating makes the search much more aggressive. Bin
combinations which often occur in good solutions will get a lot of reinforcement.
Therefore, MMAS has some extra features to balance exploration versus exploitation.
The first one of these is the choice between using the iteration-best ant (s'°) and the
global-best (s?) to do the updating. Using s% resultsin strong exploitation, so usually
it is alternated with the use of s°.

Another way of enhancing exploration is obtained by defining an upper and lower
limit (tmax and tmin) for the pheromone values (hence the name MAX-MIN). Stutzle
and Hoos define the value for the upper and lower limit algebraically. If agood solution
isreinforced every time, the maximum valueit could asymptotically obtainis given by
equation 3.5 below (see [Stitzle and Hoos, 2000] for mathematical details). Tmax IS Set
to an estimate of this: the unknown length of the optimal solution L ot is replaced by
the length of s%.

1 1
1—p Leopt
The formulafor Ty is calculated based on pbest, the probability of constructing
the best solution found when all the pheromone values have converged to either Ty Or

(3.5)

Tmin- AN ant constructs the best solution found if it adds at every point during solution
construction the item with the highest pheromone value. Starting from this, Stiitzle and
Hoos find the following formulafor tpyn (See [Stitzle and Hoos, 2000] for details):

~ Tmax-(1— y/pbest)
Tmin = (avg— 1).v/pbest (3.6)

In thisequation is n the total number of items and avg the average number of items
to choose from at every decision point when building a solution, defined as 3.

A last way to enhance explorationin MMASisby using optimisticinitial pheromone
values. The entries in the pheromone trail are initialised to Tmax. Thisis atechnique
which is also often used in reinforcement learning (see [Sutton and Barto, 1998]). By



Chapter 3. An Introduction to Ant Colony Optimisation 19

setting al the pheromone values high in the beginning, the algorithmisforced to try out
al different possibilities. After awhile, the pheromone decay ensures that pheromone
entries which are not often reinforced are reduced, and the exploratory effect wears
out.

3.4 Applications of ACO algorithms

AS and its extensions were all first developed as applications for the TSP. This is
mainly because of the similarities between this problem and the path-finding task
that real ants solve. Later, many other problems have been tackled with ACO ago-
rithms. This section describes some of the most interesting applications. A more
complete overview of ACO applications can be found in [Bonabeau et al., 1999] or
[Dorigo and Sttzle, 2001].

The quadratic assignment problem (QAP) was after the TSP the second problem
to be solved with an ACO approach. It was the first evidence of the robustness of AS.
In an instance of the QAP, two nxn matrices A and B are given. Theaimisto find a
permutation st which minimises the following equation:

min f(m) = i i & j-brx; (3.7)

nell(n) i—1j=1

The first ACO solution method for the QAP, AS-QAP, was developed in 1994
([Maniezzo et al., 1994]). Apart from the heuristic, the only difference with AS for
the TSP is the pheromone trail definition. In AS-QAP, (i, j) indicates the favourabil-
ity of setting mt; to j. This approach performed reasonably well, but not extraordinarily
when compared to other approaches. Later, in [Gambardellaet a., 1999b], a different
ACO approach for the QAP was proposed: HAS-QAP. Thisalgorithm isvery interest-
ing because it completely moves away from the traditional ACO algorithms. Instead of
building a new solution at every iteration, each ant maintains a solution, and updates
it using the pheromone trail: at every iteration, the ants move the elements of their
permutation around, guided by the pheromone trail. After this, every ant performs a
simple local search to improve its solution. At the end of the iteration, the pheromone
isupdated. HAS-QAP performed extremely well on real-world problems, but less well



Chapter 3. An Introduction to Ant Colony Optimisation 20

on artificial unstructured problems.

After the QAP and the TSP, ACO solutions have been developed for many other
combinatorial optimisation problems. Algorithms have been proposed for schedul-
ing problems ([Bauer et a., 1999, Stiitzle, 1998]), the vehicle routing problem (VRP)
([Gambardella et al., 1999a)), the graph colouring problem ([Costa and Hertz, 1997]),
the shortest common super-sequence problem ([Michel and Middendorf, 1999]), the
multiple knapsack problem ([Leguizamon and Michalewicz, 1999]), and many other.
Nevertheless, hardly any work has been done using ACO for the BPP and the CSP. In
fact, the only publication related to this is a hybrid approach formulated by Bilchev
([Bilchev, 1996]). He uses ACO to combine a GA and a many-agent search model
(MA) into one hybrid agorithm. Basically, a GA is run, and at the end of each of
its generations, the k best solutions are used to increase an artificial pheromone trail.
Then this trail is used in an ACO agorithm to build m new solutions. Finally, the
MA starts from these solutions and tries to improve them, before updating the trail
again. Bilchev'sarticleisnot very clear about implementation details. Also, no further
research is done on this approach, as the aim was to develop, apply and compare dif-
ferent evolutionary metaphors, rather than to find a new solution method for the BPP.
Bilchev’s results do suggest that a model in which well-defined heuristics co-operate
can outperform any of its composing agorithms.

ACO has aso been used for problems other than combinatorial optimisation. An
interesting application is AntNet, an algorithm for routing in packet-switched telecom-
munication networks (see [Caro and Dorigo, 1998]). The task is basically to find the
minimum cost path between a pair of nodes in a network in which the costs are time-
varying stochastic variables. To solve this task, AntNet associates with each directed
arc (i, j) in the network a set of pheromone values, one per possible destination node
of the package. So (i, j,d) indicates the favourability to go from node i to node j
for a packet with destination d. In order to define shortest paths between any pair
of nodes in the network, ants are launched from each network node towards different
destination nodes. The ants make their way through the network by choosing the next
arc at every node probabilistically, based on the pheromone value for that arc and a
heuristic value (which can be based on the length of the queue for thisarc). Once an
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ant reaches its destination, it moves back along the same route it came by, and deposits
pheromone according to the time it spent to reach the goal node. Then the pheromone
is also decayed, likein AS. AntNet performs very well compared to other routing al-
gorithms under a variety of network traffic conditions. An explanation for the good
performance of AntNet in atime-varying environment like this can be found in the so-
called “non-convergence’ property of AS (see [Bonabeau et al., 1999]): even when an
optimal solution is found, the population of solutions maintains a high diversity. This
means that a wide sampling of the solution space is maintained at any time, which is
favourable in dynamic environments.



Chapter 4

Applying ACO to the BPP and the CSP

This chapter describes how the ACO meta-heuristic was adapted to solve the BPP and
the CSP. Section 1 explains how the pheromone trail was defined, section 2 describes
which heuristic was used, section 3 talks about the fitness function that was used to
guide the algorithm towards better solutions, section 4 shows how the pheromone trail
is updated, and section 5 gives details about how the ants build solutions. After that,
section 6 contains an explanation of how exploration can be increased by pheromone
trail smoothing, and section 7 explains how local search was added to improve the
performance of the algorithm. | will in this chapter and the next use the term “bin”
when talking in general about the BPP and the CSP. Only when it clearly concerns
a CSP | will use the term “stock”. A complete overview of the algorithm with and
without local search can be found in appendix B, and the source code is available
on-line a http://www.aiai.ed.ac.uk/ johnl/antbin.

4.1 The pheromone trail definition

The quality of an ACO application depends very much on the definition of the meaning
of the pheromone trail ([Dorigo and Stitzle, 2001]). It iscrucia to choose a definition
conform to the nature of the problem. The BPP and the CSP are grouping problems.
What you essentially want to do, is divide the items into groups. Thisisin contrast to
the TSP and most other problems ACO has been applied to. The TSP is an ordering

22



Chapter 4. Applying ACO to the BPP and the CSP 23

2 3 3 2
4
3 3 4
8 7 7 8
5 5 5 5
82:73:54:53 53:73:82:54
° 7
8 4 5 8
5 5
7
5 4
3 3
3 5 )
35:73:28:54 45:35:28:37

Figure 4.1: One solution can have many different order-based encodings.

problem: the aim isto put the different citiesin a certain order. Thisisreflected in the
meaning of the pheromonetrail: it encodes the favourability of visiting a certain city |
after another city i.

It is possibleto encode the BPP and the CSP as ordering problems. Thiswas often
done in GA solutions for these problems (see for example Liang et Al.'s approach
described in section 2.4). A solution is then encoded as an ordered list of all items.
A decoder is needed to trandate this into a solution in terms of bins. As pointed out
in [Falkenauer, 1996], however, there are a few problems with this. A first problem is
redundancy. When you move the bins around in a solution to the BPP, or you move
the items within a bin, you essentially keep the same solution. When encoded as an
ordered list, however, al these presentations of the same solution become different
encoded solutions (see figure 4.1). This means that there is a lot of redundancy in
the solution space, and this redundancy grows exponentially with the problem size. A
second problem with order-based encoding is the fact that the meaning of the place of
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Figure 4.2: The meaning of an ordered-based encoding is context-dependent.

an item in the ordered list is context-dependent. The end of an ordered list can encode
some interesting bins, but by changing the order of the items that precede it, this can
be totally messed up. An example of thisis given in figure 4.2: athough the second
half of the encoding is the same left and right, the result in the decoded solution is
completely different.

