
Ant Colony Optimisation

for Bin Packing and

Cutting Stock Problems

Frederick Ducatelle
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

School of Artificial Intelligence

Division of Informatics

University of Edinburgh

2001

Abstract

The bin packing and the cutting stock problems are two well-known NP-hard combi-

natorial optimisation problems. Only very small instances can be solved exactly, so

for real-world problems we have to rely on heuristic solution methods. In recent years,

researchers have started to apply evolutionary approaches to these problems, including

genetic algorithms and evolutionary programming. In this dissertation, I try to solve

the bin packing and the cutting stock problem using ant colony optimisation, a new

class of meta-heuristics introduced by Dorigo in 1992. This meta-heuristic is inspired

by the path-finding abilities of real ant colonies. It combines an artificial pheromone

trail with simple heuristic information to stochastically build new solutions. I show that

this approach gives good results, especially when combined with local search, and that

it can outperform existing evolutionary approaches. A disadvantage of the method is

that it is quite sensitive to the relative weighing of the heuristic information as opposed

to the pheromone trail information.

i

Acknowledgements

In the first place I would like to thank my supervisor, John Levine, for all the invaluable

help and advice he gave me. I would also like to thank Peter Ross for providing useful

references, and Ko-Hsin Liang and Xin Yao for sharing their results.

Many thanks also to my friends and family for giving me support throughout this

MSc.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Frederick Ducatelle)

iii

Table of Contents

1 Introduction 1

2 Packing Bins and Cutting Stock 3

2.1 The Problem Descriptions . 3

2.2 Traditional Solution Methods for the BPP 5

2.3 Traditional Solution Methods for the CSP 7

2.4 Evolutionary Approaches . 8

3 An Introduction to Ant Colony Optimisation 12

3.1 The biological inspiration . 13

3.2 Ant System . 14

3.3 Extensions to Ant System . 17

3.4 Applications of ACO algorithms . 19

4 Applying ACO to the BPP and the CSP 22

4.1 The pheromone trail definition . 22

4.2 The Heuristic . 25

4.3 The Fitness Function . 26

4.4 Updating the Pheromone Trail . 28

4.5 Building a solution . 30

4.6 Pheromone Trail Smoothing . 31

4.7 Adding local search . 32

5 Experimental results 35

5.1 Defining parameter values . 35

iv

5.1.1 The pure ACO algorithm . 36

5.1.2 The ACO algorithm with local search 38

5.2 Comparing to other approaches . 39

5.2.1 Tests for the CSP . 40

5.2.2 Tests for the BPP . 44

6 Conclusions 56

A The test problems for the CSP 59

B Pseudo code for the algorithms 63

B.1 The pure ACO algorithm . 63

B.2 The ACO algorithm with local search 64

C Published material 66

Bibliography 67

v

Chapter 1

Introduction

The Bin Packing Problem (BPP) and the Cutting Stock Problem (CSP) are two classes

of well-known NP-hard combinatorial optimisation problems (see [Dyckhoff, 1990]

for an overview). In the BPP, the aim is to combine items into bins of a certain capacity

so as to minimise the total number of bins, whereas in the CSP, the aim is to cut items

from stocks of a certain length, minimising the total number of stocks. Obviously

these two problem classes are very much related, and the approach proposed in this

work will be able to tackle both of them.

Exact solution methods for the BPP and the CSP can only be used for very small

problem instances. For real-world problems, heuristic solution methods have to be

used. Traditional solution methods for the BPP include fast heuristics ([Dyckhoff, 1990])

and the reduction algorithm of Martello and Toth ([Martello and Toth, 1990]). CSP

instances are traditionally solved with sequential heuristics or methods based on lin-

ear programming ([Haessler and Sweeney, 1991]). In the ongoing search for better

solution methods for both problem classes, researchers have recently shown a lot of

interest for evolutionary approaches, such as genetic algorithms ([Falkenauer, 1996,

Hinterding and Khan, 1995, Reeves, 1996, Vink, 1997]) and evolutionary programming

([Liang et al., 2001]). The most successful of these new approaches is Falkenauer’s

hybrid grouping genetic algorithm ([Falkenauer, 1996]), which combines a grouping

based genetic algorithm with a simple local search inspired by Martello and Toth’s

work.

In this dissertation, I propose an Ant Colony Optimisation (ACO) approach to the

1

Chapter 1. Introduction 2

BPP and the CSP. ACO is a new meta-heuristic for combinatorial optimisation and

other problems. The first ACO algorithm was developed by Dorigo as his PhD thesis

in 1992, and published under the name Ant System (AS) in [Dorigo et al., 1996]. It

was an application for the Travelling Salesman Problem (TSP), loosely based on the

path-finding abilities of real ants. It uses a colony of artificial ants which stochasti-

cally build new solutions using a combination of heuristic information and an artificial

pheromone trail. This pheromone trail is reinforced according to the quality of the

solutions built by the ants. AS was able to find optimal solutions for some smaller TSP

instances. After its first publication, many researchers have proposed improvements

to the original AS, and applied it successfully to a whole range of different problems

(see [Bonabeau et al., 1999] or [Dorigo and Stützle, 2001] for an overview). No one

has used it for the BPP or the CSP, however, apart from a hybrid approach by Bilchev,

who uses ACO to combine genetic algorithms and a many-agent search model for the

BPP (see [Bilchev, 1996]).

Apart from a pure ACO approach, I also develop a hybrid ACO algorithm. This

approach combines the ACO meta-heuristic with a local search algorithm similar to

the one used by Falkenauer. Each ant’s solution is improved by moving some of the

items around, and the improved solutions are used to update the pheromone trail. The

reason for trying such an approach is the knowledge that ACO and local search are

complementary ([Dorigo and Stützle, 2001]). ACO performs a rather coarse-grained

search, providing good starting points for local search to refine the results.

This dissertation is organised as follows. Chapter 2 introduces the two combinato-

rial optimisation problems, and describes the most important existing solution methods

for them. Chapter 3 gives a general introduction to ACO algorithms, describing AS

and some of its extensions and applications. Chapter 4 contains a detailed explanation

of how we applied ACO to the BPP and the CSP, and how the approach was augmented

with local search. Chapter 5 gives an overview of the experimental results. In that sec-

tion, the ACO approaches are compared to Martello and Toth’s reduction algorithm

and Falkenauer’s hybrid grouping genetic algorithm for the BPP and to Liang et Al.’s

evolutionary programming approach for the CSP. Chapter 6 concludes with a summary

of the project and an overview of possible future work on this subject.

Chapter 2

Packing Bins and Cutting Stock

This chapter introduces the combinatorial optimisation problems that are tackled in

this dissertation: the bin packing problem (BPP) and the cutting stock problem (CSP).

The first section contains a description of both problems. The second section gives an

overview of traditional solution methods for the BPP, and the third does the same for

the CSP. The fourth section describes some of the evolutionary approaches that exist

for both problems.

2.1 The Problem Descriptions

The BPP and the CSP are two well-known NP-hard combinatorial optimisation prob-

lems. In the traditional one-dimensional BPP, a set S of items is given, each of a certain

weight wi. The items have to be packed into bins of a fixed maximum capacity C. The

aim is to combine the items in such a way that as few bins as possible are needed.

In the traditional one-dimensional CSP, a set S of items, each of a certain length li, is

requested. These items have to be cut from stocks of a fixed length L. Again the aim

is to combine the items in such a way that as few stocks as possible are needed.

From the above descriptions, it is clear that these two problems are very simi-

lar. They both belong to the large group of cutting and packing problems. Dyckhoff

describes a common logical structure for this group of problems ([Dyckhoff, 1990]).

There is always a set of small items and a stock of large objects. The aim is to combine

3

Chapter 2. Packing Bins and Cutting Stock 4

the small items into patterns and assign the patterns to large objects. Other problems

that follow this structure are for example the vehicle loading problem, the knapsack

problem, the multiprocessor scheduling problem and even the multi-period capital bud-

geting problem.

In his work, Dyckhoff proposes a typology for cutting and packing problems. He

distinguishes along four criteria. The first is the dimensionality: one-, two-, three-

or N-dimensional problems. The second criterion is the kind of assignment: whether

you want to place all the small items into a number of large objects of your choice

(like in the BPP and the CSP), or you have a fixed number of large objects, and have

to make an optimal selection from the small items (like in the knapsack problem1).

The third criterion is the assortment of large objects: is there only one object, or are

there several of the same figure, or are there objects of different figures. The last

criterion is the assortment of small items: are there few items, or many items of many

different figures, or many items of relatively few different figures, or do all the items

have congruent figures.

When classifying the BPP and the CSP according to this typology, Dyckhoff only

makes a distinction between them based on the last criterion, the assortment of small

items. In the BPP there are typically many items of many different sizes, whereas in

the CSP, the items are usually only of a few different sizes (so there are many items

of the same size). This means that the difference between the two problem types is a

rather subjective and gradual one. Still, this difference is important enough to dictate

totally different solution approaches, as will become clear in the next two sections.

Bischoff and Wäscher ([Bischoff and Wäscher, 1995]) give a number of reasons

why cutting and packing problems are an interesting topic of research. First, there is the

applicability of the research: cutting and packing problems are encountered in many

industries, such as steel, glass and paper manufacturing. Additionally, as pointed out in

[Dyckhoff, 1990], there are many other industrial problems that seem to be different,

but have a very similar structure, such as capital budgeting, processor scheduling and

VLSI design. A second reason is the diversity of real-world problems: even though
1In the knapsack problem you are given a set S of small items, each of a certain weight w i and a

certain benefit bi. There is one large object of a fixed capacity C, and the aim is to make a selection from
the small items to fill the large object so that the total sum of benefits is optimal.

Chapter 2. Packing Bins and Cutting Stock 5

cutting and packing problems have a common structure, there can be a lot of interesting

differences between them. A last reason is the complexity of the problems. Most

cutting and packing problems are NP-complete. This is definitely the case for the

traditional one-dimensional BPP and CSP, which are studied in this dissertation. Exact

optimal solutions can therefore only be found for very small problem sizes. Real world

problems are solved using heuristics, and the search for better heuristic procedures

stays a major research issue in this field.

In this dissertation, only the traditional one-dimensional BPP and CSP are consid-

ered. As mentioned above, there are many interesting variants possible. The problem

can for example have multiple stock or bin sizes. Also, it is possible to have multiple

objectives. An example of this is the CSP with contiguity (see [Liang et al., 2001]). In

a CSP with contiguity, you want to minimise the number of stocks and in the same time

the number of outstanding orders. In concrete, this means that once you have started

cutting items of a certain length, you want to finish all the items of that length as soon

as possible. Another interesting extension is the case with multiple stock lengths where

the different types of stock are available at different locations, so that there is a freight

cost associated with each stock length (see [Haessler and Sweeney, 1991]). Finally,

there is also a lot of interest in two- and three-dimensional BPP’s and CSP’s.

2.2 Traditional Solution Methods for the BPP

BPP instances are usually solved with fast heuristic algorithms. The best of these

is first fit decreasing (FFD). In this heuristic, the items are first placed in order of

non-increasing weight. Then they are picked up one by one and placed into the first

bin that is still empty enough to hold them. If no bin is left the item can fit in, a

new bin is started. This algorithm is described in figure 2.1. Another often used fast

heuristic is best fit decreasing (BFD). This heuristic is described in figure 2.2. The only

difference with FFD, is that the items are not placed in the first bin that can hold them,

but in the best-filled bin that can hold them. This makes the algorithm slightly more

complicated, but surprisingly enough, no better. Both heuristics have a guaranteed

worst case performance of 11
9 OPT � 4, in which OPT is the number of bins in the

Chapter 2. Packing Bins and Cutting Stock 6

1. Sort the items in order of non-increasing weight.

2. Remove the first item, and place it in the first bin that has enough

space left to hold it. If no bin is empty enough, start a new bin.

3. Repeat step 2 until all items are placed in a bin.

Figure 2.1: The First Fit Decreasing algorithm.

1. Sort the items in order of non-increasing weight.

2. Remove the first item, and place it in the best-filled bin that still

has enough space left to hold it. If no bin is empty enough, start

a new bin.

3. Repeat step 2 until all items are placed in a bin.

Figure 2.2: The Best Fit Decreasing algorithm.

optimal solution to the problem ([Coffman et al., 1996]).

Apart from these fast algorithms, the BPP can also be solved with Martello and

Toth’s Reduction Algorithm (RA) ([Martello and Toth, 1990]). This is slower (cer-

tainly for bigger problems), but gives excellent results. The basis of RA is the notion

of dominating bins: when you have two bins B1 and B2, and there is a subset �i1� � � � � il�
of B1 and a partition �P1� � � � �Pl� of B2, so that for each item i j, there is a smaller or

equal corresponding partition Pj, then B1 is said to dominate B2 (see figure 2.3). This

means that a solution which contains B1 will not have more bins than a solution con-

taining B2. The RA tries to find bins that dominate all other bins. When such a bin is

found, the problem is reduced by removing the items of the dominating bin. In order to

avoid that the algorithm runs into exponential time, only dominating bins of maximum

three items are considered.

Chapter 2. Packing Bins and Cutting Stock 7

�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

B2B1

P1
P2
P3

I1

I2

I3

I4P4

Figure 2.3: B2 dominates B1. Figure after [Falkenauer, 1996].

2.3 Traditional Solution Methods for the CSP

As described before, the difference between the BPP and the CSP only lies in the

assortment of small items: in a BPP the items are usually of many different sizes,

whereas in a CSP, the items are only of a few different sizes. This means that for

a CSP, there is a structure in the demand: the same pattern of small items can be

used several times to cut stock. So it makes sense to solve the problem in two steps:

first build patterns, and then decide how many times to use each pattern. Traditional

solution methods for the CSP follow this approach.

