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Abstract

In recent years, a gradual increase in the sophistication of multiobjective evolutionary algo-
rithms (MOEAs) for Pareto optimization has been seen, accompanied by an ever-growing list
of applications. Despite this trend, however, the proposition that methods based on local
search may be a good alternative approach — with the advantages of ease-of-use and lower
computational overhead — has not been thoroughly tested. In this thesis we develop a novel,
local-search algorithm for Pareto optimization, called PAES, enabling us to test and compare
MOEAs against this philosophically different search method.

To help perform this testing, we develop new statistical performance metrics for evaluating
collections of approximations to the Pareto set, based on a critical review of currently avail-
able methods. Using these metrics, we find that PAES performs well in comparison with
popular, modern MOEAs, on a variety of test function and real-world telecommunications
problems. These results suggest that local-search-based methods for Pareto optimization do

merit further investigation.

Some of the elements of PAES are also more generally applicable for use in the design of
other algorithms. In particular, the archiving strategy used by PAES, which incorporates
rules to bound the number of solutions stored, and to ensure that they are distributed widely
and evenly in objective space, may be used in any multiobjective search algorithm for storing
solutions. We demonstrate the generality of the basic PAES procedures by outlining several

more sophisticated variants, including multi-start and tabu search algorithms.

We also combine local-search and population-based evolutionary methods together, forming a
new memetic algorithm, M-PAES, for Pareto optimization. M-PAES is tested using a number
of problems from the literature, and is found to exhibit promising performance compared to
other methods. Finally, we use M-PAES to provide a set of benchmark results for some

difficult new instances of the multi-criteria minimum spanning tree (mc-MST) problem.
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Chapter 1

Introduction

1.1 Overview

We are all familiar with the activity of searching for something good or ‘right’ from amongst
a set of alternatives. To see this, consider trying to do any of the following (more or less)

familiar tasks:

find a good place to have breakfast in an unfamiliar city;

choose an apartment to live in;

produce a timetable for all the examinations in a university;

plan the best route for a car journey;

make the best choice of play in a game of gin rummy.

Problems like these are ubiquitous not only in our everyday lives, but frequently arise in
such diverse disciplines as engineering, architecture, finance, operations research, logistics,
and medicine. In tackling these search problems, it is clear that while finding a ‘solution’ may
not be difficult, finding a good one can be a formidable task. The difficulty of the task may
be due to limitations on the time or resources available for considering the alternatives, the
conflicting nature of our requirements, or the sheer abundance of alternatives from which to

choose.

In approaching any search problem, one hurdle is simply defining the meaning of ‘good’ in the

context of the problem, and many search problems require us to find solutions that satisfy or



1.1 Overview

optimize multiple objectives simultaneously. For example, finding a good timetable for uni-
versity examinations involves the consideration of numerous constraints and the minimization
of several ‘costs’. These costs might include things such as the number of students taking
consecutive exams, the number of students taking more than two exams per day, the total
duration of the examinations period, the total number of rooms used, the total number of
staff needed for invigilation, the overtime that must be paid to staff for working extra hours!,
and so on. To balance these different objectives, according each the right level of importance,

and choosing the optimum or best compromise may be a difficult decision-making task.

Finding a solution ‘in time’ or ‘in budget’ may also be important. In some search problems,
we can actually try out alternatives, whereas in others we can simulate trying them, perhaps
by estimating their quality in some way, in our mind’s eye. For example, finding an apartment
will probably involve visiting some and then imagining living there (and imagining paying the
rent), whereas selecting a good breakfast establishment will probably involve actually eating
there (and actually paying for the food). In either case, there is a sense in which considering
each alternative costs something, so that part of the difficulty in finding suitable solutions
arises from restrictions on the time, effort or resources that can be spent in searching. This
situation, which is almost universal in nontrivial search tasks, leads to a tradeoff of quality

of solutions versus effort or time in searching.

Because restrictions in time or effort can be such an important factor in determining if we are
successful in our searches, we tend to conduct them differently depending on our estimates
of how important it is to get answers quickly or economically, and how much we can afford
to compromise on our goal. But how do we modulate our searches to account for these
restrictions? Broadly speaking, when we have plenty of time and resources, we tend to ezplore
more alternatives, and search in an open-minded manner. We don’t prejudice the search by
looking only in ‘areas’ where we think good solutions are likely to be found. On the other
hand, when time or resources are more restricted, we are correspondingly more restricted in
our thinking and in our choices. Because we can only afford to look at a few alternatives
we try to choose each one more carefully, often by ezploiting the knowledge we have already
gathered in our search. For example, when looking for an apartment, one might look only
in a restricted geographical area once some good ones have been found there, reasoning that

looking elsewhere is not as likely to be fruitful.

Clearly then, there is a balance to be struck between exploration and exploitation, given a
particular search problem, and given restrictions of time or effort. In some problems it will

be very hard to exploit the knowledge gathered during the search to help ‘construct’ new

!This is of course ironic since academics do not get paid overtime.
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alternatives. For example, if I am searching for the best play in a game of rummy, there may
be little sense in which one play is like another, making it difficult to exploit information
gathered from considering or imagining the alternative plays. I may as well try, in my mind’s

eye, the different alternatives at random?

. On the other hand, having found a reasonable
route for a car journey, finding another one that might be better is more likely to result
from changing the reasonable route slightly, than from trying a route which uses roads that
we have no information about. Thus the most appropriate method of searching alternatives
depends both on the type of problem at hand, and the restriction of time or resources. That
is, both efficacy and efficiency may be important, and choosing a method which strikes the

right balance will depend critically on the problem.

1.1.1 Two broad classes

This thesis is concerned with general-purpose optimization algorithms (GPOAs), which are
general methods for solving search problems, like the problems introduced above. Although
general-purpose optimization algorithms exist today in many, many different forms (a re-
flection of their different origins in various fields of study) they all search for solutions in
essentially the same way. That is, they try out different alternatives, evaluate their worth
(perhaps by estimation) and then repeat this procedure using what has been learnt to guide
them. What differentiates the numerous algorithms, then, is the way that they utilize the
information from the solutions they have explored in the past, and that they have in some

sense “remembered”, in order to find or construct better solutions in the future.

Although there is much variety in these methods, it is helpful to classify GPOAs into two
broad classes: single point local-search methods — where a single solution is improved incre-
mentally by making small changes to it; and population-based methods — where a population
of solutions are ‘evolved’ in parallel, and improvement results from repeatedly making varia-
tions of those solutions in the population that are more highly ‘fit’, and discarding those that
are less fit. Hillclimbing, simulated annealing, and tabu search are well-known methods based
on single-point local search, while most evolutionary algorithms (EAs) exemplify population-
based methods. This thesis will be concerned with the use of these different approaches when

applied to multiobjective search problems.

2To some extent this is a matter of finding the right way to describe or represent the alternative plays in
my mind (so that they can be classified in a useful way) but this is a nontrivial problem in itself, equal to the
search problem.
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1.1.2 Baselining is important

As discussed above, the relative ‘performance’ of different methods of search (and thus differ-
ent GPOAs) depends critically upon the search problem under consideration, and the balance

between the requirements of efficacy versus efficiency.

For this reason, evolutionary algorithm practitioners have been obliged, historically, to put
the performance of EAs to the test, by making comparisons with other search algorithms,
particularly those based on single-point local search, such as hillclimbers, and simulated
annealing. This is sometimes called ‘baselining’ and it is necessary because one should not
take the performance of an EA or any other algorithm for granted. Moreover, numerous test
problems and much of EA theory have been developed with the express purpose of analyzing

and explaining algorithm performance differences on various problem types.

This practice of comparing and analyzing the performance of different optimization algo-
rithms, seen in much EA literature, is important and useful for a number of reasons. First, it
builds up a body of knowledge concerning which algorithms are best suited to which problems.
Second, it may help predict — for future unseen problems — which algorithms may perform
best, although this goal depends also upon the success or failure of attempts to usefully
classify problems via measurable features. And third, the practice sometimes contributes to
the understanding of the particular problem on which comparisons are being made, and can
facilitate the development of improved approaches; either approaches particularly suited to
that problem, or improved algorithms that are more generally applicable. Frequently these

new approaches are hybrids of local-search heuristics and population-based methods.

In this thesis, we make contributions that should help to further the practice of comparing
and analyzing algorithm performance differences. To this end, we propose new local-search
algorithms that offer an alternative to EAs, make improvements to methods of measuring
and comparing search performance, and develop some test problems. However, in making
these contributions, our focus is restricted to a specific domain, called Pareto optimization,

described next.

1.1.3 Find all the compromises

Pareto optimization relates to the ‘solving’ of multiobjective search problems, and at the
present time, EAs are a very popular approach to it. More specifically, Pareto optimization
is a method of tackling multiobjective problems without the need for weighting the importance

of different objectives or normalizing them in any way, or in fact knowing anything about



1.1 Overview

what solutions are ‘out there’ to be found. In Pareto optimization the goal is to find the
set of all ‘best tradeoff’ solutions, the Pareto optimal set. This set has a mathematically
well-defined meaning and is independent of the relative importance of the various problem

objectives.

When GPOAs — approximate methods — are used, the goal of Pareto optimization is to
approximate the Pareto optimal set as closely as possible. That is, the aim is not to find a
single, very good solution, as in single-objective optimization, but rather to find a whole set
of solutions which offer different compromises. Now, in some sense a population-based EA
seems purpose-built for Pareto optimization because its population is a natural structure with
which to approximate the Pareto set, and hence little is needed to adapt the method. For
this reason, some researchers have claimed that population-based EAs are naturally suited
to the Pareto optimization task, with perhaps some implication that other methods may
be generally inferior. However, whether or not EAs are easy to apply to this task, general
principles in search and optimization suggest that on many problems simpler methods based
on single point local-search should provide more effective and efficient search performance;
the need to search for different tradeoff solutions and store them can be addressed by other
additional mechanisms. Furthermore, local-search methods may be simpler to use and may
involve less computational overhead per function evaluation than their evolutionary algorithm

counterparts.

Local-search methods can be adapted to the Pareto optimization task in various ways, some
of which have already been investigated by other researchers. The main requirement is a
change to the acceptance function so that partially ordered solutions can be processed. In
addition, a store of solutions must be kept so that a set of nondominated alternatives can
be returned. Several articles in the operational research (OR) literature have proposed local
searchers for multiobjective optimization, including SA [CJ98, Han97a, Ser94] and tabu search
(TS) [GMF97, Han97b] algorithms. These methods use parameterized scalarizing functions
to obtain a single evaluation of a solution’s quality from its true vector (multiobjective) cost,
thus allowing a standard acceptance function to be used without change. To obtain a whole
Pareto front from a single run, these methods must vary the parameters of the scalarizing
functions, so that search occurs in different ‘directions’ in the objective function space. This
variation of the search direction is generally random, and does not respond to the location
(in objective space) of solutions previously found, although some more intelligent methods
have also been proposed [CJ98]. Normally, at least one reference point in objective space is
required for these scalarizing methods to work, and objectives may have to be scaled and
normalized for best performance to be achieved, otherwise the scalarizing functions can favour

search in some objectives more than others. Furthermore, poor performance on non-convex
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Pareto fronts can occur if weighted-sum aggregation is used as the scalarizing function, as is

the case in many of the proposed algorithms.

1.1.4 A new approach to try

The work in this thesis presents a different approach to local-search Pareto optimization. The
key contribution is a novel search algorithm, called the Pareto archived evolution strategy
(PAES?). In its most basic form, called (1+1)-PAES, it represents the Pareto optimization
analogue of a single-objective hillclimber. Like a hillclimber, (141)-PAES uses single point
local search, i.e., a (1+1) selection strategy. However, it uses an acceptance function based
on Pareto dominance, avoiding the use of scalarizing functions and the need for estimating
reference points in objective space. Because it must return a diverse set of nondominated
solutions, PAES also uses an ‘archiving’ strategy for storing and maintaining nondominated
solutions as it runs. A number of alternative archiving strategies are considered, and their
convergence properties are evaluated. A strategy employing an adaptive region-based crowd-
ing mechanism is shown to converge to a well-distributed set of objective vectors under certain
conditions. An efficient implementation of the method is devised and its time complexity is
analyzed. The analysis of these archiving strategies contributes generally to the question of
how solutions should be stored and maintained in all Pareto optimization algorithms. The
basic procedures developed for use in (14-1)-PAES also facilitate the design of other, more so-
phisticated local-search Pareto optimizers. In this thesis, these procedures are used to specify
multi-start, population-based, simulated annealing and tabu search variants of PAES, which

all use similar archiving and acceptance rules to the basic (141)-PAES algorithm.

Armed with PAES, the performance of multiobjective EAs (MOEAs) can be compared against
a ‘hillclimber’ for the first time. However, to do this, effective metrics for assessing perfor-
mance must be used. Due to the nature of Pareto optimization, the output of a single run of
an optimizer is a set of solutions (an approximation set), with each solution having a vector
of objective values. Thus, even the output of a single run of a multiobjective optimizer is a
multidimensional attribute that is difficult to assess. To address this issue, we review sev-
eral popular assessment metrics from the literature, analyzing them in terms of a number of
distinct properties. Our analysis shows that some methods used in the literature are not com-
patible with relations derived solely from the principles of Pareto optimization [HJ98]. Others
are clearly more satisfactory, and these are used as a basis for devising new approaches that
can be used to analyze and compare the performance of algorithms over multiple runs. These

proposed methods are used to assess the performance of (141)-PAES and other algorithms

3Pronounced “pays”.
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in this thesis.

A number of empirical investigations using our proposed metrics reveal that the performance
of (14+1)-PAES is competitive with several popular MOEAs from the literature, on a range
of well-known test functions, as well as some newer ones. On the more simple functions,
(14+1)-PAES can actually outperform some modern MOEAs, given an equal number of func-
tion evaluations. Furthermore, timings indicate that (1+1)-PAES is faster than some other
MOEAs, and because it requires only a small number of non-critical parameter choices, it is
also easier to use. These attributes indicate that PAES may be a useful ‘baseline’ algorithm
against which more sophisticated techniques could be compared. On the other hand, some
evidence shows that the (14+1)-PAES algorithm does not perform as effectively as the strength
Pareto EA (SPEA) [TZB99] when optimizing some multimodal and deceptive problems, in-
dicating that population-based MOEAs may well exhibit more robust behaviour on functions

of this type.

1.1.5 Hybridize where possible

The PAES algorithm is also used as a starting point to develop a new hybrid MOEA, that
combines local and population based search. When practical optimization problems are
tackled, general-purpose algorithms may fail to deliver adequate performance. Davis reminds
us to: “hybridize where possible” [Dav9lal, if we want to improve the results achieved by
a standard genetic algorithm (GA). This reflects the fact that although good performance
can be often achieved by using the most appropriate general-purpose optimization algorithm,
much greater gains can often be made by combining it with specific heuristics or operators
that incorporate ‘domain knowledge’. On many difficult, well-studied problems, the best
results come from such hybrid approaches where very specific heuristics are combined with

well-proven overall strategies.

However, despite the message of Davis, it is generally easier to hybridize problem-specific
heuristics with a local-search based method than it is with a genetic algorithm, employing
recombination. This is because many heuristics use a form of local improvement, but few
use any sort of recombination. Nonetheless, it is true that recombination can be a valuable
additional operator to use. In these cases, hybrid genetic algorithms — or memetic algo-
rithms (MAs) — have proved an effective approach. In MAs, there is a local-search phase
which is often hybridized with some other heuristic technique for the specific problem, and a
recombinative phase that can quickly combine parts of promising solutions together, to form

better ones.
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The PAES local-search procedure provides, for the first time, the opportunity to construct
memetic algorithms for multiobjective optimization, based purely on Pareto selection. We
propose a framework for doing this, and specify an instance of the framework, a memetic
algorithm called M-PAES, based on the PAES algorithm. M-PAES uses single-point local
search phases as a mechanism for improving solutions in a population that is undergoing

selection and recombination.

M-PAES is compared with (141)-PAES, SPEA [ZT99], and a memetic algorithm that uses
scalarizing selection, called RD-MOGLS [Jas99]. We find the performance of M-PAES to
be promising on a set of 2, 3, and 4-objective knapsack problems, used previously by Zit-
zler [ZT99]. On a number of problems based on load-balancing in distributed databases,
however, M-PAES does not find better solutions than (141)-PAES, indicating, once again

the power of simple strategies, on some problems.

In a more extensive study, heuristics are developed specifically for an N P-hard application,
the multi-criterion minimum spanning tree (mc-MST) problem. These heuristics are applied
in (14+1)-PAES and M-PAES and their performance is compared against a more standard
MOEA. The mc-MST instances used for testing these algorithms are produced using a new
parameterized benchmark problem generator designed by us to make challenging instances.
These exhibit a range of features including non-convex Pareto fronts, constraints and decep-
tion. Results show that M-PAES is able to build significantly lighter spanning trees than the
MOEA, and PAES, in general, across a set of fifteen instances.

1.1.6 Contributions

In summary, the contributions of this thesis are:

- A functionally simple, computationally inexpensive, local-search algorithm for Pareto
multiobjective optimization, called (141)-PAES, which is competitive, on a variety of
problems, with many previously proposed evolutionary algorithms of greater computa-
tional complexity. This algorithm is useful as a baseline algorithm for benchmarking
new approaches, as a local-search procedure for use in a hybrid evolutionary algorithm,

and, in its own right, as an efficient search tool for some problems.
- Several variants of (1+1)-PAES, including simulated annealing and tabu search versions.

- Proofs relating to the convergence properties of a number of solution archiving strategies

for use in multiobjective search algorithms.
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- A framework for a memetic algorithm for Pareto multiobjective optimization, and an
instance of the framework, called M-PAES, based on the PAES local search procedure.

- Advances in methods for the statistical comparison of multiobjective optimizers.

- Empirical studies comparing various local-search, hybrid, and population-based ap-

proaches on a range of test functions and real-world applications.

- New problem generators for constructing difficult instances of the multi-criterion min-
imum spanning tree problem, and benchmark results for a suite of these problem in-

stances.

1.2 Outline of the thesis

This thesis is divided into eight chapters, beginning with this introduction. Two literature
review chapters follow, with the second one including some original contributions relating to
multiobjective performance metrics. Chapters 4, 5, 6, and 7 contain the remainder of the
original material. Chapter 4 deals with PAES, 5 with empirical testing of PAES, 6 with the
development and testing of M-PAES, and 7 with the mc-MST problem. Chapter 8 concludes.

In the following, we outline the content of each of these chapters in greater detail.

The review of current literature relevant to this thesis starts in Chapter 2, which considers
general-purpose optimization methods. It begins with a discussion of the nature of general
problem-solving ‘heuristics’, introducing some of the main themes of the chapter. We indicate
how, with some problems, enumeration is the best we can hope to do, whereas for some others,
approximate methods — heuristics — can find a good solution much more rapidly. This broad
overview of search is followed by an introduction to the theory of N P-completeness and its
relation to the computational complexity of optimization problems. This theory is behind
the need for approximate methods of search and motivates the drive for better general-
purpose methods. The latter are considered in the next section, with a description of each of
the most influential and popular optimization methods for general-purpose problem-solving.
Hillclimbing, simulated annealing, tabu search, genetic algorithms, evolutionary programming
and evolution strategies are all considered. We highlight the origins and differences of these
methods, paying some attention to their individual strengths and weaknesses. Following this,
we attempt to catalog some of the problem features that are currently (partially) understood
in optimization, and we relate them to optimization difficulty. We also consider the No
Free Lunch (NFL) theorem and what it says about matching algorithms to problems. In

the closing sections of the chapter, we review literature describing empirical performance
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studies, paying particular attention to EAs and local-search comparisons. From this, we find
a great deal of evidence that hillclimbers and simulated annealing outperform standard EAs

on various problems. Hybrid approaches are also very successful, we find.

Chapter 3 deals with multiobjective optimization. It begins with a formal definition of the
general multiobjective problem, and Pareto optimization is then defined as a special case of
it. Further concepts and notation needed in later chapters are also given. We then review
some of the main themes in approximate methods for Pareto optimization, including different
selection schemes, elitism, and methods for obtaining diverse solutions in the Pareto front.
Both evolutionary and previous single-point local-search methods are considered. The chapter
finishes with a critical appraisal of methods for measuring the performance of multiobjective
optimizers, and analyzes them according to several dimensions. Following this, a number of

new performance assessment metrics are proposed for use in this thesis.

Chapter 4 is the first of four chapters focused entirely on original contributions. It outlines
the development of PAES: a new Pareto optimizer based on single-point local search. The
chapter begins by reviewing the motivation for developing such an algorithm and follows this
with an ‘ideal’ specification. The development of the algorithm is then described in stages,
detailing the key design choices made. Each of the elements of the final (14+1)-PAES algorithm
is explained. The acceptance function and archiving strategy receive close attention. Proofs
relating to convergence of the archive of solutions, under different strategies are provided,
and the time complexity of the overall algorithm is also considered. Finally, several variants
of PAES are specified, including population-based, multi-start, annealing, and tabu-search

variants.

Chapter 5 reports on the experimental testing of PAES and its comparison with other modern
MOEAs. Two separate studies are considered. In the first one, (14+1)-PAES and some
population-based variants are compared with NPGA and NSGA, on four simple test functions
from the literature, and two new ones. In this study, (14+1)-PAES is found to provide excellent
performance. The final solution quality it achieves is roughly equivalent to NSGA with
elitism, over the set of problems, but (141)-PAES is far faster and is also easier to use. In
the second study, (1+1)-PAES is compared with SPEA on a set of six test functions used by
Zitzler et al. [ZDTO00]. The functions test the algorithms for their ability to cope with different
problem features that might cause difficulty to MOEAs. (1+1)-PAES performs relatively well
on four of the problems but is not competitive with SPEA on the deceptive trap function 75.
On the multimodal problem, 74, PAES achieves good performance only after the mutation
rate is increased. Overall, (1+1)-PAES is found to perform more than adequately as a baseline

technique for Pareto optimization, particularly when its low computational overhead is taken

10
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into account.

Chapter 6 relates the development and testing of a memetic algorithm for Pareto optimization,
based on the local-search procedures developed for PAES. To begin with a general framework
for a memetic algorithm is designed. An instance of the framework, called M-PAES, is then
specified, using the PAES local searcher as a subroutine within an elitist, population-based
EA. M-PAES is then tested on two combinatorial optimization problems. In the first one, a
set of multiobjective knapsack instances with 2, 3 and 4 objectives from [ZDT00] are used.
M-PAES is able to obtain better results than a tuned version of SPEA, using the same
operators and constraint handling methods in both algorithms. However, M-PAES is rather
sensitive to parameters on this problem, we find. The second problem we consider relates
to managing the load-balancing in a distributed database. M-PAES does not perform better
than (1+1)-PAES on this problem, using the same operators, although it is slightly better
than SPEA. This is consistent with some earlier results on this problem that show that it is

not very amenable to optimization via recombination.

In Chapter 7, the methods developed in the thesis are used to obtain a set of benchmark
results for a number of instances of the multi-criterion minimum spanning tree (mc-MST)
problem. The chapter begins with a review of EA literature related to spanning tree prob-
lems, including approaches to the degree-constrained MST (d-MST) and the mc-MST. Two
sets of experiments are then performed. The first set focuses on representation issues. In
an elitist, population-based MOEA called AESSEA we compare the performance of a Priifer
number encoding with a direct encoding, specialized operators, and the use of a heuristic
initialization procedure. The results on a set of random weight problems, demonstrate sig-
nificant superiority of the direct encoding. As a baseline, we compare these results with an
iterated constructive approach, and also enumerate the search space on some of the smaller
instances. We find the constructive approach to be much faster than the EA and able to gen-
erate equivalent results that closely approximate the true Pareto front. We conclude from this
that on these easy problems an EA may not be necessary. In the second set of experiments
we devise a suite of more difficult benchmark problems that have an additional constraint
on the maximum degree of the vertices in the spanning tree. The benchmark instances also
contain problems with correlated edge weight vectors, which affect the shape of the Pareto
front. Some instances are also deceptive to constructive approaches. On this suite of prob-
lems, (14+1)-PAES, AESSEA and M-PAES are all tested. The latter is found to provide the
most robust performance, with no parameter changes required across the set of instances,
and outperforms both AESSEA and PAES on most instances. The results presented on these

problems provide benchmarks for future methods.

11
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The thesis is concluded in Chapter 8. A summary is given and the main contributions of the
thesis are assessed in some depth. The findings of work published by other researchers using
our algorithms are also considered. Next, the limitations of the thesis are identified, suggest-
ing where more experiments are needed and where some methods need further development.
Finally, a section on further work describes two key directions of interesting further study
related to the research in the thesis. Some of this work has already begun and early results

are promising.
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Chapter 2

Approximate Methods of Search

2.1 Overview

In this thesis we are concerned with methods for solving certain types of optimization prob-
lems. In general, an optimization problem requires us to maximize or minimize some mea-

surable function of one or more variables:

y=[f(x) (2.1)

subject to x € X where x = {z1,%9,...,2z,} is a decision vector and its components are
called decision variables. Decision vectors are also often referred to as solutions or candidate
solutions. The search space which is the set of solutions one is going to search over may be
some subset or superset of X. The function f is known as the objective function. If the goal
of the search is maximization then f is sometimes called a fitness function or utility function
and the value y assigned to a solution is then its fitness or wtility. Conversely, if the goal is
to minimize y then f may be called the cost function or in the case of constraint satisfaction,

the penalty function.

Obviously, optimization problems exist in huge variety, and exhibit many different features.
Later in this chapter we consider some of the dimensions in which problems can vary, and
review how these problem features might affect the search for solutions. Before this deeper
review, we briefly examine three examples of optimization problems to introduce some of the

main approaches for performing search.
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2.1.1 Combination lock

Let us first take the simple problem of trying to “crack” a safe or combination lock. Let us
imagine that the lock has n different barrels and m different numbers on each barrel, and
one must find the single combination of numbers that opens the lock. As is normal with any
effective combination lock, one receives no information about whether any of the barrels is in
the correct position unless simultaneously all of them are, in which case the lock opens. In
all other cases the lock simply stays locked. So, we could write the objective function f for

this problem as:

0 otherwise

yzf(x>={ Hifx=xt (2.2)

where x* is the correct combination, and we try to maximize the utility y.

Clearly, there are m" different combinations of the lock. One way to crack the lock is simply
to exhaustively try every single combination but if n is large this will take a long time. Using
this method, one might be lucky and find the required combination in a few attempts but,
in general, the probability of having found the required combination in k trials is k/m™.
One would expect, on average, to take m™/2 trials to find the combination, if one tries each
combination in some ordered manner without repeating any combinations, e.g. by starting at
the combination 0000...0 and ‘counting’ from there. This kind of approach is called exhaustive

search) or an enumeration of the search space.

The problem could also be tackled using a less organized approach. One could try combina-
tions in a random manner, without checking to see if one has already tried the combination
before. This approach will take even longer than exhaustive search, in general. The probabil-

ity of having found the required combination after k trials is 1 — (m;l; 1)k, assuming that all

of the combinations are tried with equal probability. The advantage of this technique (called
random search) is merely that one does not have to think about how to organize the trials in
an order. For some types of problem it is not trivial to organize the trials to avoid repetition,
so that random search may be more efficient than an exhaustive search, in the sense that the
former may do away with a lot of computation involved in calculating the next solution to
try, leading to a faster search overall. Furthermore, for many problems, it is easier to write a
computer program for doing random search than for doing exhaustive search, and so in this

sense, they may also be more efficient.
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2.1.2 Wipeout

The combination lock problem is clearly ‘intractable’ for reasonably large instances. In other
words, a lock with say 100 barrels, each of 16 numbers, is well beyond the search capability
of any possible computer, past, present or future (see page 3 of [Whi94]). Let us consider a
problem that is similar in form but that is far easier to solve. In the television game-show
‘Wipeout’ [BBC], a player is given a list of items from which she must identify those that
are members of a given class. For example, the player might be given the names of twenty
different songs, and then asked which six of them were first sung by Frank Sinatra. The
player selects exactly six songs from the list and is given feedback (a score) relating the
number of songs she has correctly identified. After this she is allowed to repeatedly change
her selection but, importantly, feedback is only available when exactly six songs are selected.