Not everyone agrees that the theoretical arguments presented above really have any
implicationsin practice ([Reeves, 1996, Vink, 1997]). In ([Hinterding and Khan, 1995])
on the other hand, an order-based GA is compared to a grouping GA, and it is found
that the grouping GA always gives comparable or better results. It is also found that
the performance of the order-based GA deteriorates with an increased crossover ratio.
Thisis, according to Falkenauer, due to the context-dependency of the encoding. For
the ACO algorithm in this project, | followed Falkenauer, and decided to use a group-
ing approach. It could be interesting to aso try an order-based approach to compare
thisto.

To the best of my knowledge, there is only one ACO application for a grouping
problem. It is Costa and Hertz's AntCol ([Costa and Hertz, 1997]), an ACO solution
for the Graph Colouring Problem (GCP). In an instance of the GCP, a set of nodesis
given, with undirected edges between them. The aim is to colour the nodes in such a
way that no nodes of the same colour are connected (an exampleisgivenin figure 4.3).
So, in fact, you want to group the nodes into colours. Costa and Hertz use a grouping
based approach, in which the pheromone trail between nodei and node j encodes the
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Figure 4.3: A simple example of a graph colouring problem.

favourability of having these nodes in the same colour. The pheromone matrix is of
course symmetric (t(i, j) = t(j,1)).

In this project, the pheromone trail will be defined in the same way as in AntCol:
(i, j) encodes the favourability of having an item of sizei and size j in the same bin.
Thereisof course oneimportant difference between the GCP on one side and the BPP
and the CSP on the other: in the GCP, there is only one nodei and one node j, whereas
in the BPP, and even more so in the CSP, there are several itemsof sizei and size j. As
will become clear later, this has some important consequences for the ACO algorithm.

4.2 The Heuristic

Another important feature of an ACO implementation isthe choice of agood heuristic,
which will be used in combination with the pheromone information to build solutions.
It guidesthe ants probabilistic solution construction with problem specific knowledge.
For the BPP and the CSP, anumber of heuristicsare available (see sections 2.2 and 2.3).
As the heuristic has to be ssmple and easy to apply, it makes sense to choose one of
the fast heuristics of the BPP. As described above, the best of these are FFD and BFD:
they both give a guaranteed worst case performance of %OPT + 4 (with OPT being
the number of bins in the optimal solution to the problem). As FFD is simpler than
BFD, it seemslogical to use this heuristic for the ACO algorithm.

In FFD, the items are first sorted in order of non-decreasing weight, and then each
itemisplacedinthefirst binit still fitsin (seefigure 2.1 in section 2.2). Obvioudly, this
heuristic will also work for the CSP. For use in the ACO agorithm, however, it will
have to be reformulated. This is because the ACO approach works constructively: it
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1. Open an empty bin.
2. Addthe heaviest item that still fitsin the bin.

3. Repeat step 2 until no item isleft that is light enough to fit in the
bin.

4. Go back to step 1 until all items are placed.

Figure 4.4: The reformulated First Fit Decreasing algorithm.

fills the bins one by one, closing one bin before starting the next, instead of the normal
FFD approach, where theitems are placed one by one while several half-filled bins can
be open at the same time. The new FFD heuristic is described in figure 4.4: the bins
arefilled one by one with the heaviest itemsthat can still fit inthem. Thisresultsin the
FFD solution, but is more useful for the ACO algorithm. The heuristic favourability of
an item of size j is now given by that size (the term size is used instead of weight to
generalise the heuristic to the CSP):

ni) =] (4.1)

4.3 The Fitness Function

In order to guide the algorithm towards good solutions, it is important to be able to
assess the quality of the solutions. So afitness function is needed. A straightforward
choice would be to take the inverse of the number of bins, so that better solutions get a
higher fitness. As Falkenauer ([Falkenauer, 1996]) points out, however, this resultsin
avery unfriendly fitness landscape. Often there are many combinations possible with
just one bin more than the optimal solution. If these all get the samefitnessvalue, there
isno way they can guide the a gorithm towards an optimum, and the problem becomes
a needle-in-a-haystack.

So, instead, | chose to use the function proposed by Falkenauer and Delchambrein
[Falkenauer and Delchambre, 1992] to define the fitness of a solution s:
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f(s) = w 4.2)

In this equation is N the number of bins, F; the total contents of bin i, and C the
maximum contents of a bin. k is the parameter that defines how much stressis put on
the nominator of the formula (thefilling of the bins) as opposed to the denominator (the
total number of bins). Setting k to 1 comes down to using the inverse of the number of
bins. By increasing k, a higher fitnessis given to solutions that contain a mix of well-
filled and less well-filled bins, rather than equally filled bins. Thisforces the algorithm
to look for item combinations that make full bins. Falkenauer and Delchambre report
that avalue of 2 for k seemsto be optimal. Values of more than 2 can lead to premature
convergence, as the fitness of suboptimal solutions can come too close to the fithess of
optimal solutions. In [Falkenauer, 1996] it is proven algebraically that for k-values of
more than 2, a solution of N+1 binswith Ng full bins could get a fitness higher than a
solution with N equally filled bins.

Other researchers use this same fitness function ([Reeves, 1996, Vink, 1997]). A
different function is used in the CSP applications of [Hinterding and Khan, 1995] and
[Liang et ., 2001]. They use the formula of equation 4.3 below (in Hinterding and
Khan's work, N+ 1 is replaced by N). Thisis a cost function, rather than a fitness
function (it has to be minimised).

1 N E Ny
Cogt = N—H(Zi ) +i§m)
N is the number of stocks used, F; is the total sum of the lengths of the items cut

4.3)

from stock i, Cj is the length of stock i (multiple stock lengths are possible), and V; is
1if stock i has waste (is not fully used) and O otherwise. The idea behind this formula
Is the same as behind the other fitness function: it simultaneously minimises the total

waste and the total number of stockswith waste, so that solutions containing fully used
stocks are favoured.
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4.4 Updating the Pheromone Trail

For the updating of the pheromone trail, the main source of inspiration was Stiitzle and
Hoos's MAX-MIN Ant System (MMAYS) ([Stutzle and Hoos, 2000]). This agorithm
isdescribed in detail in section 3.3. | chose thisversion of the ACO algorithm because
it gives avery good performance (it is one of the best versions of the ACO heuristic),
and in the sametimeis easy to understand and implement.

Likein MMAS, only the best ant isallowed to place pheromone after each iteration.
The amount placed is given by the fitness of the solution built by that ant (f(sPe)).
Pheromone is placed for every two item sizesi and | that appear together in a bin of
P Asitem sizes are not unique, it is very well possible that i and j are combined
morethan oncein s”®. Inthat case, 1(i, j ) also gets more than one update. So equation
3.4 is adapted to get equation 4.4 below. In thisformulais mthe number of timesi and
j go together in the bins of %<,

(i, ) = p-a(i, j) +m £ (s> (4.4)

When talking about the best ant, one could be referring to the best ant of the past
iteration (iteration best: s'®), or the best ant so far in the algorithm (global best: s%).
Asmentioned in section 3.3, using only the best ant for pheromone updating resultsin
arather aggressive search. Therefore, it isa good idea to not exclusively use s, but
alternate it with s°. The parameter y indicates every how many times s% is used. The
value of this parameter is defined empirically (see chapter 5).

Another important feature of MMAS is the use of an upper and lower limit for
the pheromone trail. The upper limit (tax) IS defined as an approximation of the
asymptotic maximum a pheromone value can evolve to. In this ACO application for
the BPP and the CSP, it isimpossible to use an upper limit. Thisis because of the fact
that the item sizes are not unique: if i and j go together twice in good solutions, and
i and h once, then according to equation 4.4, (i, j) will get two updates every time,
and t(i, h) only one. Thiswill finally result in an asymptotic maximum valuefor (i, j)
which is the double of the maximum value for t(i,h). It is of course impossible to
know in advance how many times the items will go together, and therefore to define a
good value for Tyax.
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The algorithm does use a lower limit for the pheromone trail (tin). Stitzle and
Hoos define the value for 1y, based on pbest, the probability of constructing the best
solution encoded in the pheromone trail when all pheromone values have converged
to either Tax OF Tmin. An ant constructs the best solution if it, at any point during the
construction, choosesthe item with the highest pheromone value. When acertain pbest
isgiven, it is possible to calculate avalue for t,yn. Stitzle and Hoos find formula 3.6.
In that formula, | replaced the unknown Tyex by rlp Thisisin fact an approximation
of their formulafor tmax, given in equation 3.5: as the fitness of the optimal solution
is somewhere between 0.95 and 1 for most problems, | chose to approximate it by 1.
The resulting equation for Tpn IS

= R G )
™ (avg—1)../pbest
The fact that item size combinations can appear more than once in the best solution

1
) lipl

used in 4.5, is only a good approximation for Ty if item sizes only appear 1 or O

(4.5)

would interfere quite severely with the calculations to get to equation 3.6. Also

times together in a solution. Therefore, when equation 4.5 is used as Tpin in thisACO
approach, pbest can only be seen as avery crude approximation of the real probability
to construct the best solution. In fact, you can expect pbest to be further from the real
probability of constructing the best solution the more items there are of the same size.