Two types of heuristic solution methods can be distinguished: linear programming

(LP) based procedures and sequential heuristics. Most of the LP-based methods are

inspired by the column generation method developed by Gilmore and Gomory in 1961

([Gilmore and Gomory, 1961]). This method is based on the LP-relaxation of the prob-

lem:

Minimise ∑ j Xj

Subject to ∑ j Ai jXj � Ri for all i

Xj � 0

(2.1)

Variable Xj indicates the number of times pattern j is used. Ai j indicates how many

times item i appears in pattern j, and Ri is the requested number of item i. So there are

i constraints indicating that for each item the demand has to be met. When solving an

LP like this, one can also find the shadow price Ui of each constraint i. The shadow

Chapter 2. Packing Bins and Cutting Stock 8

price of a constraint indicates how much the goal function could be decreased if the

right-hand side of that constraint would be relaxed by one unit. So, because constraint

i indicates the demand requirements for item i, its shadow price Ui in fact indicates

how much difficulties the algorithm has to reach the item’s demand with the patterns

considered so far. This information is then used in an integer programming model to

make a new pattern (equation 2.2). The goal of this model is to fill the stock length

with items while maximising the total benefit this will give to the LP model (indicated

by the shadow prices Ui).

Maximise ∑iUiAi

Subject to ∑i LiAi � L

Ai � 0 Ai is an integer

(2.2)

In this equation, Ai indicates the number of times item i is used in the pattern, Li

is the length of item i and L is the stock length. The newly generated pattern is then

again used to solve the LP-model of equation 2.1. More details about this can be found

in [Haessler and Sweeney, 1991] and [Winston, 1993].

An alternative for these LP-based solution methods are the sequential heuristic

procedures (SHP). They construct a solution by making one pattern at the time until

all order requirements are satisfied. When making a pattern, other goals than waste

minimisation can be taken into account. This is an advantage over LP approaches.

There are also hybrid procedures possible, where an SHP is combined with an LP. For

more details about this, see [Haessler and Sweeney, 1991].

2.4 Evolutionary Approaches

In recent years, people have tried various sorts of evolutionary approaches for the BPP

and the CSP (e.g. see [Falkenauer and Delchambre, 1992, Hinterding and Khan, 1995,

Reeves, 1996, Vink, 1997]). This section gives a short introduction to Falkenauer’s hy-

brid grouping genetic algorithm (HGGA) for the BPP ([Falkenauer, 1996]) and Liang

et Al.’s evolutionary programming approach (EP) for the CSP ([Liang et al., 2001]),

because these are the algorithms the ACO approach of this project is compared to in

chapter 5.

Chapter 2. Packing Bins and Cutting Stock 9

Falkenauer’s HGGA is one of the most successful solution methods around for

the BPP. It uses a grouping approach: the genetic algorithm (GA) works with whole

bins rather than with individual items (for a complete example, see figure 2.4). When

performing crossover, two crossover points are chosen. The bins of the second parent

between the crossover points are inserted into the first parent, at its first crossover point.

Obviously, there will be bins with overlapping items. These bins are deleted from the

new solution, and their non-overlapping items become free. Before these items are re-

injected into the solution, a simple local optimisation is performed (hence it is a hybrid

GA). This local search is inspired by Martello and Toth’s ideas about dominating bins:

considering one by one the bins in the solution, the algorithm tries to replace up to

three items in a bin by one or two of the free items in such a way that the total content

of the bin increases without exceeding the maximum capacity. In this way, existing

bins are made fuller, and free items are made smaller, so they are easier to fit into the

bins. When this local optimisation phase is finished, the remaining free items are re-

inserted into the solution using the FFD heuristic. The mutation operator works more

or less in the same way: a few bins are eliminated at random and their items become

free. These free items are again used for local optimisation, and the remaining items

are re-inserted with the FFD heuristic. HGGA works extremely well and manages to

outperform Martello and Toth’s Reduction Algorithm. I am not sure how well it would

work for the CSP, however. HGGA works with item numbers instead of item sizes.

For the BPP, most items have a unique size, but in the CSP, many items can have the

same size, so items with different numbers will in fact be the same.

Compared to all this, Liang et Al.’s EP for the CSP is a very simple algorithm. It is

partly based on experiences by Hinterding and Khan ([Hinterding and Khan, 1995]).

In that work, both a grouping GA and an order-based GA are used. Hinterding and

Khan report that the grouping GA works better than the order-based GA, and that the

performance of the order-based GA degrades when crossover is applied. Therefore,

Liang et Al. use an order-based approach without crossover (see figure 2.5 for a com-

plete example). Order-based means that solutions are represented within the EP as

permutations of the items. Liang et Al. work with item sizes instead of item numbers,

as their solution is aimed at the CSP where many different items can have the same size.

Chapter 2. Packing Bins and Cutting Stock 10

HGGA works with item numbers instead of sizes:

Item numbers: 0�1�2�3�4�5�6�7�8�9�10

The chromosomes are expressed in bins:

The first parent: �0�1��2��3�4�5��6�7�8��9�10�
The second parent: �0�2��4�7��5�9��1�3�8��6�10�

Two crossover points are chosen:

For the first parent: �0�1��2� � �3�4�5��6�7�8� � �9�10�
For the second parent: �0�2� � �4�7��5�9� � �1�3�8��6�10�

The bins between the second parent’s points are entered at the first parent’s first point:

The child: �0�1��2��4�7��5�9��3�4�5��6�7�8��9�10�
Bins with double items are eliminated and their items which were not double become free:

The remaining bins: �0�1��2��4�7��5�9�
The free items: 3�6�8�10

The algorithm tries to replace items in the bins with free items to make the bins fuller.

A possible result could be:

Remaining bins: �0�3��2��4�10��5�9�
Free items: 1�6�7�8

Finally, the remaining items are put into the bins using FFD (see figure 2.1):

A possible result: �0�3��1�2��4�10��5�7�9��6�8�
Mutation opens bins at random:

Remaining bins: �0�3��1�2��6�8�
Free items: 4�5�7�9�10

The remaining items are again placed back into the solution with FFD:

A possible final result: �0�3��1�2�4��6�7�8��5�9�10�

Figure 2.4: An example of the working of Falkenauer’s HGGA.

Chapter 2. Packing Bins and Cutting Stock 11

The EP works with item lengths instead of item numbers:

The items: 3�3�4�4�5�6�6�6

A chromosome is represented as an ordered list of items:

A chromosome: 5 4 6 3 3 4 6 6

Decoding is done by cutting every time just before exceeding the stock length:

Decoding for stock length 12: 5 4 � 6 3 3 � 4 6 � 6

Mutation swaps twice three items around:

Swapping two items: 5 3 6 4 3 4 6 6

Swapping three items: 5 6 6 4 3 4 6 3

Swapping twice three items: 6 6 6 5 3 4 4 3

Decoding again: 6 6 � 6 5 � 3 4 4 � 3

Figure 2.5: An example of the working of Liang et Al.’s EP algorithm.

The decoding of a chromosome happens by going through the item list, and making a

cut every time a stock size is matched or the available stock size is exceeded. Mutation

in this EP happens by swapping elements around: every parent produces one child by

swapping twice three elements around. After the new children are formed, the new

population is selected from the whole set of parents and children. Liang et Al. formu-

late a version of their algorithm for CSP’s with and without contiguity. Their program

is also able to solve multiple stock length problems. When compared to Hinterding

and Khan’s grouping GA (their best algorithm), the EP always gives comparable or

better results.

Chapter 3

An Introduction to Ant Colony

Optimisation

Ant Colony Optimisation (ACO) is a multi-agent meta-heuristic for combinatorial op-

timisation and other problems. It is inspired by the capability of real ants to find the

shortest path between their nest and a food source. The first ACO algorithm was called

Ant System (AS). It was an application to solve the travelling salesman problem (TSP),

developed in 1992 by Marco Dorigo as his PhD thesis ([Dorigo, 1992]). AS became

very popular after its publication in 1996 (see [Dorigo et al., 1996]). Many researchers

have since developed improvements to the original algorithm, and applied them to a

range of different problems (see [Dorigo and Stützle, 2001]).

This chapter gives an introduction to ACO algorithms. The first section contains

details about the path-finding behaviour of real ants that forms the biological inspira-

tion for these algorithms. The second section shows how this behaviour was imple-

mented artificially in the original AS to solve the travelling salesman problem. The

third section gives an overview of improvements that have been made to the original

algorithm, and the last section shows a variety of other problems that have been tackled

with ACO algorithms.

12

Chapter 3. An Introduction to Ant Colony Optimisation 13

Nest Food

Figure 3.1: Real ants presented with a double bridge. Figure adapted from

[Dorigo and Gambardella, 1997b].

3.1 The biological inspiration

ACO algorithms were originally inspired by the foraging behaviour of real ants. Many

ant species leave a pheromone trail behind when walking between the nest and a food

source, attracting in this way other ants to follow them. This process where an ant’s

path is influenced by the pheromone trail left behind by another ant is called recruit-

ment.

Recruitment has a very interesting consequence, investigated by Deneubourg and

colleagues in the late 1980’s (a detailed description of their experiments can be found

in [Bonabeau et al., 1999]). They placed a double bridge between a nest of Argentine

ants and a food source, to investigate the trail-laying trail-following behaviour of the

ants. The most interesting experiment was when they gave the bridges different lengths

(see figure 3.1). The ants were left free to move and choose any of the two bridges, and

in the beginning they chose randomly. In most experiments, however, it turned out that

after a while all ants would end up using the shorter bridge. So even though individual

ants have very limited vision and memory, the colony as a whole manages to find out

which path is the shortest.

The key to this ability lies in the use of the pheromone trails. When the ants are

first presented with the two bridges, they obviously don’t know where to go, and they

choose one at random. So we can assume that 50% of the ants choose the long bridge,

and 50% the short bridge. It is clear, however, that ants using the short bridge will

reach the food faster, and will be back faster. This means that after they have returned

to the nest, the short bridge will contain more pheromone than the long one. When

Chapter 3. An Introduction to Ant Colony Optimisation 14

new ants have to make a decision, they will favour the short bridge, resulting in even

more pheromone. And so, after a while, the whole colony will be going back and forth

over the short bridge.

So the path-finding capabilities of the ant colony emerge from the behaviour of

individual ants. The process is characterised by a positive feedback loop, in which

ants are influenced to perform the same actions as others did before them. This

kind of process that reinforces itself via positive feedback is called auto-catalytic (see

[Dorigo et al., 1996]). The interesting aspect is that individually very limited agents

are able to achieve something far beyond their own capabilities through a very sim-

ple form of cooperation as a group. The pheromone trail fulfils the task of collective

memory, and guides the colony towards an optimal path.

3.2 Ant System

The first ACO algorithm was called Ant System (AS). It was developed by Marco

Dorigo as his PhD thesis in 1992, and published in [Dorigo et al., 1996]. It was an

application to solve the travelling salesman problem (TSP), inspired by the real ant

behaviour described above. The original AS consisted of three different ant algorithms:

ant-density, ant-quantity and ant-cycle. Most publications, however, identify AS with

ant-cycle, the most successful of the three (see [Dorigo and Caro, 1999]). I will do

the same, and refer the interested reader to [Dorigo et al., 1996] for details about ant-

density and ant-quantity.

The TSP is defined as follows. There is a set of cities C, and a set of connections L,

fully connecting the cities. With each connection between a city i and a city j, a cost

δ�i� j� is associated. The costs can be symmetric (the cost δ�i� j� is the same as δ� j� i�)

or asymmetric (in this case we speak of the asymmetric TSP). The goal of the TSP is

to find a closed tour that visits all of the cities exactly once, while minimising the total

cost of the connections used. It is clear that this problem bears some resemblance to

the problem that the real ants have to solve: to find an optimal path. Apart from that,

another reason why the TSP was chosen as the first ACO implementation, is that it is

one of the most studied NP-hard problems in combinatorial optimisation.

Chapter 3. An Introduction to Ant Colony Optimisation 15

The working of AS is based on the use of artificial pheromone: on top of its cost,

each connection has an amount of pheromone τ�i� j� associated with it. This is a num-

ber that defines the desirability of a connection. Ants use this information probabilis-

tically to build solutions, and update it afterwards.

AS works as follows. Each ant is placed in a randomly chosen initial city. Starting

from there, it moves from city to city, building a solution to the TSP. When choosing

the next city to move to, an ant considers only those cities it has not visited yet (so the

artificial ants have a memory, unlike their natural counterparts). It chooses from those

cities using the random-proportional rule given in equation (3.1). This rule gives the

probability that ant k in city i chooses city j next.

pk�i� j� �

��
�

�τ�i� j����η�i� j��β

∑g�Jk�i�
�τ�i�g����η�i�g��β

if j � Jk�i�

0 otherwise
(3.1)

In this equation, τ�i� j� is the pheromone between i and j and η�i� j� is a simple

heuristic guiding the ant. The value of the heuristic is the inverse of the cost: 1
δ�i� j� . So

the preference of ant k in city i for city j is partly defined by the pheromone between i

and j, and partly by the heuristic favourability of j after i. It is the parameter β that de-

fines the relative importance of the heuristic information as opposed to the pheromone

information. The role of the heuristic is to help the construction by providing problem

specific information. Jk�i� is the set of cities that have not been visited yet by ant k

in city i. The use of this set Jk makes it actually very easy to implement constraints

in AS: if certain choices would lead to an infeasible solution, you just exclude them

from the set. Also, for very large problem instances, it is possible to narrow Jk down

by excluding choices that are certainly not optimal, thereby speeding up the algorithm

significantly.