In the game-show the player must identify all the songs within 30 seconds.

Even if the player does not have any clue as to the Frank Sinatra songs from amongst the
distractors, there is a simple strategy that leads to the correct answer in fewer trials than
random guessing. The strategy takes advantage of the information given by the ‘current
score’ to improve the selection further. The strategy is to make an initial guess at a selection,
and then at each subsequent attempt, to swap exactly one item within the selected group

with one not in the selected group, according to the following rules:

1. if the score increases or stays the same after the current swap, then on the next trial

do a random swap again;

2. if the score decreases after the current swap, then on the next step, reverse the swap

just done.

This procedure is repeated until the winning selection of items is found. Let us examine why
this is a good strategy for this game. If there are n items from which m must be selected

then the number of possible solutions is "C,, = 4 nt

——— of which only one is correct.
n—m)!m!

Therefore, by enumeration or exhaustive search, the probability of having found the answer
after k trials would be k/"C,,. By random search, this probability is reduced (for k£ > 1)

to 1 — (%)k But, using the above swapping strategy, after any pair of trials (after the
initial one) the probability of having decreased the number of correct items is 0. So there will
be a monotonic increase in the number of correct items, if an even number of trials only are
considered. At each trial, the probability of increasing the number of correct items is given
by

(m —i)(m —1)

(2.3)

m(n —m)

15



2.1 Overview

where ¢ is the number of items that are already correct. This probability is generally
far greater than the probability quoted earlier of guessing all of the items randomly, i.e.
1/ (n+'),m, So, at every trial there is a relatively high probability of increasing the number
of correct items and no chance of irrevocably decreasing them. Since only a small number of
increases are needed to reach the goal state of having selected all the correct items, then this

strategy will quickly solve the problem.

The strategy just described is an example of local search. In local search, small changes to
a solution are tried at each step, and changes that lead to poorer solutions are generally
rejected, or accepted (allowed to stand) only with a very low probability, whereas solutions
that represent an improvement are maintained and built upon. The particular local-search
strategy outlined above is often called hillclimbing [MHF94].

Hillclimbing works in the case of Wipeout for several reasons. First, the player receives
feedback from the game every time exactly m items are selected. Second, the feedback leads
the player in the right direction, at all times, towards the correct solution. That is, a solution
with m — 1 items correct (which scores m — 1) is actually very close to the correct answer, in
terms of the probability of obtaining the right answer by swapping one item. The feedback
reflects the proximity of the player to finding the correct answer. This is in contrast to the

combination lock problem where the feedback given was only whether the lock opened or not.

Now, in the game of Wipeout an even better strategy than the one described is available to
a player with good memory. The strategy is the same as the one described before except
that every time the number of correct items increases, the player should remember the item
just added that led to this increase, and in future guesses refrain from ever removing this
item. This strategy will lead to the correct solution orders of magnitude faster because as the
number of correct items increases, the player actually has fewer possibilities of allowed swaps.
This local-search strategy is related to one called tabu search [GL97] that will be described
in greater detail later. It is also somewhat related to dynamic programming [Bel55] methods.
The reason this strategy works in the Wipeout game is that correct items are always correct
independently of which other items are selected. In other words, correct items are correct in
all contexts. This makes this problem separable. (We may also say that the problem exhibits
no epistasis.) Unfortunately, most problems in real-world optimization are not separable.

However, most problems are separable to a degree, or there is limited epistasis.

16



2.1 Overview

2.1.3 Super-wipeout

Let us now consider an imaginary game-show called Super-Wipeout which makes the classi-
fication task a little more difficult for the player. In Super-Wipeout n items are given, and
from these exactly m must be selected, as in Wipeout. However, the players are told that
each of the n items belong to one or more of r different classes. For example, each item is
a song once sung by Frank Sinatra, by Bing Crosby, or by Harry Connick Jnr, or it may
have been sung by more than one of them. The aim of the game is to identify all the items
belonging to the largest class. In other words if there were 20 songs altogether and 10 were
sung by Sinatra, 8 by Crosby and 7 by Connick Junr, and the player must always select 12
items, then any set of songs containing all 10 of Sinatra’s wins the prize. What information
is the player initially given? The player is not told what the classes are, or how many items
are in the largest class, i.e. she does not know the target value of the number of correct items
she must obtain, or from what class these items will be drawn. What feedback is she given
as she makes guesses? The number of selected items 4, that are members of each of the r
classes is calculated. The player is then only told the largest of these %, values. For example,
if she has selected 12 songs, and 5 were sung by Crosby, 5 by Sinatra, and 2 by Connick Jr

then she would receive the feedback score, 5.

Now, this problem can also be tackled by using a local-search strategy but there are now
certain difficulties which make the problem harder than Wipeout. First, the problem is not
completely separable. An item whose addition increases the score within a particular set of
items is not necessarily part of the final solution. So, the problem cannot be solved — as
for Wipeout — by holding more and more of the items constant, while searching through a
smaller and smaller set. The problem is said to be epistatic, as the contribution of each item

is not independent of context.

Second, there are now “local optima” in the problem. This means that it is possible that
one can have a selection of items from which it is not possible to increase one’s score by any
number of single non-detrimental swaps, and yet is not the winning solution. So, if the local
search hillclimbing strategy described previously is tried, one can reach a solution from which
it is not possible to make any swaps that will improve your score. For example, if all eight
Bing Crosby songs were selected then the score given would be, 8. In this situation, in order
to get to a higher score, 9 Frank Sinatra songs would have to be selected. This would not be

possible by any combination of single swaps without reducing the score at some stage’.

Despite the problem of local optima and the problem of epistasis, it is still preferable to use

! Assuming that Sinatra’s ten songs do not include all eight of Crosby’s.
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a local-search strategy than random guessing of the solution. But in order to find the answer
to this problem, one must use a more complicated local-search strategy than hillclimbing to

have a good chance of solving it quickly. Possible strategies include:

1. to restart the local search if it is suspected that a local optimum has been reached;
2. to allow swaps to solutions of a slightly worse score;

3. to try each of a number of different swaps from a particular solution A, remembering
the score of each of these trial solutions. Then, to set A to the solution from among the
set of trials with the best score, irrespective of whether it is worse than the previous

score of A;

4. to gradually increasing the number of swaps that can be tried at the same time to allow

jumping across the lower scores.

Each of these gives rise to a well-known local-search technique. 1. is multi-start hillclimb-
ing [YI96], 2. is called thresholding, more sophisticated form of which are exemplified by
simulated annealing [KmV83], 3. is another form of tabu search, and 4. is called variable
neighbourhood search [RSO1]. All of these strategies prevent being stuck forever in a local

optimum.

There is another quite different approach to searching for the solution in Super-Wipeout that
is not really available to a player, unless they possessed a super memory. Nonetheless, we
shall consider this strategy because it introduces some of the concepts described later in this
chapter. In this strategy the player tries to keep in mind several solutions at once. Let’s
imagine that she can do this perfectly for P solutions. She starts off by making P completely
random and unrelated trial solutions, and remembers the score of each of them. Once again
she progresses by making small changes to these initial solutions, but she always works in
‘rounds’ of P trials, instead of one trial at a time. In her next round of P trials she tries to
improve the original set of solutions, by making single swaps from them, but she allocates
slightly more of her trials to the solutions that already have a higher score. She does this
using a die and some calculations that result in her making random but slightly biased choices
as to which of the previous solutions to work from. This means that some of the P original
solutions are not used at all, whereas some might be used two or more times, depending on
their relative scores. Throughout the game, she only ever keeps in mind the last round of P
solutions that she tried and their scores, and continues to allocate trials more to solutions
that score higher (using her die). Gradually the solutions will score higher, and eventually

she might reach the winning solution.
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The approach described above is a population-based strategy similar to evolutionary program-
ming [FB69] and the set of P solutions that she keeps in mind is called the population. It
would work effectively in Super-Wipeout for two reasons. First, it circumvents the problems
with epistasis, to some extent. This is because although some of the P solutions might have
high numbers of the Bing Crosby and Harry Connick Jnr. songs in them, others will probably
have high numbers of the Frank Sinatra songs. Thus, although some of the evolving solutions
will be distracted or deceived into collecting the wrong class of song, some other solutions will
not be deceived. As long as only slightly more trials are allocated to high-scoring solutions,
then the deceptively good solutions will not take over the population of evolving solutions.
Later, the Sinatra solutions can take over. Second, the problem of becoming stuck in local
optima — which is related to the epistasis problem — is alleviated. The strategy cannot
become completely stuck because there is always a chance that solutions that become worse
are maintained in the population long enough for them to get better again. So, even if all the
solutions in the population contain 8 Bing Crosby songs, it is possible that one of them by
a series of swaps that initially reduce its score, eventually becomes 9 Sinatras, and scores 9,
overcoming the local optimum and allowing the optimum of 10 Sinatras to be subsequently

reached.

Clearly, the population-based approach would be inefficient for the original Wipeout game
because the tabu search/dynamic programming procedure outlined previously would work
much more quickly. But for Super-Wipeout, the evolutionary programming approach would

be more effective.

Let us consider the population-based approach further. One might have noticed that good
solutions to Super-Wipeout are those that contain large numbers of items from the same
class. Poor solutions are those that contain a more even mixture of items from all the classes.
Consider two solutions, ¢ and b both with a moderate score, each containing some items from
the same class, F'S. Some of the items from F'S are in both @ and b, and some are in just one
of them. If parts of a and b could be mixed up together in a single solution then the number
of items in F'S could become large, resulting in a high score for this solution. In a sense, the
parts of ¢ and b that are items in the class F'S are ‘building blocks’ that can be put together
to make a good solution. Unfortunately, the player does not know which parts of a and b are
from the same class (for if she did she would surely make a solution with all of these items
in it). Instead, she could try combining them ‘blindly’. To do this she could first place all
the items that occur in both a and b in the new one, ¢, and then finish making ¢ by adding
in random items from a or b until ¢ has exactly m items in it. This strategy ensures that no
item in ¢ occurs twice, and ensures that common features of the two ‘parent’ solutions are

preserved in the ‘offspring’ solution.
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But how can she hope to combine the good parts of a and b together effectively using this
random ‘recombination’ of items? The answer is that she cannot hope to combine them
together effectively by luck alone, but by using her strategy of repeatedly working from the
solutions in the population that have the better scores and recombining these, she biases
the mixing up of the solutions in her favour. Sets of items that occur together in a solution
— the building blocks — that most frequently lead to good solutions tend to stay in the
population (because they are in good solutions that are generally kept), whereas sets of items
that appear together more often in poor solutions become less frequent in the population. So,
as her search progresses, the player is more likely to combine together good building blocks

that work together to form good solutions.

This last search strategy is an example of another population-based approach called a genetic
algorithm [Hol75]. It differs from the classic form of evolutionary programming in its use of

recombination of solutions, but is otherwise similar.

2.2 Problems and complexity

In the previous section we saw three different kinds of problem, and a number of different
search strategies for tackling them. The first problem was so hard, the only strategy for finding
the optimal solution was to search every feasible solution, or to guess solutions randomly
and hope to find the answer. The second problem could be solved very quickly by taking
advantage of the fact that each element in the optimal solution could be found separately in
a small number of trials, and these elements could be simply combined to give the optimal
solution. The last problem lay some way in between the first two in its difficulty. This
problem could not be separated like the second problem, into easy sub-problems, but several
strategies could be used that, we argued, would get us to the solution faster than searching

randomly or exhaustively searching every solution.

But, given a new problem, how can we tell whether it is difficult or easy? And what exactly
is meant by difficult or easy? These questions are dealt with in a field of mathematics called
algorithmic complexity. Algorithmic complexity classifies problems as easy or hard based on
the computational complexity of the simplest algorithm that can guarantee solving them. In
turn, the computational complexity of an algorithm is merely the number of steps it needs

to solve the problem, expressed as a function of the size of an instance of the problem.

Problems can be roughly classified into those that are tractable and those that are intractable.

Intractable problems include those that are formally undecidable [Min67], such as solving
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Diophantine equations, for which there exists a proof that no constructive procedure (or
algorithm) exists for solving all instances. But intractable problems also include problems
which are formally decidable but which nonetheless cannot be solved because the amount
of computation time needed to solve them — or their computational complexity — is pro-
hibitively large even for “reasonably”-sized instances. More formally, this can be expressed
by stating that an intractable problem is one for which there is no known algorithm that
operates in a number of steps that is a polynomial function of the input length of the prob-
lem (problem size), and which solves all instances of the problem. Conversely, a tractable
problem, or a problem in the class P, is any problem for which all instances can be solved
using an algorithm that takes a number of steps that is some polynomial of the problem size.
For short, we can say that the tractable problems can be solved in polynomial time. The

intractable problems cannot be solved in polynomial time.

The decidable but intractable problems can be further classified into those for which it is at
least possible to check a solution in a number of steps that is some polynomial function of the
problem size. These problems, together with the tractable problems, form a class that can
be solved using a theoretical (imaginary) machine called a nondeterministic Turing machine
(NDTM), in a polynomial number of steps. A nondeterministic Turing machine can pursue
an unbounded number of ‘guesses’ at the solution to a problem, but its time complexity (or
number of steps to reach a solution) is calculated as the minimum time required to check that
a guess is a solution to the problem. The class of problems that can be solved by a NDTM
in polynomial time is called the N P class. Obviously, the class N P contains the class P, i.e.,
P C NP. It remains a very important question of mathematics whether, in fact, P = NP,

or whether its contrary P # N P can be proved.

Although to date no-one has managed to prove that P # NP, there is certainly a large
body of problems which are considered intractable (i.e. no known polynomial time algorithm
exists for solving them), and that are members of the class NP. In fact, many of these
problems are very usual, everyday problems that we would like to solve, including many
problems related to partitioning sets of numbers, network design, storage and retrieval of
data, games and puzzles, logic, scheduling, program optimization, and many others [GJ79].
The most difficult members of the class NP are called N P-complete problems. A defining
property of the N P-complete class is that all problems in NP can be ‘transformed’ into
any N P-complete problem, using a polynomial-time algorithm. Here, “transformed” implies
that solving the N P-complete problem would result in the solution of the original problem.
This property means that if a polynomial-time algorithm is found for any problem of the
N P-complete class, all problems in NP can be solved in polynomial time. However, until

such a monumental event occurs, proving that a problem is N P-complete shows that there
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is no known polynomial-time method for solving it, and that probably time should not be

wasted looking for such an algorithm.

Note, however, that optimization problems are not generally in the class N P, and therefore
cannot be proved N P-complete. This is because it is generally not possible to check whether
one has an optimal solution to an optimization problem (equivalent to a solution to a general
problem) in a number of steps that is a polynomial function of problem input size. In many
cases, the only way to check whether one has an optimal solution is to compare it with all
the other feasible solutions in X. If the size of this set is exponential in the input size of the

problem then clearly this cannot be done in polynomial time.

Fortunately, any optimization problem can be restated as a closely related problem, called
a decision problem. A decision problem has only two possible solutions, either the answer
“yes” or the answer “no”. If the yes answer is verifiable in polynomial time by a deterministic
Turing machine then the problem is in the class N P. Transforming an optimization problem
into a decision problem can (usually) be done by choosing a bound B and simply asking if
there exists a solution that has a cost of at most B?. Now, if the decision problem equivalent
of an optimization problem can be shown to be N P-complete then the original optimization
problem must be at least as hard. This is the case since if it were not true, then the easier
optimization problem could be solved first, and then given any bound B one could check in
polynomial time whether the answer was “no” or “yes”, by simply comparing B to the known
optimum, and solving the decision problem, thereby contradicting our original assumption
that the optimization problem was easier. Thus, in general, optimization problems, although
not in N P themselves, can also be “provably hard” — at least as hard as the N P-complete
problems. These optimization problems (together with other problems at least as hard as

the N P-complete class) form a class of problems called the N P-hard problems.

It should be clear from the discussion above that N P-hard optimization problems cannot be
solved in polynomial time using any known algorithm, where ‘solved’ is used in the strict
sense of ‘solved to optimality’. Thus, many large instances of these problems will take a
prohibitively large amount of time to solve, and as the size increases will become truly
intractable. For these problems, where large instances do arise in the real-world, we must
approach the problem accepting that solving it is not possible for all instances, and instead
endeavour to find feasible solutions that are only good approximations to the optimal solution,
but in a number of steps that is bounded by a polynomial of problem size. An algorithm that
is used to find such approximate solutions is called an approzimate method, and often relies

on some heuristic, which helps to find “good” solutions from the set of feasible solutions.

2 Assuming a minimization problem.
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2.3 Search algorithms

2.3.1 Heuristics

A heuristic is a rule of thumb used to help solve problems where no exact procedure for doing
so exists [Pea84]. Best first search is an example of a heuristic used in searching decision

trees and other tree-like data structures [Pea84].

A heuristic approach usually involves employing some piece of knowledge about the structure
of the specific problem being undertaken, to devise a strategy for solving it. As an example,
let us consider a knapsack problem [MT90]. In this type of problem, one must select, from
a number of items, which ones to place into a container (a knapsack). Each item 7 has a
size or weight w; and a value or profit p;, associated with it. The knapsack has a capacity
that limits the total weight of items that can be placed in it. The aim of the problem is to
select the set of items that maximizes the profit without exceeding the knapsack’s capacity.
A good heuristic strategy for this problem is to sort the items to be placed in the knapsack
according to their profit to weight ratio (PWR), placing them in the knapsack in this order,
beginning with the item with the highest PWR, until the knapsack cannot accept the next
item. To complete the strategy, continue adding items in order from the sorted list, missing
out any items that cannot fit into the knapsack, until the remaining capacity of the knapsack
is less than the weight of the lightest item. It is clear that this heuristic is very specific to the
knapsack problem, and although it cannot guarantee optimal solutions it does work very well.
It is often true that when one has knowledge of a problem, then a very good heuristic can be
devised. However, sometimes one doesn’t have any strong insight into how a problem might
be solved, or strategies could be devised but they may be overly-complicated to implement. In
these cases, it is sometimes best to use a more general heuristic, often called a metaheuristic.
Metaheuristics are sometimes also called black-boz optimization algorithms [WM97] or simply,

general-purpose optimization algorithms.

So, a metaheuristic approach is a strategy that can be generally applied to solving problems.
In optimization problems, where we try to minimize (or maximize) an objective function of a
decision vector over some decision space, it is often the case that small changes in the decision
vector will lead to small changes in the objective function value. In other words, there is often
‘smoothness’ in the search landscape. This smoothness can be exploited because a corollary of
it is that good decision vectors will tend to be near other good decision vectors, and bad ones
near other bad ones. Therefore, a good strategy — or metaheuristic — might be to ‘walk’
through the search landscape by taking small steps (small changes in the decision vector)

always in the ‘direction’ that reduces the cost. Although this strategy can fail for different
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reasons, it will often be a better approach than simply trying random decision vectors, one
after the other, if the landscape is smooth. This very general metaheuristic strategy is called

neighbourhood search or local search.

2.3.2 Neighbourhood search

The neighbourhood of a solution is defined in [AL97] as follows:

Definition 2.1 Let (X, f) be an instance of a combinatorial optimization problem. A neigh-
bourhood function is a mapping N : X — 2%, which defines for each solution i € X a set
N (i) C X of solutions that are in some sense close to i. The set N (i) is the neighbourhood
of solution i, and each j € N(i) is a neighbour of i. We shall assume that i € N (i) for all
1 € X. Roughly speaking, a local-search algorithm starts off with an initial solution and then

continually tries to find better solutions by searching neighbourhoods.

2.3.3 Random mutation hillclimbing

One of the simplest local-search algorithm is random mutation hillclimbing (RMHC), as
described in [MHF94]. In RMHC, an initial solution is first generated and evaluated, and
this becomes the current solution. Then, at each iteration, a copy of the current solution is
made, and a random mutation is applied to the copy, producing a new candidate solution.
(The random mutation is a small change akin to the neighbourhood function defined above.)
The candidate solution is then evaluated. If it is not worse than the current solution then
it becomes the current solution. If it is worse then it is discarded. The algorithm may be
stopped when a specified number of evaluations have been carried out, or when there has
been no improvement in the evaluation of the current solution over a specified number of

iterations.

Random mutation hillclimbing exemplifies the advantages of a general metaheuristic strategy.
It is applicable to any (single-objective) optimization problem whatever; the problem need
not be a differentiable function of real parameters. It does not require any knowledge of the
problem structure to work either®; only the objective function is needed, in order to evaluate

each solution that is generated.

If the RMHC algorithm is allowed to run indefinitely then the value of the current solution will

converge to a solution that is locally optimal, that is, there is no solution in the neighbourhood

8 A neighbourhood function must be defined but this can be designed in some straightforward manner.
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of the current solution with a better evaluation. The locally optimal solution that is reached
depends upon the neighbourhood function that is being used, the random initial solution,
and the random mutations applied at each step. The solution reached may not be globally
optimal. That is, there may be solutions in the search space, but not in the neighbourhood
of the current solution, that have a better evaluation than the current solution. It is not
possible to reach these solutions because in order to do so, the RMHC algorithm would have
to allow the current solution to be replaced by a solution with a poorer evaluation, so that
a different neighbourhood could be explored. We saw this situation in the example Super-
Wipeout game considered earlier. This exemplifies the disadvantage of a basic local-search
strategy like hillclimbing: it generally converges to a local optimum rather than a global

optimum.

One way to partially alleviate the problem of convergence to a local optimum is to use multi-
start hillclimbing [Y196]. Whereas the stopping criterion in RMHC may be defined in terms
of the number of iterations in which no improvement in the evaluation of the current solution
is found, in multi-start RMHC, the same criterion is used to define a re-start of the algorithm
from a new, random initial solution. If the algorithm is allowed to re-start indefinitely
according to this criterion, then it will find a global optimum with probability 1, on all
optimization problems [AL97]. This is clear since it will eventually search all neighbourhoods
in the search space. However, the length of time needed to do this will, in general, exceed

that needed for a deterministic enumeration of the whole search space.

2.3.4 Simulated annealing

Simulated annealing (SA) is one of the most highly regarded, well-understood, and widely
applied local-search algorithms. It is quite similar to RMHC described above but, essentially,
it allows the current solution to be replaced by a candidate solution having a worse evaluation,
under the control of a randomized scheme. This crucial difference with RMHC means that
simulated annealing is able to search for a global optimum, and under certain conditions it

converges to a globally optimal solution with probability 1.

In simulated annealing, the probability function for accepting the candidate solution j from

the current solution 7 (assuming a minimization problem) is:

L) S50,
exp (L2 if £(7) > 1)

k

P, {accept j} = { (2.4)

where ¢;, € R7 is a control parameter, which is some function of the iteration &k of the simu-
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lated annealing algorithm. In SA, the value of ¢, is set initially high, and is gradually lowered,
eventually to zero, so that initially transitions to highly inferior solutions are frequently ac-
cepted, but later these transitions become extremely unlikely. The regime for controlling ¢

is called the cooling schedule, and it specifies:

an initial value of the control parameter cy,

a decrement function for lowering the value of the control parameter,

a final value of the control parameter specified by a stop criterion,

a finite number of transitions at each value of the control parameter.

The simulated annealing algorithm was first proposed as a search algorithm in 1983 by
Kirkpatrick et al. [KmV83], based on an algorithm put forward by Metropolis et al. [ MRR*53]
30 years earlier, for simulating the cooling of materials in a heat bath - a process known
as annealing. Aarts, Korst and van Laarhoven [AKvL97] have given proofs that the SA
algorithm converges to the global optimum with probability 1 provided that the sequence
of trials (or Markov chains) approximate a stationary distribution. However, this requires
that an exponential number of trials are performed, even to approximate an optimal solution
arbitrarily closely, and for some problems (e.g. the T'SP) it requires more computation than
a complete enumeration of the space. In practice, however, simulated annealing has been
practically applied in a large range of applications, including routing, graph partitioning, the

travelling salesman problem, VLSI design, and job-shop scheduling, according to [AKvL97].

2.3.5 Tabu search

Tabu search (TS) [GL97] is another example of a neighbourhood search algorithm that,
like simulated annealing, is capable of avoiding being trapped in local optima. However, the
operation of TS is quite different than SA’s. At each iteration in TS a subset of the neighbours
of the current solution are considered, and the best of these is chosen. This contrasts to SA
which chooses a neighbouring solution at random and then accepts or rejects it on the basis
of a probabilistic function. The subset of neighbouring solutions considered at each step is
made up of all the solutions in the neighbourhood minus some set of solutions which are
considered tabu. The tabu solutions (tabu list) are usually solutions or moves that would
bring the search back to a solution that has already (recently or frequently) been visited.
Thus the tabu list inhibits the search from cycling. The tabu list is a form of short term

memory that guides the search away from areas that have already been seen, but it can
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also be overridden if a solution that is tabu has some property that makes it particularly
appealing (e.g. it has the best evaluation yet encountered in the search). TS also allows
for the evaluation function, used to choose the best solution in the reduced neighbourhood
under consideration, to be changed so that the search can be guided towards or away from
certain areas. Specifically, the search can be guided towards solutions that are in some way
similar to the current solution (intensification), or away from solutions similar to the current

solution (diversification).

TS has been used in a large variety of applications, many of which have been summarized
in [GL97]. Hertz et al. [HTdW97] also describe the application of TS to problems including
the quadratic assignment problem, graph colouring, vehicle routing and course scheduling.
TS thus represents a flexible metaheuristic technique that can easily incorporate domain

knowledge and heuristics to provide efficient search.

2.3.6 Genetic algorithms

Genetic algorithms (GAs), like the other metaheuristics described above, use an iterative
approach based on generating and evaluating solutions, one after the other. However, they
differ in that rather than searching, at each step, the neighbourhood of a single current solu-
tion, “GAs use a collection (or population) of solutions, from which, using selective breeding

and recombination strategies, better and better solutions can be produced.” [Ree96].

In a standard or simple GA, a population of chromosomes, representing the decision vectors,
through some encoding of them, are initially generated randomly. Each chromosome is then
decoded and evaluated according to the objective function. Following this a phase of selection
occurs, in which a number of parent chromosomes are probabilistically chosen to generate
offspring, with greater chance of selection being given to the chromosomes with higher fitness
(a measure of the relative quality of chromosomes in the population). Offspring are gener-
ated from the selected chromosomes by applying mutation and recombination operators to
them. The mutation operator makes a small random change to a single solution, whereas
recombination takes the genetic material from two or more chromosomes, called parents, and
forms one or more offspring chromosomes. The offspring replace the parent chromosomes,
becoming the next generation. With each new generation, the process is repeated from the
decoding and evaluation phase through to replacement. Usually, the algorithm is run for a

fixed number of generations, although many other stopping criteria are also possible.

Genetic algorithms were initially introduced and investigated by Holland [Hol75] as a model

of adaptation. In [Hol75], several arguments are developed to explain how a genetic algorithm
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can conduct complex and robust search by implicitly sampling a large number of partitions of
a search space. The general idea is that a chromosome can be viewed, not simply as a sample
of the search space in one point, but rather as a sample of the quality of numerous different
partitions of the search space. For example, any binary chromosome beginning with a 1 is a
sample of all of the chromosomes in the space that begin with 1. This can be stated in another
way by using the terminology of schema or hyperplane partitions. A schema is represented
by a string constructed with 0, 1 and * where 0 and 1 represent fixed allele values and * is the
don’t care symbol. A schema is said to match a chromosome (and conversely the chromosome
is in the schema partition) if the chromosome matches the schema at all of the fixed values.
So, using this terminology any binary string beginning with 1 matches the schema 1**%*.
Clearly, any chromosome is a sample of many different partitions (i.e. matches many different
schema), in fact 2© of them for a binary chromosome of length L [Rad97]. Therefore, implic-
itly, a chromosome’s evaluation betrays partial information about the average evaluation of
all other chromosomes in the same partitions as it. Holland’s theory suggests that through
the application of biased selection, recombination and reproduction, the frequency of schema
represented in the population will increasingly reflect the average quality of these schema
in the entire search space, as more and more samples are effectively taken. In other words,
schema with higher than average observed payoffs are allocated exponentially more trials over
time while schema with lower than average observed payoffs are allocated exponentially fewer
trials. And since the combination of highly fit schema within a single solution will generally
result in solutions of high quality, the genetic algorithm’s search will result in high quality

solutions.