Finally, alast element wetake over from MMASisthe high pheromonetrail initial-
isation. Thisis meant to enforce exploration in thefirst few iterations of the algorithm:
as al pheromone values are high in the beginning, al the different possibilities are
tried out. After awhile, through the pheromone decay, the pheromone entries which
are not often used in the best solutions get less reinforcement and go down, and the
exploratory effect of the high initial values wears out. Stiitzle and Hoos set the initial
pheromone value t(0) to Tmax. For this project, T(0) was defined empirically to lTlp’
the approximation of tyax described above (see chapter 5).
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4.5 Building a solution

The pheromone trail and the heuristic information defined above will now be used by
the antsto build solutions. Every ant starts with the set of all itemsto be placed and an
empty bin. It addsthe items one by oneto this bin, until none of the items|eft is small
enough tofitinit. Then thebinisclosed, and anew oneis started. The probability that
an ant k will choose an item of size j asthe next item for its current bin b in the partial
solution sisgiven by equation 4.6 below. This equation isvery similar to the one used
inthe original AS (see section 3.2).

(s, j) = { deagabf;)][)f]jgl()i-)[}n(g)}ﬁ 1€ d(sb) (4.6)
0 otherwise

In this equation, Jk(s,b) is the set of items that qualify for inclusion in the current
bin b. They are the items that are still |eft after partial solution sis formed, and are
small enough to fit in bin b. n(j) istheitem size j, as defined in equation 4.1 above.
The pheromone value 1, (j) for anitemsize j inabin bisgivenin equation 4.7 below.
It isthe sum of al the pheromone values between item size | and the item sizesi that
are aready in bin b, divided by the number of items in b for normalisation. If b is
empty, tp(j) isset to 1. Likein other ACO approachesis 3 the parameter that defines
the relative importance of the heuristic information as opposed to the pheromone val ue.
This whole approach is similar to the one followed by Costa and Hertz in their ACO

application for the GCP (see section 4.1).

(4.7)
1 otherwise

R e e

As was described in section 4.4, the pheromone value (i, j) between the item
sizesi and j isincreased for every timei and j occur together in a bin. This means
that if, for example, sizesi and j occur | times together in a solution, the pheromone
value 1(i, j) between them will receive | updates per iteration, whereasif sizesi and h
occur only once together, t(i,h) will receive only one update. Thiswill after a while
result in a value for (i, j) that is | times higher than t(i,h). | originally feared that

this would give a problem, because the combination (i, j) would always be favoured
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over (i,h), not only | times, but also the 14+1" time. | tried to solve this by making
changes to the pheromone trail while it was being used by the ants. every time an ant
used a pheromone value, this value was lowered, so that next time, in another bin of
the same solution, the ant would favour this combination of itemsless. In later tests,
however, this turned out to be unnecessary: the algorithm worked better without the
changes. This is because of the fact that equation 4.6 expresses a probability, rather
than a deterministic indication of which item size to choose next. This means that
every time an new item has to be chosen for a bin containing an item of sizei, item
size j has | times more chance than h to be picked. So, on average, the combination
(i, j) will be constructed | times more than (i,h). And thus, on average, the resulting
solution will be correct.

4.6 Pheromone Trail Smoothing

Pheromone trail smoothing was proposed in [Stutzle and Hoos, 2000] as an additional
mechanism to increase the performance of MMAS. The basic idea is to increase the
pheromone values proportionally to their difference to the maximum pheromone value
Tmax- Thisisdone when MMAS has converged or is very close to convergence (mean-
ing that all pheromone values are really closeto either Tyax Or Tmin). By doing this, the
probability of choosing an item with low pheromone value is increased. This means
there is enhanced exploration. The formula proposed by Stiitzle and Hoos is the fol-
lowing:

(i, j) =1(i,]) + 0.(Tmax — t(i, J)) with0 < 8 < 1 (4.8

With a § value of 1, the smoothing comes down to complete pheromone reini-
tiglisation. With a d of 0, smoothing is switched of. Usually, a 6 between O and 1 is
used, so that the information contained in the pheromonetrail isweakened but not |ost.
As explained is section 4.4, Tmax 1S unknown in the ACO application for this project.
We therefore replace it in equation 4.8 by t(0). A disadvantage of pheromone trail
smoothing isthat it usually needs longer runsto be effective.
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4.7 Adding local search

It is known that the performance of ACO algorithms can sometimes be greatly im-
proved when coupled to local search algorithms ([Dorigo and Stitzle, 2001]). Thisis
for examplethe case in applicationsfor the TSP, the QAP and the VRP. What normally
happens is that a population of solutions is created using ACO, and then these solu-
tions are improved via local search. The improved solutions are then used to update
the pheromonetrail. Soitisin fact aform of Lamarckian search.

An explanation of the good performance of acombination of ACO with local search
can be found in the fact that these two search methods are complementary. An ACO
algorithm usually performs arather coarse-grained search. Therefore, it isagood idea
to try and improve its solutions locally. A local search algorithm, on the other hand,
searches in the surroundings of its initial solution. Finding good initial solutions is
however not an easy task. Thisiswhere ACO comes in: by generating new promising
solutions based on previously found optima, the local search can be given very good
starting points.

There are not so many local search algorithms around for the BPP or the CSP. One
algorithm that seemsto work fairly well was proposed in [Alvim et al., 1999]. In that
algorithm, an initial solution is constructed using the BFD heuristic. Then each bin of
the current solution is destroyed successively, and its contents are spread over the other
bins. If thisleadsto afeasible solution (with no overflowing bins), we have obtained a
solution with one bin less. If the spreading of the items leads to an infeasible solution,
alocal search is applied: pairs of bins are investigated and its items are redistributed
among themselves. If this leads to a feasible solution, a new solution improvement
phase is finished.

As Alvim et Al. report, this local search algorithm gives pretty good results. But
for combination with an ACO algorithm, | needed something fast and simple. There-
fore, the local optimisation algorithm used in Falkenauer’'s HGGA (see section 2.4)
seemed to be a better choice (although it would be very interesting to see how an ACO
combined with Alvim et Al.'s approach would perform). In this algorithm, a number
of items of theinitial solution are made free. In the mutation phase of the HGGA, this
is done by opening afew randomly selected bins. Then the algorithm tries to replace
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up to three itemsin each of the existing bins of the solution by one or two of the free
items, in such away that the total content of the bin isincreased without exceeding the
maximum capacity. After all bins have been examined, the remaining free items are
added to the solution using the FFD heuristic. This search isinspired by Martello and
Toth's dominance criterion (see section 2.2), which essentialy states that well-filled
bins with large items are always preferable over less-filled bins with smaller items. In
HGGA, the algorithm searches locally for dominant bins, by replacing items in the
bins by larger free items. In the sametime, the free items are replaced by smaller items
from the bins, which makes it easier to place them back into the solution afterwards.

In the hybrid version of my ACO agorithm, every solution created by an ant is
taken through a local optimisation phase. In this phase, the least filled bins are de-
stroyed, and their items become free (the number of bins to be destroyed is defined
empirically, see chapter 5). Then, for every remaining bin, it is investigated whether
some of its current items can be replaced by free items so that the bin becomes fuller.
The algorithm successively tries to replace two current items by two free items, two
current items by one free item, and one current item by one free item. In the end,
the remaining free items are re-inserted into the solution using the FFD heuristic. A
complete example of the local search phase is given in figure 4.5. The pheromone is
updated using the locally improved solutions.
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The solution before local search (the bin capacity is 10):
The bins: 333|621(52|43|72|54
Open the two smallest bins:
Remaining bins: 333/621|72/54
Freeitems: 54,32
Try to replace 2 current items by 2 free items, 2 current by 1 free or 1 current

by 1 free:
First bin: 333— 352 new free: 4,3,3,3
Second bin: 621— 64 new free: 3,3,3,2,1
Third bin: 72 - 73 new free: 3,3,2,2,1
Fourth bin: 5 4 stays the same

Reinsert the free items using FFD:
Fourth bin: 54— 541
Rest in new bin: 3322
Final solution: 352|64|73|541|3322

Figure 4.5: An example of the use of the local search algorithm.
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Chapter 5
Experimental results

This chapter summarises the results obtained in experiments with the ACO approach
for the BPP and the CSP. In the first section, the various parameters for the pure
ACO agorithm and for the ACO agorithm with local search are examined, and val-
ues are defined for them. In the second section, the agorithms are compared to
other approaches. to Liang et Al.’s EP agorithm ([Liang et a., 2001]) for the CSP
and to Martello and Toth’'s RA ([Martello and Toth, 1990]) and Falkenauer's HGGA
([Falkenauer, 1996]) for the BPP. All three of these approaches are described in chap-
ter 2.