Once all ants have built a tour, the pheromone trail is updated. This is done accord-

ing to the global updating rule:

τ�i� j� � ρ�τ�i� j��
m

∑
k�1

Δτk�i� j� (3.2)

Chapter 3. An Introduction to Ant Colony Optimisation 16

Δτk�i� j� �

�
1
Lk

if �i� j� � tour of ant k

0 otherwise
(3.3)

Equation (3.2) consists of two parts. The left part makes the pheromone on all

edges decay. The speed of this decay is defined by ρ, the evaporation parameter. The

right part increases the pheromone on all the edges visited by ants. The amount of

pheromone that an ant k deposits on an edge is defined by Lk, the length of the tour

created by that ant. In this way, the increase of pheromone for an edge depends on the

number of ants that use this edge, and the quality of the solutions found by those ants.

It is easy to see the link between AS and reinforcement learning (for more in-

formation on this field, see [Sutton and Barto, 1998]): better solutions get a higher

pheromone reinforcement, and new solutions are guided by this. Just like in rein-

forcement learning, it is important to balance exploration and exploitation. The AS

algorithm described above leaves little opportunity for this. Most of the extensions of

AS (which we will describe in the next section) focus exactly on doing this. In this

way they try to improve the original AS, which performs well on small problems, but

cannot compete with other algorithms on larger problems.

It is also easy to see the similarities with evolutionary algorithms (EA). Both ap-

proaches use a population of problem solutions, and use the information available in

this population to stochastically build a new population of solutions. A main difference

is that EA only use information available in the last population, whereas AS has a mem-

ory about earlier solutions in the pheromone trail. The one EA approach that is closest

to AS is population based incremental learning (PBIL) ([Baluja and Caruana, 1995]).

In PBIL, a vector with real numbers is kept, and it is used to stochastically generate a

new population: every real number in the vector expresses the probability to generate

a 1 rather than a 0 in that position in a new vector of bits for the population. So the

role of this generating vector is similar to the role of the pheromone trail in AS. An

important difference is the fact that in PBIL all the components of the generating vec-

tor are evaluated independently. This means that this approach only works well when

the solution can be split into independent components.1

1This paragraph was mainly based on [Dorigo et al., 1999].

Chapter 3. An Introduction to Ant Colony Optimisation 17

3.3 Extensions to Ant System

Many improvements to the original AS have been proposed. Most of these offer a

stronger exploitation of previously found good solutions. They also give more oppor-

tunities to balance exploitation and exploration. This section contains a description of

the most important extensions to AS. The focus is mainly on MAX-MIN Ant System,

as that is the variant used in the rest of this dissertation.

The first improvement to AS was the elitist strategy proposed together with the

original AS in [Dorigo et al., 1996]. It added to the normal pheromone trail updating

of equation 3.2 an extra updating for the best solution found since the start of the

algorithm. This greatly enhances exploitation. A similar approach can be found in

ASrank, a rank-based version of AS presented in [Bullnheimer et al., 1999]. There the

pheromone is only updated for the best solution since the start of the algorithm (the

global-best solution) and the m best solutions of the last iteration (the iteration-best

solutions). The updates of the iteration-best solutions are weighed according to their

rank.

A third improved version of AS is Ant Colony System (ACS) (for details, see

[Dorigo and Gambardella, 1997a] and [Dorigo and Gambardella, 1997b]). It is even

more elitist than the previous two, as the updating is only done by the best ant. This

causes strong exploitation, which is even enhanced by the fact that equation 3.1 is used

deterministically with a probability q0: with chance q0, an ant k in city i deterministi-

cally chooses the city j with the highest value for pk�i� j�. With chance 1�q0, it uses

pk�i� j� probabilistically to choose a city, like in AS. All this increased exploitation is

balanced by local updating: every ant of the colony takes a bit of pheromone away from

the branches it uses in its solution. In this way, following ants are less likely to build the

same solution. ACS is based on Ant-Q (see [Dorigo and Gambardella, 1996]), which

focused on the link with reinforcement learning. Ant-Q was more complicated than

ACS without performing better.

The ACO algorithm which is mainly used in this project, is MAX-MIN Ant System

(MMAS), proposed by Stützle and Hoos in [Stützle and Hoos, 2000]. For the building

of a solution, MMAS follows equation 3.1 of the traditional AS. The difference with

AS lies in the way the pheromone trail is updated. Like in ACS, only the best ant is

Chapter 3. An Introduction to Ant Colony Optimisation 18

allowed to update the pheromone trail. So equation 3.2 is replaced by equation 3.4.

Δτbest�i� j� in this equation is defined like Δτk�i� j� in equation 3.3.

τ�i� j� � ρ�τ�i� j��Δτbest�i� j� (3.4)

Using only the best ant for updating makes the search much more aggressive. Bin

combinations which often occur in good solutions will get a lot of reinforcement.

Therefore, MMAS has some extra features to balance exploration versus exploitation.

The first one of these is the choice between using the iteration-best ant (sib) and the

global-best (sgb) to do the updating. Using sgb results in strong exploitation, so usually

it is alternated with the use of sib.

Another way of enhancing exploration is obtained by defining an upper and lower

limit (τmax and τmin) for the pheromone values (hence the name MAX-MIN). Stützle

and Hoos define the value for the upper and lower limit algebraically. If a good solution

is reinforced every time, the maximum value it could asymptotically obtain is given by

equation 3.5 below (see [Stützle and Hoos, 2000] for mathematical details). τmax is set

to an estimate of this: the unknown length of the optimal solution Lsopt is replaced by

the length of sgb.

1
1�ρ

�
1

Lsopt
(3.5)

The formula for τmin is calculated based on pbest, the probability of constructing

the best solution found when all the pheromone values have converged to either τmax or

τmin. An ant constructs the best solution found if it adds at every point during solution

construction the item with the highest pheromone value. Starting from this, Stützle and

Hoos find the following formula for τmin (see [Stützle and Hoos, 2000] for details):

τmin �
τmax��1� n

�
pbest�

�avg�1�� n
�

pbest
(3.6)

In this equation is n the total number of items and avg the average number of items

to choose from at every decision point when building a solution, defined as n
2 .

A last way to enhance exploration in MMAS is by using optimistic initial pheromone

values. The entries in the pheromone trail are initialised to τmax. This is a technique

which is also often used in reinforcement learning (see [Sutton and Barto, 1998]). By

Chapter 3. An Introduction to Ant Colony Optimisation 19

setting all the pheromone values high in the beginning, the algorithm is forced to try out

all different possibilities. After a while, the pheromone decay ensures that pheromone

entries which are not often reinforced are reduced, and the exploratory effect wears

out.

3.4 Applications of ACO algorithms

AS and its extensions were all first developed as applications for the TSP. This is

mainly because of the similarities between this problem and the path-finding task

that real ants solve. Later, many other problems have been tackled with ACO algo-

rithms. This section describes some of the most interesting applications. A more

complete overview of ACO applications can be found in [Bonabeau et al., 1999] or

[Dorigo and Stützle, 2001].

The quadratic assignment problem (QAP) was after the TSP the second problem

to be solved with an ACO approach. It was the first evidence of the robustness of AS.

In an instance of the QAP, two n	n matrices A and B are given. The aim is to find a

permutation π which minimises the following equation:

min
π�Π�n�

f �π� �
n

∑
i�1

n

∑
j�1

ai j�bπiπ j (3.7)

The first ACO solution method for the QAP, AS-QAP, was developed in 1994

([Maniezzo et al., 1994]). Apart from the heuristic, the only difference with AS for

the TSP is the pheromone trail definition. In AS-QAP, τ�i� j� indicates the favourabil-

ity of setting πi to j. This approach performed reasonably well, but not extraordinarily

when compared to other approaches. Later, in [Gambardella et al., 1999b], a different

ACO approach for the QAP was proposed: HAS-QAP. This algorithm is very interest-

ing because it completely moves away from the traditional ACO algorithms. Instead of

building a new solution at every iteration, each ant maintains a solution, and updates

it using the pheromone trail: at every iteration, the ants move the elements of their

permutation around, guided by the pheromone trail. After this, every ant performs a

simple local search to improve its solution. At the end of the iteration, the pheromone

is updated. HAS-QAP performed extremely well on real-world problems, but less well

Chapter 3. An Introduction to Ant Colony Optimisation 20

on artificial unstructured problems.

After the QAP and the TSP, ACO solutions have been developed for many other

combinatorial optimisation problems. Algorithms have been proposed for schedul-

ing problems ([Bauer et al., 1999, Stützle, 1998]), the vehicle routing problem (VRP)

([Gambardella et al., 1999a]), the graph colouring problem ([Costa and Hertz, 1997]),

the shortest common super-sequence problem ([Michel and Middendorf, 1999]), the

multiple knapsack problem ([Leguizamon and Michalewicz, 1999]), and many other.

Nevertheless, hardly any work has been done using ACO for the BPP and the CSP. In

fact, the only publication related to this is a hybrid approach formulated by Bilchev

([Bilchev, 1996]). He uses ACO to combine a GA and a many-agent search model

(MA) into one hybrid algorithm. Basically, a GA is run, and at the end of each of

its generations, the k best solutions are used to increase an artificial pheromone trail.

Then this trail is used in an ACO algorithm to build m new solutions. Finally, the

MA starts from these solutions and tries to improve them, before updating the trail

again. Bilchev’s article is not very clear about implementation details. Also, no further

research is done on this approach, as the aim was to develop, apply and compare dif-

ferent evolutionary metaphors, rather than to find a new solution method for the BPP.

Bilchev’s results do suggest that a model in which well-defined heuristics co-operate

can outperform any of its composing algorithms.

ACO has also been used for problems other than combinatorial optimisation. An

interesting application is AntNet, an algorithm for routing in packet-switched telecom-

munication networks (see [Caro and Dorigo, 1998]). The task is basically to find the

minimum cost path between a pair of nodes in a network in which the costs are time-

varying stochastic variables. To solve this task, AntNet associates with each directed

arc �i� j� in the network a set of pheromone values, one per possible destination node

of the package. So τ�i� j�d� indicates the favourability to go from node i to node j

for a packet with destination d. In order to define shortest paths between any pair

of nodes in the network, ants are launched from each network node towards different

destination nodes. The ants make their way through the network by choosing the next

arc at every node probabilistically, based on the pheromone value for that arc and a

heuristic value (which can be based on the length of the queue for this arc). Once an

Chapter 3. An Introduction to Ant Colony Optimisation 21

ant reaches its destination, it moves back along the same route it came by, and deposits

pheromone according to the time it spent to reach the goal node. Then the pheromone

is also decayed, like in AS. AntNet performs very well compared to other routing al-

gorithms under a variety of network traffic conditions. An explanation for the good

performance of AntNet in a time-varying environment like this can be found in the so-

called “non-convergence” property of AS (see [Bonabeau et al., 1999]): even when an

optimal solution is found, the population of solutions maintains a high diversity. This

means that a wide sampling of the solution space is maintained at any time, which is

favourable in dynamic environments.

Chapter 4

Applying ACO to the BPP and the CSP

This chapter describes how the ACO meta-heuristic was adapted to solve the BPP and

the CSP. Section 1 explains how the pheromone trail was defined, section 2 describes

which heuristic was used, section 3 talks about the fitness function that was used to

guide the algorithm towards better solutions, section 4 shows how the pheromone trail

is updated, and section 5 gives details about how the ants build solutions. After that,

section 6 contains an explanation of how exploration can be increased by pheromone

trail smoothing, and section 7 explains how local search was added to improve the

performance of the algorithm. I will in this chapter and the next use the term “bin”

when talking in general about the BPP and the CSP. Only when it clearly concerns

a CSP I will use the term “stock”. A complete overview of the algorithm with and

without local search can be found in appendix B, and the source code is available

on-line at http://www.aiai.ed.ac.uk/ johnl/antbin.

4.1 The pheromone trail definition

The quality of an ACO application depends very much on the definition of the meaning

of the pheromone trail ([Dorigo and Stützle, 2001]). It is crucial to choose a definition

conform to the nature of the problem. The BPP and the CSP are grouping problems.

What you essentially want to do, is divide the items into groups. This is in contrast to

the TSP and most other problems ACO has been applied to. The TSP is an ordering

22

Chapter 4. Applying ACO to the BPP and the CSP 23

���
���
���

���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����

����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����

����
����
����

2

8 7

3
4

5

3

5 5

3

3

7

2

8

4

5

53 : 73 : 82 : 54

3

5
7

3

2

8 4

5 4

5

3

5

2

8
7

3

35 : 73 : 28 : 54 45 : 35 : 28 : 37

82 : 73 : 54 : 53

Figure 4.1: One solution can have many different order-based encodings.

problem: the aim is to put the different cities in a certain order. This is reflected in the

meaning of the pheromone trail: it encodes the favourability of visiting a certain city j

after another city i.

It is possible to encode the BPP and the CSP as ordering problems. This was often

done in GA solutions for these problems (see for example Liang et Al.’s approach

described in section 2.4). A solution is then encoded as an ordered list of all items.

A decoder is needed to translate this into a solution in terms of bins. As pointed out

in [Falkenauer, 1996], however, there are a few problems with this. A first problem is

redundancy. When you move the bins around in a solution to the BPP, or you move

the items within a bin, you essentially keep the same solution. When encoded as an

ordered list, however, all these presentations of the same solution become different

encoded solutions (see figure 4.1). This means that there is a lot of redundancy in

the solution space, and this redundancy grows exponentially with the problem size. A

second problem with order-based encoding is the fact that the meaning of the place of

Chapter 4. Applying ACO to the BPP and the CSP 24

���
���
���

���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���

���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

2

8 7

3

4

5

7

2

5

4

5

3 3

8 3 7 2 5 4 5 38 2 7 3 5 4 5 3

8

5

3

Figure 4.2: The meaning of an ordered-based encoding is context-dependent.

an item in the ordered list is context-dependent. The end of an ordered list can encode

some interesting bins, but by changing the order of the items that precede it, this can

be totally messed up. An example of this is given in figure 4.2: although the second

half of the encoding is the same left and right, the result in the decoded solution is

completely different.