However, although the schema theorem developed by Holland is not itself disputed, its pre-
dictive power is very limited [Whi94]. In reality, stochastic sampling errors in the selection
mechanism, and disruption caused by recombination and mutation operators all conspire to
making the genetic algorithm very hard to analyse theoretically. The simpler building block
hypothesis which is often used to explain the dynamics of genetic algorithms, which states
that “genetic algorithms seek near-optimal performance through the juxtaposition of short,
low-order, high performance schemata, or building blocks” has been criticized by Grefen-
stette [Gre93], because it can lead to serious misinterpretations if it is taken as an opera-
tional theory of GAs. Even the use of a binary representation, originally thought to maximize
the effectiveness of the hyperplane sampling is now not used very often in practical applica-
tions [Rad97], and newer texts on the subject, such as [Mic96], encourage the use of more
direct representation of parameters. These recommendations follow those of Davis [Dav9la]
who argues that using specialized mutation and recombination operators often improves the

search for solutions to real problems.
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2.3.7 Evolution strategies and evolutionary programming

Evolution strategies (ESs) [Rec65, Rud97] “...emphasize the behavioural link between par-
ents and offspring, or between reproductive populations, rather than the genetic link” [Fog94].
That is, the solution parameters or decision vector are operated on directly by the ES opera-
tors, rather than through some encoding as in the original GA. The mutation operator used
in ESs acts on all the parameters at once, changing the current values to new ones following
a Gaussian distribution with zero mean difference and a standard deviation that is controlled
by various strategy parameters which may be incorporated as part of the solution vector itself,

subject to evolutionary change.

ESs may use a single point search, in which case they are termed (14-1)-ESs, or a population-
based search similar to a GA. The latter can be either of two deterministic selection strategies,
called (u,A) and (u+ ) selection. In the former, the x4 parents of one generation are replaced
by the best p from the A offspring. In the latter, u parents and X offspring compete together,
so the best p from the p + A\ become the next generation of parents. Although evolution
strategies did not originally include operators for recombining solutions in the generation
of offspring, a variety of such operators were later added, and reported on by Schwefel in
1987 [Fog94].

Evolutionary programming (EP) has many features in common with ESs. It too uses mutation
operators that act directly on the solution parameters, rather than through a genetic encoding
of them, and it does not (generally) employ recombination. EP was initially proposed by
Fogel [Fog64| where it was applied to the task of evolving finite state machines that learned
to predict the next number in a sequence of numbers presented to the machine one at a
time. The evolution of two-player game strategies, again using finite state machines, was also

investigated in the early development of EP [FB69].

Various selection strategies and mutation types may be employed in EP but generally EP
uses a constant population size greater than one. Continuous parameter optimization and

the inclusion of self-adaptive parameters similar to those used in ESs came later [Por97].

2.3.8 Other metaheuristics

In the sections above a brief overview of some of the main search metaheuristics in use to-
day has been given. The list is by no means comprehensive but most of the key ideas in
metaheuristic search are contained in the strategies described above: generating solutions

randomly to start with; generating solutions in the neighbourhood of other solutions; proba-
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bilistically or deterministically accepting solutions based on their evaluation; recombining two
or more solutions to generate new ones; memorizing solutions already visited; and directing
the search to particular areas of the search space. Other metaheuristics use essentially the
same ideas although they may emphasize one or more of them differently, while yet others

combine these ideas with constructive heuristics for generating solutions.

Ant colony optimization [DBTO00] is perhaps the most original of the other metaheuristics,
in that it uses a constructive approach to build its solutions incrementally, by making local
choices as to the components of the solution to be included. At the same time, the whole
process is iterative, in that the local choices made by an ‘ant’ as it builds a solution, depend
upon previous constructions made by other ants in previous iterations. Another combination
of constructive and iterative approaches is exemplified by the greedy randomized adaptive
search procedures (GRASPs) [FR95]. However, here the constructive part of the algorithm

is just as the (re-)initialization phase in a multi-start neighbourhood search strategy.

Scatter search, path relinking, differential evolution, and particle swarm optimization meta-
heuristics [CDGY99] are all population-based evolution algorithms that use specialized oper-
ators that are particularly beneficial for exploring real-parameter spaces. These methods
all emphasize the use of memory, learning and selection to different extents, reflecting their
different origins, but the main contribution of these modern techniques are the novel ways in

which new solutions are generated by combining, and learning from, previous ones.

2.4 Generality

Most of the metaheuristics reviewed above are supposed to be general-purpose optimization
algorithms. That is, they are intended for use on a wide range of optimization problems
rather than any specific one. In truth, however, they each have their strengths and weak-
nesses. Kven in the simple problems we introduced in the first section of this chapter we saw
how different search strategies have varying performance and appropriateness on different
problems. However, much research in general-purpose optimization, particularly evolution-
ary computation, is concerned with designing algorithms that offer high performance on as
many different problems of practical importance as possible. Sharpe [Sha00] has dubbed this
phenomenon: “the search for the holy-grail algorithm”. However, in order to convince us that
her new algorithm is a holy-grail (HG), or is at least generally competent, a researcher must
demonstrate its performance on problems that exhibit different problem features, known or
believed to exist in real-world problems, and known or believed to cause difficulties to differ-

ent search strategies. In the next section we consider some of these different problem features,
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and discuss how they might affect different search strategies.

2.5 Problem features and fitness landscapes

Practical optimization problems that we may genuinely be interested in solving — so-called
real-world problems — come in many, many different forms. Whether our aim is to design
and demonstrate an algorithm that performs well on a large portion of these problems, or
to establish which problems a particular algorithm is well-suited to, and which it is not, it
is essential to understand the different features exhibited by real-world problems. We are
particularly interested in those features that cause the most difficulty for search, or on which
it seems that a particular technique would fail or do especially well. In general, understanding
problem features may help us progress in our ability to solve optimization problems in two

different respects:

1. By testing our algorithms on artificial test functions that contain a problem feature in
isolation and allow that feature to be controlled, we may understand which techniques
are effective on problems with particular features, and we may be better equipped to

design better techniques for tackling problems with these features

2. Given any particular real-world problem, measuring the presence of absence of these

features may help us to choose the best available technique to use.

Roughly speaking, different problems can be described according to the degree to which they

exhibit these features:

- Discrete (combinatorial or Boolean) vs. continuous variables;
- Dimensionality;

- Multimodality;

- Discontinuity i.e. non-differentiable vs. differentiable;

- Epistasis vs. linear separability;

- Deception;

- Unconstrained vs. linear constraints vs. non-linear constraints.
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The above list represents some of the more accessible and well-investigated ‘dimensions’ of
problem type, but is by no means an exhaustive list. In the following we say a little about

each of these problem features.

2.5.1 Discrete and continuous variables

Much of heuristic search is concerned with problems whose solutions can be expressed exactly
using a finite length string of integer parameters. Such problems are called discrete or com-
binatorial optimization problems, and include all those detailed in [GJ79]. They also include
test problems such as the NK landscapes [Kau89] and Royal Road functions [MHF94].

In addition to combinatorial problems, metaheuristic search may also be used to optimize
mathematical functions of one or more continuous parameters. These are usually tackled by
choosing a finite precision with which to express the parameter(s). The parameter value(s)
may then be represented using chromosomes in which the allele value of each gene represents
the value of a parameter directly (to some precision), or the parameter value(s) may be

encoded, for example in binary, on the chromosome using multiple genes.

It is clear that local-search algorithms can easily be adapted for both continuous and discrete
spaces by defining the neighbourhood operator appropriately. GAs were originally thought
to work best with binary representation of variables, be they continuous or discrete. But
recombination of binary strings that are representations of continuous variables does not
preserve or recombine what is likely to be, in the building block sense, the relevant infor-
mation. Evolution strategies and evolutionary programming typically operate directly on
the continuous decision variables, and thus their operators are particularly suited to these
problems. Others have now developed similar operators for use in GAs. e.g. [Dav91lb, DA95].
Optimization strategies such as scatter search, path relinking, and differential evolution, are
particularly suited to continuous variable problems because they emphasize the production

of new solutions by a linear combination of others [CDG99].

2.5.2 Dimensionality

Dimensionality refers to the number of dimensions of the parameter space, X. Test function
suites used for assessing EAs and other techniques should contain problems of high dimen-
sionality because these are more representative of real world problems according to Béck
and Michalewicz [BM97]. Low dimensional problems can often be solved more efficiently by

traditional optimization methods such as mathematical programming.
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2.5.3 Multimodality

Most real-world optimization problems of interest are multimodal, that is, they contain more
than one optimum. Sometimes the optima in a multimodal landscape may be of different
levels or of the same level. If they are all of the same level then they are all global optima.
Finding one of them is usually sufficient to solve the optimization problem exactly, thus
multimodality can potentially make a problem easy, as many points are easier to search for

than one.

If the optima are of different levels, then some are not global optima. These ‘local’ optima are
generally regarded as a nuisance, particularly for local-search algorithms such as hillclimbers
because they can become stuck in them, unable to escape to any point of better evaluation.
However, as we have seen in our discussions above, there are many strategies for escaping
from local optima, although they generally slow down progress compared to a straightforward

hillclimbing technique.

Genetic algorithms (and other population-based techniques) are often touted as being par-
ticularly suited to searching multimodal landscapes. However, [LP98] shows that when the
problem becomes very strongly multimodal EAs may be little better than random search.
Furthermore, research comparing methods on the NK landscapes [Kau89] suggests that GAs

are certainly not peerless on multimodal problems [MF98].

In some applications, it is required or desirable to find multiple optima, particularly if mul-
tiple global optima exist. Genetic algorithms do have the advantage on problems of this
type, as multiple optima can be found from a single algorithm run if niching techniques are
used [GDH92].

Béack and Michalewicz [BM97] suggest that test function suites should contain a few unimodal
functions in order to test the speed with which the search method approaches the objective
(efficiency). On these problems, one would expect hillclimbing algorithms to exhibit partic-

ularly efficient search.

2.5.4 Discontinuity

Heuristic search can clearly deal with discontinuous objective functions because it does not
rely on gradient information to find the direction of search. This makes it suitable for com-
binatorial problems which are always non-differentiable. When a mathematical function is
continuous it is possible that gradient methods such as Newton’s method ([BC81], page 666)

may be faster than “blind” methods. However, gradient-based methods do not usually fare

33



2.5 Problem features and fitness landscapes

well on high dimensional and/or multimodal search landscapes.

Discontinuity is not usually regarded as a relevant dimension of problem difficulty for general-
purpose search methods even though local search does rely on the extent to which points
within a neighbourhood have similar evaluation. Instead, the related concept of ‘ruggedness’

is used, which is generally subsumed into the multimodality dimension.

2.5.5 Deception

The notion of deception in problems has been an important concept in understanding what

makes a problem difficult for a genetic algorithm, albeit it is a notion fraught with controversy.

According to Deb [Deb97], “Deceptive functions are those in which low order building blocks
do not combine to form higher-order building blocks: instead they form building blocks for

a suboptimal solution.”

0.8

0.6
f(u)
04

0.2

Figure 2.1: A four-bit trap function as a function of unitation w.

For example, the deceptive trap functions [DG92] are a common deceptive test problem,

defined in terms of unitation u (the number of 1s) on a binary string, as follows:

f(u)Z{ sz-u) o ifuss (2.5)

= (u— 2) otherwise

where g is the value of the deceptive optimum, b is the value of the global optimum, [ is the
length of the string and z is a parameter controlling where the slope in the function changes
when f(u) is plotted against u. Figure 2.1 shows a deceptive trap function with ¢ = 0.6,
b= 1.0 and z = 3 (from [Deb97]). In this function, the solution with three 1s is at the basin
of attraction for the global optimum solution (four 1s). On the other hand, all solutions

with fewer than four 1s (15 of them) are attracted towards the deceptive optimum (four 0s).
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Thus, the basin of attraction for the deceptive optimum is much larger than for the global

optimum.

Das and Whitley [DW91] suggest that only deceptive problems are hard for a GA. However,
Grefenstette [Gre93] points out that deception is not necessary for a problem to be hard,
citing the needle-in-a-haystack problem as a straightforward counter-example. Watson et
al. [WHP98] have also provided a test problem, H-IFF, that is very difficult for a standard
GA, without possessing any deception. Instead, H-IFF exhibits strong epistasis at different

hierarchical levels, making it difficult for the GA to maintain and assemble building blocks.

The deceptive trap functions are sometimes cited as an example of a problem that can be
tackled well by a GA (albeit one with niching, or some method of searching specifically for
building blocks up to a particular order) but which is very difficult for local-search methods to
solve. However, an order n deceptive trap function is completely separable (see next section)
at order n, so it could also be solved more efficiently using some other technique, provided the
position of building blocks is known. Knowing the identity and position of building blocks
is, of course, at least half the problem. However, demonstrations of GAs solving deceptive
problems often rely on building blocks being ‘tightly linked’ a form of a priori knowledge
about where they are. In fact, GAs using one or two point crossover can solve deceptive trap
functions of low order only if the traps — the building blocks — are tightly linked on the
chromosome. If they are bit re-ordered then the GA has much greater difficulty solving the

problem.

2.5.6 Epistasis and linear separability

Epistasis is a measure of the degree of interaction between parameters in an objective function.
If a problem has no epistasis then all of the parameters can be independently optimized, so
that the number of points that must be visited is very small compared to the whole search
space. If the parameters in a problem can be split into groups in such a way that, taking each
group separately, the parameter values within that group which give the best evaluation, with
the values of all other parameters held constant, are the same as those in the global optimum,
then the problem is linearly separable. On the other hand, if in a problem, the contributions
of all parameters depend upon all others then the problem has unbounded epistasis and is
not linearly-separable. Such a problem is generally difficult to search using an EA or any
other general-purpose technique. For this reason, epistasis and epistasis variance have been
used as predictors of problem difficulty. It has also been suggested by some that real-world
problems exhibit bounded epistasis and this makes it possible to search them efficiently using

EAs and other metaheuristics.
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The property of epistasis is closely linked with multimodality and deception considered earlier.
The presence of epistasis leads to multimodality: Kauffman’s NK landscapes are models
of tunable rugged landscapes built up from maps of how the parameters interact; higher
parameter interaction leads to greater ruggedness. Deception relies on epistasis because it
relies on the fact that unless a significant portion of the elements of the optimal solution are
discovered at once by a search algorithm, then these elements will not be attractive. Thus

these groups of elements are epistatically linked.

2.5.7 Constraints

Constraints are virtually ubiquitous in real world optimization problems, both discrete and
continuous, so we should expect that good general-purpose search algorithms can deal with
constraints. Bick and Michalewicz [BM97] suggest that test function suites for assessing the

ability of EAs to deal with constraints should ideally contain functions with
- different numbers and types of constraint (linear and non-linear),

- the optimum located in different places, particularly on the constraint boundary,

- and, different relatively sized feasible and infeasible regions,

in order to emulate the full range of real-world constrained problems.

It can be argued that population based evolutionary techniques are better suited to con-
strained optimization problems than local-search methods because the latter can become
trapped in suboptimal feasible regions, unable to traverse an infeasible region in order to
approach the optimum. However, there are many different approaches to dealing with con-
straints, including penalty functions, decoders, repair mechanisms, and others, that can allow

both population-based and local-search methods to work in constrained search spaces.

2.6 No-Free-Lunch and its implications

The no-free-lunch theorem (NFL) [WM97] states that all search algorithms have identical
performance when their performance is averaged over all possible search spaces. This result
proves the futility of trying to devise a truly general-purpose search algorithm. However, it

does not imply that a particular algorithm cannot be better over a restricted set or class of
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4. The class or set of problems that most researchers are interested in is the set

problems
of real-world problems (RWPs). The NFL does not specifically rule out the possibility that
one algorithm could be best over the set of RWPs. Thus, it is suggested in [Sha00](page 80)
that some researchers still believe that it is possible that some algorithms perform better
than others, when performance is averaged over all possible real-world problems, and that
consequently some algorithm or group of algorithms must be ‘best’, over this set. In Sharpe’s
notation, such an algorithm — a holy grail for real world problems — is denoted by HG gwp.
Of course, the set of real-world problems is not a well-defined class so neither a proof nor a

refutation of the possibility of an HG gwp is currently available.

However, even if NFL does not presently have anything to say about the RWPs, and even
if there were such a group of algorithms that on average were best over the set of RWPs, it
does not mean that these algorithms would be the best choice on all new real-world problems.
Obviously, when we encounter a new problem we do usually come to it with some knowledge
of its structure before any evaluations of the search space are made. Therefore we can hope
to apply roughly a good approach to it, better than blindly applying our putative HGrw p.
In some sense we are outside the NFL because we can make predictions about the search
space without making any evaluations of it. In fact, in real-world problems we almost always

do not approach a completely black box.

So, at present, and probably for at least some time into the future, the best possible strategy
for approaching a new problem is to look at it, make some judgments about the features
it will possess and then try out some different algorithms, perhaps being guided by some
measurements of the search landscape etc., until we find an approach that works well enough
on it. This process cannot all be automated, at present, and never can be if it is the case
that we are able to make some useful judgments without actually performing any objective
function evaluations. Our job then, is to try to choose the best algorithm for the problem.

This matching of algorithm to problem is worthwhile doing.

From the discussion about problem features above, and what has been said about the NFL,
it should be clear that — for the time being at least — we should reasonably expect that we
will have to choose the most appropriate approach, be it hillclimbing, simulated annealing, a
GA, TS, or some hybrid algorithm, given a problem and what we know or expect about its
features. Any talk of there presently being a single algorithm which is so good that it should
always be applied to problems (even of restricted classes) should not be believed. Schwefel

makes this point very clearly when he writes [Sch97]:

“In fact, on the contrary, if one algorithm A is shown to perform worse than another B on one problem ,
by the NFL one can state that A is better than B on average over the set of all problems excluding .
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First, there will always remain a dichotomy between efficiency and general ap-
plicability, between reliability and effort of problem-solving, especially optimum-
seeking algorithms. Any specific knowledge about the situation at hand may be
used to specify an adequate specific solution algorithm, the optimal situation be-
ing that one knows the solution in advance. On the other hand, there cannot
exist one method that solves all problems effectively as well as efficiently. These

goals are contradictory.

2.6.1 Test functions and GA performance

In the late eighties and early nineties, much work was carried out on trying to identify
problem features that would make a problem easy or difficult for a genetic algorithm to
solve as compared to local-search algorithms, particularly hillclimbing. Amongst the features
put forward were deception, multimodality, crosstalk, isolation, and noise [HG95] as well as

exponentially long paths of monotonically increasing evaluation [HGD92].

In order to investigate the building block hypothesis [Hol75], Mitchell, Forrest and Holland
put forward a set of test functions called the Royal Roads with identifiable building blocks
or low order schema that were non-overlapping on the chromosome. These low-order schema
could be combined to form higher order schema which were rewarded with a larger evalua-
tion. By studying how a genetic algorithm processed these separate and identifiable schema,
Mitchell et al. hoped to test the “most prevalent “folk theorem” of GAs — that they will
outperform hillclimbing and other common search and optimization techniques on a wide
spectrum of difficult problems, because crossover allows the powerful combination of partial
solutions” [MHF94]|. However, although the Royal Roads were designed to have just the sort
of building-block structure ideally suited for GAs, Mitchell et al. found that a simple ran-
dom mutation hillclimber was a factor of 10 faster than a GA with crossover at solving the
these functions. The explanations given for the poor performance of the GA on this problem
underlined the fact that selection pressure, mutation rates, population size, and crossover all
need to be very carefully controlled in a standard GA in order for it to perform better than

a hillclimber on the simple Royal Road functions.

The results of Mitchell et al. followed prior work by Tanese [Tan89] in which test functions
based on Walsh polynomials [Wal23, Bet80] were used to compare the performance of ge-
netic algorithms and a multi-start steepest-ascent hillclimber. Tanese found that hillclimbing
outperformed a genetic algorithm on all the Tanese functions; functions of length 32 bits
and varying Walsh polynomial order of between 4 and 20. In an analysis of the results of

Tanese, Forrest and Mitchell admitted that the Tanese functions did not exhibit deception
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— previously thought to be the main cause of poor GA performance. In fact, Forrest and
Mitchell found that further causes of poor GA performance had to be postulated. Grefen-
stette [Gre93] also analysed the theory of deception as put forward by Goldberg, Liepins
and Vose, and others, and considered that it was not an adequate explanation of the poor

performance of GAs, since it was neither necessary nor sufficient for a problem to be difficult
for a GA.

Wilson [Wil91] and Louis [LR93] had more success in finding problems for which a simple
genetic algorithm outperforms a stochastic hillclimber. In the former, a population-based
steepest ascent hillclimber does not perform as well as a genetic algorithm with crossover on
a GA-easy problem, that is, one in which the low order schemata associated with the global
optimum have higher static average fitness than the competing schemata in their partitions.
However, the work of Forrest and Mitchell indicates that steepest ascent hillclimbing can
exhibit poorer performance than random mutation hillclimbing because it does not share the
ability of the latter to explore plateaus. With this fact taken into account the conclusion of

Wilson is weakened.

Louis constructed a problem that was maximally deceptive for a hillclimber, with a structure
tailor-made for one point crossover. He showed that on this problem a GA indeed outperforms
stochastic hillclimbers and populations of stochastic hillclimbers. However, the structure
of the problem put forward by Louis is particularly contrived. Louis does not consider
adding noise to this function or re-mapping some bit values. The problem therefore looks

unconvincing as a model of any real-world problem.

More convincing demonstrations of good GA performance compared to hillclimbers were
given by Deb and Horn [HGD92] on functions with exponentially long paths for a hillclimber
to the global optimum. They showed that a GA with crossover is orders of magnitude faster
than algorithms (hillclimbers) that only search a small neighbourhood with high probability,
and a larger neighbourhood with very small probability.

A comparison of methods was also carried out by Keane [Kea96], on a Royal Road function
described in [MFH91] and the fifty dimensional bump problem introduced by Keane. SA is
compared with GA, EP, and ES. Keane demonstrates that the GA is clearly best on these
problems, and is robust to changing its parameters. He argues that a modern GA with
niching and a form of restricted mating, as used in his experiments, would outperform even

hand-tuned versions of the EP, ES and SA algorithms on the test functions considered.

In two papers by Watson et al. and Watson and Pollack [WHP98, WP00], some of the

problems of the Royal Roads as functions for demonstrating the power of GAs to identify and
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recombine building blocks, are overcome in a new test problem, H-IFF, which they propose.
H-IFF combines the features of building block interdependency (i.e. partial-separability) and
competing optima, within a clearly defined hierarchical building block structure like that in
the Royal Roads. The resulting functions exhibit fractal multimodality, making them difficult
for hillclimbing algorithms to solve. Watson et al. demonstrate that a simple GA, although
it cannot solve the problem, significantly outperforms random mutation hillclimbing. When
the simple GA is augmented by a resource-based niching strategy it can solve the problem
to optimality, demonstrating that in order to solve H-IFF, it is necessary to maintain and
combine diverse building blocks. When the bits of the H-IFF problem are re-mapped (or
shuffled), however, a GA cannot solve the problem to optimality. This demonstrates that the
GA requires tight genetic linkage in a problem if crossover is to be a useful tool for combining
building blocks. The conclusion of Watson et al.’s early work are that GAs can discover and
combine building blocks provided diversity is maintained, and provided there is tight genetic
linkage. Furthermore, given these conditions, a GA can clearly outperform hillclimbing on
H-IFF-type multimodal functions. The requirement of diversity maintenance is in agreement

with the findings of Keane discussed above.

Merz and Freisleben [MF98] compared GA, genetic local search (GLS) [IMT97], and multi-
start local search (LS) on N K landscapes, with a range of K and N values with N going up to
1024. They find that for large K and N a multi-start LS algorithm outperforms both 1-point
and uniform crossover GAs. However, their key findings were that the genetic local-search
algorithms outperform both the GAs and LS algorithms at all sizes of N and K, and scale
particularly well. These findings on these test functions provide strong evidence of the power
of hybridizing local search and GA strategies. Much further evidence of this is provided in

papers discussed below.

Overall, much of the work in the GA literature on test functions serves to show that simple
GAs can exhibit poor behaviour in many function domains, and often require additional
features in order for them to outperform simpler techniques like hillclimbing and simulated

annealing.

2.6.2 Real-world optimization problems

Although the test function studies reported in the previous section are interesting and useful
because specific problem features and effects can be isolated and investigated, many re-
searchers believe that real-world problems often exhibit different features that are not readily
captured by test functions. They advocate the use of real-world problems for testing and

comparing algorithms, arguing that test functions are artificial landscapes that do not truly
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reflect the nature of problems that we would actually like to tackle.

A very large number of studies in which metaheuristics have been compared on real-world
problems have been published, and we consider just a sample of these here, summarizing
some of the key findings of them. We note also that the term real-world problem does not
always imply that the instances used in these studies have actually been taken from problems
in the real world, or that they are of the same or similar size to problems of actual interest. In
some cases they are much simpler. However, the problems tackled do reflect real problems in

the sense of their general structure, if not their size, number of constraints, or other details.

Bramlette and Bouchard [BB91] compare GA, SA and hillclimbing on an aircraft design
problem. Their study provides evidence that considerable tuning of the GA approaches was
necessary for them to reach a level of performance achieved by SA. It is not clear from
the study how much effort was put into tuning the SA cooling schedule. Interestingly, the
short study finds that the best result for the GA approach is when it is hybridized with the

stochastic hillclimber, and iterated with multiple random re-starts.

In [JW94], four real-world problems for which GA approaches had previously been proposed
in the literature are tackled using stochastic hillclimbing. The problems are the maximum
cut problem, the 1l-multiplexer problem (tackled using genetic programming originally),
the multiprocessor document allocation problem, and the job-shop scheduling problem. In
each case, a stochastic hillclimber (capable of exploring plateaus in the landscape because it
accepts all non-worse neighbouring solutions, rather than just improving solutions), using (in
general) a similar encoding and mutation operator as proposed for the GA was tested, using
runs of the same length in terms of function evaluations as performed by the GA. In all cases
the stochastic hillclimber is found to outperform the GA in terms of mean values achieved
over 100 runs. For the last problem, the authors use a multiple start strategy where each run
of the hillclimber is divided into 5 mini-runs (and the best solution found returned), but the
authors claim that this strategy was chosen arbitrarily and may be improved if tuned further.
The authors stress that the aim of their study is to encourage GA practitioners to ‘baseline’
their approaches against simpler techniques — not to try to argue that hillclimbing is superior
to evolutionary algorithms. Indeed, in the last set of experiments where the encoding and
operators used in the hillclimber were different from the GA they compared against, they
develop a new GA using this improved encoding and operator pairing that does outperform
the hillclimber.

The point of view expressed in [JW94], that researchers should baseline their approaches
against simpler techniques, is a view that is shared by us, and central to the work in this

thesis. However, we focus on work in the multiobjective EA field, where no baseline algorithms
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have been put forward, and comparisons with fundamentally different techniques, are rare.

Duvivier et al. [DPT96] also compare multi-start hillclimbing to an EA on the job-shop
scheduling problem using a direct encoding of job order. Their algorithm study also includes
a fairly simple tabu search implementation and a hybrid between the EA and the hillclimber.
The findings of this study echo those of [JW94], in that an EA is outperformed by hillclimbing
using the same encoding, mutation operators, and number of evaluations. These findings lead
the authors to question the value of recombination on this problem, particularly under the
encoding used, but they also emphasize that the poor EA results on the scheduling problem
differed greatly from previous results where an EA was compared to hillclimbers on a number
partitioning problem. The results of hybridizing the EA and hillclimbing algorithms on the
scheduling problems were found to be, in general, better than the pure EA and similar to the

multi-start hillclimber.