5.1 Defining parameter values

This section describes how parameter values were defined for the pure ACO algorithm
and the ACO algorithm enhanced with local search. In the tests to define parameter
values, | used test problems that are available on Klein and Scholl’s webpage at the
Technische Universitat Darmstadt®. Problems of different sizes and structures were
used to get as general results as possible.

Lurl: http://www.bwl .tu-darmstadt.de/bwl 3/forsch/project/binpp
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5.1.1 The pure ACO algorithm

Different parameter values had to be defined for the pure ACO algorithm: the number
of ants (nants), the relative weighing of heuristic and pheromone information (B), the
relative importance of the filling of the binsin the fitness function (k), the pheromone
evaporation (p), the relative number of updatesto be done with s'® as opposed to s%° (y),
and the probability of constructing the best solution (pbest), which defines tpin. When
the algorithm is extended with pheromone trail smoothing (PTS), aso the degree of
smoothing o has to be defined.

To define the value for nants, the algorithm was run on the different test prob-
lems with a fixed number of solution constructions. So when nants was increased, the
number of iterations was decreased to maintain this fixed number of solutions. In this
way, it was possible to compare a high number of iterations with only afew antsto a
lower number of iterations with more ants. The testsindicated that, like for other ACO
algorithms and applications (see [Dorigo and Stitzle, 2001]), the algorithm was quite
robust to this parameter. Still, it could clearly be observed that the range of values
of nants that gave optimal results varied with the problem size. Setting nants to the
number of items nitems gave optimal or near-optimal resultsfor al test problems. It is
interesting to see that the optimal number of ants was well above 1, so it is useful to
use a colony of ants rather than one individual ant.

The next parameter, 3, defines the relative importance of the heuristic information
as opposed to the pheromone information when ants build a solution. This parameter
appeared to be crucial. Using awrong value for it resulted inevitably in poor results.
Through tests with many different problem instances, | tried to find a link between
the optimal 3 value and problem features, such as the number of items, the number of
different item sizes, the quality of the FFD solution (asthisisthe heuristic that is used),
etc.. | failed to find any useful relation, however, and could only conclude that § hasto
be defined empirically for any new problem instance. Fortunately, the good 3 values
for the different problems were all situated between 2 and 10, and in practice, the
choice can be narrowed down to one of 2, 5 or 10. Values of 0 always gave bad results,
so | could confirm the general statement of [Dorigo and Stiitzle, 2001] that heuristic
information is important to direct solution construction. | also did tests without the
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pheromone trail, so that only heuristic information was used (but in a stochastic way).
Thisgave resultswhich were better than the deterministic use of FFD, but clearly worse
than the ACO a gorithm, confirming that the ACO algorithm does something useful.

For the parameter k, which defines the fitness function, it was clear that avalue of 2
was better than 1. So the fitness function of [Falkenauer and Delchambre, 1992] gave
better results than just using the inverse of the number of bins (see section 4.3). Values
higher than 2 did not give significantly worse results. As the results were not better
either, | chose to keep 2 as the value for k, keeping in mind the theoretical arguments
of [Falkenauer, 1996] against higher values.

The two next parameters, the pheromone evaporation rate p and the relative num-
ber of updates to be done with s% v2, appeared to be interdependent. For both of these
parameters, a higher value means more exploration of the solution space. When exam-
ined separately, they both needed alower value (so less exploration) for larger problem
instances. This seemsto make sense: larger problems have more items, so more places
to make stochastic decisions while building a solution. So for large problems, more
different solutions will be sampled anyway, and the probability to build the best so-
lution encoded in the trail (pbest) will be lower. So less extra exploration is needed.

| decided to set y to [-29-7. Once this was done, there was enough size-dependent
exploration, and p could be set to one fixed value for every problem: 0.95.

The optimal value for pbest, which defines T, appeared to be 0.05, athough a
really broad range of values could be used, and the tests were not very conclusive.
Also for t(0), the initial pheromone value, a broad range of values gave good results.
Setting 1(0) to tmin (and giving up on optimistic initial values) gave clearly worse
results though. | chose to set it to rlp, the approximation of tax defined in section
4.4,

Finaly, | extended the algorithm with PTS, and did tests to define the best value for
9, the parameter which defines how much of the original pheromone value you keep
(withad of 1, you loose al previous pheromone information, with aé of 0, smoothing
is switched off) (see section 4.6). The optimal value for 6 turned out to be 0.4. With

this value, PTS could improve the results for some of the test problems significantly.

2A y value of 1 means that all updates have to be done with s%, a value of n means that every nt
update has to be done with s%.
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For most problems, however, the improvements were only marginal.

5.1.2 The ACO algorithm with local search

When the ACO is combined with local search, new parameter settings are needed. In
this section, the parameters nants, B, p, v, pbest and t(0) are redefined. The parameter
kiskept on 2. One new parameter isintroduced: binsindicatesthe number of binsthat
are opened to release the free items for the local search.

To define nants, the same kind of test as before was done: vary the number of
ants, while the total number of solution constructions stays fixed. Like for the pure
ACO algorithm, arather wide range of values gave good solutions. The best valuesfor
nants were lower, however, and less dependent on the problem size. It was possible
to set the value of nantsto 10 for al problems. The fact that less ants are needed per
iteration can be explained as follows. If no local search is used, interesting spots are
only found when ants specifically build those solutions. With local search, however,
every solution istaken to a near-by optimum in the solution space. Therefore, less ants
are needed to get an equally good sampling of interesting solutions.

When investigating the 3 parameter in the algorithm with local search, it turned
out that using an optimal B value became less important, and that most problems
could in fact do with a value of 2. This was to be expected: as is explained in
[Dorigo and Stitzle, 2001], local search uses the heuristic information in a more di-
rect way to improve solutions, and the importance of the heuristic information for the
building of solutions diminishes. However, there were still some problem instances
that needed a3 value of 5 or 10, so it stays necessary to experimentally choose a good
value.

The fact explained above that local search focuses the investigation directly on the
interesting spots of the solution space also means that less exploration is necessary.
This was confirmed when the optimal values for y and p were defined. For v, the
optimum appeared to be 1 for any problem size, meaning that all the updates are done
with the globally best solution s%. So there is less exploration. For p, the test results
were very unclear. For most problems, any value between 0 and 0.9 gave good results.
A very low p value means that the pheromone only lasts for one generation, so new
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solutions are only guided by the previous optimum. This resultsin a very aggressive
search, and for some rather difficult problems, the optimum was found incredibly fast
(in as few as 2 or 3 iterations, where for the pure ACO agorithm 300 was more the
norm for these problems). 1t did, however, also cause the algorithm to get stuck in local
optimafrom time to time. In the end, | settled for ap of 0.75. This gaverise to longer
runs (around 30 iteration for the problems mentioned above), but was less unstable in
terms of convergence into local optima

Also, for pbest and t(0), less exploration was the key word. For different values of
pbest, the results in number of bins stayed the same, but less cycles were needed for
higher values. The best results were in fact obtained with pbest set to 1. This means
that tmin is set to O: the lower limit on pheromone valuesis abandoned. Also for t(0),
the results hardly differed in number of bins. Therefore | decided to give up on the
exploratory starts as well (to set t(0) to 0). This means that the algorithm is not first
forced to try out different possibilities, so it can get right down to business, and needs
lessiterations.

Finally, also the new parameter bins, the number of bins to be opened, had to be
defined. This was quite difficult, as it depended very much on the problem instance
at hand. Fortunately, for most problems the algorithm gave optimal results for quite
awide range of values for bins. Originally, there was no overlap between the ranges
for the different test problems | used. Then I tried to turn around the order in which
the local search triesto replace existing items with free items (originally, the algorithm
first replaced 1 existing item for 1 free item, then 2 for 1 and finally 2 for 2). Thisgave
dlightly better solutions, and made the ranges of optimal bins values wider, so that a
value of 4 became acceptable for all problems.

5.2 Comparing to other approaches

In this section, the pure ACO agorithm and the ACO algorithm augmented with local
search are compared to existing evolutionary approachesfor the CSP and the BPP. PTS
was not used, as this technique only improves the results dlightly, while using longer
runs. For the CSP, the algorithms are compared to Liang et Al.'s EP approach. For the



Chapter 5. Experimental results 40

BPP, they are compared to Martello and Toth’'s RA and Falkenauer’s HGGA. All the
testswere run on the department’s Sun Sparc machines: Ultra5’sand Blade 100’swith
128 Mb memory using 270-502 MHz processors. The algorithm was implemented in
java.