Not everyone agrees that the theoretical arguments presented above really have any

implications in practice ([Reeves, 1996, Vink, 1997]). In ([Hinterding and Khan, 1995])

on the other hand, an order-based GA is compared to a grouping GA, and it is found

that the grouping GA always gives comparable or better results. It is also found that

the performance of the order-based GA deteriorates with an increased crossover ratio.

This is, according to Falkenauer, due to the context-dependency of the encoding. For

the ACO algorithm in this project, I followed Falkenauer, and decided to use a group-

ing approach. It could be interesting to also try an order-based approach to compare

this to.

To the best of my knowledge, there is only one ACO application for a grouping

problem. It is Costa and Hertz’s AntCol ([Costa and Hertz, 1997]), an ACO solution

for the Graph Colouring Problem (GCP). In an instance of the GCP, a set of nodes is

given, with undirected edges between them. The aim is to colour the nodes in such a

way that no nodes of the same colour are connected (an example is given in figure 4.3).

So, in fact, you want to group the nodes into colours. Costa and Hertz use a grouping

based approach, in which the pheromone trail between node i and node j encodes the

Chapter 4. Applying ACO to the BPP and the CSP 25

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���

���
���
���
���

����
����
����

����
����
����

Figure 4.3: A simple example of a graph colouring problem.

favourability of having these nodes in the same colour. The pheromone matrix is of

course symmetric (τ�i� j� � τ� j� i�).

In this project, the pheromone trail will be defined in the same way as in AntCol:

τ�i� j� encodes the favourability of having an item of size i and size j in the same bin.

There is of course one important difference between the GCP on one side and the BPP

and the CSP on the other: in the GCP, there is only one node i and one node j, whereas

in the BPP, and even more so in the CSP, there are several items of size i and size j. As

will become clear later, this has some important consequences for the ACO algorithm.

4.2 The Heuristic

Another important feature of an ACO implementation is the choice of a good heuristic,

which will be used in combination with the pheromone information to build solutions.

It guides the ants’ probabilistic solution construction with problem specific knowledge.

For the BPP and the CSP, a number of heuristics are available (see sections 2.2 and 2.3).

As the heuristic has to be simple and easy to apply, it makes sense to choose one of

the fast heuristics of the BPP. As described above, the best of these are FFD and BFD:

they both give a guaranteed worst case performance of 11
9 OPT � 4 (with OPT being

the number of bins in the optimal solution to the problem). As FFD is simpler than

BFD, it seems logical to use this heuristic for the ACO algorithm.

In FFD, the items are first sorted in order of non-decreasing weight, and then each

item is placed in the first bin it still fits in (see figure 2.1 in section 2.2). Obviously, this

heuristic will also work for the CSP. For use in the ACO algorithm, however, it will

have to be reformulated. This is because the ACO approach works constructively: it

Chapter 4. Applying ACO to the BPP and the CSP 26

1. Open an empty bin.

2. Add the heaviest item that still fits in the bin.

3. Repeat step 2 until no item is left that is light enough to fit in the

bin.

4. Go back to step 1 until all items are placed.

Figure 4.4: The reformulated First Fit Decreasing algorithm.

fills the bins one by one, closing one bin before starting the next, instead of the normal

FFD approach, where the items are placed one by one while several half-filled bins can

be open at the same time. The new FFD heuristic is described in figure 4.4: the bins

are filled one by one with the heaviest items that can still fit in them. This results in the

FFD solution, but is more useful for the ACO algorithm. The heuristic favourability of

an item of size j is now given by that size (the term size is used instead of weight to

generalise the heuristic to the CSP):

η� j� � j (4.1)

4.3 The Fitness Function

In order to guide the algorithm towards good solutions, it is important to be able to

assess the quality of the solutions. So a fitness function is needed. A straightforward

choice would be to take the inverse of the number of bins, so that better solutions get a

higher fitness. As Falkenauer ([Falkenauer, 1996]) points out, however, this results in

a very unfriendly fitness landscape. Often there are many combinations possible with

just one bin more than the optimal solution. If these all get the same fitness value, there

is no way they can guide the algorithm towards an optimum, and the problem becomes

a needle-in-a-haystack.

So, instead, I chose to use the function proposed by Falkenauer and Delchambre in

[Falkenauer and Delchambre, 1992] to define the fitness of a solution s:

Chapter 4. Applying ACO to the BPP and the CSP 27

f �s� �
∑N

i�1�Fi�C�k

N
(4.2)

In this equation is N the number of bins, Fi the total contents of bin i, and C the

maximum contents of a bin. k is the parameter that defines how much stress is put on

the nominator of the formula (the filling of the bins) as opposed to the denominator (the

total number of bins). Setting k to 1 comes down to using the inverse of the number of

bins. By increasing k, a higher fitness is given to solutions that contain a mix of well-

filled and less well-filled bins, rather than equally filled bins. This forces the algorithm

to look for item combinations that make full bins. Falkenauer and Delchambre report

that a value of 2 for k seems to be optimal. Values of more than 2 can lead to premature

convergence, as the fitness of suboptimal solutions can come too close to the fitness of

optimal solutions. In [Falkenauer, 1996] it is proven algebraically that for k-values of

more than 2, a solution of N�1 bins with NF full bins could get a fitness higher than a

solution with N equally filled bins.

Other researchers use this same fitness function ([Reeves, 1996, Vink, 1997]). A

different function is used in the CSP applications of [Hinterding and Khan, 1995] and

[Liang et al., 2001]. They use the formula of equation 4.3 below (in Hinterding and

Khan’s work, N � 1 is replaced by N). This is a cost function, rather than a fitness

function (it has to be minimised).

Cost �
1

N�1
�

N

∑
i�1

�
Fi

Ci
�

N

∑
i�1

Vi

N
� (4.3)

N is the number of stocks used, Fi is the total sum of the lengths of the items cut

from stock i, Ci is the length of stock i (multiple stock lengths are possible), and Vi is

1 if stock i has waste (is not fully used) and 0 otherwise. The idea behind this formula

is the same as behind the other fitness function: it simultaneously minimises the total

waste and the total number of stocks with waste, so that solutions containing fully used

stocks are favoured.

Chapter 4. Applying ACO to the BPP and the CSP 28

4.4 Updating the Pheromone Trail

For the updating of the pheromone trail, the main source of inspiration was Stützle and

Hoos’s MAX-MIN Ant System (MMAS) ([Stützle and Hoos, 2000]). This algorithm

is described in detail in section 3.3. I chose this version of the ACO algorithm because

it gives a very good performance (it is one of the best versions of the ACO heuristic),

and in the same time is easy to understand and implement.

Like in MMAS, only the best ant is allowed to place pheromone after each iteration.

The amount placed is given by the fitness of the solution built by that ant (f �sbest�).

Pheromone is placed for every two item sizes i and j that appear together in a bin of

sbest . As item sizes are not unique, it is very well possible that i and j are combined

more than once in sbest . In that case, τ�i� j� also gets more than one update. So equation

3.4 is adapted to get equation 4.4 below. In this formula is m the number of times i and

j go together in the bins of sbest .

τ�i� j� � ρ�τ�i� j��m� f �sbest� (4.4)

When talking about the best ant, one could be referring to the best ant of the past

iteration (iteration best: sib), or the best ant so far in the algorithm (global best: sgb).

As mentioned in section 3.3, using only the best ant for pheromone updating results in

a rather aggressive search. Therefore, it is a good idea to not exclusively use sgb, but

alternate it with sib. The parameter γ indicates every how many times sgb is used. The

value of this parameter is defined empirically (see chapter 5).

Another important feature of MMAS is the use of an upper and lower limit for

the pheromone trail. The upper limit (τmax) is defined as an approximation of the

asymptotic maximum a pheromone value can evolve to. In this ACO application for

the BPP and the CSP, it is impossible to use an upper limit. This is because of the fact

that the item sizes are not unique: if i and j go together twice in good solutions, and

i and h once, then according to equation 4.4, τ�i� j� will get two updates every time,

and τ�i�h� only one. This will finally result in an asymptotic maximum value for τ�i� j�

which is the double of the maximum value for τ�i�h�. It is of course impossible to

know in advance how many times the items will go together, and therefore to define a

good value for τmax.

Chapter 4. Applying ACO to the BPP and the CSP 29

The algorithm does use a lower limit for the pheromone trail (τmin). Stützle and

Hoos define the value for τmin based on pbest, the probability of constructing the best

solution encoded in the pheromone trail when all pheromone values have converged

to either τmax or τmin. An ant constructs the best solution if it, at any point during the

construction, chooses the item with the highest pheromone value. When a certain pbest

is given, it is possible to calculate a value for τmin. Stützle and Hoos find formula 3.6.

In that formula, I replaced the unknown τmax by 1
1�ρ . This is in fact an approximation

of their formula for τmax, given in equation 3.5: as the fitness of the optimal solution

is somewhere between 0.95 and 1 for most problems, I chose to approximate it by 1.

The resulting equation for τmin is:

τmin �

1
1�ρ ��1� n

�
pbest�

�avg�1�� n
�

pbest
(4.5)

The fact that item size combinations can appear more than once in the best solution

would interfere quite severely with the calculations to get to equation 3.6. Also, 1
1�ρ ,

used in 4.5, is only a good approximation for τmax if item sizes only appear 1 or 0

times together in a solution. Therefore, when equation 4.5 is used as τmin in this ACO

approach, pbest can only be seen as a very crude approximation of the real probability

to construct the best solution. In fact, you can expect pbest to be further from the real

probability of constructing the best solution the more items there are of the same size.

Finally, a last element we take over from MMAS is the high pheromone trail initial-

isation. This is meant to enforce exploration in the first few iterations of the algorithm:

as all pheromone values are high in the beginning, all the different possibilities are

tried out. After a while, through the pheromone decay, the pheromone entries which

are not often used in the best solutions get less reinforcement and go down, and the

exploratory effect of the high initial values wears out. Stützle and Hoos set the initial

pheromone value τ�0� to τmax. For this project, τ�0� was defined empirically to 1
1�ρ ,

the approximation of τmax described above (see chapter 5).

Chapter 4. Applying ACO to the BPP and the CSP 30

4.5 Building a solution

The pheromone trail and the heuristic information defined above will now be used by

the ants to build solutions. Every ant starts with the set of all items to be placed and an

empty bin. It adds the items one by one to this bin, until none of the items left is small

enough to fit in it. Then the bin is closed, and a new one is started. The probability that

an ant k will choose an item of size j as the next item for its current bin b in the partial

solution s is given by equation 4.6 below. This equation is very similar to the one used

in the original AS (see section 3.2).

pk�s�b� j� �

��
�

�τb� j����η� j��β

∑g�Jk�s�b�
�τb�g����η�g��β

if j � Jk�s�b�

0 otherwise
(4.6)

In this equation, Jk�s�b� is the set of items that qualify for inclusion in the current

bin b. They are the items that are still left after partial solution s is formed, and are

small enough to fit in bin b. η� j� is the item size j, as defined in equation 4.1 above.

The pheromone value τb� j� for an item size j in a bin b is given in equation 4.7 below.

It is the sum of all the pheromone values between item size j and the item sizes i that

are already in bin b, divided by the number of items in b for normalisation. If b is

empty, τb� j� is set to 1. Like in other ACO approaches is β the parameter that defines

the relative importance of the heuristic information as opposed to the pheromone value.

This whole approach is similar to the one followed by Costa and Hertz in their ACO

application for the GCP (see section 4.1).

τb� j� �

�
∑i�b τ�i� j�

�b� if b
� ��
1 otherwise

(4.7)

As was described in section 4.4, the pheromone value τ�i� j� between the item

sizes i and j is increased for every time i and j occur together in a bin. This means

that if, for example, sizes i and j occur l times together in a solution, the pheromone

value τ�i� j� between them will receive l updates per iteration, whereas if sizes i and h

occur only once together, τ�i�h� will receive only one update. This will after a while

result in a value for τ�i� j� that is l times higher than τ�i�h�. I originally feared that

this would give a problem, because the combination �i� j� would always be favoured

Chapter 4. Applying ACO to the BPP and the CSP 31

over �i�h�, not only l times, but also the l�1th time. I tried to solve this by making

changes to the pheromone trail while it was being used by the ants: every time an ant

used a pheromone value, this value was lowered, so that next time, in another bin of

the same solution, the ant would favour this combination of items less. In later tests,

however, this turned out to be unnecessary: the algorithm worked better without the

changes. This is because of the fact that equation 4.6 expresses a probability, rather

than a deterministic indication of which item size to choose next. This means that

every time an new item has to be chosen for a bin containing an item of size i, item

size j has l times more chance than h to be picked. So, on average, the combination

�i� j� will be constructed l times more than �i�h�. And thus, on average, the resulting

solution will be correct.

4.6 Pheromone Trail Smoothing

Pheromone trail smoothing was proposed in [Stützle and Hoos, 2000] as an additional

mechanism to increase the performance of MMAS. The basic idea is to increase the

pheromone values proportionally to their difference to the maximum pheromone value

τmax. This is done when MMAS has converged or is very close to convergence (mean-

ing that all pheromone values are really close to either τmax or τmin). By doing this, the

probability of choosing an item with low pheromone value is increased. This means

there is enhanced exploration. The formula proposed by Stützle and Hoos is the fol-

lowing:

τ�i� j� � τ�i� j��δ��τmax� τ�i� j�� with 0 � δ � 1 (4.8)

With a δ value of 1, the smoothing comes down to complete pheromone reini-

tialisation. With a δ of 0, smoothing is switched of. Usually, a δ between 0 and 1 is

used, so that the information contained in the pheromone trail is weakened but not lost.