Yagiura and Ibraki [YI96] compare various metaheuristics on single machine scheduling prob-
lems. They report that a GA is found to be robust to the type of neighbourhood operator
used but that its performance is poor compared to the other algorithms considered. They
find that multi-start local search is the best simple algorithm with few parameters to control
and good performance. Overall, however, simulated annealing and a genetic local-search algo-
rithm are found to give the best performance over long computational runs. The performance
of tabu search, GRASP, and iterated local search, all depended strongly on the neighbour-
hood defined for the problem, but achieved better results than the GA for the more effective
of the two neighbourhoods explored in the study.

Mann and Smith [MS96] compared SA and GA approaches on a number of telecommunica-
tions traffic routing problems. A careful set of experiments were carried out to select the
parameters of each algorithm before final results were collected. Both algorithms were run
until they had converged as judged by the rate of improvement having fallen below some
defined level. The findings indicated that the SA and GA algorithms reached very similar
final evaluation levels on the range of problems, but SA converged in approximately 10 times
fewer evaluations. This finding, combined with the fact that the SA algorithm could be ac-
celerated further by using “delta evaluation” of solutions led Mann and Smith to conclude

that SA would be the favoured approach on this application.

In a paper by Lahtinen et al. [LMST96], a GA, SA, and two greedy local-search algorithms
were compared on a spanning tree problem in which an optimal branching must be determined
to minimize the cost of the tree while meeting certain capacity constraints. The experiments
carried out allowed for the greedy search algorithms to be run multiple times per single GA

run to allow for the fact that they converged in far fewer evaluations. Graphs were then
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plotted of the best solution found against total evaluations carried out for each algorithm.
The SA and greedy algorithms all outperformed GA on all three problem sizes tried. One
of the two greedy approaches was particularly fast and effective, but SA reached the best
evaluation in all of the experiments, though with slightly slower initial convergence speed.
Furthermore, SA was found to increase in relative performance compared with the GA as
problem size increased. Further similar comparisons in [LMS198] show that while a GA
compares favourably with the other approaches on a frequency assignment problem, in terms
of final evaluation achieved, it requires of the order of 10 times as many evaluations as SA to
achieve this result, and 2040 times as many as a greedy local search approach which only

achieves very slightly inferior solutions.

Oates [Oat00] compares the performance of various EAs with SA and HC on 4 different
instances of the adaptive distributed database management problem [OC00]. Three different
evaluation limits were investigated in each of the approaches taken. The SA algorithm was
used with an appropriate geometric cooling schedule for each of the three evaluation limits.
The EAs investigated used 4 different mutation rates and 3 different population sizes giving
12 in all, and were otherwise similar. Oates found that no single algorithm outperformed
the others over the set of problems and evaluation limits. With the problems possessing
a larger search space, the performance advantage of the EAs was seen to diminish with
respect to hillclimbing and simulated annealing. Patterns in the EA results suggest that a
low mutation rate and large population size give good performance on the larger problem
spaces but these rules of thumb are not particularly accurate. Oates concludes that SA

is a good default technique while the EAs clearly give better performance when *

...simple
consideration is given to parameter choice...”, but it is clear from the study that much more
effort was expended on tuning the EAs than on trying different cooling schedules for SA.
Thus, once again we see that EAs do not offer a clear advantage over local-search algorithms,

particularly when the effort to tune them is taken into account.

2.7 Hybrid evolutionary approaches

In the real-world applications studies considered above, genetic algorithms were often com-
pared with other heuristic optimization techniques. On some of the problems, GAs clearly
did not perform as well as other approaches. This result simply underlines the fact that GAs
are by no means a ‘special’ approach, both efficient and effective on all problems. Rather, the
GA’s strength lies in the large domain of problems to which it can be applied with minimal
problem-specific knowledge [Gol89](Chapter 8).
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Nonetheless, the genetic algorithm framework also permits the use of natural data structures,
problem-specific operators, repair mechanisms, penalty functions, decoders and the like, to
make a much more problem-specific algorithm. Michalewicz calls the resulting algorithm, an
evolution program [Mic96]. Such tailoring of GA encodings and operators to the problem
at hand is the minimum requisite in any serious attempt to obtain a useful optimization

algorithm based on a GA, for most real-world problems.

A truer hybridization is described in [Dav9la] where Davis proposes a method for making
a hybrid GA for any problem where a good optimization algorithm is already known (the
current algorithm). This involves first using the current algorithm’s encoding in the hybrid
GA. In addition, elements of the current algorithm can be used to generate initial solution
vectors, and/or to make “successive transformations” of, or search, solution vectors, and/or
to decode solution vectors appropriately. In Davis’ scheme, the GA’s own genetic operators
should then also be adapted to the specialist encoding, whilst maintaining their usual roles
in genetic search. Davis maintains that this scheme will almost never fail to improve on the

current algorithm’s performance.

The model of Davis, particularly where the current algorithm is used for initialization and to
actually make “successive transformations” of the solution vector is more akin to the notion
of a memetic algorithm as described in [Mos99] and [MF99], than is simply the exploitation
of problem-specific knowledge as used in Michalewicz’s evolution programs [Mic96]. Both for-
mulations fall under what we consider to be a hybrid evolutionary approach, for the purposes
of this section. Memetic algorithms, for our purposes, mean evolutionary approaches that
include some iterative local search element to improve the solutions found by recombination

and/or mutation.

Memetic algorithms, albeit under different names, have been remarkably successful on a wide
range of N P-hard problems including TSP, graph colouring, set covering and many others.
For an extensive list with references see [Mo0s99]. The theory behind the approach is not
well-founded, however [Mo0s99]. Nonetheless, some interesting and potentially general results
have been found. Sharpe [Sha00] empirically demonstrates that searching a landscape with a
hybrid approach which mixes hillclimbing, recombination and mutation performs moderately
well on each of three different landscapes which are respectively designed to be easy for
hillclimbing, easy for recombination, and easy for mutation. The hybrid does not perform
as efficiently as the appropriate pure strategy but its effectiveness is high, suggesting that
a hybrid merely possessing the appropriate operator(s) will be effective on a given problem.
Sharpe’s results also demonstrate the converse, that is, that a hybrid algorithm is only as good

as its operators are appropriate. Hybrids without mutation, on a mutation-easy problem do
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not fare well, for example.

Finding what the appropriate operators are for a given problem landscape is the subject
of [MF99]. Merz and Freisleben show that by analyzing properties of fitness landscapes,
appropriate representations and operators can be designed. However, the authors also note
that in many applications, different instances of the same problem have different landscape
properties which may makes the use of landscape metrics for predicting what operators to
use an unreliable approach. Despite this caveat, Merz and Freisleben do report that MAs
using the appropriate operators are the most effective algorithms on a number of N P-hard

problems.

Using hybrid algorithms which incorporate local search may improve efficiency too. For
example, Smith et al. [SDRWO00] note that in some applications, the evaluation of solutions
can be significantly accelerated if ‘delta evaluation’ is used. In local search approaches, where
each new solution differs only slightly from its predecessor, the fitness of the new solution can
be calculated by making a slight adjustment to the fitness of the predecessor solution to reflect
the small change made to the solution. This saves significant computation time compared
to doing a complete evaluation. This means that local search approaches have an advantage
over GA approaches on these applications, because GAs cannot typically make use of delta
evaluation; the crossover operator is too disruptive for it to be worthwhile. In the fixed
channel assignment problem, simulated annealing approaches are much more efficient than
GAs for this reason. However, in [SDRWO00], a hybrid GA which overcomes this problem, to
some extent, is proposed. It uses a crossover operator which tries to improve the better of a
pair of parents by swapping in individual genes from the inferior parent. This process is done
using a greedy search through the genes, using delta evaluation at each step. Smith et al.
obtained a large efficiency improvement using this hybrid approach compared to a standard
GA. On medium-sized problems the hybrid approach was found to be competitive with SA.

On large problems, however, SA remained more effective and efficient.

2.8 Summary

In this chapter we have seen that, despite a great deal of research in general-purpose opti-
mization, there is no such thing as a truly general-purpose algorithm that performs better
than others on all (real-world) problems, or that can even guarantee better average perfor-
mance than any other method over all problems. Moreover, it is not easy to predict which
algorithm will perform most effectively and/or efficiently on any given problem, or given in-

stance of a problem. Much theory and empirical investigation has been directed to classifying
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and quantifying various dimensions of problem features, and has tried to match these with
predictions of algorithm performance. However, to a great extent, it is still not possible to
make accurate predictions as to which algorithm(s) will perform best on a given problem
(instance). We have seen that on many problems, local-search based methods perform better
than population-based evolutionary methods, and that on a great number of problems, hybrid
methods also perform well. With this context in mind, we will later propose both local-search
and hybrid approaches for Pareto optimization, as alternatives to population-based MOEAs,
which are the dominant approach, today. However, before these contributions are presented,

a review of the current state-of-the-art in Pareto optimization is given in the next chapter.
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Chapter 3
Pareto Optimization

This chapter begins with a brief overview of multiobjective optimization and explains its
relationship to the more specific domain of Pareto optimization. Next, the general Pareto
optimization problem is formally defined, and some key concepts and notation are introduced.
A number of different approaches to general-purpose Pareto optimization are then reviewed,
and the themes of elitism and diversity control are considered. We also review the literature
on methods for testing, assessing and comparing the performance of multiobjective optimiz-
ers, and critically analyze a number of current approaches. Finally, we propose some new

performance metrics that will be useful in assessing the algorithms presented in this thesis.

3.1 Introduction and overview

When one thinks of optimization in general, or about well-known optimization problems, one
usually thinks about problems of minimizing or maximizing a single quantity or objective.
Indeed, with many optimization problems, one begins with the implicit assumption that all
candidate solutions can be ranked unambiguously' according to their cost or utility. The goal
of the optimization process is then well-defined: One must find the highest ranked solution(s)

possible.

But in real-world applications, problems with a single, well-defined objective to optimize
tend to be the exception rather than the rule. In finance, operational research, medicine,
engineering, design, planning, scheduling, timetabling and many other domains, the norm is

for problems with multiple and conflicting criteria. Often, problems with a single objective

! Albeit the evaluation of solutions may be subject to noise or uncertainty.



3.1 Introduction and overview

may express what is most important or fundamental about a task in these domains, and they
are a mathematical nicety, greatly simplifying the problem, but they are not a faithful model

of the real world.

Unfortunately, in a problem with multiple objectives, it is generally impossible to obtain a
total-ordering (a ranking) of all of the alternative solutions, without invoking further rules or
assumptions. This means that ‘pure’ optimization, in which an unambiguously best solution
is sought, may not be possible. This problem of ranking solutions arises whenever we must
compare two solutions that offer a different compromise of the different criteria — with
one scoring better on one criterion, and the other scoring better on another criterion. In
this situation, the decision as to which solution is actually better may become somewhat
subjective, or must rely on additional information, such as the ‘importance’ of each criterion.
In any case, the solutions cannot by ranked (totally ordered) by their evaluation alone. Thus,
in a broad sense, multiobjective optimization (MOOQO) really entails two entirely different tasks:
search and decision-making. Search is needed to find solutions, and decision-making is needed

for ranking them.

The study of methods for making choices between solutions that offer a different compromise
of criteria is a scientific and mathematical discipline in itself, separate from search, called
multicriteria decision-making (MCDM). MCDM essentially entails methods for scalarizing
the vector evaluation of a solution, so that a total ordering of solutions can be obtained, from
which the ‘best’ one can be chosen. Scalarizing methods in turn involve techniques for equal-
izing the ranges of different criteria, and for mathematically modeling the ‘preferences’ that
(human) expert decision-makers (DMs) have, when faced with making compromise choices
between solutions. For a concise but extensive overview of methods for performing MCDM,
see [Mie01].

In this thesis, we do not concern ourselves with methods for performing multiobjective op-
timization in the broad sense alluded to above. Rather, we are concerned only with what is
sometimes called vector optimization [Mie0l], or more commonly, Pareto optimization. This
is a pure optimization process, not involving any decision-making. In the next section we de-
fine Pareto optimization formally, but here we note that it is a purely mathematical concept
which follows directly as a consequence of the definite, total ordering of solutions that exists
in terms of each single objective taken separately, and the fact that we can always decide
which of two candidate solutions X and Y is better, if X is better than Y on one or more

objectives, and X is worse than Y on none.
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3.2 Concepts and notation

Definition 3.1 Multiobjective optimization is the process of finding one or more vectors
of decision variables that simultaneously satisfy all feasibility constraints and optimize a vector
objective function that maps the decision variables to two or more performance criteria or

objectives.

Definition 3.2 A decision vector (also solution) x = (z1,z2,...,%,), 18 a vector of
decision variables (also parameters), representing the numerical qualities for which values
must be found in an optimization problem. The variables may be integer, real, or a mixture.
The set of all decision vectors for a given optimization problem is called the decision space

(also parameter space), and is denoted by X.

Definition 3.3 The set of decision vectors (solutions) that satisfy all feasibility constraints

is called the feasible set, and is denoted X;.

Definition 3.4 The vector objective function f maps the decision vectors from the de-
cision space into a K-dimensional objective space (also criterion space) Z C RK,z =
f(x),f = (f1, fo,.--, fK),z2 € Z,x € X, where z may be called the objective vector, the

criterion vector, or, simply, the point.

Definition 3.5 The image of X; in objective space is called the feasible region in the
objective space and is denoted by Zy.

Definition 3.6 (Multiobjective Optimization — mathematical form)
“Minimize”  z = f(x) (3.1)
Subject to  x € X. (3.2)

Notice that the definition is in the minimization form. Of course, in general we may have to
either maximize all the objective functions, minimize all the objective functions, or minimize
some functions and maximize others. However, any objective function can be always be

converted from the minimization form to the maximization form, and vice versa since:

max (f;(x)) = —min(—f;(x)) (3-3)
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and
min(f;(x)) = —max(~ fi(x)) (3.4)

so that the optimization problem can always be stated as a pure minimization (or pure

maximization) problem.

In any case, the definition given above is not fully specified. The term ‘Minimize’ appears in
quotes to remind us that the exact meaning of the (vector) minimization must be specified

before optimization can be performed.

In order to find the minimum (or set of minima) of a set of (objective) vectors, it must be
possible to order them. To do this one must select a type of binary relation that can be used
to form a (partial) order between all objective vectors in Z. Many different order relations can
be used, including lexicographic order, component-wise order, and max-order. In this thesis,

only component-wise order will be considered, which forms the basis of Pareto optimization.

Definition 3.7 The component-wise order relation < is defined as: z' < z° = 2! <
22,i=1.K \Nz' # 2%

Definition 3.8 The weak component-wise order relation < is defined as: z' < z°> =
z} <z22i=1.K.

3.2.1 Pareto optimization

Definition 3.9 A solution x* € Xy is called Pareto optimal if there is no x € X such
that f(x) < £(x*). If x* is Pareto optimal, z* = f(x*) is called efficient. If x',x? € X; and
f(x') < f(x?) we say x' dominates x? and z' = f(x') dominates z> = f(x?). The set of
all Pareto optimal solutions x* € Xy is X*, the Pareto set. The set of all efficient points
z* = f(x*) € Z, where x* € X*, is Z*, the efficient set or the Pareto front.

Definition 3.10 For any two decision vectors x' and x2,

x! < x? (x! dominates x?) iff f(x') < f(x?) (3.5)
weakly dominates x?) iff f(x') < f(x?) (3.6)
x! ~ x? (x' is incomparable to x?) iff f(x') £ f(x?) Af(x*) £ f(x). (3.7

x! < x? (x!
1

Definition 3.11 A solution x € Xy is said to be nondominated with respect to a set
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X, C X} iff
Ax, € X,, x4 < X. (3.8)

In some circumstances it may be clear from the context which set X, is meant, in which case it
can be omitted. Often, the set X, is a set of solutions that has been found by a multiobjective

optimization approrimation algorithm.

Definition 3.12 Let X, C X and Z, = £(X,). Let the function ND(X,) return the set of

nondominated solutions from Xg:
ND(X,) = {xq, € X, | x4 is nondominated with respect to X,}. (3.9)
Similarly we define the function ND(Z,) as follows:
ND(Z,) = {z' € Z, | Az’ € Z, such that 2 < z'}. (3.10)

The set ND(X,) is the nondominated set with respect to X,; the corresponding set of
objective vectors ND(Z,) is the nondominated front with respect to Z,.

Definition 3.13 We define the following relations between a vector z° and a nondominated
front Z,q = ND(Z,q):

2’ < Zpg<—= Jz € Z,4, 2° < z, (3.11)
Zpg < 2% < dz € Z,,4, z < 2%, or in other words (3.12)
Zna < 2° <= ND({2°} U Zpq) = Zna N 2° &€ Zpna, '
2° ~ Zpg = 2" L Zpg N Zpg £2° N 2° &€ Zypg. (3.13)

Definition 3.14 Similarly, we define the equivalent relations between a solution x® and a
nondominated set X,q = ND(X,q):

x? < Xpg <= Ix € Xy, x* <x, (3.14)
Xpd <= X% <= Ix € X,,q, X < X% orin other words (3.15)
Xpg < x% <= ND({x*} U X,q) = Xpa A X% € Xy, '
X'~ Xpg <= x4 £ Xpa N Xpa AxX N X & Xy (316)

Note 3.1 The notation and concepts presented here are not unique in the literature. Un-

fortunately, there has not been a common standard in describing these concepts, adopted by
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all. Howewver, in this thesis, the notation, wording and meanings defined above will be used
wherever possible. But, in describing other authors’ work we may adopt their notation tem-
porarily in order to make direct quotation of their work possible. In this case, a footnote

acknowledging the change in notation will be included.

3.3 Approximating the efficient set

In Pareto optimization, the optimization goal is to find the global Pareto set of solutions, or
alternatively, the efficient set of points. The latter is usually sufficient because we would not
normally require more than one solution having identical attributes. In any case, given any
reasonably large N P-hard problem, this optimization goal cannot be reliably achieved using
an exact algorithm. Thus, as in scalar optimization, the problem will be to find solutions
that approximate this ideal, in a reasonable amount of time. But, it is not so clear how
to judge the quality of an approximation to the optimization goal in Pareto optimization,
as this involves measuring the quality of a set of solutions (or points) and comparing this
with the desired, global Pareto set (or efficient set). One means of judging the quality of an
approximation to the efficient set might be to measure the number of true efficient points
found, and compare this with the number in the efficient set. Of course, this assumes that
the efficient set is known, which it may not be. However, even if it is known, this measure of
quality cannot differentiate between two different sets where neither contains a single efficient
point. Considering this, we might argue that we need to measure the distance of the discovered
points from the efficient set, in objective space. But doing this is not trivial because it will
necessarily involve combining measures in completely different objectives. Furthermore, even
if the distance is zero by this measure (on average over the solutions found, say) it does
not differentiate between different numbers of solutions being discovered, or how they are
distributed along the Pareto front. Thus, we can see that distance from the Pareto front
does not alone capture the quality of an approximation to the efficient set: some means of
measuring the distribution of nondominated points found is also required. From this, we
can see that Pareto optimization has at least two separate dimensions of success: distance of
points from the Pareto front; and distribution along it. Thus, algorithms for approximating

the Pareto front should aim to address both these issues.
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3.4 General-purpose Pareto optimization schemes

In Pareto optimization, only a partial ordering of solutions is available, resulting in three al-

ternative methods for carrying out selection in an EA or other search metaheuristic [Hor97b]:

1. Consider just one objective in isolation, each time a solution is evaluated for selection.

This method is known as criterion selection.
2. Utilize the partial ordering directly to perform selection. This is Pareto selection.

3. Scalarize the different objectives, using a parameterized function, and vary the pa-
rameters such that a diverse set of solutions may be found. This is called scalarizing

selection.

3.4.1 Criterion selection

The first, pioneering work in the evolutionary multiobjective optimization (EMOO) field was
Schaffer’s vector evaluated genetic algorithm (VEGA) [Sch84]. Its selection scheme worked
by building up the intermediate population in fractions. Each fraction of the intermediate
population was selected from the current generation using a different component of the objec-
tive vector to assign fitness. VEGA works well, although it has a tendency to favour extreme
solutions to the detriment of solutions that represent a compromise of the different objective
attributes, particularly when the shape of the Pareto front is non-convex. Two other EAs
used criterion selection: a tournament selection method based on comparing pairs of individu-
als on one chosen objective was proposed by Fourman in 1985 [Fou85], and, in 1991, Kursawe
devised a method based on deleting the worst-performing fraction of the population accord-
ing to one objective at a time [Kur91]. Both methods are discussed in more detail in [FF95].
Criterion selection has not gained much popularity since these early algorithms because other
methods of selection seemed to exhibit better behaviour. However, some new methods based

on different forms of criterion selection have been recently devised [GETA99, SB0O0].

3.4.2 Pareto selection

Selection mechanisms based on Pareto dominance relationships have been the most prevalent
in the population-based algorithms used in the EMOO community. In 1989, Goldberg [Gol89]
first suggested an elegant method of ranking a population of solutions, based on their mutual

dominance relations. His nondominated sorting method effectively ‘peeled off’ Pareto fronts
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one at a time from the population, assigning maximum fitness to all those solutions in the first
layer, and progressively less fitness to successive layers. The nondominated sorting method
was implemented in an algorithm, NSGA, by Srinivas and Deb [SD94] in 1994. The NSGA
has since been one of the most popular and successful methods in EMOO and fuelled interest
in the field. Similar methods of selection, based on Pareto ordering of solutions, have been
devised by Fonseca and Fleming [FF93], Horn and Nafpliotis [HN93], and others.

These population-based algorithms all exploit the knowledge in the whole (or a sample) of
the population in order to perform selection. This is achieved by performing many domi-
nance comparisons between solutions in order to compute fitness. The advantage of such
an approach is that the current store of solutions is being used to drive the search towards
the Pareto front in all directions simultaneously. This is because newly generated solutions
are judged by their dominance relationships with all other solutions. Commonly, speciation
methods are also used to ensure that an even and diverse spread of points across the inter-
nal Pareto front is achieved, further increasing the efficiency and efficacy of these methods.
The disadvantage of this approach is the high computational cost of performing so many
comparisons, particularly when large populations are involved, or there are many objectives.
However, this criticism is often dismissed using arguments that, in most real-world appli-
cations, the cost of comparisons is irrelevant compared to the time expended in evaluating

solutions.

In single-point search methods, there has been little use of Pareto selection. This is because
only two solutions, the current and candidate (mutant) solution, are compared at each step.
Frequently, pairs of solutions (x,x’ € X) will be nondominated with respect to each other.
That is, neither is better than the other on all objectives. Thus, it is not possible to judge
accurately which of the current and mutant solutions is better, and much of the selection

pressure may be lost.

3.4.3 Scalarizing selection

The advantage of using scalarizing functions, in which the vector of objectives is mapped to a
single objective value, is that standard selection or acceptance mechanisms can then be used
without modifications. This has led to the great popularity of the approach in the operations
research and multi-criteria decision making (MCDM) communities. Adaptations of both tabu
search [GF98, GMF96, Han97b], and simulated annealing [CJ98, Ser94, UTFT99] have used
these methods. Most of the methods store the internally efficient solutions found but they
are not used further in the search. In most of the algorithms, a random weighting of the

scalarizing function is simply chosen at each step, and the new solution generated is accepted
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or rejected according to its utility on this measure compared with the current solution. This
method does not take advantage of the information from the previously found solutions, nor
does it direct the search in any particular direction. These factors seem to suggest that such
an approach would be inefficient compared to the latest elitist Pareto MOEAs, but there is

little empirical evidence of this fact, to date.

Some researchers argue that the use of such scalarizing vectors more naturally allows the
preferences of the decision maker to be used to guide the direction(s) of the search towards
the region(s) of interest (see for example [CJ98]). This may be true, although good methods
for directing the search towards desirable regions of the moving Pareto front within Pareto
ranking methods are now available [Deb99b, PCWBO00]. Also, the use of randomly selected
utility functions in the absence of such preference information, as used in many of the MCDM

algorithms, seems wholly unsatisfactory.

Examples of the use of scalarizing functions are few in population-based Pareto optimiza-
tion approaches. Hajela and Lin [HL92] proposed a GA using weighted-sum aggregation of
objectives. In their method, the parameters of the weight vector were encoded on the chro-
mosome, thus cleverly providing an implicit mechanism for maintaining diversity in objective
space. Later, Bentley and Wakefield [BW97] put forward and tested a number of different
weighting schemes for providing a sub-set of Pareto-optimal solutions. But these methods
have not caught on, and in the case of [HL92], there is now some evidence that this approach
is less efficient than some pure Pareto EAs [ZDT00]. More recently, however, memetic al-
gorithms for multiobjective optimization put forward by Ishibuchi and Murata [IM96] and

Jaszkiewicz [Jas98] has also used linear scalarizing functions.

3.4.4 A two-dimensional classification of methods

If we consider the choice between the different strategies of selection outlined above on the one
hand, and the choice between local-search, population-based, or hybrid (memetic) approaches
on the other, we can obtain a broad, two-dimensional classification of general-purpose Pareto
optimizers. Table 3.1 presents such a classification for some of the methods reviewed in this

chapter.

From Table 3.1, it is possible to gain an appreciation of the relationships between different
methods of Pareto optimization. The popularity of Pareto-based EA approaches, represented
in the top left element of the table, is clearly visible. These methods have been successfully
applied to many problems in the EMOO literature. However, very little comparison has been

carried out between them and methods in other regions of the table. Thus, nothing is really
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Pareto Scalarizing Criterion
Selection Selection Selection
MOGA [FF93] GA with weights on VEGA [Sch85]
Population- | NPGA [HN93] chromosome [HL92] ES [Kur91]
-based | NSGA [SD93] Weighting schemes Parallel ES [SB0O0]
approaches | SPEA [ZT98b] for GAs [BW97]
PESA [CKO0]
NSGA-II [DAPMOO0b]
Memetic | M-PAES [KC00c] MOGLS [IM96] -
approaches RD-MOGLS [Jas98]
(141)-PAES [KC99b] | Multiobjective SA [Ser94] | -
Local- | Other PAES A TS procedure [GMF96]
-search | variants presented MOTS [Han97b]
approaches | in this thesis Pareto SA [CJ98]
MOSA method [UTFT99]

Table 3.1: Some of the general-purpose methods for Pareto optimization, classified by selec-
tion mechanism and overall search strategy.

known about the relative performance of the Pareto EAs and the scalarizing local-search

approaches, for example.

Scalarizing selection and criterion selection are less popular in EAs than Pareto-based ap-
proaches and there is some evidence that Pareto EAs are more effective and efficient than

EAs based on these other selection strategies, on some problems at least [ZT98b].

Scalarizing selection has been used in a number of local-search and memetic approaches,
mainly proposed by researchers from the operational research (OR) community, and have
been applied to various combinatorial optimization problems. However, criterion selection

has not, to our knowledge, been used in anything other than EAs, to date.

The methods proposed in the following chapters of this thesis, namely PAES and M-PAES,
complete the table. They use Pareto selection in a local-search and memetic approach, respec-
tively, and to our knowledge are unique in doing so. They are methods whose performance
can be directly compared with today’s Pareto-based EAs, which should contribute to greater
understanding as to the (types of) problems where local-search and hybrid approaches might
be effective. In future work, these algorithms may also be compared with the local-search

scalarizing selection methods of the OR community.
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3.5 [Elitism in multiobjective evolutionary algorithms

Elitism is the retention of good parents in the population from one generation to the next,
to allow them to take part in selection and reproduction more than once and across genera-
tions. Elitism in (single-objective) GAs was investigated as far back as 1975 by Kenneth De
Jong [DeJ75] according to Eshelman [Esh97]. Evolution strategies used what would now be
called an elitist strategy from their beginning (1971) [JFS97], although in the terminology of
ESs it is called a plus selection strategy; non-elitist comma selection strategies came slightly
later in 1974-1975 [JFS97].