5.2.1 Tests for the CSP

Liang et Al. include in their paper ([Liang et a., 2001]) their 20 test problems. | use
their 10 single stock length problems (problem lato 10a included in appendix A) to
compare my approach to theirs. They have aversion of their program with and without
contiguity. Asis explained in section 2.1, a CSP with contiguity is one where, apart
from minimising the number of stocks, you also want as few outstanding orders as
possible. Liang et Al.'s EP with contiguity gives the best results in number of stocks.
This could be due to the fact that the contiguity goal prefers a certain order of theitems
in the solution, regardless of their grouping into bins, so that an order based approach
is favoured. It also reduces the redundancy in the solution space, which was said to
be a major problem for order based approaches (see section 4.1). Even though my
algorithms don’t take contiguity into account, | will compare themto Liang et Al sEP
with contiguity®. First, the EP is compared to the pure ACO algorithm. After that, it is
compared to the ACO agorithm with local search.

Like Liang et Al., | did 50 independent test runs for each problem. The results for
the pure ACO algorithm and the EP are summarised in table 5.1. Liang et Al. use a
population size of 75 and a fixed number of generations for each problem. In order to
get afair comparison, | let the ant algorithm maximally build the same total number
of solutions as the EP: the number of generations was multiplied with the population
size, and divided by the number of ants (dependent on the problem size) to get the
maximum number of iterations. Only for problem 10a less solutions were allowed (the
same number as for problem 9a), because the runs would otherwise take too long. As
mentioned before, the parameter 3 is really crucial in the ACO agorithm. Therefore,

3This agorithm differsin only two aspects from the one described in section 2.4: in 25% of the mu-
tations, another operator is used (one that is better for contiguity), and a slightly different cost function
isused (see[Liang et a., 2001] for details).
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| had to do a few preliminary test runs for every problem to choose a good 3 value. In
the table, only the results for the best 3 value are reported.

Itisclear from these results that problems 1ato 5a were too easy: both algorithms
always find the best solution. For the other 5 problems, the ACO algorithm finds
better results: apart from problem 7a, it finds both better average values and better best
values. In fact, t-tests show that the EP results are less good with 100% probability
for these problems. For problem 7a, the EP results are less good with 93.7%. As
mentioned above, however, the ACO agorithm only gave these good results when the
best B value was used. So, compared to the EP, it has the disadvantage that it needs a
preliminary optimisation phase.

The table also shows another disadvantage of the ACO approach: it is quite slow.
This is especially a problem for the big problems (6a to 10a). For 9a for example,
every run takes on average aimost 6 hours. However, this could probably be reduced
alot if the program was re-implemented in C, and run on faster machines (experience
suggests that it would be possible to get a speedup of 25). Also, the maximum number
of iterations could be reduced (now it is 750000 solutions/ 400 ants = 1875), as most
results were obtained much earlier (on average after 345 iterations).

The results for the ACO algorithm with local search are summarised in table 5.2.
As solution construction with this version of the algorithm obviously takes much more
time, | had to reduce the maximum number of evaluations (see column ’sol’ in the
table). Since the number of ants was much lower than for the pure ACO algorithm,
however (10 instead of the number of itemsin the problem), this did not result in less
cycles. The parameter 3 again had to be defined in a preliminary optimisation phase.

For problem la up to 6a, the results are, in terms of number of stocks, the same as
for the pure ACO algorithm. For problems 1a up to 4a, these results are the theoretical
optimum. For 5aand 6a, the theoretical optimum (found by summing the lengths of all
items together and dividing this by the stock length) would be lower, but it is possible
that that optimum cannot be reached in practice (as neither of the ACO agorithms,
nor the EP can find it). For the bigger problems, 7a up to 10a, the ACO algorithm
with local search performs clearly better than the pure ACO algorithm: it has a better
average solution for all of these problems, and even finds a better best solution for
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Prob ACO EP

sol avg | opt it| time sol avg | opt
la| 37500 9 9 0 37500 9 9
2a| 75000 23| 23 0 75000 23| 23
3a | 150000 15| 15 0| 150000 15| 15
4a | 150000 19| 19 9 1| 150000 19| 19
5a | 150000 53| 53| 31 14 | 150000 53 | 53
6a | 375000 79| 791|198 | 2421 | 375000 | 80.76 | 80
7a| 375000 | 68.82| 68|385| 1619 | 375000 | 68.96 | 68
8a | 375000 | 144.92 | 144 | 366 | 6443 | 375000 | 148.08 | 147
9a | 750000 | 150.98 | 150 | 345 | 20401 | 750000 | 152.42 | 152
10a | 750000 | 218.44 | 218 | 442 | 14926 | 1500000 | 220.28 | 219
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Table 5.1: These are the results for problemla up to problem10a. 'ACO’ gives the re-

sults obtained with the pure ACO approach and 'EP’ gives Liang et Al.'s results. 'sol’

indicates the total number of solutions the algorithms were maximally allowed to inves-

tigate, 'avg’ indicates how many stocks were used on average, 'opt’ indicates the num-

ber of stocks in the best solution, 'it’ indicates after how many iterations this number of

stocks was first found, and 'time’ indicates the average running time for one problem in

CPU seconds (until the theoretical optimum or the maximum number of iterations was

reached).
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problem sol avg | opt it | time
la| 1000 9.00 9 1.0 0
2a| 2000 | 23.00| 23 1.0 0
3a| 10000 | 15.00| 15| 60.0 1
4a | 10000 | 19.00 | 19 1.0 0
5a | 10000 | 53.00 | 53 14 0
6a| 10000 | 79.00| 79| 16.3 79
7a| 10000 | 68.00| 68| 57.8 6
8a | 10000 | 144.30 | 144 | 225.3 | 312
9a | 20000 | 150.00 | 150 | 98.7 | 375
10a | 20000 | 217.66 | 217 | 397.4 | 2297

Table 5.2: These are the results obtained with the ACO algorithm with local search
for problemla up to problem10a. 'sol’ again indicates how many solutions the ants
could maximally build, 'avg’ how many stocks were used on average, 'opt’ the number
of stocks in the best solution, 'it" after how many iterations this number of stocks was

first found, and 'time’” how many CPU seconds the program needed on average for one

problem.
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problem 10a. With t-tests it can be shown that for al four problems the results with
the pure ACO algorithm are worse with a probability of 100%.

The local search also solves the problem of long running times. Especialy for the
bigger problems, enormous speed-ups have been realised, thereby countering one of
the disadvantages of the ACO approach. There is however one problem for which the
ACO with local search needed more time: problem 3a. Also in number of iterations,
this problem seems to give the ACO with local search more difficulties: 60 iterations
on average as opposed to 3. One aspect in which problem 3a differs from the others
is that in the optimal solution, all stocks are fully used: thereis no waste. | cannot,
however, see why this should give problemsfor the ACO with local searchin particular.
Maybe the way the local search triesto find better optimais not good for this particul ar
problem.

5.2.2 Tests for the BPP

In [Falkenauer, 1996], Falkenauer compares his HGGA to Martello and Toth’'sRA. He
uses 8 different sets of 20 test problems, and runs the algorithm just once on each of
these. The first four sets contain problems with a bin capacity of 150 and item sizes
uniformly distributed between 20 and 100 (because this kind of problem appeared to
be the hardest in Martello and Toth’swork). He uses four different problem sizes: 120
items, 250, 500 and 1000. For each size, 20 different problems were created randomly.
These problems are further referred to as the uniform problems. The next four sets
of test problems have a different structure. They are the so-called triplets. This name
is derived from the fact that in the optimal solution, every bin contains three items,
two of which are smaller than the third of the bin capacity, and one is larger. These
problems are very hard, because it is possible to fit three small items into a bin, or
two large ones, but then the optimum will inevitably be missed. Again, 20 different
problems were created for four different problem sizes: 60, 120, 249 and 501 (with an
optimal solution of 20, 40, 83 and 167 bins respectively). All of these test problems
are available on-line at the OR-library: http://mscmgams.ic.ac.uk/info.html.

I ran both ACO algorithms on each instance of every problem set, except for the
fourth (uniform problems of size 1000). For those problems, | only ran the ACO with
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local search, because the computation times for the pure ACO algorithm were pro-
hibitive. The maximum number of solutions for the pure ACO algorithm was defined
as before, by multiplying the population size (always 100) and the number of genera-
tions (2000 for the two smallest uniform problem sets and 5000 for the largest, 1000
for the two smallest triplet sets and 2000 for the two largest). The ACO agorithm with
local search was always allowed 10 times less solutions. The results for the RA were
obtained by Falkenauer. He let it do at maximum 1500000 backtracks, except when
that was finished faster (in CPU seconds) than the run of HGGA. In that case, extra
backtracks were allowed. For both ACO algorithms, runs were done with 3 values of
2, 5and 10. The ACO algorithm with local search always needed a similar or lower
B than the pure ACO. In the tables below, only the results for the best  values are
reported.

The results for the uniform problems are reported in tables 5.3, 5.4, 5.5 and 5.6
below. From these results, it is clear that the pure ACO a gorithm cannot beat HGGA.
For the problems of size 120, it does almost equally well, and for the ones of size 250,
it equals HGGA in 11 out of 20 problems. For the problems of size 500, however,
it always does dightly worse than HGGA. RA also does dlightly better than the pure
ACO on the smallest problems, but for the larger ones, it does clearly worse. The
disadvantage of the pure ACO algorithm pointed out above, namely that it is slow for
big problems, can again be observed here.