As explained is section 4.4, τmax is unknown in the ACO application for this project.

We therefore replace it in equation 4.8 by τ�0�. A disadvantage of pheromone trail

smoothing is that it usually needs longer runs to be effective.

Chapter 4. Applying ACO to the BPP and the CSP 32

4.7 Adding local search

It is known that the performance of ACO algorithms can sometimes be greatly im-

proved when coupled to local search algorithms ([Dorigo and Stützle, 2001]). This is

for example the case in applications for the TSP, the QAP and the VRP. What normally

happens is that a population of solutions is created using ACO, and then these solu-

tions are improved via local search. The improved solutions are then used to update

the pheromone trail. So it is in fact a form of Lamarckian search.

An explanation of the good performance of a combination of ACO with local search

can be found in the fact that these two search methods are complementary. An ACO

algorithm usually performs a rather coarse-grained search. Therefore, it is a good idea

to try and improve its solutions locally. A local search algorithm, on the other hand,

searches in the surroundings of its initial solution. Finding good initial solutions is

however not an easy task. This is where ACO comes in: by generating new promising

solutions based on previously found optima, the local search can be given very good

starting points.

There are not so many local search algorithms around for the BPP or the CSP. One

algorithm that seems to work fairly well was proposed in [Alvim et al., 1999]. In that

algorithm, an initial solution is constructed using the BFD heuristic. Then each bin of

the current solution is destroyed successively, and its contents are spread over the other

bins. If this leads to a feasible solution (with no overflowing bins), we have obtained a

solution with one bin less. If the spreading of the items leads to an infeasible solution,

a local search is applied: pairs of bins are investigated and its items are redistributed

among themselves. If this leads to a feasible solution, a new solution improvement

phase is finished.

As Alvim et Al. report, this local search algorithm gives pretty good results. But

for combination with an ACO algorithm, I needed something fast and simple. There-

fore, the local optimisation algorithm used in Falkenauer’s HGGA (see section 2.4)

seemed to be a better choice (although it would be very interesting to see how an ACO

combined with Alvim et Al.’s approach would perform). In this algorithm, a number

of items of the initial solution are made free. In the mutation phase of the HGGA, this

is done by opening a few randomly selected bins. Then the algorithm tries to replace

Chapter 4. Applying ACO to the BPP and the CSP 33

up to three items in each of the existing bins of the solution by one or two of the free

items, in such a way that the total content of the bin is increased without exceeding the

maximum capacity. After all bins have been examined, the remaining free items are

added to the solution using the FFD heuristic. This search is inspired by Martello and

Toth’s dominance criterion (see section 2.2), which essentially states that well-filled

bins with large items are always preferable over less-filled bins with smaller items. In

HGGA, the algorithm searches locally for dominant bins, by replacing items in the

bins by larger free items. In the same time, the free items are replaced by smaller items

from the bins, which makes it easier to place them back into the solution afterwards.

In the hybrid version of my ACO algorithm, every solution created by an ant is

taken through a local optimisation phase. In this phase, the least filled bins are de-

stroyed, and their items become free (the number of bins to be destroyed is defined

empirically, see chapter 5). Then, for every remaining bin, it is investigated whether

some of its current items can be replaced by free items so that the bin becomes fuller.

The algorithm successively tries to replace two current items by two free items, two

current items by one free item, and one current item by one free item. In the end,

the remaining free items are re-inserted into the solution using the FFD heuristic. A

complete example of the local search phase is given in figure 4.5. The pheromone is

updated using the locally improved solutions.

Chapter 4. Applying ACO to the BPP and the CSP 34

The solution before local search (the bin capacity is 10):

The bins: 3 3 3 � 6 2 1 � 5 2 � 4 3 � 7 2 � 5 4

Open the two smallest bins:

Remaining bins: 3 3 3� 6 2 1 � 7 2� 5 4

Free items: 5�4�3�2

Try to replace 2 current items by 2 free items, 2 current by 1 free or 1 current

by 1 free:

First bin: 3 3 3 � 3 5 2 new free: 4�3�3�3

Second bin: 6 2 1 � 6 4 new free: 3�3�3�2�1

Third bin: 7 2 � 7 3 new free: 3�3�2�2�1

Fourth bin: 5 4 stays the same

Reinsert the free items using FFD:

Fourth bin: 5 4 � 5 4 1

Rest in new bin: 3 3 2 2

Final solution: 3 5 2 � 6 4 � 7 3 � 5 4 1 � 3 3 2 2

Figure 4.5: An example of the use of the local search algorithm.

Chapter 5

Experimental results

This chapter summarises the results obtained in experiments with the ACO approach

for the BPP and the CSP. In the first section, the various parameters for the pure

ACO algorithm and for the ACO algorithm with local search are examined, and val-

ues are defined for them. In the second section, the algorithms are compared to

other approaches: to Liang et Al.’s EP algorithm ([Liang et al., 2001]) for the CSP

and to Martello and Toth’s RA ([Martello and Toth, 1990]) and Falkenauer’s HGGA

([Falkenauer, 1996]) for the BPP. All three of these approaches are described in chap-

ter 2.

5.1 Defining parameter values

This section describes how parameter values were defined for the pure ACO algorithm

and the ACO algorithm enhanced with local search. In the tests to define parameter

values, I used test problems that are available on Klein and Scholl’s webpage at the

Technische Universität Darmstadt1. Problems of different sizes and structures were

used to get as general results as possible.
1url: http://www.bwl.tu-darmstadt.de/bwl3/forsch/project/binpp

35

Chapter 5. Experimental results 36

5.1.1 The pure ACO algorithm

Different parameter values had to be defined for the pure ACO algorithm: the number

of ants (nants), the relative weighing of heuristic and pheromone information (β), the

relative importance of the filling of the bins in the fitness function (k), the pheromone

evaporation (ρ), the relative number of updates to be done with sib as opposed to sgb (γ),

and the probability of constructing the best solution (pbest), which defines τmin. When

the algorithm is extended with pheromone trail smoothing (PTS), also the degree of

smoothing δ has to be defined.

To define the value for nants, the algorithm was run on the different test prob-

lems with a fixed number of solution constructions. So when nants was increased, the

number of iterations was decreased to maintain this fixed number of solutions. In this

way, it was possible to compare a high number of iterations with only a few ants to a

lower number of iterations with more ants. The tests indicated that, like for other ACO

algorithms and applications (see [Dorigo and Stützle, 2001]), the algorithm was quite

robust to this parameter. Still, it could clearly be observed that the range of values

of nants that gave optimal results varied with the problem size. Setting nants to the

number of items nitems gave optimal or near-optimal results for all test problems. It is

interesting to see that the optimal number of ants was well above 1, so it is useful to

use a colony of ants rather than one individual ant.

The next parameter, β, defines the relative importance of the heuristic information

as opposed to the pheromone information when ants build a solution. This parameter

appeared to be crucial. Using a wrong value for it resulted inevitably in poor results.

Through tests with many different problem instances, I tried to find a link between

the optimal β value and problem features, such as the number of items, the number of

different item sizes, the quality of the FFD solution (as this is the heuristic that is used),

etc.. I failed to find any useful relation, however, and could only conclude that β has to

be defined empirically for any new problem instance. Fortunately, the good β values

for the different problems were all situated between 2 and 10, and in practice, the

choice can be narrowed down to one of 2, 5 or 10. Values of 0 always gave bad results,

so I could confirm the general statement of [Dorigo and Stützle, 2001] that heuristic

information is important to direct solution construction. I also did tests without the

Chapter 5. Experimental results 37

pheromone trail, so that only heuristic information was used (but in a stochastic way).

This gave results which were better than the deterministic use of FFD, but clearly worse

than the ACO algorithm, confirming that the ACO algorithm does something useful.

For the parameter k, which defines the fitness function, it was clear that a value of 2

was better than 1. So the fitness function of [Falkenauer and Delchambre, 1992] gave

better results than just using the inverse of the number of bins (see section 4.3). Values

higher than 2 did not give significantly worse results. As the results were not better

either, I chose to keep 2 as the value for k, keeping in mind the theoretical arguments

of [Falkenauer, 1996] against higher values.

The two next parameters, the pheromone evaporation rate ρ and the relative num-

ber of updates to be done with sgb γ2, appeared to be interdependent. For both of these

parameters, a higher value means more exploration of the solution space. When exam-

ined separately, they both needed a lower value (so less exploration) for larger problem

instances. This seems to make sense: larger problems have more items, so more places

to make stochastic decisions while building a solution. So for large problems, more

different solutions will be sampled anyway, and the probability to build the best so-

lution encoded in the trail (pbest) will be lower. So less extra exploration is needed.

I decided to set γ to � 500
nitems
. Once this was done, there was enough size-dependent

exploration, and ρ could be set to one fixed value for every problem: 0.95.

The optimal value for pbest, which defines τmin, appeared to be 0.05, although a

really broad range of values could be used, and the tests were not very conclusive.

Also for τ�0�, the initial pheromone value, a broad range of values gave good results.

Setting τ�0� to τmin (and giving up on optimistic initial values) gave clearly worse

results though. I chose to set it to 1
1�ρ , the approximation of τmax defined in section

4.4.

Finally, I extended the algorithm with PTS, and did tests to define the best value for

δ, the parameter which defines how much of the original pheromone value you keep

(with a δ of 1, you loose all previous pheromone information, with a δ of 0, smoothing

is switched off) (see section 4.6). The optimal value for δ turned out to be 0.4. With

this value, PTS could improve the results for some of the test problems significantly.
2A γ value of 1 means that all updates have to be done with sgb, a value of n means that every n th

update has to be done with sgb.

Chapter 5. Experimental results 38

For most problems, however, the improvements were only marginal.

5.1.2 The ACO algorithm with local search

When the ACO is combined with local search, new parameter settings are needed. In

this section, the parameters nants, β, ρ, γ, pbest and τ�0� are redefined. The parameter

k is kept on 2. One new parameter is introduced: bins indicates the number of bins that

are opened to release the free items for the local search.

To define nants, the same kind of test as before was done: vary the number of

ants, while the total number of solution constructions stays fixed. Like for the pure

ACO algorithm, a rather wide range of values gave good solutions. The best values for

nants were lower, however, and less dependent on the problem size. It was possible

to set the value of nants to 10 for all problems. The fact that less ants are needed per

iteration can be explained as follows. If no local search is used, interesting spots are

only found when ants specifically build those solutions. With local search, however,

every solution is taken to a near-by optimum in the solution space. Therefore, less ants

are needed to get an equally good sampling of interesting solutions.

When investigating the β parameter in the algorithm with local search, it turned

out that using an optimal β value became less important, and that most problems

could in fact do with a value of 2. This was to be expected: as is explained in

[Dorigo and Stützle, 2001], local search uses the heuristic information in a more di-

rect way to improve solutions, and the importance of the heuristic information for the

building of solutions diminishes. However, there were still some problem instances

that needed a β value of 5 or 10, so it stays necessary to experimentally choose a good

value.

The fact explained above that local search focuses the investigation directly on the

interesting spots of the solution space also means that less exploration is necessary.

This was confirmed when the optimal values for γ and ρ were defined. For γ, the

optimum appeared to be 1 for any problem size, meaning that all the updates are done

with the globally best solution sgb. So there is less exploration. For ρ, the test results

were very unclear. For most problems, any value between 0 and 0.9 gave good results.

A very low ρ value means that the pheromone only lasts for one generation, so new

Chapter 5. Experimental results 39

solutions are only guided by the previous optimum. This results in a very aggressive

search, and for some rather difficult problems, the optimum was found incredibly fast

(in as few as 2 or 3 iterations, where for the pure ACO algorithm 300 was more the

norm for these problems). It did, however, also cause the algorithm to get stuck in local

optima from time to time. In the end, I settled for a ρ of 0.75. This gave rise to longer

runs (around 30 iteration for the problems mentioned above), but was less unstable in

terms of convergence into local optima.

Also, for pbest and τ�0�, less exploration was the key word. For different values of

pbest, the results in number of bins stayed the same, but less cycles were needed for

higher values. The best results were in fact obtained with pbest set to 1. This means

that τmin is set to 0: the lower limit on pheromone values is abandoned. Also for τ�0�,
the results hardly differed in number of bins. Therefore I decided to give up on the

exploratory starts as well (to set τ�0� to 0). This means that the algorithm is not first

forced to try out different possibilities, so it can get right down to business, and needs

less iterations.

Finally, also the new parameter bins, the number of bins to be opened, had to be

defined. This was quite difficult, as it depended very much on the problem instance

at hand. Fortunately, for most problems the algorithm gave optimal results for quite

a wide range of values for bins. Originally, there was no overlap between the ranges

for the different test problems I used. Then I tried to turn around the order in which

the local search tries to replace existing items with free items (originally, the algorithm

first replaced 1 existing item for 1 free item, then 2 for 1 and finally 2 for 2). This gave

slightly better solutions, and made the ranges of optimal bins values wider, so that a

value of 4 became acceptable for all problems.

5.2 Comparing to other approaches

In this section, the pure ACO algorithm and the ACO algorithm augmented with local

search are compared to existing evolutionary approaches for the CSP and the BPP. PTS

was not used, as this technique only improves the results slightly, while using longer

runs. For the CSP, the algorithms are compared to Liang et Al.’s EP approach. For the

Chapter 5. Experimental results 40

BPP, they are compared to Martello and Toth’s RA and Falkenauer’s HGGA. All the

tests were run on the department’s Sun Sparc machines: Ultra 5’s and Blade 100’s with

128 Mb memory using 270-502 MHz processors. The algorithm was implemented in

java.