The concept of elitism may be simple but there are many different instantiations of it, and
all of them have slightly different goals and effects. In generational GAs, elitism can be in-
corporated by selecting deterministically the best individual(s) in the population and placing
a copy (copies) into the next generation. Then the remainder of the next generation popu-
lation are produced in the normal way using some stochastic selection scheme, mating, and
reproduction. In steady-state GAs [Whi89, Sys89], the concept of “a generation” is softened
because only one mating is allowed per cycle. Thus, almost all of the population members last
for multiple “generations”. In some respects, this means that steady-stage GAs are elitist:
they have the property, as in generational elitist GAs, that the best fitness in the population
monotonically increases over time. But, in another sense, steady-state GAs are not strictly
elitist because they do not bias the reproductive selection towards the best parents, instead
they bias the replacement selection to the worst parents, ensuring that the best (and many

other population members) will last for many cycles.

The first multiobjective evolutionary algorithms employing elitism seem to have appeared
at approximately the same time as MOGA, NSGA, and NPGA were put forward, around
1993-4, judging by Horn’s comprehensive review of the MOEA field [Hor97a], although Kur-
sawe [Kur91] proposed a (1+1)-ES for vector optimization in 1991. In Horn’s terminology,
“Pareto elitist selection”, means dividing the population into two ranks: the dominated and
the nondominated, and biasing the reproductive selection towards the nondominated individ-
uals. According to [Hor97a], Belegundu et al. [BMSC94] use selection from the nondominated
individuals only, whereas Tamaki et al. [TMA95] use a mixed strategy based on copying the
nondominated individuals into the next generation, and using criterion selection to make up
the remaining individuals. Takada et al. [TYK96] apply mutation and recombination first
to generate an intermediate population and then make the new population by selecting only

nondominated individuals from among the old and intermediate populations.

In other elitist MOEAs, the strategy of elitism is combined with the maintenance of an
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‘external population’ of solutions that are nondominated among all those found so far.
Horn [Hor97a] considers such an external population is essential to any MOEA implemen-
tation, and this view is echoed by Veldhuizen [Vel99]. However, there are many ways to
incorporate elitism with the external population. Cieniawski et al. [CER95] seem to be the
earliest exponents of using the external population as part of an elitist strategy, rather than
simply as a repository of discovered solutions [Hor97a]. In their MOEAs, members of the ex-
ternal population are re-injected into the population, replacing randomly selected individuals.
Zitzler [Zit99] notes that some slightly later schemes [AL96, ALG96, MIT96, TS97] control
the amount of elitism by selecting just the best k individuals from the current population to

survive to the next generation.

Unfortunately, many of these early elitist MOEA schemes were largely unread by researchers
in the EMOO field, at least until Horn’s review in 1997 and the theses of Zitzler and Veld-
huizen in 1999. Thus there was little real investigation of the effects of these different strate-
gies until very recently. The first elitist MOEA paper to be published in the more mainstream
evolutionary computation literature did not appear until 1998 [PM98]. In this paper, Parks
and Miller describe a MOEA that maintains an ‘archive’ of nondominated solutions, similar
to an external nondominated set, but limited in size. They only archive members of the
main population into the archive if they are sufficiently dissimilar from any already stored.
Reproductive selection takes parents from both the main population and the archive. Parks
and Miller investigate the effects of different degrees of selection from each, and also differ-
ent strategies for selecting from amongst the archive, including how long individuals have

remained there.

Recently, some theoretical justification for the use of elitism in MOEAs was given in a con-
vergence proof by Rudolph [Rud98a], although Hanne [Han99] notes that selection strategies
where global convergence cannot be proved may work better in practice than those where

convergence can be proved.

The most well-known elitist MOEA, SPEA [ZT98a] developed just prior to much of the work
in this thesis, has been shown to be very effective on a range of test problems [ZDT00]
and combinatorial optimization problems [ZT99], compared with other non-elitist MOEAs.
Zitzler also formulated a general framework (or unified model) for elitism in MOEASs in his
PhD thesis [Zit99], that has since been extended in [LZTO00b].

Even more recently, Deb et al. put forward an elitist and more efficient version of Srinivas and
Deb’s NSGA [DAPMOOb]. Comparison of the new NSGA-II against PAES and SPEA on five
test functions seems to show that the new algorithm performs well in terms of both distance

from the true Pareto front and also the distribution of nondominated vectors found. However,
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the results are questionable in one respect. Deb uses a real-valued mutation operator in
NSGA-IT and does not extend this to either PAES or SPEA. This could explain why NSGA-
IT gets closer to the Pareto front than PAES or SPEA.

The elitist models of SPEA, NSGA-II, and those presented in this thesis — PAES and M-
PAES — as well as PESA [CKO00] have been used to tackle a variety of problem domains and
it is now more generally accepted that elitism in multiobjective search is at least as important
as in scalar optimization. With this advance, the problem of controlling elitism in MOEAs
is now coming under closer scrutiny. In [DGOO0], Deb et al. investigates a method in which
a set number of solutions are placed in each equivalence class at each generation so as to
control the elitism. This is shown to improve the convergence properties of NSGA-IT on some
constrained test functions. And using the unified model developed by Zitzler, Laumanns et
al. [LZT00a] investigate various (elitist) selection schemes, diversity maintenance techniques,
and mutation strengths. They find that mutation strength and elitism are strongly linked:
elitist MOEAs work well with a higher mutation strength, whereas non-elitist MOEAs only

work effectively with a relatively lower rate.

3.6 Obtaining a well-distributed approximation set

In section 3.4 we identified a number of different ways to undertake Pareto optimization. In
particular, different methods were broadly classified based on whether search was population-
based or based on local moves, or a hybrid of the two, and by the type of selection strategy
used. These different approaches to the Pareto optimization problem should all aim to obtain
a ‘well-distributed’ approximation to the true efficient set. However, the different features of
the approaches mean that for some of them, obtaining diverse points in the nondominated
front does not require any additional mechanisms explicitly for this purpose. For example,
in a strategy where a standard (single-objective) GA is run multiple times using a different
weighted scalarization of the objectives, additional techniques for diversity maintenance may
not be required at all. Similarly, local-search methods based on scalarizing selection do not
need niching mechanisms because the use of diverse scalarizing vectors already encourages
finding diverse points in the objective space. Indeed, some researchers in the MCDM field
regard it as a weakness of Pareto selection-based MOEAs that explicit niching is required
to make them work [Jas98]. Nonetheless, in the field of evolutionary multiobjective opti-
mization, Pareto selection genetic algorithms employing some form of diversity maintenance
technique have been by far the most popular algorithms in the literature [Vel99]. Thus, in

the following we focus mainly on the important issue of niching methods for use in Pareto
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MOEAs, before giving a brief discussion about diversity mechanisms used in other Pareto

optimization methods.

3.6.1 Niching and diversity maintenance in EAs and MOEAs

In natural evolutionary ecosystems, competition does not exist primarily between different
species; it exists within environmental “niches”, which are believed to be the cause of the
different species forming, and thus the cause of the diversity of life within the ecosystem. The
different niches can be viewed as different local optima in a multimodal fitness landscape, and
the different species evolve around these different peaks. Thus researchers in EAs interested
in multimodal optimization, view speciation as a valid means of maintaining diverse solutions

so that multiple optima can be explored.

The need for some form of diversity promotion or maintenance in EAs is related to the
general exploitation/exploration tradeoff that must be balanced in all search and learning
systems. Selection in EAs “drives the population toward a uniform distribution of N copies
of the most highly fit individual” [Hor97b]. This can lead to premature convergence to a
suboptimal solution, so that diversity maintenance is also important even when only one
(optimal) solution is desired. Maintaining diversity in the face of selection pressure helps
to avoid genetic drift [AM94], where the population converges towards a less fit region from
multiple similarly fit sampled regions, through stochastic sampling effects (errors) in the

selection procedure.

Many mechanisms for promoting speciation and the maintenance of diversity have been pro-
posed and studied in the literature. Before describing these, we can identify several features
or dimensions of quality of the different approaches:

1. Time complexity — particularly in terms of the population size.

2. Selection pressure and the exploration/exploitation tradeoff.

3. What the measure of diversity is: genotypic vs phenotypic in EAs, and different tradeoffs
in objective space in MOEAs.

4. Accuracy and stability — how closely the method approaches the desired number of
solutions on each optimum (usually related to the fitness of the optimum) and how

stably it maintains these numbers as selection continues i.e. in the steady state.

5. Robustness to optima of different sizes and shapes, and to optima distributed non-

uniformly in the search space.
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6. Parameterization/self-adaptiveness. How much a priori knowledge is needed about
the size, position and number of optima in the solution space in order to apply the
technique, how many parameters need to be set, and how much robustness is there if

parameters are not set accurately.

The schemes of crowding and its close relative, preselection, are two of the oldest methods of
maintaining population diversity under selection pressure in EAs, dating back to 1975 [DeJ75]
and 1970 [Cav70], respectively [MG92]. Crowding is used in EAs that employ a generation
gap, i.e., only a fraction of the population reproduces and dies in each generation. (Both
steady-state EAs and generational EAs are just special (extreme) cases of EAs with a gener-
ation gap.) In a generation gap EA, after reproductive selection and reproduction, parents
from the previous generation must be selected for replacement by the newly generated off-
spring. In crowding, the idea is that offspring should replace parents that are most similar to
them, to maintain diversity. This is achieved by sampling the parent population and finding
the closest parent from the sample to die, for each offspring generated. Originally, the simi-
larity between individuals was measured as the Hamming distance between them - which can
be viewed as maintaining genetic (bit-wise) diversity, which Mahfoud and Goldberg regard
as of questionable value [MG92]. Crowding requires a fairly large degree of computational
overhead to measure the Hamming difference between many pairs of individuals. The amount
of computation is controlled to some extent by a parameter, the crowding factor C'F', con-
trolling the size of the sample used for choosing parents to replace. However, low values of

CF cause stochastic sampling errors and instability [MG92].

Preselection uses a similar idea to crowding but has a much lower computational overhead.
The idea is that children should replace their parents, since one could estimate that a parent
would be one of the members of the population most similar to the new offspring. This can
be instantiated in a number of different ways. According to [MG92], one of the best methods

of preselection is for the offspring to replace the parent with the lowest fitness if it is fitter.

Better than either of these methods, though, is a kind of combination of them put forward by
Mahfoud [Mah95], called deterministic crowding (DC). In DC, all members of the population
are paired up randomly to take part in recombinative reproduction, i.e., there is no repro-
ductive selection pressure. Each pair of parents then produces two offspring. FEach offspring
then competes deterministically against one of its parents. Which of the two possible ways of
pairing up the offspring with the parents to execute this competition is chosen, is determined
by minimizing the sum of the absolute differences between parents and offspring. Mahfoud
recommends normalized phenotypic distance as the measure of difference, where available.

Deterministic crowding has several advantages: it is of low computational cost; it has high
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accuracy as measured by the number of peaks it can maintain, and the number of replace-
ment errors it makes; it has no niching-specific parameters, and it adapts itself to the number
of peaks in a multi-modal landscape. On the negative side, DC, has low selection pressure
compared to some other methods and because it has no parameters, this cannot be adjusted,
except by changing the population size. In some applications this may be a disadvantage.
Given the history of crowding and the advances made by Mahfoud, it is surprising that it is
“rather seldomly implemented in MOEAs” [Zit99]. This may be due to the greater theory

and exposure related to fitness sharing, considered next.

Fitness sharing is a mechanism whereby the reproductive fitness allocated to an individual
in a population is reduced proportionately to the number of other individuals that share the
same region of the fitness landscape. In other words, fitness is a resource which is shared

amongst the individuals competing in the same niche.

In explicit fitness sharing [GR87], the original fitness allocated to an individual is scaled using

a sharing function:
F(i)

SN sh(d(i, 5))

where F'(7) is the adjusted fitness of individual 4, F(7) its original fitness, N the population

F'(i) = (3.17)

size, and sh(d(i, 7)) is the share value given by:

1 (4G9) Csh if d(i, i) < o,
sh(d(i, 7)) = (%h) ' @J? Tsh
0 otherwise

(3.18)

The share value is a function of d(i,j), the ‘distance’ between i and j, and oy, the niche
radius, a parameter setting the radius over which one individual can affect the fitness of
another. The parameter «gj, affects the shape of the sharing function. It is often set to one,

yielding the ‘triangular’ sharing function.

Sharing may be genotypic, where the d function is a suitable distance function (e.g. the Ham-
ming distance) between two strings, or phenotypic where d should measure some meaningful
property of the phenotype. In multiobjective optimization, it may be more appropriate to
somehow measure the distance in the multidimensional objective space, i.e. based on where
individuals map to in objective space. This will encourage an even distribution of points

along the Pareto front.

Explicit fitness sharing has been used widely in multiobjective EAs. The NSGA [SD93] uses
phenotypic fitness sharing, whereas Horn and Napfliotis’ NPGA [HN93] is usually used with

sharing in the objective space. Horn and Napfliotis explain how to size the niche radius
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in the NPGA based on knowledge of the best and worst values in the search space of each
objective [HN93]. However, the lower bound calculation is stated wrongly since Horn says
that the “minimum length [area] Pareto frontier is the hyperplane connecting these extremes.”
This is clearly not true. The minimum area of the Pareto frontier is zero, since in the limit
one lone solution may dominate all others in the space. Small Pareto frontiers tend to occur
in problems where there is a strong positive correlation between the values of the different
objectives. Thus, these calculations for sizing the niche radius in objective space may not
work well in the case of positively correlated objectives. In actual fact, one needs to know

the extreme values of the Pareto front in order to size the niche radius correctly.

The problems with explicit fitness sharing include its O(N?) time complexity, and the diffi-
culty of setting the niche radius correctly. Several new explicit fitness sharing schemes have
been proposed which may reduce problems with the latter by using an adaptive niche radius,
including [MJ96, GW00]. However, these have not been used in MOEAs to date.

Fitness sharing may also be ‘resource based’, where reproductive fitness is allocated in pro-
portion to the amount of resources (or credits) an individual obtains. The resources available
for individuals to collect are finite so that individuals qualifying for a given resource must
share it between them, based on their relative ‘rights’ to it. Resource based sharing has
been recently used successfully in a MOEA called the evolutionary local selection algorithm
(ELSA) [MDSO00]. This algorithm is particularly effective at covering the full extent of the

Pareto front.

The strength Pareto evolutionary algorithm (SPEA) [ZT98b] is the first MOEA to employ
clustering for diversity maintenance. The external population in the SPEA is limited in
size and must be periodically reduced. To perform this reduction a standard clustering
algorithm is used, which clusters the members of the external population in the objective
space, and removes individuals from the densest clusters. Clustering may have the advantage
over sharing because it is more flexible and adaptive, requiring less knowledge of the size and

shape of the Pareto front.

There are a few other approaches to promoting and maintaining diversity in a population
which have seen little application in multiobjective optimization. Spatially structured popu-
lations and/or island models, where mating is restricted to individuals that are close to one
another geographically, can encourage the formation of niches. Mating may also be restricted
to individuals that are phenotypically similar [SD93]. This has been used recently in the
RD-MOGLS algorithm [Jas98] to solve multiobjective travelling salesman problems. Finally,
multiploidy [CCR96, Kur91, YA94], where the loss of genetic diversity is prevented by storing

information which may not be expressed, has not been investigated at all in MOEAs.
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3.6.2 Encouraging diversity in methods based on scalarizing selection

In Pareto optimization approaches based on scalarizing selection, diversity of the discovered
objective vectors is encouraged by varying the parameters of the scalarizing function. In some
methods, such as CHESS and MOSA method [UTFT99, Bor00], search is carried out using
multiple runs, with each run using a particular parameterization of the scalarizing function.
In other methods, such as MOGLS [IM96], the weight vector is varied during a run. In all
of these approaches, however, the direction of search (specified by the scalarizing function’s
parameters) does not respond to the evolving distribution in objective space, of the discovered
nondominated points. Thus, it is quite possible that some regions of the objective space will

become much more densely populated than others.

Two approaches that use a reactive specification of search directions, to encourage a more
even distribution of points, are the tabu search procedure of Gandibleux et al. [GMF96], and
the Pareto simulated annealing algorithm put forward by Czyzak and Jaszkiewicz [CJ98].
In the former, the scalarizing weights are updated after each iteration of the tabu search.
The weights given to objectives where a large improvement has occurred in the last ‘move’
are reduced, whereas the weights given to objectives where the improvement is small or no

improvement has occurred are given a larger weight in the next iteration.

In Czyzak and Jaszkiewicz’ Pareto SA algorithm, each member of a population uses a simu-
lated annealing-style acceptance function to search in its neighbourhood. Each member has
its own scalarizing weight vector to specify the direction in which it is trying to improve.
Initially, the weight vectors are set randomly. However, the weights of an individual x are
updated at each iteration, in order to increase the probability of moving it away from its
closest, nondominated neighbour in the population, x’. This is achieved by increasing the
weights of the objectives on which x is better than x’, and decreasing the weights on which

z is worse than x’. This will tend to evenly distribute the vectors in each equivalence class.

3.7 Where to go from here

In the previous sections we have reviewed some of the key steps in the development of modern
MOEAs, and considered the important elements of these algorithms. We have seen how the
early algorithms employed different selection methods for dealing with the multiple attribute
values, and how the successes and failures of these early schemes affected the direction of
the field. Pareto selection quickly became easily the most prevalent of selection methods

in the evolutionary camp, with the most popular schemes proposed by Srinivas and Deb,
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Fonseca and Fleming, Horn and Napfliotis, and most recently, Zitzler and Thiele. In the
MCDM community, however, parameterized scalarizing selection has been favoured, probably
because scalarizing methods are routinely used in the decision-making process to convert the
DM’s preferences into a single value of utility. Using their expertise with scalarizing methods,
it was simple to convert well-understood local search algorithms such as SA to work with
multiple attribute values. Thus, although within the evolutionary camp, Pareto selection is
most popular, and believed by some to be superior to other selection schemes, this view is
not implicitly accepted by the MCDM community. It remains an important avenue of future
research for the two communities to take a closer look at these selection methods, and to

compare their performance on a variety of problem types.

Shortly after the first MOEA schemes were proposed, methods for niching became important
to the mainstream evolutionary field for multimodal optimization. It was quickly appreciated
that these methods could also be vital for multiobjective optimization, and they were incor-
porated into the MOEAs put forward in the early nineties. Explicit fitness sharing has been
the most prominent method for niching in MOEAs but it suffers from two problems: it can
be difficult to set the parameters and it is computationally expensive. Further work should
focus on methods more suited to the particular needs of niching in objective space; adapt-
ing automatically to the size of the Pareto front and minimizing the number of comparisons

necessary between solutions.

The incorporation and control of elitism has been the most important issue concerning the
EMOQO field in more recent years. We have seen how elitism in multiobjective search is not
merely a question of keeping the best solution(s) from the current population; it is more
concerned with the interaction between the current nondominated solutions, and the repro-
ductive population. Most of the new MOEAs maintain nondominated solutions in an external
store and this may be used to re-insert solutions into the population, or they may take part
in selection. A number of different elitist schemes have been investigated but the issue of
controlling the size of the external store has not been investigated very thoroughly to date.
Zitzler's SPEA uses a computationally expensive clustering algorithm to reduce the size of the
external population periodically to allow a bounded population of nondominated solutions
to take part in reproduction. The RD-MOGLS algorithm of Jaszkiewicz, which has demon-
strated good performance on the multiobjective knapsack problems used by Zitzler [Jas00],
works by using a large queue to store the nondominated solutions found, and then works with
a small selection of these to search in a particular direction The computation time needed
to search through this queue to select the mini-population may become very large, however,
if the queue is large. If the queue is smaller it may not be a good representation of the

current Pareto front. Since it now seems that MOEAs will use such external stores in real
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applications, it is time that the computational issues of maintaining this store, and keeping
it down to a reasonable size, whilst ensuring it represents a diverse, well-distributed set of

solutions in the current nondominated front were investigated.

Whilst the issues of selection, niching, and efficient storage of nondominated solutions are all
important areas which need continued research, a more important issue may be to investigate
under what circumstances current MOEAs are really more effective, efficient, robust, and
easy to use than other methods. MOEAs have not been compared, historically, with either
random search or simple hillclimbing methods, on real search spaces of interest. Bucking this
trend, Zitzler did compare SPEA and several other MOEASs to random search in his recent
investigations of the Deb test functions. This is encouraging, particularly as the results
did clearly indicate that all of the MOEAs outperformed random search on this test suite.
This kind of verification should also be repeated on other test functions and also real-world
problems, to extend this result to a broader range of domains and problem features. However,
hillclimbing algorithms may be more formidable opponents to EAs than random search is, as
we have seen in single-objective optimization. If the evidence of single-objective optimization
is anything to go by, hillclimbers may be effective even in unexpected domains, and certainly
wherever the search space is not strongly epistatic, noisy, or deceptive. This would suggest

that MOEAs should really be compared against some sort of hillclimber in the future.

Comparisons of this type may be useful in attaining several important goals for the future
development of EMOO:

- to learn which existing problems can be tackled most effectively using current population-
based MOEASs;

- to learn to predict which problem features tend to suggest the use of current MOEAs

is appropriate, and which suggest simpler techniques may be more effective or efficient;

- to stimulate the design of better test functions which can differentiate between different

algorithm strengths and weaknesses;

- to investigate whether the generally different topology of multiobjective landscapes may

affect the relative merits of local and population-based search;

- and to facilitate the design of more diverse evolutionary algorithms based on local

search, or hybrids with a local search element.

A Pareto multiobjective analogue to a single-objective hillclimber, against which MOEAs
could be compared, would only usefully serve these goals if it met certain design criteria, how-

ever. Overall, hillclimbers are simple; computationally, they do little work between function
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evaluations, they use only minimal domain knowledge (for the design of the neighbourhood
operator), they can be applied with little effort to a wide range of applications, and they
have very few parameters to set or adjust. Despite their simplicity they give good search
performance on many problems of interest (better than random search). These attributes of

a hillclimber should be maintained, as much as possible, in a Pareto hillclimber.

Good search performance in a multiobjective optimizer necessarily means that a single algo-
rithm run would return a diverse, well-distributed nondominated set of solutions. One method
for achieving this in a Pareto hillclimber may be to use parameterized scalarizing selection in
a standard hillclimber, and to store all the solutions encountered during an algorithm run.
This would be simple to implement, and computationally inexpensive but using scalarizing
selection may not meet the design criteria for other reasons. When using scalarization, the
objectives have to be appropriately scaled, and their ranges equalized prior to starting the
algorithm. If linear scalarizing is used then concave regions of the Pareto front cannot be
found. On the other hand, if Tchebycheff utility functions are used then it is necessary to
know some ideal point. These considerations mean that it would be better to specify the use

of Pareto dominance in the acceptance function.

3.8 Multiobjective problems

As in scalar optimization, multiobjective optimization problems can be broadly divided into
three categories: discrete or combinatorial optimization problems; continuous problems; and

those that are a mix of discrete and continuous variables.

A very thorough and extensive review and classification of problems and methods for multiob-
jective combinatorial optimization (MOCO) is carried out in [EGO00], where twenty different
multiobjective combinatorial problem structure types are identified and over 350 papers are
cited. References to fifteen design and engineering problems are given in [Deb99a], including
those of a continuous and mixed nature. Coello considers eight design/engineering problems
in his thesis [CCH98], seven of which are continuous and one of which is combinatorial in
nature. As well as these real-world problems, there also exist a number of test functions for

multiobjective optimization. These are discussed in more detail below.
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3.9 MOEA test functions and problems

MOEA performance has been demonstrated, historically, on several, quite simple test func-
tions, which were proposed along with the seminal algorithms of the field, including those
of Schaffer [Sch85] and Fonseca and Fleming [FF94]. More recently, the way in which these
functions have been used for testing MOEAs has been brought into question [VL99, Deb99a].
Veldhuizen noted in 1999 that of the thirty test functions which had been used in the liter-
ature, all but three used at most two decision variables and most were two-objective prob-
lems [Vel99]. He concluded that: “...MOEA performance claims/comparisons based on
these functions may not be meaningful.” Veldhuizen also noted that the rationale of the test
functions used was often unstated and unclear. To improve this situation, he classified the
existing test functions along a number of important dimensions, allowing researchers to use
these functions more intelligently [Vel99]. In addition, a test suite consisting of a number of
these functions was proposed that, when taken together, exhibit a range of different charac-
teristics and “form a coherent basis for MOEA comparisons”. Veldhuizen discretized these
problems to a certain level of resolution and solved them through exhaustive search using
powerful supercomputers. Thus for these problems, it is now possible to compare results

directly with the true Pareto set and Pareto front, up to this resolution.

Deb’s article [Deb99a], approaches the test suite design problem from the other direction from
Veldhuizen’s. Rather than classifying available functions in terms of their characteristics,
Deb proposes that certain problem features should be identified first, and test functions
which isolate these features should then be designed. He notes that few studies have tried to
identify those specific problem features which might cause difficulty to a MOEA, and argues
that test problems based on such features may enable better comparison of MOEAs with other
methods, better understanding of MOEA working principles, and facilitate improvements to
current algorithms, as good test suites have in single-objective optimization. The article
identifies problem features which may cause difficulties in three areas: convergence towards
the Pareto front, maintenance of diversity, and constraint-handling. A generic two-objective
optimization problem is then proposed which allows the identified problem features to be
introduced in a controlled manner. A sample of problems which may form a basic test suite

is also given.

The test function suites of Deb and Veldhuizen begin to address the needs of the MOEA com-
munity to test their algorithms effectively. However, both of them also note the limitations
of the use of purely numerical function test suites, and encourage more use of combinatorial

and real-world applications for testing MOEAs.
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3.10 An introduction to performance assessment and compar-

ison

Assessing and comparing the performance of heuristic search methods is always difficult be-
cause performance is a multidimensional attribute: solution quality; computational effort; and
robustness may all be important [BGK*95]. However, performance assessment in MOEAs
is even more difficult because there are even more dimensions of quality to measure, as a
result of the multidimensional nature of Pareto fronts. This is due to two separate factors.
First, the quality of individual solutions themselves are now represented by a vector, rather
than a scalar value. Second, (at least in Pareto optimization) the quality of solution found is
not represented by one single best solution, but rather by a set of nondominated solutions.
Thus it is now more difficult to represent solution quality as a simple variable that can be
plotted against time, for example, and to measure and report how robust it is to changes in
the problem, algorithm parameters, or other factors. Thus, the ideals that are put forward

in [BGK™95] are far more difficult to achieve in the multiobjective optimization case.

Due to these difficulties it has been common in much of the multiobjective EA literature for
researchers to indicate the performance of their algorithm by simply plotting the nondomi-
nated solutions (to a 2-objective problem, at least) found upon termination of the algorithm.
This is remarked upon by Veldhuizen [VL00]: “Comparative results are then ‘clearly’ shown in
graphical form indicating which algorithm performed better, often implying the new MOEA’s
returned P Fly,oun is a better representation of PFj,,..”? However, such an approach is not
acceptable on its own (although it can be useful in conjunction with the reporting of other
results) because it tells us nothing about the robustness of the approach over multiple inde-
pendent runs (i.e. it has no statistical significance) and furthermore it does not relate the

solution quality to the computational time, or the convergence of the algorithm(s).

Several techniques developed more recently do seek to provide results that can summarize
and make inferences from the data collected from several independent runs of an algorithm,
and that can be used to measure the rate of convergence of a multiobjective algorithm. These
methods rely on being able to reduce the very high dimensionality of solution ‘quality’ as
represented by a single nondominated set of objective vectors, into a much smaller dimensional
metric. Several methods for achieving the latter have now been proposed and they work in a
variety of different ways: some of them rely on knowing the (entire) true Pareto front; others
give an absolute value or values that summarize the quality of a nondominated set, without

reference to any other reference set; while still other techniques can be used only to compare

In our notation, P Flnown is denoted ND(Z) where Z is any approximation of the efficient set. And PFjpye
is Z*, the efficient set.
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two or more nondominated sets, or algorithms, against each other.