The ACO with local search does clearly better than the pure ACO. Especialy on
the smallest problems (size 120), it does very well. For those problems, Falkenauer’'s
HGGA finds the theoretical optimum in all but two cases (problem 9 and 20). For
these two cases, Falkenauer conjectures that the optimum cannot be reached, as neither
HGGA nor RA find it. It istherefore all the more remarkable that the hybridised ACO
algorithm finds these optima. For the larger problems, the ACO with local search
does not always find the solution found by HGGA, and for the largest problems (size
1000), it always does dlightly worse than HGGA.. It does, however, always beat RA
and the pure ACO agorithm. Like for the CSP problems, the local search also gives
an enormous speed-up, making it much faster than the other algorithms for the two
smallest problem sets, and comparable to HGGA and RA for the larger ones.
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Run HGGA RA ACO HACO
bins | time | bins | time | bins | time | bins | time
1| 48 15| 48 0| 48 80| 48 1
2| 49 0| 49 0| 49 58 | 49 1
3| 46 6| 46 29| 46| 102 | 46 1
4| 49 50| 49 0| 49| 226 | 49 1
5| 50 0| 50 0| 50 64| 50 1
6| 48 19| 48 0| 48| 110| 48 1
7| 48 19| 48 0| 48| 212 | 48 1
8| 49 22| 49 0| 49| 276 | 49 1
9| 51|3669| 513681 | 511696 | 50 3
10| 46 40 | 46 0| 471236 | 46 3
11| 52 0| 52 0| 52 85| 52 1
12| 49 24 | 49 0| 49| 120| 49 1
13| 48 26 | 48 0| 49|1269 | 48 1
14| 49 0| 49 0| 49 51| 49 1
15| 50 0| 50 0| 50 79| 50 1
16| 48 11| 48 0| 48 92 | 48 1
17| 52 0| 52 0| 52| 102 | 52 1
18| 52 76| 52 0| 52| 158 | 52 1
19| 49 14| 49 0| 49| 108 | 49 1
20| 50|3635| 50 (3679 | 50|1269 | 49 6
Averages 381 370 370 1
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Table 5.3: These are the results for the uniform problems of size 120. 'bins’ contains the

number of bins in the best solution, and ’time’ the running time in CPU seconds. 'HGGA’

gives the results of Falkenauer’s algorithm, 'RA’ for Martello and Toth’s algorithm, ’ACO’

for the pure ACO approach, and HACO for the ACO algorithm hybridised with local

search. The 3 value used here was 2 for both the pure ACO and the ACO with local

search.
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Run HGGA RA ACO HACO
bins | time | bins | time | bins | time | bins | time
1| 99| 257 | 100 | 1002 | 100 | 3008 | 99 | 11
2| 100| 47| 100 0| 100 | 2485 | 100
3] 102 | 224 | 102 0| 102 | 916 | 102
4| 100 27 | 100 0| 100 | 962 | 100 1
5 101 | 164 | 101 4| 102 | 3452 | 101 34
6| 101 | 478 | 103 | 522 | 103 | 3407 | 102 | 308
7| 102 15| 102 0| 102 | 349 | 102 1
8| 104 | 6629 | 104 | 7412 | 104 | 3464 | 104 | 304
9] 105| 924 | 106 | 1049 | 106 | 3622 | 106 | 317
10| 101 | 158 | 102 | 597 | 102 | 3371 | 101 3
11 | 105 96 | 106 | 377 | 105 | 1035 | 105 2
12| 101 | 240 | 102 | 1076 | 102 | 3365 | 101 | 110
13| 106 | 5997 | 106 | 6101 | 106 | 3592 | 106 | 292
14| 103 | 6347 | 103 | 6969 | 103 | 3519 | 103 | 312
15| 100 83| 100 0| 100 | 1549 | 100 1
16 | 105 | 4440 | 106 | 4673 | 106 | 3481 | 106 | 305
17| 97| 255| 98| 545 | 98| 3102 | 97 7
18 | 100 39 | 100 0| 100 | 487 | 100 1
19| 100 | 247 | 100 0| 101|338 | 101 | 313
20 | 102 68 | 102 0| 102 | 980 | 102 1
Averages | 1337 1516 2476 116
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Table 5.4: The results for the uniform problems of size 250. § was 10 for both ACO and

HACO.
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Run HGGA RA ACO HACO
bins| time| bins| time |bins| time |bins | time
1| 198 481 | 201 987 | 200 | 24271 | 199 | 957
2| 201 178 | 202 869 | 202 | 26512 | 202 | 908
3| 202 348 | 204 911 | 203 | 25753 | 202 | 772
4| 204 | 11121 | 206 | 11412 | 206 | 25351 | 205 | 1143
5| 206 268 | 209 844 | 207 | 25351 | 206 59
6 | 206 130 | 207 818 | 206 | 20750 | 206 13
7| 207 | 1656 | 210 | 1854 | 209 | 26826 | 208 | 890
8| 204 | 1835 | 207 | 2085 | 206 | 23968 | 205 | 897
9| 196 502 | 198 | 1222 | 197 | 24331 | 197 | 929
10 | 202 93| 204 962 | 203 | 24497 | 202 66
11| 200 106 | 202 894 | 201 | 25878 | 200 3
12 | 200 152 | 202 793 | 202 | 24527 | 200 | 335
13| 199 | 1019 | 202 | 1258 | 201 | 24904 | 200 | 936
14 | 196 136 | 197 860 | 197 | 25131 | 197 | 951
15| 204 952 | 205 | 1203 | 205 | 25546 | 204 30
16 | 201 375 | 203 783 | 203 | 19153 | 201 26
17| 202 163 | 204 733 | 203 | 18561 | 202 20
18 | 198 337 | 201 755 | 199 | 18072 | 198 | 606
19| 202 144 | 205 638 | 203 | 19558 | 202 30
20 | 196 307 | 199 819 | 198 | 17950 | 197 | 963
Averages 1015 1535 23378 527

Table 5.5: The uniform problems of size 500. § was 10 for ACO and 2 for HACO.
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Run HGGA RA HACO
bins| time| bins| time | bins| time
1] 399 | 2925 | 403 | 3279 | 400 | 3047
2| 406 | 4040 | 410 | 4887 | 408 | 3017
3| 411 | 6262 | 416 | 6606 | 412 | 3001
4| 411 | 32714 | 416 | 40286 | 413 | 2961
5| 397 | 11862 | 401 | 20690 | 399 | 3073
6| 399 | 3774 | 402 | 4216 | 401 | 3027
7| 395 | 3033 | 398 | 3450 | 396 | 3000
8| 404 | 9879 | 406 | 12674 | 405 | 3028
9| 399 | 5585 | 402 | 6874 | 401 | 3006
10 | 397 | 8126 | 402 | 9568 | 400 | 2924
11| 400 | 3359 | 404 | 3543 | 401 | 3021
12 | 401 | 6782 | 404 | 7422 | 403 | 3073
13| 393 | 2537 | 396 | 2714 | 394 | 3019
14 | 396 | 11829 | 401 | 23319 | 398 | 3111
15| 394 | 5838 | 399 | 6771 | 396 | 3070
16 | 402 | 12611 | 407 | 20458 | 405 | 3032
17 | 404 | 2379 | 407 | 3139 | 405 | 3010
18 | 404 | 2379 | 407 | 2506 | 405 | 2941
19| 399 | 1330 | 403 | 1353 | 401 | 3000
20 | 400 | 3564 | 405 | 4110 | 402 | 3024
Averages 7059 9393 3019
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Table 5.6: The uniform problems of size 1000. B was 5 for HACO. The pure ACO was

not run on these problems, as computation times were too long.
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The tables 5.7, 5.8, 5.9 and 5.10 show the results for the triplet problems. The
pure ACO algorithm again fails to beat HGGA. RA has some results for the smallest
problems (size 60) which are better than the ACO’s, but asthe problem sizeincreases, it
becomes clear that RA does much worse than pure ACO. An interesting fact isthat the
ACO agorithm has a very constant performance: although it never finds the optimum
for the smallest problems, it is always close to it. RA sometimes finds the optimum
for the smallest problems, but when it does not find the optimum, it often endsup in a
very bad local optimum. It can again be observed that the ACO algorithmis quite slow
for large problems.

The ACO agorithm with local search does not better than the pure ACO algorithm
for the two smallest problem sets. For the two largest problem sets, it does beat pure
ACO. For none of the triplet problems, it manages to equal HGGA's performances.
The large speed-up compared to pure ACO can again be observed.