5.2.1 Tests for the CSP

Liang et Al. include in their paper ([Liang et al., 2001]) their 20 test problems. I use

their 10 single stock length problems (problem 1a to 10a included in appendix A) to

compare my approach to theirs. They have a version of their program with and without

contiguity. As is explained in section 2.1, a CSP with contiguity is one where, apart

from minimising the number of stocks, you also want as few outstanding orders as

possible. Liang et Al.’s EP with contiguity gives the best results in number of stocks.

This could be due to the fact that the contiguity goal prefers a certain order of the items

in the solution, regardless of their grouping into bins, so that an order based approach

is favoured. It also reduces the redundancy in the solution space, which was said to

be a major problem for order based approaches (see section 4.1). Even though my

algorithms don’t take contiguity into account, I will compare them to Liang et Al.’s EP

with contiguity3. First, the EP is compared to the pure ACO algorithm. After that, it is

compared to the ACO algorithm with local search.

Like Liang et Al., I did 50 independent test runs for each problem. The results for

the pure ACO algorithm and the EP are summarised in table 5.1. Liang et Al. use a

population size of 75 and a fixed number of generations for each problem. In order to

get a fair comparison, I let the ant algorithm maximally build the same total number

of solutions as the EP: the number of generations was multiplied with the population

size, and divided by the number of ants (dependent on the problem size) to get the

maximum number of iterations. Only for problem 10a less solutions were allowed (the

same number as for problem 9a), because the runs would otherwise take too long. As

mentioned before, the parameter β is really crucial in the ACO algorithm. Therefore,
3This algorithm differs in only two aspects from the one described in section 2.4: in 25% of the mu-

tations, another operator is used (one that is better for contiguity), and a slightly different cost function
is used (see [Liang et al., 2001] for details).

Chapter 5. Experimental results 41

I had to do a few preliminary test runs for every problem to choose a good β value. In

the table, only the results for the best β value are reported.

It is clear from these results that problems 1a to 5a were too easy: both algorithms

always find the best solution. For the other 5 problems, the ACO algorithm finds

better results: apart from problem 7a, it finds both better average values and better best

values. In fact, t-tests show that the EP results are less good with 100% probability

for these problems. For problem 7a, the EP results are less good with 93.7%. As

mentioned above, however, the ACO algorithm only gave these good results when the

best β value was used. So, compared to the EP, it has the disadvantage that it needs a

preliminary optimisation phase.

The table also shows another disadvantage of the ACO approach: it is quite slow.

This is especially a problem for the big problems (6a to 10a). For 9a for example,

every run takes on average almost 6 hours. However, this could probably be reduced

a lot if the program was re-implemented in C, and run on faster machines (experience

suggests that it would be possible to get a speedup of 25). Also, the maximum number

of iterations could be reduced (now it is 750000 solutions / 400 ants = 1875), as most

results were obtained much earlier (on average after 345 iterations).

The results for the ACO algorithm with local search are summarised in table 5.2.

As solution construction with this version of the algorithm obviously takes much more

time, I had to reduce the maximum number of evaluations (see column ’sol’ in the

table). Since the number of ants was much lower than for the pure ACO algorithm,

however (10 instead of the number of items in the problem), this did not result in less

cycles. The parameter β again had to be defined in a preliminary optimisation phase.

For problem 1a up to 6a, the results are, in terms of number of stocks, the same as

for the pure ACO algorithm. For problems 1a up to 4a, these results are the theoretical

optimum. For 5a and 6a, the theoretical optimum (found by summing the lengths of all

items together and dividing this by the stock length) would be lower, but it is possible

that that optimum cannot be reached in practice (as neither of the ACO algorithms,

nor the EP can find it). For the bigger problems, 7a up to 10a, the ACO algorithm

with local search performs clearly better than the pure ACO algorithm: it has a better

average solution for all of these problems, and even finds a better best solution for

Chapter 5. Experimental results 42

Prob ACO EP

sol avg opt it time sol avg opt

1a 37500 9 9 1 0 37500 9 9

2a 75000 23 23 1 0 75000 23 23

3a 150000 15 15 3 0 150000 15 15

4a 150000 19 19 9 1 150000 19 19

5a 150000 53 53 31 14 150000 53 53

6a 375000 79 79 198 2421 375000 80.76 80

7a 375000 68.82 68 385 1619 375000 68.96 68

8a 375000 144.92 144 366 6443 375000 148.08 147

9a 750000 150.98 150 345 20401 750000 152.42 152

10a 750000 218.44 218 442 14926 1500000 220.28 219

Table 5.1: These are the results for problem1a up to problem10a. ’ACO’ gives the re-

sults obtained with the pure ACO approach and ’EP’ gives Liang et Al.’s results. ’sol’

indicates the total number of solutions the algorithms were maximally allowed to inves-

tigate, ’avg’ indicates how many stocks were used on average, ’opt’ indicates the num-

ber of stocks in the best solution, ’it’ indicates after how many iterations this number of

stocks was first found, and ’time’ indicates the average running time for one problem in

CPU seconds (until the theoretical optimum or the maximum number of iterations was

reached).

Chapter 5. Experimental results 43

problem sol avg opt it time

1a 1000 9.00 9 1.0 0

2a 2000 23.00 23 1.0 0

3a 10000 15.00 15 60.0 1

4a 10000 19.00 19 1.0 0

5a 10000 53.00 53 1.4 0

6a 10000 79.00 79 16.3 79

7a 10000 68.00 68 57.8 6

8a 10000 144.30 144 225.3 312

9a 20000 150.00 150 98.7 375

10a 20000 217.66 217 397.4 2297

Table 5.2: These are the results obtained with the ACO algorithm with local search

for problem1a up to problem10a. ’sol’ again indicates how many solutions the ants

could maximally build, ’avg’ how many stocks were used on average, ’opt’ the number

of stocks in the best solution, ’it’ after how many iterations this number of stocks was

first found, and ’time’ how many CPU seconds the program needed on average for one

problem.

Chapter 5. Experimental results 44

problem 10a. With t-tests it can be shown that for all four problems the results with

the pure ACO algorithm are worse with a probability of 100%.

The local search also solves the problem of long running times. Especially for the

bigger problems, enormous speed-ups have been realised, thereby countering one of

the disadvantages of the ACO approach. There is however one problem for which the

ACO with local search needed more time: problem 3a. Also in number of iterations,

this problem seems to give the ACO with local search more difficulties: 60 iterations

on average as opposed to 3. One aspect in which problem 3a differs from the others

is that in the optimal solution, all stocks are fully used: there is no waste. I cannot,

however, see why this should give problems for the ACO with local search in particular.

Maybe the way the local search tries to find better optima is not good for this particular

problem.

5.2.2 Tests for the BPP

In [Falkenauer, 1996], Falkenauer compares his HGGA to Martello and Toth’s RA. He

uses 8 different sets of 20 test problems, and runs the algorithm just once on each of

these. The first four sets contain problems with a bin capacity of 150 and item sizes

uniformly distributed between 20 and 100 (because this kind of problem appeared to

be the hardest in Martello and Toth’s work). He uses four different problem sizes: 120

items, 250, 500 and 1000. For each size, 20 different problems were created randomly.

These problems are further referred to as the uniform problems. The next four sets

of test problems have a different structure. They are the so-called triplets. This name

is derived from the fact that in the optimal solution, every bin contains three items,

two of which are smaller than the third of the bin capacity, and one is larger. These

problems are very hard, because it is possible to fit three small items into a bin, or

two large ones, but then the optimum will inevitably be missed. Again, 20 different

problems were created for four different problem sizes: 60, 120, 249 and 501 (with an

optimal solution of 20, 40, 83 and 167 bins respectively). All of these test problems

are available on-line at the OR-library: http://mscmga.ms.ic.ac.uk/info.html.

I ran both ACO algorithms on each instance of every problem set, except for the

fourth (uniform problems of size 1000). For those problems, I only ran the ACO with

Chapter 5. Experimental results 45

local search, because the computation times for the pure ACO algorithm were pro-

hibitive. The maximum number of solutions for the pure ACO algorithm was defined

as before, by multiplying the population size (always 100) and the number of genera-

tions (2000 for the two smallest uniform problem sets and 5000 for the largest, 1000

for the two smallest triplet sets and 2000 for the two largest). The ACO algorithm with

local search was always allowed 10 times less solutions. The results for the RA were

obtained by Falkenauer. He let it do at maximum 1500000 backtracks, except when

that was finished faster (in CPU seconds) than the run of HGGA. In that case, extra

backtracks were allowed. For both ACO algorithms, runs were done with β values of

2, 5 and 10. The ACO algorithm with local search always needed a similar or lower

β than the pure ACO. In the tables below, only the results for the best β values are

reported.

The results for the uniform problems are reported in tables 5.3, 5.4, 5.5 and 5.6

below. From these results, it is clear that the pure ACO algorithm cannot beat HGGA.

For the problems of size 120, it does almost equally well, and for the ones of size 250,

it equals HGGA in 11 out of 20 problems. For the problems of size 500, however,

it always does slightly worse than HGGA. RA also does slightly better than the pure

ACO on the smallest problems, but for the larger ones, it does clearly worse. The

disadvantage of the pure ACO algorithm pointed out above, namely that it is slow for

big problems, can again be observed here.

The ACO with local search does clearly better than the pure ACO. Especially on

the smallest problems (size 120), it does very well. For those problems, Falkenauer’s

HGGA finds the theoretical optimum in all but two cases (problem 9 and 20). For

these two cases, Falkenauer conjectures that the optimum cannot be reached, as neither

HGGA nor RA find it. It is therefore all the more remarkable that the hybridised ACO

algorithm finds these optima. For the larger problems, the ACO with local search

does not always find the solution found by HGGA, and for the largest problems (size

1000), it always does slightly worse than HGGA. It does, however, always beat RA

and the pure ACO algorithm. Like for the CSP problems, the local search also gives

an enormous speed-up, making it much faster than the other algorithms for the two

smallest problem sets, and comparable to HGGA and RA for the larger ones.

Chapter 5. Experimental results 46

Run HGGA RA ACO HACO

bins time bins time bins time bins time

1 48 15 48 0 48 80 48 1

2 49 0 49 0 49 58 49 1

3 46 6 46 29 46 102 46 1

4 49 50 49 0 49 226 49 1

5 50 0 50 0 50 64 50 1

6 48 19 48 0 48 110 48 1

7 48 19 48 0 48 212 48 1

8 49 22 49 0 49 276 49 1

9 51 3669 51 3681 51 1696 50 3

10 46 40 46 0 47 1236 46 3

11 52 0 52 0 52 85 52 1

12 49 24 49 0 49 120 49 1

13 48 26 48 0 49 1269 48 1

14 49 0 49 0 49 51 49 1

15 50 0 50 0 50 79 50 1

16 48 11 48 0 48 92 48 1

17 52 0 52 0 52 102 52 1

18 52 76 52 0 52 158 52 1

19 49 14 49 0 49 108 49 1

20 50 3635 50 3679 50 1269 49 6

Averages 381 370 370 1

Table 5.3: These are the results for the uniform problems of size 120. ’bins’ contains the

number of bins in the best solution, and ’time’ the running time in CPU seconds. ’HGGA’

gives the results of Falkenauer’s algorithm, ’RA’ for Martello and Toth’s algorithm, ’ACO’

for the pure ACO approach, and HACO for the ACO algorithm hybridised with local

search. The β value used here was 2 for both the pure ACO and the ACO with local

search.

Chapter 5. Experimental results 47

Run HGGA RA ACO HACO

bins time bins time bins time bins time

1 99 257 100 1002 100 3008 99 11

2 100 47 100 0 100 2485 100 1

3 102 224 102 0 102 916 102 3

4 100 27 100 0 100 962 100 1

5 101 164 101 4 102 3452 101 34

6 101 478 103 522 103 3407 102 308

7 102 15 102 0 102 349 102 1

8 104 6629 104 7412 104 3464 104 304

9 105 924 106 1049 106 3622 106 317

10 101 158 102 597 102 3371 101 3

11 105 96 106 377 105 1035 105 2

12 101 240 102 1076 102 3365 101 110

13 106 5997 106 6101 106 3592 106 292

14 103 6347 103 6969 103 3519 103 312

15 100 83 100 0 100 1549 100 1

16 105 4440 106 4673 106 3481 106 305

17 97 255 98 545 98 3102 97 7

18 100 39 100 0 100 487 100 1

19 100 247 100 0 101 3384 101 313

20 102 68 102 0 102 980 102 1

Averages 1337 1516 2476 116

Table 5.4: The results for the uniform problems of size 250. β was 10 for both ACO and

HACO.

Chapter 5. Experimental results 48

Run HGGA RA ACO HACO

bins time bins time bins time bins time

1 198 481 201 987 200 24271 199 957

2 201 178 202 869 202 26512 202 908

3 202 348 204 911 203 25753 202 772

4 204 11121 206 11412 206 25351 205 1143

5 206 268 209 844 207 25351 206 59

6 206 130 207 818 206 20750 206 13

7 207 1656 210 1854 209 26826 208 890

8 204 1835 207 2085 206 23968 205 897

9 196 502 198 1222 197 24331 197 929

10 202 93 204 962 203 24497 202 66

11 200 106 202 894 201 25878 200 3

12 200 152 202 793 202 24527 200 335

13 199 1019 202 1258 201 24904 200 936

14 196 136 197 860 197 25131 197 951

15 204 952 205 1203 205 25546 204 30

16 201 375 203 783 203 19153 201 26

17 202 163 204 733 203 18561 202 20

18 198 337 201 755 199 18072 198 606

19 202 144 205 638 203 19558 202 30

20 196 307 199 819 198 17950 197 963

Averages 1015 1535 23378 527

Table 5.5: The uniform problems of size 500. β was 10 for ACO and 2 for HACO.