Of course, reducing the dimensionality of the data represented by a set of nondominated
objective vectors into a meaningful measure of quality requires us to first identify desirable
global aspects of such a set. Zitzler et al. [ZDT00] suggest three goals of Pareto multiobjective

search that can be identified and measured:

- The distance of the resulting nondominated set to the Pareto-optimal front should be

minimized.

- A good (in most cases uniform) distribution of the solutions found is desirable. The

assessment of this criterion might be based on a certain distance metric.

- The extent of the obtained nondominated front should be maximized, i.e., for each

objective, a wide range of values should be covered by the nondominated solutions.

Although these three criteria might not seem controversial, since these three aspects do indeed
describe desirable outcomes of a multiobjective search, it is questionable whether they are
completely general, and whether they are a minimal set. For example, if the true Pareto
front consists of just one point in objective space then item three is not appropriate. If, on
the other hand, the points on the true Pareto front are not uniformly distributed, then an
‘approximation’ that contains nearly all of the points in the true Pareto front will not comply
with item two, in the list. Thus, although the above list does serve as an intuitive guide
to the goals of Pareto search, it is not completely general. A more general (and economic)
statement of the goals of Pareto optimization would be to expand on the first point only,
defining what is meant by the distance of one set from the other. This is likely to lead to

more useful metrics than the set given above, which may lead to misleading metrics.

More recently, Hansen and Jaszkiewicz have written a detailed report [HJ98] on the subject
of evaluating approximations to the true Pareto front. In it they define a number of outper-
formance relations that express the relationship between two sets of internally nondominated

objective vectors, A and B:

Definition 3.15 (Weak outperformance) A Oy B <= ND(AUB) = A and A # B.
In other words, approximation A weakly outperforms approximation B if all points in B are
‘covered’ by those in A (where ‘covered’ means is equal to or dominates) and there is at least

one point in A that is not contained in B.
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Definition 3.16 (Strong outperformance) A Og B <= ND(AUB) = A and B\ND(AU
B) # 0. In other words, approximation A strongly outperforms approzimation B if all points

in B are covered by those in A and at least one point in B is dominated by a point in A.

Definition 3.17 (Complete outperformance) A Oc B <= ND(AUB) = A and BN
ND(AUB) = 0. In other words, Approximation A completely outperforms B if each point

in B is dominated by a point in A.

Notice that A Oc B = A Og B = A Ow B. In other words, complete outperformance is the
strongest and weak outperformance is the weakest of the relations. This can also be written
as OcCOgCOw.

These relations are valuable descriptors of the relationships between approximations to Z*
because they are compatible with, and only depend upon, the standard dominance relation.
They do not of themselves constitute metrics of performance, however, and they cannot
be used to determine which of two sets is better in the often encountered case where each
set contains points that are not covered by the other set?. Nonetheless, we can use these
relations to assess the usefulness of other quantitative assessment metrics: any metric which
is not compatible with these relations cannot be relied upon to provide evaluations that are

compatible with the notion of Pareto dominance.

Hansen and Jaszkiewicz formally defined compatibility and weak compatibility with an out-

performance relation, as follows:

Definition 3.18 (Weak compatibility) A comparison metric R is weakly compatible with
an outperformance relation O if for each pair of nondominated sets A and B, such that A O B,

R will evaluate approzimation A as not being worse than B.

Definition 3.19 (Compatibility) A comparison metric R is compatible with an outper-
formance relation O if for each pair of nondominated sets A and B, such that A O B, R will

evaluate approzimation A as being better than B.

3Pairs of sets like this are said to be incomparable according to the weak outperformance relation. This
implies they are also incomparable according to Os and O¢ since OcCOsCOw .
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3.11 Classification and analyses of nondominated set assess-

ment metrics

3.11.1 The classification scheme

In this section we classify and critically analyse some of the key metrics proposed in the
literature for assessing approximations to the efficient set. Specifically, we discuss the purpose
and approach of each metric, its compatibility with the outperformance relations discussed
above, and several other important factors affecting its usefulness. The results of the analysis

are summarized in Table 3.2.

We discuss each of the metrics under four headings:

- Purpose and approach

Pareto compatibility

Advantages

Disadvantages and caveats.

Under the first heading we describe the intended purpose of the metric (e.g. to measure
the diversity in the Pareto front, or to measure distribution etc.), and the way in which the
metric actually compares two approximation sets A and B. There are several alternative

approaches to the latter which we briefly describe next.

A metric may compare the two approximations directly using a scalar measure R(A, B) which
describes how much better A is than B, and R(B, A), vice versa. If R(A,B) = c¢— R(B, A)
for some constant ¢ for all pairs of nondominated sets A, B then R is ‘symmetric’. Metrics
of this comparative type, such as the R1 metric of Hansen and Jaszkiewicz [HJ98], we will

call, ‘direct comparative’ metrics.

An alternative approach for comparing two approximations is to use a reference set, per-
haps the efficient set, and compare both approximations against this reference set, and then
compare the results. These metrics we will call ‘reference’ metrics. Clearly, any direct com-
parative metric can also be used as reference metric by specifying a particular reference set.
However, the converse is not true because some reference metrics, like Veldhuizen’s Error

Ratio are defined specifically for a particular reference set (the efficient set).

A third alternative approach is to measure some property of each set that is not dependent
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on the other, or any other reference set of points, and compare the results of these two

measurements. These metrics, like Schott’s spacing metric, we will call ‘independent’.

Another important feature of a metric discussed under our first heading is whether or not
it induces a complete ordering of all possible nondominated sets. A complete ordering of
nondominated sets ensures transitivity, so that when nondominated sets A, B, and C are
compared, if A beats B and B beats C' then it is always true that A beats C'. Often, direct
comparative metrics do not induce a complete ordering of sets so that the relations between
different approximation sets may be intransitive. In this case it is sometimes advisable to use
these metrics with reference sets (i.e. as reference metrics) to ensure transitivity. Transitivity
is not generally a problem with independent metrics as they all induce a complete ordering

of nondominated sets, provided they return a single figure of merit only.

Under the first heading we also note if the metric is a cardinal measure (based on counting

the number of vectors in some set) or non-cardinal.

The Pareto compatibility section of each analysis is concerned with judging if the metric give
scores or judgments that are compatible with the outperformance relations between nondom-
inated sets. The aim of this section is to indicate if a metric can be misleading, giving scores
for nondominated sets that do not accurately reflect their relative worth in a Pareto sense.
To judge the degree to which a metric is Pareto compatible, its compatibility with the three
outperformance relations Oy, Og, and O¢, proposed by Hansen and Jaszkiewicz is deter-
mined. Recall that a metric can be weakly compatible or compatible with an outperformance

relation.

The hardest relation to be (weakly) compatible with is Oy, and the easiest is Oc. We note
that compatibility with Oy is necessary and sufficient for ensuring monotony and sufficient

but not necessary for ensuring relativity, defined as follows.

(weak) monotony Given a nondominated set A, the addition of a nondominated point
always improves (never degrades) the set’s evaluation.

(weak) relativity The evaluation of the global Pareto front is uniquely (non-uniquely) opti-
mal, i.e., all other nondominated sets have a strictly inferior (non-superior) evaluation.

Weak compatibility with Oy is sufficient for the weak versions to be exhibited.

The Pareto compatibility section also includes some discussion and figures to illustrate ex-

amples where the metric fails to perform in a desirable manner.

The final two sections summarize the advantages and disadvantages of the metric by consid-
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ering its compatibility with the outperformance relations and the following additional factors:

- the computational cost of the metric;

- whether it is scaling independent (is the ordering of approximations affected if one

objective is scaled relative to the others?);
- whether it relies on knowledge of the true efficient set or any other reference point;
- whether its purpose is well-defined;

- and whether it can differentiate between different levels of complete outperformance.
This means that given three approximation sets A, B, C with A O¢ B and B O¢ C,
would the metric give a different evaluation if A and B were compared than if A and

C were compared?

3.11.2 The S metric [Zit99]

A definition of the § metric and detailed description of how to calculate it is given in sec-
tion 3.12.2.

Purpose and approach

The purpose of the § metric is to evaluate the overall quality of a nondominated set. To
achieve this it computes the size of the region dominated by the nondominated set. It is an
independent metric (although a single reference point must be chosen to bound the dominated

region), so it induces a complete ordering of nondominated sets. It is a non-cardinal measure.

Pareto compatibility

It is compatible with Oy provided that the upper boundary of the dominated region is set

so that all feasible nondominated sets are evaluated positive.

Advantages

There are many advantages to this metric. It is compatible with the outperformance relations.
It is an independent metric, giving a single figure of merit that all nondominated sets can be

judged by. It differentiates between different degrees of outperformance of two sets, where
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one completely outperforms the other. It is scaling independent. There is no need to know

the Pareto set or other reference points to use it. Its meaning is intuitive.

Disadvantages and caveats

Strictly, it requires defining some upper boundary of the region within which all feasible
points will lie. The choice of this boundary does affect the ordering of nondominated sets (see
Figure 3.1), and it is difficult to justify any particular choice regarding this. The Smetric
has a very large computational overhead, O(n**!), which makes it completely unusable for
large numbers of objectives or large nondominated sets. however, in most applications in the
literature at present, only two or three objectives problems are usually tackled. It multiplies
‘apples’ by ‘oranges’, that is, different objectives together. It can be argued that this does not

matter, however, as the metric is scaling independent anyway, and the units are irrelevant.

3.11.3 Error ratio [Vel99]

> G (3.19)

n
where n is the number of vectors in the approximation set; e¢; = 0 if vector ¢ is in Z* and 1

otherwise. Lower values of the error ratio represent better nondominated sets.

Purpose and approach

The error ratio measures the ratio, amongst the approximation set (P Fjyoup in Veldhuizen’s
terminology), of those vectors that are in the true Pareto front, to those not in the true
Pareto front. It is a reference metric using the true Pareto front as reference set. It induces

a total ordering of nondominated sets. It is a cardinal measure.

Pareto compatibility

The error ratio is only weakly compatible with O¢. It is not weakly compatible with Og or
Ow e.g. if an algorithm finds two nondominated vectors, one in PFy e, and the other far
away from the true front then its error ratio is 0.5. If it finds one hundred solutions, 99 of
which are very close to PFj.. (and perhaps distributed evenly along it over a wide range
in the objectives), and one (as before) which is in PFy.., then its error ratio will be 0.99.

Clearly the second set of points is far better, but the first one scores a much lower error ratio.
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Figure 3.1: The relative value of the § metric depends upon a rather arbitrary choice of where
the reference point is chosen. In the upper half of the figure two nondominated point sets
are shown, A and B. With the chosen reference point S(A) > S(B). But in the lower half
the same point sets have a different ordering in §. The reference point has been moved to a
larger value in objective 2 and a smaller value in objective 1, and consequently S(A) < S(B).
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Figure 3.2: The nondominated set A on the left has an error ratio of zero. The set A on the
right has an error ratio of 4/7, but the set on the right is clearly better, independent of any
preferences. This illustrates the non-monotonicity of the error ratio metric. Similarly, the
set A on the left has a generational distance of zero, whereas the set A on the right has a
generational distance > 0, which indicates that generational distance is not monotonic either.

It can perform almost in a completely contrary manner to the monotony property, because
given a nondominated set A with one or more Pareto optimal points in it, then as more
nondominated but non-Pareto optimal points are added, the error ratio goes up (which

represents a decrease in quality according to this metric).

It does not exhibit relativity either because any subset of the Pareto front achieves the error
ratio, 0, the best evaluation. However, it does exhibit weak relativity because the Pareto

front itself is evaluated not worse than any other set.

Advantages

It is easy to understand and easy to calculate. It is scaling independent. For test problems

it can be used as a quick and rough means of assessing progress towards Z*.

Disadvantages and caveats
There is a requirement of knowing Z*. It is incompatible with the outperformance relations.

It cannot differentiate between different levels of complete outperformance, so long as neither

has a point in Z*.
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3.11.4 Generational distance [Vel99]

NS
Vi (3.20)

n
where n is the number of vectors in the approximation set, and d; is the distance in objective
space between vector 4 and the nearest member of Z*. Lower values of generational distance

represent better nondominated sets.

Purpose and approach

The purpose of the metric is to measure the general or overall progress towards the true
Pareto front. It is a reference metric using the true Pareto front as reference set. It induces

a total ordering on the set of approximations. It is a non-cardinal measure.

Pareto compatibility

It is not weakly compatible with Oyy. It is compatible with Og. It does not exhibit the
property of weak monotony. For example, according to this metric, it is better to have
one vector close to the Pareto front, than to have the same vector and some other ones, in
addition, as long as they are not closer on average to PFy.,. than the first one. This is clearly
not true, in general. It does exhibit weak relativity because any subset of Z* has the best

evaluation.

Advantages

For a constant size of nondominated set, the metric’s compatibility with Og is satisfactory.

It is relatively cheap to calculate.

Disadvantages and caveats

Because it is not compatible with Oy it cannot be used confidently for nondominated sets
that are changing in cardinality. Even a population in an evolutionary algorithm will typi-
cally have one or more solutions in different dominance ranks (equivalence classes), therefore
the cardinality of the rank one set is constantly changing. Therefore, the addition of a non-

dominated point into the rank one set, within a constant population size, can degrade the
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evaluation of the set, according to this metric. In addition, the metric cannot reliably differ-
entiate between different levels of complete outperformance. Knowledge of Z* is required for
its use. The distance metric will either add or multiply different objectives together, intro-
ducing scaling and normalization issues that cannot be properly resolved without reference

to additional preference information.

3.11.5 Maximum Pareto front error [Vel99]

max(min| f{(Z) = (D + [[2(7) — @) (3.21)

where 1 =1,...,n1 and 7 = 1,...,nsy index vectors in the approximation set and Z* respec-

tively, and p = 2. Lower values represent better nondominated sets.

Purpose and approach

This metric measures the largest distance between any vector in the approximation set and
the corresponding closest vector in Z*. It is a reference metric using the true Pareto front
as a reference set. It induces a complete ordering on the set of approximations. It is a

non-cardinal measure.

Pareto compatibility

It is not weakly compatible with any outperformance relation. It does not exhibit weak
monotony. It is better, according to this metric, to find one solution close to the Pareto
front than to find ten solutions, nine of which are Pareto optimal, and one which is some
distance away from the Pareto front. This does not correspond to our intuitions about the
quality of a nondominated set. It exhibits weak relativity because any subset of the true

Pareto front has the best evaluation.

Advantages

It is cheap to compute. It provides information about whether any points found are far from

the true front.
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Figure 3.3: The nondominated set A on the left has a smaller Maximum Pareto Front Error
than the set A on the right. But the set on the right completely outperforms the set on the
left.

Disadvantages and caveats

Even if a nondominated set has a very low Maximum Pareto Front Error it does not make
it a good front. It certainly doesn’t make it a better front than another one with a much
larger error. Therefore much care is needed in using this measure. As with the other distance

metrics, different objectives must be combined to get a single figure of merit. This will involve

scaling and normalization issues. The true Pareto front must also be known.

3.11.6 Overall nondominated vector generation (ONVG) [Vel99]

ONVG £ |PFrnouwn| (3.22)
where P Fj, 0 is ND(A) for approximation set A in our notation.
Purpose and approach

This metric measures the size of the approximation set. It is an independent metric, it induces

a complete ordering on the set of approximations, and it is a cardinal measure.

Pareto compatibility

It is not weakly compatible with any outperformance relation. It does not exhibit either weak

monotony or weak relativity.
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Advantages

It is easy to compute. It is scaling independent. There are a few special pathological cases
where this metric can be used to gauge the quality of a nondominated set, for example, if the

entire search space contains only nondominated points.

Disadvantages and caveats

See Pareto compatibility. In general, and on its own, this metric cannot be trusted to gauge

anything which corresponds to measuring any aspect of nondominated set quality.

3.11.7 Overall nondominated vector generation ratio (ONVGR) [Vel99]

2 |PFknown|

ONVG .
|PFtrue|

(3.23)

Purpose and approach

This metric measures the ratio of the size of the approximation set found to the number
that actually exist in (the discretized) Pareto front. Larger ratios correspond to better
evaluations. Notice that the ratio has no upper bound. According to Veldhuizen [Vel99]
this metric: “gives some feeling for the number of nondominated vectors found versus how

many exist to be found.” It is a reference metric using the true Pareto front as reference set.

It induces a complete ordering on the set of approximations and it is a cardinal measure.

Pareto compatibility

The metric is not weakly compatible with any outperformance relation. It does not exhibit

weak monotony or weak relativity.

Advantages

It is easy to compute. It is scaling independent.
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Disadvantages and caveats

See Pareto compatibility. The true (discretized) Pareto front is needed. The metric is useful
in the pathological case when the whole search space is the Pareto front. Other than in this
case, it is difficult to see how this measure corresponds to measuring any useful aspect of

nondominated set quality.

3.11.8 Other metrics proposed in [Vel99]

The Generational Nondominated Vector Generation (GNVG) and the Nondominated Vector
Addition metrics specified in [Vel99] are based on the two metrics immediately above. There-
fore they exhibit similar flaws: they are not Pareto compatible and do not exhibit either weak

relativity or weak monotony.

3.11.9 Spacing metric (Deb et al. [DAPMO00a])

|PFknown‘ |d— & |
A= —_— (3.24)
i:zl |PFknown|

where d; is the Euclidean distance between two consecutive vectors in the nondominated front

of the approximation set, and d is the average of these distances.

Purpose and approach
The purpose of this metric is to gauge how evenly the points in the approximation set are

distributed in the objective space. It is an independent metric, it induces a complete ordering

on the set of approximations, and it is a non-cardinal measure.

Pareto compatibility

It is not weakly compatible with any outperformance relation. It does not exhibit weak
monotony or weak relativity. It is quite possible that the true Pareto front has a non-uniform

distribution of points.
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Figure 3.4: The true efficient set Z* has a worse score on the spacing metrics of Schott and
Deb et al. than the set A. This illustrates the non-relativity of these metrics.

Advantages

If used in conjunction with other metrics (as it is designed to be), it may provide information

about the distribution of vectors obtained. It has low computational overhead.

Disadvantages and caveats

This metric is only suitable for two-dimensional objective spaces because it is not clear how
‘consecutive’ would be defined in the case of more than two objectives. It suffers from nor-
malization and scaling issues, as with other metrics that combine objectives. In [DAPMO00a],
the boundary vectors in the true Pareto front are added into the approximation set, to en-
sure that the calculation takes into account the distribution of solutions in the entire region
of the true PF. However, these may not be available. The metric’s incompatibility with the
outperformance relations and the properties of monotony and relativity make it an unreliable

means of making judgments about the overall quality of a nondominated set.

3.11.10 Spacing metric (Schott [Sch95])

\/n ! -5 n(d —di? (3.25)
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where d; = min;(|fi(Z) — f1(@)| + |f4(&) - f1(Z])), i,j = 1..n, d is the mean of all d; and
n = |PFknown|-

Purpose and approach

The purpose of this metric is to gauge how evenly the points in the approximation set are
distributed in the objective space. It is an independent metric, it induces a complete ordering

on the set of approximations, and it is a cardinal measure.

Pareto compatibility

The metric is not even weakly compatible with Oyy. It exhibits neither monotony nor rela-

tivity. This is the case because the true efficient set may not be well-spaced.

Advantages

If used in conjunction with other metrics (as it is designed to be), it may provide information
about the distribution of vectors obtained. It has low computational overhead. The metric
can be generalized to more than two dimensions by extending the definition of d; to cover

more objectives.

Disadvantages and caveats

The definition of d; used at present does not specify the use of normalized distances, which
may be problematic. The metric’s incompatibility with the outperformance relations and the
fact that it exhibits neither monotony nor relativity make it an unreliable means of making

judgments about the overall quality of a nondominated set.

3.11.11 The C metric

Let A, B C X be two sets of decision vectors. The function C maps the ordered pair (A, B)

to the interval [0,1]:
beB|Jdae€Aa=b
ca gy bEBI |“BE| a b} (3.26)
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The value C(A, B) = 1 means that all decision vectors in B are weakly dominated by A.
The opposite, C(A, B) = 0, represents the situation when none of the points in B is weakly
dominated by A. Note that always both orderings have to be considered, since C(A, B) is
not necessarily equal to 1 —C(B, A).

Purpose and approach

The purpose of this metric is to compare two nondominated sets for overall quality. It is a
direct comparative approach giving a single figure of merit* that is not symmetric. It is a
cardinal measure. It is difficult to establish whether the metric induces a complete ordering
on the set of approximations because it is not clear how the pair of C values should be

interpreted together.

Pareto compatibility

Since the C metric gives two values when comparing sets A and B, C(A4, B) and C(B, A), it
is more difficult to analyze whether it is compatible with the outperformance relations. Its

compatibility will depend on how we interpret or combine the two outputs of the metric.

Given two sets A and A’ such that A C A" and ND(A’) = A’ i.e. A’ is a mutually nondomi-
nated set, then C(A4,A") < 1 and C(A’, A) = 1 so the C metric evaluates A" better than A if
we take it that in general a set C is evaluated better than a set D according to the C metric
if C(C,D) =1 and C(D,C) < 1. Accepting this convention, the C metric is compatible with

the weak outperformance relation.

Of course, the C metric can also be used with reference sets. Consider now the sets A and
A" as just defined, and a set R where R is a reference set, with ND(R) = R and A’ C R.
Then, C(R,A) = C(R,A") =1 and C(A,R) < C(A’,R). Now for compatibility with Oy we
wish A to be evaluated worse than A’, so we may simply make the convention for general sets
C,D, R with D C R, that if C(R,C) = C(R,D) =1 and C(C, R) < C(D, R) then we say C is
evaluated ‘worse’ than D. Then all sets C, D where D Oy C will be correctly evaluated via
a reference set R provided D C R.

Consider sets A, A’, and R again, with A C A’ as before, but this time A’ € R. Consider the
case where C(R, A) = C(R, A’) = 1. Now, in this case it is possible that C(A4, R) = C(4’, R)
even though A’ Oy, A. But we cannot have that C(A,R) > C(A', R) since A C A’ so it is

not possible that A can cover more of R than A’. Thus, for a reference set R and two sets

“Given an ordered pair of nondominated sets.
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Figure 3.5: C(R,A) = 0, C(R,A") = 1/3, C(A,R) = 3/4, C(A',R) = 3/4 so against the
reference set R, A’ seems to evaluate worse than A according to the C metric. But A" Oy A
so we may conclude that the C metric is not weakly compatible with the weak outperformance
relation when used with a general reference set R. The alternative view is to say that A is
not evaluated ‘worse’ than A by the C metric, arguing that we should adopt the convention
that unless one of a C metric pair gives output 1, the evaluation is meaningless. In this case,
however, the C metric has very little scope for application, and we would be better off by
simply using the outperformance relations directly.

A, A" with A" Ow A such that C(R,A) = C(R,A") = 1 then C(4,R) < C(A',R), and so for
this case C is weakly compatible with Oyy.

But the C metric cannot detect that A’ Oy, A using a general reference set R, that is if it is
not the case that C(R, A) = C(R, A") = 1. C is not even weakly compatible with Oy for such
general R. See Figure 3.5 to see this.

Any pair of C metric scores for a pair of sets A and B in which neither C(A, B) = 1 nor
C (B, A) = 1, indicates that the two sets are incomparable according to the weak outperfor-
mance relation. Drawing any further conclusions from the output of the C metric in this case
is inadvisable. For example, Figure 3.6 shows that if three sets are compared using the C met-
ric, they may not be ordered. In other words, the C metric is cycle-inducing. Furthermore,
the C metric does not give an output which is even representative of our intuitions about
the relative quality of two sets unless the two sets contain very evenly distributed points,
and are of very similar cardinality. Figure 3.7 illustrates what happens when either of these

constraints are contravened.

86



3.11 Classification and analyses of nondominated set assessment metrics

Z9 A

X —|— pointin A
X O pointinB
_|_ X pointinC
+
© +
o T
O
< O
X

'

21

Figure 3.6: Cycling in the C metric. C(A,B) =0, C(B,A) =3/4, C(B,C) =0, C(C,B) =1/2
and C(A,C) =1/2, C(C,A) = 0 so, the C metric evaluates B better than A, C better than
B, but A better than C.

Advantages

It has low computational overhead compared to the & metric. It is compatible with Og. It
is scale and reference point independent. It does not require any knowledge of the efficient
set or ranges of the feasible set. For two evenly-distributed sets, of the same cardinality, the

C metric gives results compatible with intuitive notions of quality, to some extent.

Disadvantages and caveats
Its incompatibility with Oy . If two sets are of different cardinality and/or the distributions
of the sets are non-uniform, then the C metric gives unreliable results. It cannot determine

the degree of outperformance if one set completely outperforms the other. The purpose of

the C metric could be better served by simply using the outperformance relations themselves.

3.11.12 Dl (Czyzak and Jaszkiewicz)

D1g(A,A) |R| Zrzrgll{d r,z) (3.27)

87



3.11 Classification and analyses of nondominated set assessment metrics

Z2 4 Z 4
° . o pointin A
. o ® pointin B
[ ] [ ]
® Q
(] ® O o
Q
° . . oOooo
° 4 * .
o o o o o0 o
21 z21

Figure 3.7: Illustrating some potential problems with the C metric. On the left, the cardinality
of A and B differ substantially. As a result C(A4,B) = 1/2 and C(B,A) = 0, and yet A
dominates a far larger region of the objective space. On the right, the two sets have the same
cardinality and neither seems significantly better than the other. However, because of the
denser distribution of points with larger z; values, in both sets, the C metric judges B better
than A: C(A,B) =1/10 and C(B, A) = 8/10.

where A is the approximation set, R is a reference set, d(r,z) = maxg{Ap(ry — 2x)} and
A= [\, A2, ... Ak], A\p = 1/Ry, k = 1..K with Ry being the range of objective k in set R.

Purpose and approach
The purpose of D1g is to measure the mean distance, over the points in a reference set, of

the nearest point in an approximation set. The metric is a reference metric which induces a

complete ordering on the set of approximations. It is a non-cardinal measure.

Pareto compatibility

D1p is weakly compatible with Oy,. However, it is not compatible even with Oc¢.

Advantages
It is cheap to compute. Its weak compatibility with the outperformance relations. It can

differentiate between different levels of complete outperformance but this will depend upon

an appropriate choice of reference set.
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Disadvantages and caveats
The metric effectively calculates a weighted average where the reference points have equal

weight. This means that the score is strongly dependent upon the distribution of points in

the reference set.

3.11.13 Rl and Rli (Hansen and Jaszkiewicz)

R1(A,B,U,p) = / C(A, B,u)p(u)du , where (3.28)
uelU
1 if u*(A) > u*(B)
C(A,B,u) = 1/2 if u*(A) = u*(B) (3.29)
0 ifu*(4) <u*(B)

where A and B are two approximation sets, U is some set of utility functions, v : RE — R
which maps each point in the objective space into a measure of utility, p(u) is an intensity
function expressing the probability density of the utility v € U, and v*(A) = maxzea{u(z)}
and similarly for u*(B).

Purpose and approach

R1 is based on calculating the probability that approximation A is better than B over an
entire set of utility functions. It is a direct comparative metric. It does not induce a total

ordering on the set of approximations. It is a non-cardinal measure.

Rl1g is R1 when it is used with a reference set i.e. as a reference metric. This metric does

then induce a total ordering on the set of approximations.

Pareto compatibility

Making the convention that we are maximizing all objectives, a utility function u is strictly
compatible with the dominance relation iff Vz!,z2 2! > 22 = u(z') > u(z?). The set of all

utility functions that are strictly compatible with the dominance relation is Us,.