It iskind of disappointing to see that HGGA does better than both ACO agorithms
on many problem instances. There might be an explanation why ACO does not do so
well on these problems, though. The way ACO worksis by reinforcing good solutions.
Solution parts that appear in many good solutions will get a lot of pheromone. If,
however, alarge number of solution partsare equally likely to appear in good solutions,
ACO failsto differentiate them and performs poorly (see also [Bonabeau et al., 1999,
Bonabeau et al., 2000]). In other words, it is important that the problems have enough
structure. For the QAP (see[Gambardella et a., 1999h]), it was observed that ACO did
very well on real-life problems, but could not compete with the best algorithmswhen it
came to randomly constructed artificial problems, because those lacked structure. The
structure of a search space can be expressed in the fitness-distance correlation (FDC)
([Jones and Forrest, 1995]). Thisisthe correlation between the fitness of a solution and
its distance to the global optimum. So it expresses whether good solutions can guide
the algorithm towards the global optimum. The BPP test problems used above were all
constructed randomly. Especially the triplets (which the ACO has the most difficulties
with) were created to be artificially hard. It would be interesting to calculate the FDC
for these problems, to see if they possess the necessary structure to be easily solved
with ACO. Also, it would be interesting to compare ACO with HGGA on other kinds
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Run HGGA RA ACO HACO

bins | time | bins | time | bins | time | bins | time

1| 20 4| 20 10| 21| 292 | 21 37
2| 20 6| 20 13| 21| 406 | 21 42
3| 20 2| 23| 564 | 21| 294 | 21 35
4| 20 6| 22| 445 | 21| 286 | 21 38
5| 20 1| 22| 405| 21| 293| 21 35
6| 20 9| 22| 415 21| 317 | 21 38
7| 20| 284 | 22| 486 | 21| 325| 21 38
8| 21| 295 | 22| 396 | 21| 202 | 21 37
9| 20 7| 22| 452 | 21| 290 | 21 38
10| 20 6| 20| 10| 21| 308| 21| 39
11| 20 15| 20 1| 21| 307| 21 40
12| 20 1] 20 6| 21| 267 | 21 34
13| 20 3| 20 2| 21| 3713| 21 40
14| 20 5| 22| 38| 21| 302| 21 36
15| 20 6| 22| 401 21| 293 | 21 38
16| 20 3| 23| 537 21| 332 | 21 38
17| 20 2| 23| 528 21| 2716 | 21 34
18| 20 9| 22| 430 21| 283 | 21 37
19| 21| 281 22| 38| 21| 293 | 21 41
200 20 2| 22| 400 21| 303| 21 40
Averages 47 313 307 38

Table 5.7: The triplets of size 60. 3 was 2 for both ACO and HACO.
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Run HGGA RA ACO HACO
bins | time | bins | time | bins | time | bins | time
1| 40| 121 | 44| 844 | 41 |1394 | 41| 135
2| 40| 104 | 43| 823 | 411367 | 41| 131
3| 40 96 | 43| 956 | 411492 | 41| 141
4| 40 39| 44| 859 | 411400, 41| 188
5| 40 76| 451184 | 411505 | 41| 151
6| 40| 149 | 451189 | 41| 1451 | 41| 153
7| 40 47 | 45|1054 | 41| 1398 | 41| 165
8| 40 61| 43| 777 | 411406 | 41| 176
9| 40 37| 43| 643 | 411403 | 41| 184
10| 40| 256 | 4411003 | 411381 | 41| 138
11| 40| 103 | 44| 886 | 411367 | 41| 136
12| 40 50| 45| 980 | 411403 | 41| 182
13| 40 43 | 44| 1014 | 411313 | 41| 136
14| 40 57| 44| 835 | 411404 | 41| 161
15| 40 41| 44| 824 | 41 |1366 | 41| 134
16| 40 47 | 44| 873 | 41| 1326 | 41| 133
17| 40 93| 43| 629 | 411414 | 41| 169
18| 40 51| 44| 790 | 411466 | 41| 139
19| 40 67| 461171 | 411712 | 41| 138
20| 40 40 | 45| 1076 | 41| 1412 | 41| 147
Averages 79 921 1419 152

Table 5.8: Triplets of size 120. B was 5 for ACO and 2 for HACO.
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Run HGGA RA ACO HACO
bins | time | bins | time | bins | time | bins | time
1| 83| 323| 93 (2381 | 85|14036 | 84| 691
2| 83| 227 | 83 |1526 | 8511988 | 84 | 753
3| 83| 217 | 83| 1455| 8511876 | 84| 733
4| 83| 723| 90| 1717 | 85| 12136 | 84| 750
5| 83| 382| 912513 | 85|11721| 84| 718
6| 83|1717| 90| 2177 | 8512513 | 84| 743
7| 83|1474| 90| 2108 | 85|11680| 84 | 698
8| 834400 | 922493 | 85|11626| 84| 723
9| 83| 615| 912438 | 85|11956| 84| 726
10| 83| 318 | 90| 1522 | 85|12148| 84 | 709
11| 83| 777 94|2815| 85|11974 | 84| 720
12| 83| 191| 90 |1688 | 85| 12053 | 84 | 707
13| 83| 262 | 891608 | 85| 12218 | 84 | 711
14| 83| 360 | 91|2363| 85|12519| 84| 700
15| 83| 204 | 891399 | 85| 12792 | 84 | 728
16| 83 76| 912683 | 8512748 | 84| 721
17| 83| 667 | 90|2081| 85|12798 | 84 | 739
18| 83| 307| 90|2086 | 85|12655| 84 | 737
19| 83| 204 | 91|2237| 85|12086 | 84 | 727
20| 831025 | 912199 | 8511777 | 84| 724
Averages 728 2074 12265 723

Table 5.9: Triplets of size 249. B was 5 for ACO and 2 for HACO.
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Run HGGA RA ACO HACO
bins | time | bins | time | bins| time | bins | time
1167|1807 | 184 | 5829 | 173 | 14905 | 170 | 2867
2| 167 | 1582 | 181 | 3437 | 173 | 15216 | 171 | 2030
3| 167 | 1235 | 177 | 2359 | 172 | 14946 | 171 | 2113
4167|1822 | 180 | 3398 | 173 | 15949 | 171 | 2206
5| 167 | 2355 | 181 | 3710 | 173 | 15782 | 170 | 4037
6| 167 | 1424 | 183 | 10624 | 173 | 15650 | 171 | 2156
7| 167 | 1161 | 183 | 5789 | 173 | 15729 | 170 | 2142
8| 167 | 1504 | 183 | 5799 | 172 | 15439 | 170 | 2104
9| 167 | 2138 | 177 | 2991 | 172 | 15628 | 171 | 2167
10| 167 | 1550 | 185 | 5626 | 173 | 14921 | 170 | 2463
11| 167 | 1053 | 179 | 3771 | 173 | 15275 | 171 | 2133
12| 167 | 1335 | 178 | 3064 | 173 | 15538 | 171 | 2126
13| 167 | 1502 | 187 | 5787 | 173 | 14428 | 170 | 2245
14| 167 | 1951 | 181 | 4495 | 172 | 15851 | 173 | 2252
15| 167 | 1474 | 183 | 5930 | 173 | 16325 | 170 | 4127
16| 167 | 2351 | 181 | 5307 | 173 | 15729 | 170 | 2171
17| 167 | 1179 | 183 | 5522 | 173 | 15244 | 171 | 2174
18| 167 | 1754 | 183 | 6277 | 173 | 15228 | 172 | 2474
19| 167 | 1776 | 180 | 4164 | 173 | 15303 | 170 | 2092
20| 167 | 2307 | 188 | 6519 | 173 | 15223 | 173 | 2151
Averages | 1663 5020 15416 2412

Table 5.10: Triplets of size 501. § was 2 for both ACO and HACO.
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of problems. The good performance of ACO with local search on the small uniform
problems might suggest that there are certain problem classes for which ACO does
better.



Chapter 6
Conclusions

In this dissertation, | have developed an ACO agorithm for the bin packing problem
and the cutting stock problem. Artificial ants stochastically build new solutions, using
acombination of heuristicinformation and an artificial pheromonetrail. The entriesin
the pheromone trail matrix encode the favourability of having two itemsin the same
bin, and are reinforced by good solutions. In thisway, ideas of evolutionary algorithms
and reinforcement learning are combined. The relative importance of the pheromone
trail information as opposed to the heuristic information is defined by the parameter
B, and is crucial for the performance of the algorithm. Unfortunately, there does not
seem to be alink between the optimal value for this parameter and the features of the
problem. It has to be defined empirically in a preliminary optimisation phase.

Apart from a pure ACO approach, | also proposed a hybrid approach, which com-
bines ACO with local search. The solutions constructed by the ants are taken to alocal
optimum by a search based on Martello and Toth’s dominance criterion. This extended
algorithm gave better and faster solutions than the pure ACO approach.