Chapter 5. Experimental results 49

Run HGGA RA HACO

bins time bins time bins time

1 399 2925 403 3279 400 3047

2 406 4040 410 4887 408 3017

3 411 6262 416 6606 412 3001

4 411 32714 416 40286 413 2961

5 397 11862 401 20690 399 3073

6 399 3774 402 4216 401 3027

7 395 3033 398 3450 396 3000

8 404 9879 406 12674 405 3028

9 399 5585 402 6874 401 3006

10 397 8126 402 9568 400 2924

11 400 3359 404 3543 401 3021

12 401 6782 404 7422 403 3073

13 393 2537 396 2714 394 3019

14 396 11829 401 23319 398 3111

15 394 5838 399 6771 396 3070

16 402 12611 407 20458 405 3032

17 404 2379 407 3139 405 3010

18 404 2379 407 2506 405 2941

19 399 1330 403 1353 401 3000

20 400 3564 405 4110 402 3024

Averages 7059 9393 3019

Table 5.6: The uniform problems of size 1000. β was 5 for HACO. The pure ACO was

not run on these problems, as computation times were too long.

Chapter 5. Experimental results 50

The tables 5.7, 5.8, 5.9 and 5.10 show the results for the triplet problems. The

pure ACO algorithm again fails to beat HGGA. RA has some results for the smallest

problems (size 60) which are better than the ACO’s, but as the problem size increases, it

becomes clear that RA does much worse than pure ACO. An interesting fact is that the

ACO algorithm has a very constant performance: although it never finds the optimum

for the smallest problems, it is always close to it. RA sometimes finds the optimum

for the smallest problems, but when it does not find the optimum, it often ends up in a

very bad local optimum. It can again be observed that the ACO algorithm is quite slow

for large problems.

The ACO algorithm with local search does not better than the pure ACO algorithm

for the two smallest problem sets. For the two largest problem sets, it does beat pure

ACO. For none of the triplet problems, it manages to equal HGGA’s performances.

The large speed-up compared to pure ACO can again be observed.

It is kind of disappointing to see that HGGA does better than both ACO algorithms

on many problem instances. There might be an explanation why ACO does not do so

well on these problems, though. The way ACO works is by reinforcing good solutions.

Solution parts that appear in many good solutions will get a lot of pheromone. If,

however, a large number of solution parts are equally likely to appear in good solutions,

ACO fails to differentiate them and performs poorly (see also [Bonabeau et al., 1999,

Bonabeau et al., 2000]). In other words, it is important that the problems have enough

structure. For the QAP (see [Gambardella et al., 1999b]), it was observed that ACO did

very well on real-life problems, but could not compete with the best algorithms when it

came to randomly constructed artificial problems, because those lacked structure. The

structure of a search space can be expressed in the fitness-distance correlation (FDC)

([Jones and Forrest, 1995]). This is the correlation between the fitness of a solution and

its distance to the global optimum. So it expresses whether good solutions can guide

the algorithm towards the global optimum. The BPP test problems used above were all

constructed randomly. Especially the triplets (which the ACO has the most difficulties

with) were created to be artificially hard. It would be interesting to calculate the FDC

for these problems, to see if they possess the necessary structure to be easily solved

with ACO. Also, it would be interesting to compare ACO with HGGA on other kinds

Chapter 5. Experimental results 51

Run HGGA RA ACO HACO

bins time bins time bins time bins time

1 20 4 20 10 21 292 21 37

2 20 6 20 13 21 406 21 42

3 20 2 23 564 21 294 21 35

4 20 6 22 445 21 286 21 38

5 20 1 22 405 21 293 21 35

6 20 9 22 415 21 317 21 38

7 20 284 22 486 21 325 21 38

8 21 295 22 396 21 292 21 37

9 20 7 22 452 21 290 21 38

10 20 6 20 10 21 308 21 39

11 20 15 20 1 21 307 21 40

12 20 1 20 6 21 267 21 34

13 20 3 20 2 21 373 21 40

14 20 5 22 385 21 302 21 36

15 20 6 22 401 21 293 21 38

16 20 3 23 537 21 332 21 38

17 20 2 23 528 21 276 21 34

18 20 9 22 430 21 283 21 37

19 21 281 22 386 21 293 21 41

20 20 2 22 400 21 303 21 40

Averages 47 313 307 38

Table 5.7: The triplets of size 60. β was 2 for both ACO and HACO.

Chapter 5. Experimental results 52

Run HGGA RA ACO HACO

bins time bins time bins time bins time

1 40 121 44 844 41 1394 41 135

2 40 104 43 823 41 1367 41 131

3 40 96 43 956 41 1492 41 141

4 40 39 44 859 41 1400 41 188

5 40 76 45 1184 41 1505 41 151

6 40 149 45 1189 41 1451 41 153

7 40 47 45 1054 41 1398 41 165

8 40 61 43 777 41 1406 41 176

9 40 37 43 643 41 1403 41 184

10 40 256 44 1003 41 1381 41 138

11 40 103 44 886 41 1367 41 136

12 40 50 45 980 41 1403 41 182

13 40 43 44 1014 41 1313 41 136

14 40 57 44 835 41 1404 41 161

15 40 41 44 824 41 1366 41 134

16 40 47 44 873 41 1326 41 133

17 40 93 43 629 41 1414 41 169

18 40 51 44 790 41 1466 41 139

19 40 67 46 1171 41 1712 41 138

20 40 40 45 1076 41 1412 41 147

Averages 79 921 1419 152

Table 5.8: Triplets of size 120. β was 5 for ACO and 2 for HACO.

Chapter 5. Experimental results 53

Run HGGA RA ACO HACO

bins time bins time bins time bins time

1 83 323 93 2381 85 14036 84 691

2 83 227 88 1526 85 11988 84 753

3 83 217 88 1455 85 11876 84 733

4 83 723 90 1717 85 12136 84 750

5 83 382 91 2513 85 11721 84 718

6 83 1717 90 2177 85 12513 84 743

7 83 1474 90 2108 85 11680 84 698

8 83 4400 92 2493 85 11626 84 723

9 83 615 91 2438 85 11956 84 726

10 83 318 90 1522 85 12148 84 709

11 83 777 94 2815 85 11974 84 720

12 83 191 90 1688 85 12053 84 707

13 83 262 89 1608 85 12218 84 711

14 83 360 91 2363 85 12519 84 700

15 83 204 89 1399 85 12792 84 728

16 83 76 91 2683 85 12748 84 721

17 83 667 90 2081 85 12798 84 739

18 83 307 90 2086 85 12655 84 737

19 83 294 91 2237 85 12086 84 727

20 83 1025 91 2199 85 11777 84 724

Averages 728 2074 12265 723

Table 5.9: Triplets of size 249. β was 5 for ACO and 2 for HACO.

Chapter 5. Experimental results 54

Run HGGA RA ACO HACO

bins time bins time bins time bins time

1 167 1807 184 5829 173 14905 170 2867

2 167 1582 181 3437 173 15216 171 2030

3 167 1235 177 2359 172 14946 171 2113

4 167 1822 180 3398 173 15949 171 2206

5 167 2355 181 3710 173 15782 170 4037

6 167 1424 183 10624 173 15650 171 2156

7 167 1161 183 5789 173 15729 170 2142

8 167 1504 183 5799 172 15439 170 2104

9 167 2138 177 2991 172 15628 171 2167

10 167 1550 185 5626 173 14921 170 2463

11 167 1053 179 3771 173 15275 171 2133

12 167 1335 178 3064 173 15538 171 2126

13 167 1502 187 5787 173 14428 170 2245

14 167 1951 181 4495 172 15851 173 2252

15 167 1474 183 5930 173 16325 170 4127

16 167 2351 181 5307 173 15729 170 2171

17 167 1179 183 5522 173 15244 171 2174

18 167 1754 183 6277 173 15228 172 2474

19 167 1776 180 4164 173 15303 170 2092

20 167 2307 188 6519 173 15223 173 2151

Averages 1663 5020 15416 2412

Table 5.10: Triplets of size 501. β was 2 for both ACO and HACO.

Chapter 5. Experimental results 55

of problems. The good performance of ACO with local search on the small uniform

problems might suggest that there are certain problem classes for which ACO does

better.

Chapter 6

Conclusions

In this dissertation, I have developed an ACO algorithm for the bin packing problem

and the cutting stock problem. Artificial ants stochastically build new solutions, using

a combination of heuristic information and an artificial pheromone trail. The entries in

the pheromone trail matrix encode the favourability of having two items in the same

bin, and are reinforced by good solutions. In this way, ideas of evolutionary algorithms

and reinforcement learning are combined. The relative importance of the pheromone

trail information as opposed to the heuristic information is defined by the parameter

β, and is crucial for the performance of the algorithm. Unfortunately, there does not

seem to be a link between the optimal value for this parameter and the features of the

problem. It has to be defined empirically in a preliminary optimisation phase.

Apart from a pure ACO approach, I also proposed a hybrid approach, which com-

bines ACO with local search. The solutions constructed by the ants are taken to a local

optimum by a search based on Martello and Toth’s dominance criterion. This extended

algorithm gave better and faster solutions than the pure ACO approach.

When compared to existing evolutionary approaches, both ACO algorithms man-

aged to outperform Liang et Al.’s EP solution for the CSP and Martello and Toth’s

RA for the BPP. The pure ACO algorithm failed to compete with Falkenauer’s HGGA,

which is at the moment probably the best solution method for the BPP. The algorithm

was also very slow for large problem instances. The hybridised ACO algorithm was

much faster and could outperform HGGA on some small test problems, but gave equal

or slightly worse results than HGGA on all of the other problems. Especially the arti-

56

Chapter 6. Conclusions 57

ficially hard triplet problems seemed to pose more problems for the ACO algorithms

than for HGGA. An advantage of ACO seems to be that it gives a steady performance:

when it does not find the optimum, it always finds a near-optimal solution.

I think these are quite encouraging results. Especially the good performance of the

hybrid algorithm on the small uniform problems, which could mean that there are cer-

tain kinds of problems where ACO is preferable over all other approaches. We should

not forget that this is the first ACO application for these problem classes, and there is

quite a lot of scope for more research to try and improve the current algorithm. It could

for example be interesting to try out a different ACO approach. The ACO algorithm in

this work was mainly based on MMAS, and it could be useful to implement features

of the equally well performing ACS (see section 3.3). A second way to improve the

algorithm could be by changing the local search algorithm. Alvim et Al.’s local search

method (described in section 4.7) gives good results when used on its own, and it could

be interesting to try to combine it with ACO. Thirdly, it could be interesting to try to

change the value for β dynamically. As for GA’s (see [Mitchell, 1996]), it could well

be that for some parameters the optimal value changes over the course of a single run.

Maybe by adapting β during the run, it could be possible to define it more generally

and avoid the preliminary optimisation phase. Finally, it could be interesting to move

away from a constructive ACO approach, and use the pheromone trail to change ex-

isting solutions, rather than to build new ones (like in HAS-QAP, described in section

3.4). Maybe it could even be used in combination with Falkenauer’s HGGA replacing

its mutation operator. In this way it might be possible to combine the best of both

worlds.

Apart from making improvements to the algorithm developed in this dissertation,

it could also be interesting to try to extend its application area. As mentioned in sec-

tion 2.1, there are many variations possible to the traditional one-dimensional BPP and

CSP. I don’t think it would be very difficult to adapt the algorithm to take extra con-

straints into account: this is probably just a matter of limiting the items to choose from

while building a solution. Taking extra goals, like contiguity, into account could be

more tricky. One might be tempted to think that it suffices to adapt the fitness func-

tion, but this is probably not enough: the pheromone trail only contains information

Chapter 6. Conclusions 58

about the combination of item sizes in bins, and not about things like the order of the

bins, which is important for contiguity. Also extending the algorithm for solving mul-

tiple stock length problems might be more difficult than it seems. You would need a

three-dimensional pheromone trail to be able to express for which stock length cer-

tain combinations are good, and a mechanism to decide on the next stock length when

building solutions. Finally, to solve multi-dimensional cutting and packing problems,

you would need a completely different algorithm. It might still be possible to use

ACO, but the implementation of it would probably be completely different from the

one developed in this work.

Appendix A

The test problems for the CSP

These are the 10 single stock length test problems from [Liang et al., 2001].