Let U(A > B) = {u € U | u*(4) > u*(B)}. If the probability density function p(u) is
such that the probability of selecting a utility function v € U(A > B) is positive whenever
U(A > B) # () and U C U, then R1 is compatible with Oyy.
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Under the same conditions, R1g is only weakly compatible with Oy, and is not compatible

even with O¢.

Advantages

The metrics are scaling independent. They have a lower computational overhead than the
S metric. They are compatible with the outperformance relations. The R1p metric can
differentiate between different levels of complete outperformance provided that an appropriate

reference set is chosen.

Disadvantages and caveats

The R1 metric cannot differentiate between different levels of complete outperformance. It
is cycle-inducing. The metrics depend upon being able to define a set of utility functions. In
general, this can be achieved without any knowledge of the Pareto front or the search space,

however.

R2 and R2p (Hansen and Jaszkiewicz)

R2(A,B,U,p) = E(u'(A)) - E(u"(B))
= / u*(A)p(u)du—/ u*(B)p(u)du
uelU

uelU
— / (u*(A) — u*(B))p(u)du (3.30)
uelU

where A and B are two approximation sets, U is some set of utility functions, v : RE — R
which maps each point in the objective space into a measure of utility, p(u) is an intensity
function expressing the probability density of the utility v € U, and u*(A) = max,ec4{u(z)}

and similarly for u*(B).

Purpose and approach

Where R1 just uses the function C(A, B, u) to decide which of two approximations is better
on utility function u, without measuring by how much, R2 takes into account the expected
values of the utility. R2 calculates the expected difference in the utility of an approximation

A with another one B. It is a direct comparative metric. It induces a complete ranking in the
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set of all approximations. It is a non-cardinal measure. R2p is R2 when used as a reference

metric. It also induces a complete ranking in the set of all approximations.

Pareto compatibility

R2 is compatible with Oy subject to the same set of conditions on the set of utility functions

used as outlined for R1. R2p is also compatible with Oy, given this set of conditions.

Advantages

The advantages of R2 arise from its compatibility with all of the outperformance relations

and the fact that it can differentiate between different levels of complete outperformance.

Disadvantages and caveats

The application of R2 depends upon the assumption that it is meaningful to add the values of
different utility functions from the set U. This simply means that that each utility function

in U must be appropriately scaled with respect to the others and its relative importance.

3.11.14 R3 and R3p (Hansen and Jaszkiewicz)

Hansen and Jaszkiewicz also propose a similar metric to R2 whereby the ratio of the best
utility values is calculated instead of the differences. These metrics are called R3 and R3pg.
The latter is similar to the approach used in single objective optimization, where an approx-
imate solution is evaluated by the ratio of its value to that of a fixed bound, note Hansen

and Jaszkiewicz.

3.11.15 Summary of analysis

From the analysis above, we would recommend the use of the R1, R2, and R3 metrics of
Hansen and Jaszkiewicz, and the S metric of Zitzler. The other metrics may not be as useful
because they suffer from poor compatibility with the outperformance relations and cannot

differentiate between different levels of complete outperformance.
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X VIV X X | n/c| x | med | Generational distance (Veldhuizen)
X X X v | x v |c x | low | Error ratio (Veldhuizen)
X X X v |V x | n/c| x | med | Max Pareto front error (Veldhuizen)
X X X v |V v |c x | low | ONVG (Veldhuizen)
X X X v | x v |c x | low || ONVGR (Veldhuizen)
X X X v | V(x)]| x |n/ec| x | med | Spacing Metric (Deb et al.)
X X X v |V X | n/c| x | med | Spacing Metric (Schott et al.)
v v v v | X x | n/c|v | med | Dlg (Czyzak and Jaszkiewicz)
VIV VY x| V(X)) |V | n/c| x | med | Rl (Hansen and Jaszkiewicz)
v v v v | x v | n/c| v | med | Rlg (Hansen and Jaszkiewicz)
VI VY VY Y V(X)) | x | n/c| v | med | R2 (Hansen and Jaszkiewicz)
VIV VY Y X x | n/c|v | med || R2r (Hansen and Jaszkiewicz)

Table 3.2: A summary of the analysis of the 14 different metrics. In the first three columns,
a single tick denotes weak compatibility and a double tick denotes compatibility with the
outperformance relation. The ‘reference independent’ column indicates if the metric is de-
pendent on a reference set or any reference point(s) in objective space. Deb’s spacing metric
is dependent on knowledge of Z* iff the extreme points are added to the approximation set.
The R1 and R2 measures may depend on knowledge of an ideal point if Tchebycheff utility
functions are used. The ‘scaling independent’ column indicates if the ordering of approxi-
mations could be affected by scaling of the objectives. The ‘differentiates O¢ levels’ column
indicates if, given three approximation sets where A Oc B O¢ C, the metric gives a larger
difference in evaluation when comparing A and C than A and B. If it always can (given
an appropriate reference set, if necessary) then it receives a tick. Note that Generational
distance can but does not always differentiate between O¢ levels.
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3.12 Assessment methods used in this thesis

The previous section analysed some of the current available methods of evaluating or compar-
ing individual approximation sets. However, to present information about the performance of
a stochastic optimizer one should report results from multiple runs, and preferably estimate
the statistical significance of the results, as well. In this thesis, several methods for measuring
the performance of a stochastic optimizer are used. These methods are based on Fonseca and
Fleming’s work on attainment surfaces [FF96] and on the S metric of Zitzler. These methods

are described next.

3.12.1 Methods based on attainment surface sampling

A set of nondominated points in objective space define a region that is dominated by them.
The boundary of this region is a ‘surface’ called the ‘attainment surface’ [FF96]. By measuring
the location and extent of this attainment surface one can judge how good the approximation

to the true Pareto front is, in a way that is consistent with our intuitive notions of quality.

Figure 3.8 shows 5 objective vectors in a 2-objective minimization problem. Superimposed
on these points is a boundary, which Fonseca and Fleming state is the family of tightest goals
that are known to be attainable. This boundary is called the attainment surface and can be
used to replace the individual points found, as it is exactly equivalent to them, under the
assumption of Pareto optimization. Note that the surface preserves all of the information
about both the quality and the distribution of the points found, since it lies in exactly the
same place as the points, at the points themselves, but then moves away from them at right
angles (and the underlying true Pareto front) in between them. Thus this surface, on its own,
gives us a clearer representation of the quality of the approximation found than the points
themselves, because it reminds us not to interpolate (by eye) between the points found, but

emphasizes where the ‘holes’ in the approximation set are.

Fonseca and Fleming note that when several runs of an optimizer are performed it is possible
to overlay the attainment surfaces from each independent run. This overlaying of surfaces
gives a far clearer picture of the different runs than overlaying the points found themselves.
Importantly, the combination of the surfaces define a sample worst boundary and a sample
best boundary that can easily be identified. In fact, the individual surfaces could be erased,
leaving only the upper and lower boundary attainment surfaces. This gives a very clear
indication of the range of quality of the approximation of an algorithm. In fact, these surfaces

from two or more optimizers could be overlaid on the same graph for comparison. However,
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Figure 3.8: How a set of nondominated points divide the objective space to form an attain-
ment surface.

although giving the best and worst that an optimizer attains over some sample number of
runs is indeed useful, and is certainly far more information-rich than plotting the vectors
from just one run for each optimizer, it would be desirable if one could calculate a ‘typical’
attainment surface, or a representative range in which the attainment surface is expected to
lie in some proportion of the runs. Even, better would be the ability to make use of the whole
distribution of runs to make some statistical inferences about them. Fortunately, these goals
can be achieved, to a certain resolution, by sampling the surfaces using lines angled in the

direction of increasing value in all objectives.

Figure 3.9 shows two attainment surfaces and a number of auxiliary angled lines running in
the direction of improvement in all (both) objectives. The intersections of the attainment
surfaces with an auxiliary line form a univariate distribution from which the median, quartile,
and any percentile intersection point could be calculated. With a number of distributed
auxiliary lines these can be used to define a median, quartile or any percentile attainment
surface up to the resolution defined by the number of auxiliary lines used. Furthermore, if
the sets of attainment surfaces come from two different optimizers it is possible to use the
univariate distribution of intersection points along the auxiliary lines to perform a statistical

test to decide if one distribution is statistically different (to the left of) the other. Fonseca
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Figure 3.9: Sampling the attainment surface using lines of intersection.

and Fleming recommend using a standard non-parametric test for this.

The article [FF96] also indicates several weaknesses of the approach, and directions for future
research. One weakness is that the calculated percentile attainment surfaces do not properly
represent the probability of attaining the whole surface in the given percentage of runs; each
point on the surface just independently represents the level achieved in the given percentage
of runs. This may be a serious weakness if an algorithm were to generate alternately one
extreme or other of the Pareto front in different runs, but never all extremes at once. This
may not be distinguishable from an algorithm that on some runs does find the WHOLE extent
of the Pareto front, and on others it does not. Visualization tools and generalizations of the
techniques to more than two objectives are also mentioned as areas for future development.
Fonseca and Fleming do not consider in the paper that the technique could be used with

reference surfaces to give quantitative, statistical measures of performance for an individual

algorithm.

The following four methods based on attainment surface sampling are used in this thesis:
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AS1:

AS2:

Plotting percentile or median attainment surfaces Given a set D of n collec-
tions of approximation sets from n different optimizers, normalize the points in D:
2k < (2 — (ming({zx | z € D})/((maxg({z; | z € D}) — (ming({z; | z € D})) for all
kel.K.

For each collection:

For each of s evenly distributed sample lines:
Compute the co-ordinates of the intersection of the sample line with
attainment surface of each approximation set in the current collection.
From these intersections, compute the co-ordinates of the intersection
with the median or pth percentile attainment surface. Plot this
intersection point.

Join together the points plotted to form the percentile or median

attainment surface of the current collection.

Mann-Whitney two distributions test Given sets C'4 and Cp of nondominated
sets A; and By, j € 1..n, k € 1..m from n runs of optimizer A and m runs of optimizer
B, normalize all points as above, and compute all of the intersections of the attainment
surfaces from C'4 UCp with each of s evenly distributed sample lines in the normalized
space, angled in the direction of increasing value in all of the objectives. Taking each
sample line in turn perform the Mann-Whitney rank-sum test at confidence level «,
that the intersections from Cy represent a better distribution than those from C'g. The
outcome of this test can be that C4 beats Cp, that Cg beats C4, or that neither is
statistically significantly better than the other. Compute the percentage of lines on
which C4 beats Cp, and the percentage of lines on which Cp beats C4. Return these

values.

AS3: Mann-Whitney multiple distributions test Normalization is carried out over the

union of all the sets. Then each pair of distributions is taken in turn, and for each such
pair the Mann-Whitney rank-sum test is applied as in AS2. For each sampling line,
the results of all comparisons are stored. From inspection of the results stored at each
sampling line, the percentage of sample lines on which a particular set beat all other
sets is computed, for each set. Similarly, the percentage of the sampling lines on which
a particular set was unbeaten by any other set is computed, for each set. Return these

values, i.e. for 4 sets of nondominated sets the results might be:
A B C D

% beatsall 10 2 6 0
% unbeaten 23 35 10 15
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AS4: Sample probability of achieving an entire reference surface in a single run
We have a set C' of nondominated sets generated from runs of an optimizer and a ref-
erence set R. First, normalize the space with respect to the R only. Compute the
attainment surfaces of each of the nondominated sets in the set C'. Compute the num-
ber of members of C, ngchieve; that lie closer to the origin than R on every sample
line. The sample probability is then 7n4cpiepe/n. The population probability can then

be computed using the binomial distribution and a given confidence level.

3.12.2 Methods based on the S Metric

Given a point z' = {z{,21,... 2L} in objective space Z, and a reference vector z"f =

ref _ref
{71729

be defined as the set:

yeee ,z;(ef } dominated by z!, let the region dominated by z' and bounded by z"*f

R(z',z™) 2 {y |y <z"fand z! <y, y e R} (3.31)

For a nondominated set A of vectors z’,i = 1..|A|, and a reference vector z"*f, that is
dominated by all members of A, the region dominated by A and bounded by z"®f is defined
as the set:
R(A,z"") & | ) R(z',2"). (3.32)
i€l |A|
The S metric of A with respect to to the reference vector is the ‘hyperarea’, or Lebesgue
integral of the set R(A,z"°f). In a minimization (maximization) problem, the reference point

Zre

f is taken by Zitzler to be the vector whose components are the maximum (minimum)
value in each objective. This gives a nonnegative measure for all possible nondominated sets
in the feasible objective space. However, note that the choice of this reference vector is fairly
arbitrary, and could really be any vector outside the feasible objective space. But different
choices will affect the relative S value of two different nondominated sets. Although the
choice of reference point does affect the ordering of nondominated sets, scaling the objectives

does not, i.e., it does not matter if the magnitudes of different objectives are very different.

The S§ metric of a nondominated set A may be computed by recursively projecting the set of

points into fewer dimensions and calculating the Lebesgue integral of these.

To calculate the S metric in just two dimensions (objectives) the points are sorted in decreas-
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size_of set(A,z"*/ | k)

z"9" is the vector with the largest value in objective k from
amongst the vectors in the updated set A
NDk(A, k) returns the nondominated vectors from the set A with

respect to the lowest k& objectives only.

S§+0
prev ref
Zk — Zk

while(A # 0)
A+ NDk(A,k —1)
if(k < 3)
Se_t ¢ Aot
else
Si_1 ¢ size_of set(A,z"/  k — 1)
S S+ Sporz " = 2
Z{)rev — Z{ngh
A A\{z" | 27 > 219" 2r e A}
return S

Figure 3.10: Recursively computing the & metric of a nondom-
inated set A, in k objectives. The function has O(n**!) com-
plexity in general, where n is the number of points in the set

A.

ing order of objective 1 values, and then the following expression is evaluated:

S7ola =2 - (3.33)
i€1..|A|

where 2) is initially set to zgef . In higher dimensions this generalizes to the recursive function:

size_of_set(A,z"°/, k), shown in Figure 3.12.2. The function has a time complexity of O(n**1)
for general k: the NDk() function is O(n?) and this must be performed up to n times in a call
to size_of_set(A,z"/, k), not counting further recursive calls; and size_of_set(A,z"¢/ k — 1) is
called n times at level k, for £ > 3. An illustration of the calculation of the S for three points

in three dimensions is given in Figure 3.11.
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Figure 3.11: How the S metric is calculated in multiple dimensions. Three nondominated
points in a 3-objective space are shown (left). The regions they weakly dominate, and which
weakly dominate the reference point, are shown by the shaded cuboids. The combined size
of these regions is shown by the calculation on the right.
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For assessment of an algorithm over multiple independent runs, we propose the following

metrics based on the S metric.

S1: Total discovered region S, Given a set C'4 of nondominated sets A;,j € 1..n from n

independent runs of an algorithm the size of the total discovered region is:
n
S 28( 4)). (3.34)

This gives an idea of the variability between sets found by an optimizer in different
independent runs. If the mean value of the § metric for the n runs is much smaller
than the total discovered region over the n runs, then the optimizer discovers different
parts of the objective region in different runs. This may or may not be a good thing,

depending on the application.

S2: Percentile (median) attainment region S, (S,) Given a set C4 of nondominated
sets A;,j € 1..n from n independent runs of an algorithm the size of the pth percentile
attainment region is:

Sp £ S(ASy(Ca)) (3.35)

where AS,(C4) is the pth percentile attainment surface of the set C4, calculated using
AS1, defined above. The median attainment region has the same form, but replacing
AS,(Ca) by ASpmedian(Ca). Notice that S, is different to the median value of the S
metric, and similarly S, is different from the pth percentile value of the S metric. The
attainment regions give the total size of the region attained by some percentage of the
runs, whereas the percentile value of the S metric gives the size of the region of a
particular run. The median and interquartile attainment regions give an idea of the

centre and spread of the regions attained over a number of runs.

S3: Median value of the coverage difference The coverage difference of two nondomi-
nated sets A and B is defined as:

Sap =8(AUB)—S(B) (3.36)

and gives the size of the region weakly dominated by A but not weakly dominated by
B. The median value of the coverage difference concerns multiple nondominated sets.
For sets C4 and Cp of nondominated sets A; and Bj, j € 1..n, from n different runs of
two optimizers, the median value of the coverage difference is the median of Sx,\ 5, for
j € l..n. For large n, this approximates the population median coverage difference, that

is the coverage difference achieved on at least 50% of runs. The median value of the
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complementary metric Spy 4 is also computed. Taking the two median values together
allows one to infer whether one algorithm’s sets completely outperform the other’s, on
50% or more of runs. Other statistical tests of the distribution of the coverage difference

could also be used.
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Chapter 4

The Pareto Archived Evolution
Strategy (PAES)

4.1 Requirements for a Pareto hillclimber

In Section 3.7 of the last chapter, the benefits of developing a ‘Pareto hillclimber’ were
discussed. The necessary characteristics of such an algorithm may be summarized using the

following specification:
1. Uses single-point local search only;

2. Uses Pareto ranking/dominance selection;

3. Returns a limited set of diverse, mutually nondominated solutions from a single algo-

rithm run;
4. Possesses few parameters;

5. Uses less computational overhead than population-based Pareto EAs.

Unfortunately, in practice, there are several conflicts between these requirements. The third
item, in particular, is problematic with respect to some of the others: it conflicts with item
1 because a single-point local searcher cannot usually return multiple solutions. This means
that some form of extra store of solutions must be used. However, ensuring this store returns
a diverse set of solutions is difficult whilst respecting requirements 4 and 5, and the necessity

of nondominance of these solutions is also difficult to achieve efficiently.



4.1 Requirements for a Pareto hillclimber

The most troublesome conflict between the identified requirements, however, is that between
items 1 and 2. In a single-point local searcher, an essential feature is the rule-set governing the
conditions under which the current solution is discarded in favour of accepting the candidate
‘mutant’ solution — the acceptance function. Should the dominance relation be used in
the acceptance function, many mutant/current solution pairs would be incomparable, and
this difficulty would increase with the number of objectives. It would thus be critical what
acceptance rule was employed in the case of incomparable current and mutant solutions,
and due to the requirement 2, Pareto dominance should be the primary means of choosing

between the two solutions.

Let us examine further the problem of using Pareto dominance in the acceptance function.
Consider the acceptance rule:
x+x iff x A% (4.1)

where x is the current solution (decision) vector and x’ is the candidate or mutant solution.
This rule, where the mutant is accepted whenever it dominates or is incomparable with the
current solution, is not negative efficiency preserving [Han99]. This means that the entire
region dominated by a current solution is not necessarily preserved by future current solutions.
For this reason, over a series of ‘moves’ (applications of the rule), the region dominated can
reduce in all objectives. In other words, if x(¢,) is the current solution at iteration ¢,, then

the following relation x(¢,) < x(t,,) can hold for a solution x(¢,,), tm > t, + 1. An example

29 [}

O Image of x(t)
---- Pareto front
""" Dominated region

- J

Figure 4.1: An illustration of a not negative efficiency preserving acceptance rule. At iteration
tn, the image of x(¢,) is close to the Pareto front. But after two subsequent iterations the
image of x has moved into the previous dominated region, further away from the Pareto
front, and worse in both objectives.
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Zo 4 p N
\\\ O Image of x(¥)
b 0 tn -~ Pareto front
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Figure 4.2: An illustration of an efficiency preserving acceptance rule. Only a restricted
region of the Pareto front can be reached from a point in the objective space. The image of
x(t,) is far away from the Pareto front and progresses towards it in subsequent iterations,
but all points outside of the superior region of x(t,) are unreachable. As the image of x
progresses, less and less of the Pareto front is reachable until ultimately it will become ‘stuck’
at one point on the Pareto front.

of this is given in Figure 4.1. This is obviously a severe problem because there will be little
selection pressure towards the Pareto front, and no guarantee that the quality of solutions

will not degrade over time.

The complementary acceptance rule:
xx iff X' <x (4.2)

only accepts the mutant solution if it dominates the current solution. This rule is the one used
by Rudolph [Rud98b, RA00] in his convergence proofs for multiobjective evolution strategies,
and it is efficiency preserving [Han99]. This means that all future current solutions will lie
in the feasible region dominating the current solution — the superior region of the current
solution. This means that from a given initial point in the feasible region, it may be that only
a fraction of the Pareto front is reachable. This is illustrated in Figure 4.2. Furthermore,
once a Pareto optimal solution is found, it is impossible to find any further solutions on the
Pareto front. Therefore, even if this method were used in conjunction with storing solutions
offline, it could only ever find one nondominated solution per algorithm run. This severely
limits its viability as a replacement strategy for use in a single point searcher, and obviously

conflicts with the third requirement in our list.
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Algorithm: Archiving Hillclimber

Data:

M; is the set of best (minimal) evaluated solution vectors discovered
x is the current solution vector

x' is the mutant solution vector

Functions:

Init() returns a solution vector x € X

Mutate(x) returns a neighbour of x

Inferior(x, M;_1) returns TRUE if x is inferior to M; 1

Reduce({x'} U M;_1) reduces the number of elements in the set ({x'} U
M, 1) e.g. by discarding elements that are no longer minimal

t<+0 /* Initialization */
Mt — @
x € X + Init()
t+—t+1
M; <~ M; 1 U {X}
while (Terminate(t, M) # TRUE) /* Main Loop */
t+t+1
x' € X «+ Mutate(x)
if (Inferior(x’, M;_1) # TRUE) {
x + x'
M; + Reduce({x'} U M;_1) }
return M(%sipq) /* Termination */

Figure 4.3: Pseudocode for a generic archiving hillclimber, upon which
the (141)-PAES algorithm is based.
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4.2 An archiving hillclimber

4.2 An archiving hillclimber

In the (1+1)-PAES algorithm developed in this chapter, some of the potential problems with
a Pareto hillclimber, particularly how dominance might be used in the acceptance function,
are overcome by basing it on an archiving hillclimber. Pseudocode for an archiving hillclimber
algorithm is given in Figure 4.3. Notice that the algorithm is similar to the random mutation
hillclimber (RMHC), described in [MHF94] and used extensively as a baseline search algo-
rithm in the literature. However, notice that in RMHC, the mutant solution is compared only
against the current solution, and accepted if it is at least as good. In contrast, the archiving
hillclimber algorithm stores, in a set — or archive — (some of) the solution vectors that have
the minimal evaluation on the objective function up to iteration ¢. At each iteration, the
mutant solution x’ is compared against the elements in this archive, and accepted only if it
is found not to be ‘inferior’ to them. The addition of the archive gives the algorithm the
potential to find all the optimal solutions to a problem, rather than just one. Importantly, the
possession of an archive, also allows this algorithm to be adapted for Pareto multiobjective
optimization, where the goal is to find (an approximation to) the set of minimal elements —

the Pareto set — in the feasible solution space.

Clearly, the generic archiving hillclimber is not a fully specified search algorithm because it
depends upon how its component functions are specified. The functions Init() and Mutate(x)
have well-understood meanings and do not need further elucidation. In any case, these
functions can be tailored to particular problems. For a realizable description of a particular
instance of archiving hillclimber, then, only a definition of the two functions Inferior(x', M;_1)
and Reduce({x'} U M;_1) must be added. A very simple Pareto hillclimber can be specified
thus:

Inferior(x’, My_1):

if—- (M < x')
return TRUE
else
return FALSE

Reduce({x'} U M;_1):
return ({x'} UM; 1\ {x € M;_ | x' <x})

This Pareto hillclimber addresses two of the issues identified earlier with respect to using

a hillclimber for Pareto optimization: It returns a set of mutually nondominated solutions
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4.3 Evaluation of archiving strategies

found during the run; and it overcomes the problems associated with comparing a mutant
solution only with the current solution, by comparing the mutant with the whole archive, at
each iteration. This algorithm returns the set of all nondominated solutions it has found.
Notice that, in one sense, the archive is being used like the population in a Pareto EA — a set
approximating the current nondominated front that is used to rank or estimate the quality
of newly generated solutions. However, the Pareto hillclimber remains a true hillclimber
because it only uses a single point local search, with a (1 4+ 1) selection strategy. Thus some

of the conflicts between requirements 1 and 2 in our list, have been resolved.

Although the Pareto hillclimber does fulfil the role of a Pareto analogue of a standard hill-
climber, it is cursed by two potential problems because its archive is unbounded. First, its
memory usage is unbounded which is a potential problem for any practical implementation
of it. Second, the computational overhead of checking whether the mutant solution is inferior
to the current Pareto front, can get progressively larger over time, as the number of non-
dominated solutions stored in the archive may increase without bound. To solve both these
problems we can change the Reduce({x'} U M;_1) function so as to limit the capacity of the
archive. To do this, extra rules must be added to the Reduce({x'} U M;_;) function which

will ideally ensure that requirements 3, 4, and 5 of our specification are satisfied.

In the next section, we evaluate a number of alternative Reduce functions for controlling the
contents of the archive. These different archiving strategies progress, in four stages, from
the simple Reduce function proposed above, through to a strategy of low computational cost
which both ensures a bounded archive and promotes solution diversity. The convergence
properties of the four strategies are analyzed in detail, and their computational overhead is

also considered.

4.3 Evaluation of archiving strategies

In the following we analyse the convergence properties of four different archiving strategies.
Specifically, we analyse whether the archive converges and whether it converges to the Pareto
front, a subset of the Pareto front, or some other set with specific attributes. To prove these
convergence properties we employ a model in which at every iteration of the algorithm, a
generating process generates a point which must be archived. The proofs rely on the fact
that at every time step the generating process draws the point at random from a probability
distribution in which each point in the search space has a non-zero probability. In practice,
this assumption will be true whenever, for example, a mutation is applied to every bit in a

binary string with some small probability; the standard method of generating a new point in
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a random mutation hillclimber.

The first archiving strategy we consider is the Reduce function already proposed, in which
there is no bound on the archive. We prove that, using this strategy, the archive converges to
the Pareto front, provided that the process for generating points accords with our assump-

tions, and the search space is finite.

Using the same model, assumptions and methods of proof, we then consider strategies that
update a bounded archive, where the capacity of the archive could be less than the cardinality
of the Pareto front. The first of the bounded archiving strategies accepts any nondominated
vector until the archive is full, and thereafter accepts only vectors which dominate members
of the archive, and removes the dominated vectors. We prove that this simple strategy
guarantees that the archive converges to a subset of the Pareto front. However, this archiving
strategy is efficiency preserving [Han99] which means that some regions of the Pareto front
may not be reachable (see Figure 4.2). In addition, this strategy does not have any mechanism
for encouraging the discovery of a diverse and evenly distributed set of nondominated points

in the objective space.

To avoid these problems with the efficiency preserving strategy, another, more complicated,
archiving strategy is proposed. For full archives, this strategy accepts a vector if it: (a)
dominates any member of the archive; or (b) if it is nondominated with respect to (all
members of) the archive and its addition would increase the net value of the S metric [Zit99]
of the archive, when one (selected) member of the archive is removed to allow its entry. A
proof that this strategy guarantees convergence to a subset of the Pareto front for bounded
archives is given. This result can also be generalized to any quality metric @ which has the
property that if a set Z; weakly outperforms another set Z then Q(Z;) > Q(Z5), preventing
cycling. Using the § metric also guarantees that the converged set is a local optimum of S.
This means that there is no point which would result in a net increase in the § metric of
the archive if it were added and another point were removed. This guarantee is important
because any set which is a local optimum of S seems to be ‘well-distributed’ (see Figure 4.4)

although we offer no formal proof that this is so.

The S metric archiving may work well, but its computational overhead would be prohibitively
high. The fourth and final archiving strategy, adaptive grid archiving, we propose is compu-
tationally much less expensive, and also has the further advantage that it does not require
the setting of any boundaries in objective space or any other use of reference points. In fact,
it only requires the value of one non-critical parameter to be specified. On the other hand,
adaptive grid archiving does not have the cycle-preventing property of the & metric, so it is

not possible to prove that the archive converges, so it is not possible to show that the archive
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Figure 4.4: The figure shows the true Pareto front (white points) of a minimization problem.
The hatched area shows the region dominated by seven of the Pareto optimal points. These
points represent the (full) archive of an algorithm using & metric archiving. Clearly, these
points in the archive are not as well-distributed as they could be. Fortunately, this seems to
imply that they are not a local optimum of S. A net increase in S would result if any vector
pointed at by the label A were to replace any other vector in the current archive.
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converges to a subset of the Pareto front. However, several other convergence results can be
derived, which show that the adaptive grid archiving strategy will maintain a well-distributed

and diverse set of vectors.