When compared to existing evolutionary approaches, both ACO algorithms man-
aged to outperform Liang et Al.'s EP solution for the CSP and Martello and Toth's
RA for the BPP. The pure ACO a gorithm failed to compete with Falkenauer’'s HGGA,
which is at the moment probably the best solution method for the BPP. The algorithm
was also very slow for large problem instances. The hybridised ACO algorithm was
much faster and could outperform HGGA on some small test problems, but gave equal
or slightly worse results than HGGA on all of the other problems. Especially the arti-

56



Chapter 6. Conclusions 57

ficialy hard triplet problems seemed to pose more problems for the ACO algorithms
than for HGGA. An advantage of ACO seemsto bethat it gives a steady performance:
when it does not find the optimum, it always finds a near-optimal solution.

| think these are quite encouraging results. Especially the good performance of the
hybrid algorithm on the small uniform problems, which could mean that there are cer-
tain kinds of problemswhere ACO is preferable over al other approaches. We should
not forget that thisis the first ACO application for these problem classes, and there is
quite alot of scope for more research to try and improve the current algorithm. It could
for example be interesting to try out adifferent ACO approach. The ACO agorithmin
this work was mainly based on MMAS, and it could be useful to implement features
of the equally well performing ACS (see section 3.3). A second way to improve the
algorithm could be by changing the local search algorithm. Alvim et Al.’slocal search
method (described in section 4.7) gives good results when used on itsown, and it could
be interesting to try to combine it with ACO. Thirdly, it could be interesting to try to
change the value for 3 dynamically. Asfor GA’s (see [Mitchell, 1996]), it could well
be that for some parameters the optimal value changes over the course of asingle run.
Maybe by adapting B during the run, it could be possible to define it more generally
and avoid the preliminary optimisation phase. Finally, it could be interesting to move
away from a constructive ACO approach, and use the pheromone trail to change ex-
isting solutions, rather than to build new ones (like in HAS-QAP, described in section
3.4). Maybe it could even be used in combination with Falkenauer’'s HGGA replacing
its mutation operator. In this way it might be possible to combine the best of both
worlds.

Apart from making improvements to the algorithm developed in this dissertation,
it could also be interesting to try to extend its application area. As mentioned in sec-
tion 2.1, there are many variations possible to the traditional one-dimensional BPP and
CSP. | don't think it would be very difficult to adapt the algorithm to take extra con-
straintsinto account: thisis probably just a matter of limiting the itemsto choose from
while building a solution. Taking extra goals, like contiguity, into account could be
more tricky. One might be tempted to think that it suffices to adapt the fitness func-
tion, but thisis probably not enough: the pheromone trail only contains information
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about the combination of item sizes in bins, and not about things like the order of the
bins, which isimportant for contiguity. Also extending the algorithm for solving mul-
tiple stock length problems might be more difficult than it seems. You would need a
three-dimensional pheromone trail to be able to express for which stock length cer-
tain combinations are good, and a mechanism to decide on the next stock length when
building solutions. Finally, to solve multi-dimensional cutting and packing problems,
you would need a completely different algorithm. It might still be possible to use
ACO, but the implementation of it would probably be completely different from the
one developed in thiswork.



Appendix A

The test problems for the CSP

These are the 10 single stock length test problems from [Liang et al., 2001].

Problemla:
stock length: 14
items: 20
Item length 3/4|5/6[7]8|9|10
No. Required |52 |1(2|4|2|1] 3

Problem2a:
stock length: 15
items: 50
Iltemlength [3|4|5|6|7|8|9]10
No. Required | 4| 8|57 |8|5|5]| 8

Problem3a:
stock length: 25
items: 60
[temlength |3 | 4 |5|6| 7 |8|9|10
No. Required |6 |12 |6 |5|15|6 |4 | 6

Problem4a:
stock length: 25
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items. 60
Item length 6|7 9101112
No. Required 12 | 15 6 18]|1
Problemba:
stock length: 4300
items. 126
Item length 1050 | 1100 | 1150 | 1200 | 1250 | 1300 | 1350 | 1650
No. Required | 3 8 4 10 6 3 9 2
Item length 1700 | 1850 | 1900 | 1950 | 2000 | 2050 | 2100 | 2200
No. Required | 5 13 15 6 11 6 15 4
[tem length | 2250 | 2350
No. Required | 4 2
Problem6a:
stock length: 86
items. 200
Item length 21123124 |25|26|27 |28 |29
No. Required |10 | 14 | 10| 7 |14 | 4 | 13| 9
Item length 31133|34(35[37|38|41|42
No. Required | 5 | 10 | 13 10|11 | 15|12 | 15
I[tem length | 44 | 47
No. Required | 15 | 13
Problem7a:

stock length: 120
items: 200
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Item length 22 26|27 128|29|30|31|32
No. Required | 6 | 3 |14 12| 9 [15| 11|10
Item length 3436|3738 |39|46 |47 | 48
No. Required | 11 | 13| 4 | 3 | 6 |14| 7 | 3
Item length 52|53 |54 |56 |58|60|63|64
No. Required | 14| 9 | 7 | 3 | 5 |14| 4 | 3
Problem8a:

stock length: 120

items. 400
Item length 2212324126 |27|28|29 |30
No. Required | 12| 8 |27 |15 25| 7 | 10| 22
Item length 3136|3941 42|48 |49 |50
No. Required | 5 |16 |19 |21 |26 |16 | 12 | 26
Item length 51|54 55|56 |59 |60|66 |67
No. Required | 20 | 25| 9 |17 (22|14 | 17| 9

Problem9a:

stock length: 120

items: 400
Item length 21222412527 (29|30 |31
No. Required | 13|15 7 | 5] 9 | 9| 3 |15
Item length 323334353839 42|44
No. Required | 18 | 17| 4 |17 20| 9 | 4 | 19
Itemlength |45 |46 |47 |48 |49 |50 |51 |52
No. Required | 9 |12 | 15| 3 |20|14| 15| 6
Item length 53|54 |55|56|57|59 |60 |61
No.Required | 4 | 7 | 519|196 | 3 | 7
Item length 63| 65| 66 | 67
No. Required | 20| 5 | 10 | 17
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Problem10a:
stock length: 120
items: 600
Iltemlength |21 |22 23|24 |25 |27 |28 |29
No. Required | 131192420 (23|24 15| 5
ltemlength [ 30|31 |33 |35|36|39|40 |41
No. Required |24 | 16 | 12 |24 |16 | 4 |20 | 24
ltemlength |42 |43 |44 |45 |46 | 47 | 48 | 50
No. Required | 6 |14 |21 (20|24 | 2 | 11|26
Iltemlength |51 |54 |56 |57 |58 |61 |62 63
No. Required | 23| 25| 8 |16 |10 |14 | 6 | 19
Item length 64 | 65| 66 | 67
No. Required | 18 | 11 | 27 | 16
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Pseudo code for the algorithms

In this appendix, an overview of both the pure ACO algorithm and the agorithm
with local search is given in pseudo-code. The full source code is available on-line
at http://www.aiai.ed.ac.uk/ johnl/antbin.

B.1 The pure ACO algorithm

Initialise al pheromone trail entriesto t(0)
L oop until the maximum number of iterations or the theoretical optimum is reached
L oop for every ant
L oop until al items are placed
Open anew bin
L oop until no remaining item fitsin the bin anymore
L oop for each remaining item size j that still fits
Sum the pheromone between j and all item sizesi
aready inthebin
Divide this by the number of itemsin the bin
Calculate the probability for j according to (4.6)
End Loop
Choose an item according to the calculated probabilities
End Loop
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End Loop
Calculate the fitness according to (4.2)
End Loop
Find the iteration best ant
Replace the globally best ant if the iteration best was fitter
If ((iteration number mod v) = 0)
Use the globally best ant for pheromone updating
Else
Use the iteration best ant for pheromone updating
End If
Decrease all pheromone entries multiplying them with p (with lower limit Tn)
L oop for every bin in the best ant’s solution
L oop for every combination of item sizesi and j in the bin:
Increase t(i, j) with the fitness of the solution
End Loop
End Loop
End Loop

B.2 The ACO algorithm with local search

Initialise all pheromone trail entriesto 0
L oop until the maximum number of iterations or the theoretical optimum is reached
L oop for every ant
L oop until al items are placed
Open anew bin
L oop until no remaining item fitsin the bin anymore
L oop for each remaining item size j that still fits
Sum the pheromone between j and all item sizesi
aready inthebin
Divide this by the number of itemsin the bin
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Calculate the probahility for j according to (4.6)
End Loop
Choose an item according to the calculated probabilities
End Loop
End Loop
Find afixed number of the smallest bins
Remove them from the solution and label their items as free items
L oop for every one of the remaining bins
Try to replace 2 current items by 2 free items, making the bin fuller
Try to replace 2 current items by 1 free item
Try to replace 1 current item by 1 freeitem
End Loop
Sort the remaining free itemsin non-ascending order of size
L oop for every freeitem
Place the item in the first bin of the current solution it fitsin
If no bin can can take the item
Add anew bin with the item to the solution
End If
End Loop
Calculate the ant’s solution fitness according to (4.2)
End Loop
Find the iteration best ant
Replace the globally best ant if the iteration best was fitter
Decrease the pheromone on all edges multiplying it with p
L oop for every bin in the globally best ant’s solution
L oop for every combination of item lengthsi and j in the bin:
Increase t(i, j) with the fitness of the solution
End Loop
End Loop
End Loop



Appendix C
Published material

The following paper was written for the UK Workshop on Computational Intelligence,
held on 10-12 September 2001 at the University of Edinburgh.
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