Problem1a:

stock length: 14

items: 20

Item length 3 4 5 6 7 8 9 10

No. Required 5 2 1 2 4 2 1 3

Problem2a:

stock length: 15

items: 50

Item length 3 4 5 6 7 8 9 10

No. Required 4 8 5 7 8 5 5 8

Problem3a:

stock length: 25

items: 60

Item length 3 4 5 6 7 8 9 10

No. Required 6 12 6 5 15 6 4 6

Problem4a:

stock length: 25

59

Appendix A. The test problems for the CSP 60

items: 60

Item length 5 6 7 8 9 10 11 12

No. Required 7 12 15 7 4 6 8 1

Problem5a:

stock length: 4300

items: 126

Item length 1050 1100 1150 1200 1250 1300 1350 1650

No. Required 3 8 4 10 6 3 9 2

Item length 1700 1850 1900 1950 2000 2050 2100 2200

No. Required 5 13 15 6 11 6 15 4

Item length 2250 2350

No. Required 4 2

Problem6a:

stock length: 86

items: 200

Item length 21 23 24 25 26 27 28 29

No. Required 10 14 10 7 14 4 13 9

Item length 31 33 34 35 37 38 41 42

No. Required 5 10 13 10 11 15 12 15

Item length 44 47

No. Required 15 13

Problem7a:

stock length: 120

items: 200

Appendix A. The test problems for the CSP 61

Item length 22 26 27 28 29 30 31 32

No. Required 6 3 14 12 9 15 11 10

Item length 34 36 37 38 39 46 47 48

No. Required 11 13 4 3 6 14 7 3

Item length 52 53 54 56 58 60 63 64

No. Required 14 9 7 3 5 14 4 3

Problem8a:

stock length: 120

items: 400

Item length 22 23 24 26 27 28 29 30

No. Required 12 8 27 15 25 7 10 22

Item length 31 36 39 41 42 48 49 50

No. Required 5 16 19 21 26 16 12 26

Item length 51 54 55 56 59 60 66 67

No. Required 20 25 9 17 22 14 17 9

Problem9a:

stock length: 120

items: 400

Item length 21 22 24 25 27 29 30 31

No. Required 13 15 7 5 9 9 3 15

Item length 32 33 34 35 38 39 42 44

No. Required 18 17 4 17 20 9 4 19

Item length 45 46 47 48 49 50 51 52

No. Required 9 12 15 3 20 14 15 6

Item length 53 54 55 56 57 59 60 61

No. Required 4 7 5 19 19 6 3 7

Item length 63 65 66 67

No. Required 20 5 10 17

Appendix A. The test problems for the CSP 62

Problem10a:

stock length: 120

items: 600

Item length 21 22 23 24 25 27 28 29

No. Required 13 19 24 20 23 24 15 5

Item length 30 31 33 35 36 39 40 41

No. Required 24 16 12 24 16 4 20 24

Item length 42 43 44 45 46 47 48 50

No. Required 6 14 21 20 24 2 11 26

Item length 51 54 56 57 58 61 62 63

No. Required 23 25 8 16 10 14 6 19

Item length 64 65 66 67

No. Required 18 11 27 16

Appendix B

Pseudo code for the algorithms

In this appendix, an overview of both the pure ACO algorithm and the algorithm

with local search is given in pseudo-code. The full source code is available on-line

at http://www.aiai.ed.ac.uk/ johnl/antbin.

B.1 The pure ACO algorithm

Initialise all pheromone trail entries to τ�0�
Loop until the maximum number of iterations or the theoretical optimum is reached

Loop for every ant

Loop until all items are placed

Open a new bin

Loop until no remaining item fits in the bin anymore

Loop for each remaining item size j that still fits

Sum the pheromone between j and all item sizes i

already in the bin

Divide this by the number of items in the bin

Calculate the probability for j according to (4.6)

End Loop

Choose an item according to the calculated probabilities

End Loop

63

Appendix B. Pseudo code for the algorithms 64

End Loop

Calculate the fitness according to (4.2)

End Loop

Find the iteration best ant

Replace the globally best ant if the iteration best was fitter

If ((iteration number mod γ) = 0)

Use the globally best ant for pheromone updating

Else

Use the iteration best ant for pheromone updating

End If

Decrease all pheromone entries multiplying them with ρ (with lower limit τmin)

Loop for every bin in the best ant’s solution

Loop for every combination of item sizes i and j in the bin:

Increase τ�i� j� with the fitness of the solution

End Loop

End Loop

End Loop

B.2 The ACO algorithm with local search

Initialise all pheromone trail entries to 0

Loop until the maximum number of iterations or the theoretical optimum is reached

Loop for every ant

Loop until all items are placed

Open a new bin

Loop until no remaining item fits in the bin anymore

Loop for each remaining item size j that still fits

Sum the pheromone between j and all item sizes i

already in the bin

Divide this by the number of items in the bin

Appendix B. Pseudo code for the algorithms 65

Calculate the probability for j according to (4.6)

End Loop

Choose an item according to the calculated probabilities

End Loop

End Loop

Find a fixed number of the smallest bins

Remove them from the solution and label their items as free items

Loop for every one of the remaining bins

Try to replace 2 current items by 2 free items, making the bin fuller

Try to replace 2 current items by 1 free item

Try to replace 1 current item by 1 free item

End Loop

Sort the remaining free items in non-ascending order of size

Loop for every free item

Place the item in the first bin of the current solution it fits in

If no bin can can take the item

Add a new bin with the item to the solution

End If

End Loop

Calculate the ant’s solution fitness according to (4.2)

End Loop

Find the iteration best ant

Replace the globally best ant if the iteration best was fitter

Decrease the pheromone on all edges multiplying it with ρ
Loop for every bin in the globally best ant’s solution

Loop for every combination of item lengths i and j in the bin:

Increase τ�i� j� with the fitness of the solution

End Loop

End Loop

End Loop

Appendix C

Published material

The following paper was written for the UK Workshop on Computational Intelligence,

held on 10-12 September 2001 at the University of Edinburgh.

66

Bibliography

[Alvim et al., 1999] Alvim, A. C. F., Glover, F. S., Ribeiro, C. C., and

Aloise, D. J. (1999). Local search for the bin packing problem.

http://citeseer.nj.nec.com/alvim99local.html.

[Baluja and Caruana, 1995] Baluja, S. and Caruana, R. (1995). Removing the genet-

ics from the standard genetic algorithm. In Proceedings of the Twelfth International

Conference on Machine Learning, ML-95, pages 38–46, Palo Alto, CA, USA. Mor-

gan Kaufmann.

[Bauer et al., 1999] Bauer, A., Bullnheimer, B., Hartl, R. F., and Strauss, C. (1999).

An ant colony optimization approach for the single machine total tardiness problem.

In Proceedings of the 1999 Congress on Evolutionary Computation, pages 1445–

1450, Piscataway, NJ, USA. IEEE Press.

[Bilchev, 1996] Bilchev, G. (1996). Evolutionary metaphors for the bin packing prob-

lem. In Fogel, L., Angeline, P., and Bäck, T., editors, Evolutionary Programming V:

Proceedings of the Fifth Annual Conference on Evolutionary Programming, pages

333–341, Cambridge, MA, USA. MIT Press.

[Bischoff and Wäscher, 1995] Bischoff, E. E. and Wäscher, G. (1995). Cutting and

packing. European Journal of Operational Research, 84:503–505.

[Bonabeau et al., 1999] Bonabeau, E., Dorigo, M., and Theraulez, G. (1999). Swarm

Intelligence: from natural to artificial intelligence. Oxford University Press, Inc.,

New York, NY, USA.

67

Bibliography 68

[Bonabeau et al., 2000] Bonabeau, E., Dorigo, M., and Theraulez, G. (2000). Inspira-

tion for optimization from social insect behaviour. Nature, 406:39–42.

[Bullnheimer et al., 1999] Bullnheimer, B., Hartl, R. F., and Strauss, C. (1999). A new

rank based version of the ant system: A computational study. Central European

Journal For Operations Research and Economics, 7(1):25–38.

[Caro and Dorigo, 1998] Caro, G. D. and Dorigo, M. (1998). Antnet: Distributed

stigmergetic control for communications networks. Journal of Artificial Intelligence

Research, 9:317–365.

[Coffman et al., 1996] Coffman, E. G., Garey, M. R., and Johnson, D. S. (1996). Ap-

proximation Algorithms for Bin Packing: A Survey, pages 46–93. PWS Publishing,

Boston, MA, USA.

[Costa and Hertz, 1997] Costa, D. and Hertz, A. (1997). Ants can colour graphs. Jour-

nal of the Operational Research Society, 48:295–305.

[Dorigo, 1992] Dorigo, M. (1992). Optimization, learning and natural algorithms.

PhD thesis, DEI, Polytecnico di Milano, Milan, Italy. In Italian.

[Dorigo and Caro, 1999] Dorigo, M. and Caro, G. D. (1999). The ant colony opti-

mization meta-heuristic. In Corne, D., Dorigo, M., and Glover, F., editors, New

Ideas in Optimization, pages 11–32. McGraw Hill, London, UK.

[Dorigo et al., 1999] Dorigo, M., Caro, G. D., and Gambardella, L. M. (1999). Ant

algorithms for discrete optimisation. Artificial Life, 5(2):137–172.

[Dorigo and Gambardella, 1996] Dorigo, M. and Gambardella, L. M. (1996). A study

of some properties of ant-q. In Voigt, H.-M., Ebeling, W., Rechenberg, I., and

Schwefel, H.-P., editors, Parallel Problem Solving from Nature – PPSN IV, pages

656–665, Berlin, Germany. Springer.

[Dorigo and Gambardella, 1997a] Dorigo, M. and Gambardella, L. M. (1997a). Ant

colonies for the traveling salesman problem. BioSystems, 43:73–81.

Bibliography 69

[Dorigo and Gambardella, 1997b] Dorigo, M. and Gambardella, L. M. (1997b). Ant

colony system: A cooperative learning approach to the travelling salesman problem.

IEEE Transactions on Evolutionary Computation, 1(1).

[Dorigo et al., 1996] Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The ant sys-

tem: Optimization by a colony of cooperating agents. IEEE Transactions on Sys-

tems, Man, and Cybernetics B, 26(1):29–41.

[Dorigo and Stützle, 2001] Dorigo, M. and Stützle, T. (2001). The ant colony opti-

mization metaheuristic: Algorithms, applications, and advances. to appear in Hand-

book of Metaheuristics, F. Glover and G. Kochenberger.

[Dyckhoff, 1990] Dyckhoff, H. (1990). A typlology of cutting and packing problems.

European Journal of Operational Research, 44:145–159.

[Falkenauer, 1996] Falkenauer, E. (1996). A hybrid grouping genetic algorithm for

bin packing. Journal of Heuristics, 2:5–30.

[Falkenauer and Delchambre, 1992] Falkenauer, E. and Delchambre, A. (1992). A

genetic algorithm for bin packing and line balancing. In Proceedings of the IEEE

1992 International Conference on Robotics and Automation, Nice, France.

[Gambardella et al., 1999a] Gambardella, L. M., Taillard, E. D., and Agazzi, G.

(1999a). MACS-VRPTW: A multiple ant colony system for vehicle routing prob-

lems with time windows, pages 63–76. McGraw Hill, London, UK.

[Gambardella et al., 1999b] Gambardella, L. M., Taillard, E. D., and Dorigo, M.

(1999b). Ant colonies for the quadratic assignment problem. Journal of the Op-

erational Research Society, 50(2):167–176.

[Gilmore and Gomory, 1961] Gilmore, P. C. and Gomory, R. E. (1961). A linear pro-

gramming approach to the cutting stock problem. Operations Research, 9:848–859.

[Haessler and Sweeney, 1991] Haessler, R. W. and Sweeney, P. E. (1991). Cutting

stock problems and solution procedures. European Journal of Operational Re-

search, 54:141–150.

Bibliography 70

[Hinterding and Khan, 1995] Hinterding, R. and Khan, L. (1995). Genetic algorithms

for cutting stock problems: with and without contiguity. In Yao, X., editor, Progress

in Evolutionary Computation, pages 166–186, Berlin, Germany. Springer.

[Jones and Forrest, 1995] Jones, T. and Forrest, S. (1995). Fitness distance correlation

as a measure of problem difficulty for genetic algorithms. In Proceedings of the 6th

international Conference on Genetic Algorithms, pages 184–192, San Fransisco,

CA, USA. Morgan Kaufmann.

[Leguizamon and Michalewicz, 1999] Leguizamon, G. and Michalewicz, Z. (1999).

A new version of ant system for subset problems. In Proceedings of the 1999

Congress of Evolutionary Computation, pages 1459–1464, Piscataway, NJ, USA.

IEEE Press.

[Liang et al., 2001] Liang, K.-H., Yao, X., Newton, C., and Hoffman, D. (2001). A

new evolutionary approach to cutting stock problems with and without contiguity.

To appear in Computers and Operations Research.

[Maniezzo et al., 1994] Maniezzo, V., Colorni, A., and Dorigo, M. (1994). The ant

system applied to the quadratic assignment problem. Technical report, IRIDIA,

Université Libre de Bruxelles, Brussels, Belgium.

[Martello and Toth, 1990] Martello, S. and Toth, P. (1990). Knapsack Problems, Al-

gorithms and Computer Implementations. John Wiley and Sons Ltd., England.

[Michel and Middendorf, 1999] Michel, R. and Middendorf, M. (1999). An ACO al-

gorithm for the shortest supersequence problem, pages 51–61. McGraw Hill, Lon-

don, UK.

[Mitchell, 1996] Mitchell, M. (1996). An introduction to genetic algorithms. The MIT

Press, Cambridge, MA, USA.

[Reeves, 1996] Reeves, C. (1996). Hybrid genetic algorithms for bin-packing and

related problems. Annals of Operations Research, 63:371–396.

Bibliography 71

[Stützle, 1998] Stützle, T. (1998). An ant approach to the flow shop problem. In

Proceedings of the 6th European Congress on Intelligent Techniques and Soft Com-

puting, pages 1560–1564, Aachen, Germany. Verlag Mainz.

[Stützle and Hoos, 2000] Stützle, T. and Hoos, H. (2000). Max-min ant system. Fu-

ture Generation Computer Systems, 16(8):889–914.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learn-

ing: An Introduction. MIT Press, Cambridge, MA, USA.

[Vink, 1997] Vink, M. (1997). Solving combinatorial problems using evolutionary

algorithms. url: citeseer.nj.nec.com/vink97solving.html.

[Winston, 1993] Winston, W. L. (1993). Operations Research: Applications and Al-

gorithms. International Thompson Publishing, Belmont, CA, USA.