4.3.1 Definitions of terms used in the analysis

Definition 4.1 Let there be a finite set Z, which is the objective space of all feasible objective

vectors z.

Definition 4.2 Let there be a set called the Pareto front, Z* ={z* € Z |Az € Z, z < z*}.

Definition 4.3 Let there be an archive My C Z of objective vectors.

Definition 4.4 Let there be a generating process Gen(t) for generating solutions from Z to
be stored in M. The output of Gen(t) at time t is zy, and associated with Gen(t) there is
a probability pr(t,z) of generating solution z € Z at time t. Gen(t) has the property that
Vt,Vz € Z, pr(t,z) > 0.

The convergence proofs for the different archiving strategies that we shall consider, are formu-
lated using the generic archiving algorithm A AReducecRED, Shown in Figure 4.5. A particular
archiving algorithm may be specified from AA by specifying a particular Reduce function
from the set of all such functions, RED.

The generic AAReducecrep algorithm, like the archiving hillclimber presented in Figure 4.3,
generates one point per iteration and then updates the nondominated solutions archive as
necessary. However, the archiving algorithm is far more general, as it does not specify how the
points are generated — only that there is a generating process that can generate any point
in the search space with non-zero probability. The use of the AAReducecrrep algorithm in
the following proofs allows us to make general statements about archiving strategies without
concerning ourselves with the details of a particular method of generating points in the search

space.

Definition 4.5 We say that M, is converged under algorithm AAReducec rED if it is in a state
in which its members will not change for all future iterations, i.e., if Yt > t,, My = My, then
My, is converged. We also use the phrase: “AAReducecrED converges” under rule Reduce, as

shorthand for saying that the archive of AAReducecRED CONVETGES.
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Algorithm: AAReducecrED

M; is the nondominated vectors archive

Gen(t) is a generating function with positive generation probabil-
ity for all feasible vectors

z; is the objective vector generated at time ¢

<0

Mt — @

while(1)

{
t—t+1
z; < Gen(t) /* Generate new vector */
Reduce({z;} U M;_1) /* Call each archiving rule */

}

Figure 4.5: Generic Archiving Algorithm AAReducecRED, Where
RED is the set of all Reduce functions.

We also recall the definitions, 3.12, 3.13, and 3.15, from Chapter 3, which define, respec-
tively, the ND function, the meaning of the relations < and ~ between an objective vector
and a nondominated vector set, and the weak outperformance relation between a pair of

nondominated vector sets.

4.3.2 Archiving strategy 1: unbounded archive

Using an unbounded archive, the Reduce() function defined in Section 4.2 can be rewritten

in the form of the objective vector as:

Reduce({z:} U M;_1):
return ND({z;} U M;_,)

which defines algorithm AA ., pounded -

By inspection, it is clear that the archive is always a nondominated set. From this fact,

several properties of AA,npounded Can now be proved.

111



4.3 Evaluation of archiving strategies

Lemma 4.1 If a nondominated set Z, € Z = ND(Z,) and Z, € Z* then Iz* € Z* such that
z* < Zg. In other words, a nondominated set that is not a subset of the Pareto optimal set

always contains vectors that are dominated by at least one vector in the Pareto optimal set.

Proof 4.1
Zo L Z*

S0 dz € Z,,z & Z* by definition of C
s0 Jdz* € 7%, 2" < z by definition of Z*

Lemma 4.2 M, is converged implies that M, is the Pareto front, Z*.

Proof 4.2 Assume at some time t = t;, My, is converged and My, # Z*. From My, # Z*,
we have two possibilities: M;, C Z* or My, € Z*. The former implies that there exists an
efficient vector which is nondominated with respect to the archive, i.e. Az* € Z* such that
z" ~ M;,. The latter implies that there exists at least one efficient vector which dominates
with respect to the archive, i.e. 3z* € Z* such that z* < My, (from Lemma 4.1). So we have,
dz* € Z* such that 2" ~ My, V z* < M;,.

We wish to show that at some future time t; > t;, My, # My,. We may choose the time t = t;
when Gen(t) generates the vector z* defined above. This is sure to occur since all points are
generated with a positive probability. Now if My, # My, then My was not converged, a
contradiction to our assumption. Otherwise, according to the function Reduce({z;} U M;_1),
z* will replace those vectors in My, that it dominates. This also contradicts our original
assumption that the set My, is converged, and we must conclude that vector sets that are not

subsets of Z* are not converged, under AA npounded-

Lemma 4.3 Vi € N ((Myy; = M) V (Myy; Ow My)). In other words, the contents of the
archive monotonically improve over time: given any initial archive, all future archives are

either identical to, or weakly outperform, the initial archive.

Proof 4.3 By induction:

Let i = 1. M,y arises from My after one application of AAunbounded- Fither a new vector
z has been added which is nondominated with respect to My, that is My, = My U {z}, or if
z < M, it has been accepted, throwing others out of the archive, or nothing is added to the
archive. So we have that (M1 = M) V (M1 Ow My).

Assume true for k € N so (M, = My) V (Myyx, Ow My)
Is it true for k+ 1%
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Given the proof for i =1, then there are four possibilities:

(M = M) N (Migk1 = Myy) in which case Mg = My

(Myyr, = M) A (Myy 41 Ow Myyg) in which case My, g1 Ow My

(Mire Ow M) A (Myypi1 = Migr) in which case Myip11 Ow My

(Miyr Ow My) A (Myygpi1 Ow Myyg) in which case My 1 Ow My

by transitivity of Ow [HJ98]. So we have now shown both (M1 = M)V (Myy1 Ow M)
and (Myy, = My) V (M Ow My) = (Myypy1 = My) V (Mg Ow My). The proof of

Lemma 4.3 follows by induction.
Lemma 4.4 M,;, # M, fort, > t,, implies Vt > t,, My # M, .

Proof 4.4 Assume M;, # M;, for t, > t, and 3t > t, such that My = M, . From
lemma 4.3 we have My, Ow M, and (My = M, )V (My Ow My,). If the former then
(My Ow M,,)) and if the latter (My Ow My, ). Therefore, either way we contradict M; =
M, .

Lemma 4.5 M, converges under algorithm AAnbounded -

Proof 4.5 Assume M; never converges i.e. Vt;3t;, t; > t;; My, # My,. This implies that
there are an infinite number of different sets My, since from lemma 4.4 we know that if
My, # My, for t; > ti, then Yk € N, My, 1 # My,. However, since the set Z is finite, so is
2% . But for all t, M; € 2% so there are finite different M.

Corrollary 4.1 A corollary of lemma 4.5 and lemma 4.2 is that the algorithm AAunbounded

converges to the Pareto front.

4.3.3 Archiving strategy 2: for a bounded archive, accept only dominating
vectors when archive is full

Now we consider a simple Reduce function for maintaining a bounded archive, similar to the
archiving strategy analysed in [RA00]. Let the set M; have a maximum capacity arcsize such
that V¢, |M;| < arcsize. The archiving algorithm AAg,,, is defined by the Reduce function:

Reduce({z;} U M;_1):
Fill(1);
Domination(t);
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Steady_state(t);
return(M;)

and the rules it calls:

Fill(4):
if ( |My_1| < arcsize) then M; < ND(M;_1 U {z;})

Domination(t):
if ( |My_1| = arcsize Nzy < M;_1 ) then My < ND(M;_1 U {z})

Steady _state(t):
if (|M;—1| = arcsize A (zy £ My—1) then M; < M; 4

Define that a rule is executed if and only if its conditional evaluates true. From inspection
of the three archiving rules called by Reduce, it is evident that at each time step one and
only one conditional must be true. Thus, one and only one rule will be executed at each time

step. From this it follows that at each time step:
- Either a new vector is added which dominates some members of the archive, and those
dominated members are removed;

- or a new vector which is nondominated with respect to to the archive is added to the

archive, increasing its cardinality by one;
- or nothing is added to the archive because the new vector is dominated by the archive

or the archive has already reached its capacity.

From this it follows that the archive is always a nondominated set. Using this fact, we can

prove some convergence properties of AAgom,.
Lemma 4.6 M; is converged under algorithm AAgom tmplies My is a subset of Z*.

Proof 4.6 Assume at some time t = t;, My, is converged and My, € Z*. The latter implies
that there exists at least one efficient vector z* € Z*,z* < My, (from lemma 4.1) because the
archive is always o mutually nondominated set. We wish to show that at some future time
tj >t;, My, # My,.

We may choose the time t = t; when Gen(t) generates the vector z* which dominates the

archive. Now if My; 1 # My, then M; was not converged, a contradiction to our assumption.
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Otherwise, by archiving rule Domination(t), z* will replace those vectors in My, that it
dominates. This also contradicts our original assumption that the set My, is converged, and

we must conclude that vector sets that are not subsets of Z* are not converged, under AAgom-
Lemma 4.7 M;, # M, for t, > t,, implies Vt > t,,(M; # M,,,).

Proof 4.7 Lemma 4.8 still holds when AAynbounded 1S replaced by AAgom. To see this, just
consider that whenever the archive is not full, AAgom reduces to AAynpounded 0nd whenever
it 4s full it will only accept vectors that dominate the archive. From this it is clear that
lemma 4.8 still holds. From this, lemma 4.7 immediately follows in exactly the same way as

lemma 4.4.
Lemma 4.8 M; converges under algorithm AAgom

Proof 4.8 Assume M; never converges i.e. Vt;,3t; t; > t;;, My, # My,. But this implies
that there are an infinite number of different sets My, since from lemma 4.7 we know that if
M, # My, for t; > t;, then Vk € N, My, 1 # My,. However, since the set Z is finite, so is
27 . But for all t, M; € 27 so there are finite different M;.

Theorem 4.1 The set M; converges to a subset of Z* under algorithm AAgom,.

Proof 4.9 From lemma 4.6 we see that all converged sets are Pareto optimal subsets. From

lemma 4.8 we see that M, always converges.

This completes the proofs relating to algorithm AAg,,,. We have shown that it is guaranteed
to converge to a subset of the Pareto front. However, because it uses an efficiency preserving
strategy certain areas of the Pareto front may not be reachable. In the next section, this

algorithm is enhanced to overcome this problem.

4.3.4 Archiving strategy 3: § metric archiving

Let the S metric of the set M; be denoted S(M;). We note that the S metric has the following

properties necessary for the proofs that follow:

- VM, = M, (S(M;,) = S(M,;,,)) if the upper bounding values of the dominated region

are constant over time.
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- The value of the S metric is maximal for Z* so the value of the S metric is bounded.

- The value of the § metric is strictly greater for My, than My, if My, Ow My,.
Let the function Reduce() for the AAg algorithm be defined as:

Reduce({z} U M;_1):
Fill(t)
Domination(t)
Size(t)
Steady_state(t)
return(M;)

with archiving rules Fill(¢) and Domination(¢) as previously defined for AAg4,,, and the fol-

lowing additional rule:

Size(t):
if (|Mi_1] = arcsize N zy £ My_1 N maxgen, {S(Mi—y U{z} \{z}} > S(Mi_1) )
then { M; < M;_1U{z;}\ {z™"} where 2™" is randomly selected from Z,;, C M;_4
where Z,,in = {z' € Z |Vz € My 1, S(M; 1 U{z} \ {z'}) > S(M; 1 U{z}\ {z}) }
In other words, if the archive is full and z; does not dominate the archive then z; may

min where Zmin

replace z is chosen such that the gain in the & metric of the archive is

maximized, if this gain is positive.

and, a revised version of the rule Steady_state(f) to maintain compatibility with the other

rules:

Steady_state(t):
if ( |My—1| = arcsize N z £ M1 N maxzen, {S(Mi—1 U{z} \{z})} < S(M;_1))
then M; + M;_;
In other words, the Steady_state(¢) rule applies if the archive is full and z; does not
dominate the archive and it cannot be added under the Size(¢) rule because there is no
vector in the archive which when replaced by z; leads to a positive increase in the S

metric of the archive.

As in the previous archiving strategy, it is evident that exactly one rule is executed at time

step t, under algorithm AAg.
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Lemma 4.9 M;_; is a nondominated set and the rule Size(t) is executed at time t implies M
is a nondominated set. In other words, rule Size(t) maintains the archive as a nondominated

set.

Proof 4.10 Assume M;_1 is a nondominated set and the rule Size(t) is executed at time t
and My is not a nondominated set. Since rule Size(t) is executed, z; cannot dominate My ;.
Therefore, we have zy > My_1 NV zy € My_1 NV zg My 1. If 2y > My_1 V2, € My then z’s
addition would not increase the S value of the archive, contradicting the assumption that rule
Size(t) is executed. So, zy My;_1. When rule Size(t) executes, My = M;_1 Uz, \{z™" € M;_,}.
Since zy My_1, My_1Uz; is a nondominated set. Therefore My is a nondominated set since the
removal of any vector from a nondominated set leaves a nondominated set. This contradicts

our assumption that M, is not a nondominated set.

Lemma 4.9 shows that, as before, the full set of rules in AAg ensures that the archive is

always a nondominated set. We now prove some convergence properties of AAg.
Lemma 4.10 M; is converged under algorithm AAg implies My is o subset of Z*.

Proof 4.11 The proof is the same as that for lemma 4.6. No changes are necessary to
the proof because the Domination(t) rule which the proof depends upon is unchanged and, as

before, the archive is always a nondominated set.
Lemma 4.11 M, # M, for t, > t,, implies Vt > t,,(M; # M;,,).

Proof 4.12 Assume My, # My, and 3t, such that M, = My, with t, > t, > t,. Since
rules Size(t), Fill(t), and Domination(t) all strictly increase S(M), and rule Steady_state(t)
leaves S(M) unchanged, S(My,) > S(My,). By the same token, S(My,) > S(M,,) thus
S(My,) > S(My,,), therefore My, # My, , a contradiction.

Lemma 4.12 M; converges under algorithm AAs.

Proof 4.13 Assume M; never converges i.e. Vt;,3t;, t; > t;;, My, # My,. This implies that
there are an infinite number of different sets My, since none can be revisited (lemma 4.11).
However, since the set Z is finite, so is 2. But all M € 27 so there are finite different M.

Theorem 4.2 M; converges to a subset of Z* under algorithm AAgs.
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Proof 4.14 From lemma 4.10 we see that all converged sets are Pareto optimal subsets.

From lemma 4.12 we see that M; converges.

Note 4.1 Theorem 4.2 also applies with any metric Q in place of S, so long as Q is bounded
and VMy, = My, (Q(My,) = Q(My,,)) and Q(My,) > Q(My,) if My, Ow My, since only these

properties of the S metric were used to prove Theorem 4.2.

4.3.5 Archiving strategy 4: adaptive grid archiving
Overview

The archiving strategy considered in this section, adaptive grid archiving (AGA), is more
complicated than the other strategies considered above. It uses a kind of ‘crowding’ proce-
dure in objective space which can obtain a well-distributed, bounded archive of points with
minimal computational effort. In this section we shall show that, under certain conditions,
this strategy is guaranteed to populate certain regions in the objective space, and to maintain
the vectors in these regions. The proofs of this are quite involved and long so we first offer an
intuitive description of the archiving strategy and an overview of the key concepts involved

in the proofs. For this we first need a short description of the archiving strategy.

The crowding procedure used in AGA works by dividing up the K-dimensional objective
space occupied by the vectors in the archive M; at iteration ¢, into different rectangular
polytopes called grid regions. The number of grid regions is set a priori by the user, by
choosing the value of a parameter, div, which sets how many divisions of the objective space
there are in each objective. The number of grid regions thus remains constant over time,
but the space occupied by the vectors changes so that the location and extent of the grid
regions in objective space adapts and changes over time as the vectors in M; change. This is
shown in Figure 4.6. At time ¢, each vector in M; occupies exactly one grid region, and the
number of vectors occupying a particular grid region is called its population. We are able
to prove that the boundaries of the adaptive grid, and therefore of all grid regions, under
certain conditions, always converge. That is, their location and extent is unchanging after
some time t. We use the base assumption that the grid regions are converged to simplify the

proofs relating to the convergence of the archive itself.

The archiving rules in AGA are such that when the archive is at its capacity, arcsize, new
nondominated vectors generated by Gen(t) can be still accepted if there is at least one re-
gion with a population greater than the current population of the grid region that the new

nondominated vector would occupy. In this case, a randomly selected vector from one of the

118



L =
21

Figure 4.6: How the adaptive grid changes its location and shape in objective space as the
vectors in M; change over iterations t; > t; > t;.
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‘most crowded’ regions is removed from M;. This rule helps to distribute vectors evenly in

objective space.

A further pair of rules are designed to ensure that the nondominated vectors stored in the
archive cover the largest possible range in each objective. The first rule accepts a nondomi-
nated point if it increases the range of the grid in objective space, i.e. the range of objective
values represented by the vectors in the archive. The second rule of the pair forbids removal

of any nondominated vector which is currently uniquely extremal on any objective.

The distribution of points obtained by the application of the archiving rules in AGA depends
upon several factors. Amongst these factors are the number of regions there are, the location
and distribution of vectors in the true Pareto front, and the size of the archive. In the following
discussion, we try to give a picture of how these factors affect the kind of distribution we
should expect to obtain. We assume, in all examples, that the boundaries of the adaptive grid

have already converged, that is, that the location and extent of all regions remains constant.

Consider Figures 4.7-4.10. These figures show a finite, discrete Pareto front and some ap-
proximations to it. Figure 4.7 shows the true Pareto front and the regions it would occupy if a
grid of ten divisions in each objective were used (div = 10). The regions occupied by the true
Pareto front are called Pareto occupied regions (PORs) in our notation. In Figure 4.8 we see
what will ideally happen if arcsize is the same size as the number of PORs: the points will
all end up in their own POR, resulting in an even distribution that is near the entire Pareto
front. No region is overly crowded so this distribution should be stable with respect to the
crowding procedure'. In Figure 4.9(a) we see what happens if the arcsize is too small com-
pared to the number of Pareto occupied grid regions. They may end up in regions adjacent
to each other (except for the extremal vector on the right), and because there are not enough
of them to cover all the regions of interest, the resulting distribution is poor. In Figure 4.9(b)
we see what might happen if the arcsize is too large for the setting of the number of grid
regions: an uneven distribution again. This can occur because although the crowded regions
are constantly having points removed from them, they may also have points added back in at
a similar rate, simply because points in these regions may be frequently generated by Gen(t).
Note that this distribution is preferable to having too few points, however, because at least
the points can cover all of the Pareto occupied regions, even if they are not distributed evenly
between them. Figure 4.10 shows how the larger size of archive considered in Figure 4.9(b)

could be better served by using a grid with more divisions.

So, Figures 4.7-4.10 suggest that getting about the right size of archive for the number of

PORs is important. Of course, one cannot know how many PORs there will be in advance.

Tt remains to be shown whether it is stable in terms of all of the archiving rules taken together.
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Figure 4.7: In (a) the true Pareto front of a discrete, finite search space is shown with white
points representing Pareto optimal points. In (b) the same front is plotted against a grid of
regions used for ‘crowding’. The grid shown has 10 divisions in each of the two objectives.
The shaded regions are the Pareto occupied regions: those occupied by a Pareto optimal
point. If we could guarantee finding points in each shaded region we would have a well
distributed approximation to the true Pareto front.
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Figure 4.8: In (a) the same front as in Figure 4.7 is shown against a grid with fewer divisions
in each objective. In (b) an approximation to this front is shown, where exactly one vector
occupies each Pareto occupied region. Clearly these points form a fairly even distribution
and approximate the true Pareto front quite well. This is the kind of desirable distribution
that might be represented by the archive if arcsize equals the number of Pareto occupied
regions.
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Figure 4.9: In (a) arcsize is too small: only about half as big as the number of Pareto
occupied regions. This can lead to the situation shown where all the points cluster together
in regions that are close to each other. In (b) the opposite effect is shown. Here arcsize is
rather large. Although there is a point in every Pareto occupied region, some regions are very
crowded. This could occur if some regions are much more densely populated in the feasible
set than others or if points in them are easier to generate.
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Figure 4.10: With arcsize the same as in Figure 4.9(b), it is better to set the grid to have
the ‘right’ number of regions as shown in (a). Doing this leads to a better approximation to
the true Pareto front shown again in (b), and a more even distribution of points.
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4.3 Evaluation of archiving strategies

However, having enough available points in the archive is also desirable for another important
reason: to help the occupied regions to eventually converge to a stable set. Recall that the
crowding procedure uses a rule that can accept a nondominated vector into the archive if there
is another region that is more crowded than the new vector’s region. Now, this rule could
cause instability in the occupancy of regions. In Figure 4.11(a) this fact is demonstrated. The
plot shows a situation where the archive is full and the vectors have arranged themselves in
different regions so that all the occupied regions have a population of only one. When a new
vector which would go in an unoccupied region is generated, it will cause one of the occupied
regions to be ‘lost’. In this situation, the occupied regions might continually alternate, and
never converge to a stable set. To avoid this happening, all that is required is that the
archive is larger than the number of regions that can be populated by any nondominated
set. This is demonstrated in Figure 4.11(b). An important part of the proofs shows that the
supply of vectors is sufficient to avoid occupied regions alternating if arcsize is greater than
div® — (div — 1)* +2K.
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Figure 4.11: Plot (a) shows the points in a full archive of arcsize = 7. If a nondominated
point is generated which lies in any of the shaded regions then it will be allowed to enter the
archive but another point will be removed. This will cause one of the occupied regions to
be lost. In plot (b) the archive is larger: arcsize = 9. There are enough points so that any
occupied region A can only be lost if a vector in another region dominates all the points in
A.
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Figure 4.12: In (a), the true Pareto front (white points) and the archive at time ¢ (dark points) are
shown on the same plot, with the PORs shaded. The three points labelled P are Pareto optimal points
that are already in My, and |M;| = arcsize = 10, i.e. the archive is full. In (b) the archive at time
t + 1 is shown. Point A was generated by Gen(¢) and it is allowed to join because it is nondominated
and its region is less crowded than the region highlighted with a dark box. The highlighted region
has consequently had a solution removed at random, and this happens to be the Pareto optimal point
labelled P in the previous plot.
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Figure 4.13: These two plots show the next two time steps of the archive. First, point B joins at
iteration t+ 2, and another point is removed from the highlighted region. Finally, point C is generated
at time step ¢ + 3 and this point dominates the remaining point in the highlighted region at the last
time step, thus causing it to be removed. Overall, the highlighted region has evolved from having
three points in it including a Pareto optimal one, to having no points in it.
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Figure 4.14: In plot (a) the highlighted region can never be lost provided there is a sufficiently
large archive. This is because there is no region which contains feasible points and which has
coordinates that are lower than the coordinates of this region in any objective dimension. In
other words there is no region to the left or below it which contains feasible points. Thus
points in other regions cannot ever dominate any points in the highlighted region. This is
sufficient to guarantee that this region will always remain occupied. We call a region such
as this, a critical Pareto occupied region (C POR). Plot (b) shows the other C PORs in this
objective space. Notice that because the C PORs are populated, no region with coordinates
higher in both objective dimensions can ever become populated. This means that all future
points will be restricted to the shaded regions. In this case these correspond to the Pareto
occupied regions (see Figure 4.8(a)).

Unfortunately, sizing the archive correctly is not sufficient to ensure that all the regions
occupied by the Pareto front will become and remain populated. In Figures 4.12 and 4.13,
the evolution of an archive over four time steps is shown. The plots indicate that even if a
Pareto optimal point is in the archive at time ¢, it will not necessarily stay there. Furthermore,
the region it occupies need not even remain occupied because all of the vectors in it can at a
later time become dominated. This simple example demonstrates that we will not be able to
guarantee that all the Pareto occupied regions will remain stably populated by the archive,
even if it is larger than div® — (div — 1)¥ + 2K.

Fortunately, we can prove a slightly weaker property. Consider Figure 4.14(a), which shows
another approximation to the Pareto front considered previously in Figure 4.7. Provided the
size of the archive is large enough, the highlighted region will always remain occupied. This
is clear because no feasible vector in any other region dominates any point in the highlighted

region. Therefore, any single point occupying the highlighted region can only be ‘lost’ if it is
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4.3 Evaluation of archiving strategies

replaced by another vector in the same region which dominates it. Thus the region can never
be lost. We call this kind of region a critical Pareto occupied region (C POR). Figure 4.14(b)
shows all of the C PORs in the objective space. Our proofs show that all of the C PORs will
become occupied, and once occupied they will forever remain so. We are also able to prove
that all of the vectors in the archive will eventually occupy a (fluctuating) set of regions that

are non-inferior to the CPORs (see Figure 4.14 to get some feeling for this.)

Formal definitions and proofs

The above descriptions should give some motivation as to the meaning and relevance of the
proofs which follow. However, the proofs formalize these notions and allow us to make more
general statements about the convergence properties of the adaptive grid archiving strategy.
For convenience, we include Table 4.3.5 which tabulates the key terms introduced and used

in the following proofs.

Definition 4.6 Let the nondominated set of vectors from amongst the archive at time step
t — 1 together with the new vector z; generated at time step t be denoted by Ny. That is,
Ny = ND(My—1 U{z,}). Note that |N| may be larger than arcsize.

Definition 4.7 Let the minimum and mazimum scalar values of an objective k amongst the
vectors in a vector set Z be denoted minzy z and maxzy z, respectively. That is, minzy 7 =

mingcz(2x) and mazzy,z = maxgzcz(2g).

Definition 4.8 There are 2K boundaries of the adaptive grid: uby; and lby; for allk € 1..K.
The boundaries are set so that Vt,Vk, (ubgy > mazzyn,) N (lbyy < minzgn,). (See rule
Update_boundaries(t) below.)

Definition 4.9 The rectangular polytope defined by the ‘corners’ (uby s, ubay, ..., uby;) and
(Ib1 ¢, lbog, ..., lbg ) is divided into a set Ry of similar rectangular polytope regions ri, € Ry,
where 1 = (i1,149,...,ix) s the co-ordinate vector of the region, and Yk € 1..K, iy € 1..div
where div € j | j > 2,5 € Z is a constant parameter, the number of divisions of the objective

space in each dimension, set by the user. The set of all region co-ordinates is I and |I| = div™.

Definition 4.10 The boundaries of the regions ri; are given by:
VE € 1.K, rubyi; = by + iy /div.(ubyy — b)) and
rlbg it =l + (ix, — 1)/div.(ubg — lbk;). See Figure 4.16.
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Symbol  Meaning References
AARedquececrep A generic archiving algorithm Figure 4.5
CPOR A critical Pareto occupied region: a converged region  Definition 4.25,
which contains no vectors that can be dominated by = Lemma 4.15
feasible vectors in a different region
CR;  The set of crowded regions Definition 4.18
div  The number of divisions in each objective dividing up  Definition 4.9
the adaptive grid into separate regions
Gen(t) A process that generates every vector in Z with posi-  Definition 4.4
tive probability
K The number of objectives in the vector objective space  Definition 4.7
by  The lower boundary of the adaptive grid in objective ~ Definition 4.7
k at time t
M;  The archive at time step ¢ Definition 4.3
minzg,y,  The minimum value of the kth component of any vec-  Definition 4.7
tor in N
MaT i, N, The maximum value of the kth component of any vec-  Definition 4.7
tor in N;
N;  The nondominated vectors from the union of M;_;  Definition 4.6
and z;
ND(Z;)  The set of nondominated vectors from Z;
Occ(ri, Z1)  The set of vectors in Z; occupying a region ry; Definition 4.14
Ow  The weak outperformance relation
PNIR  Pareto non-inferior region: a region that is weakly in-  Definition 4.26,
ferior to a CPOR or is a CPOR Lemma 4.6
POR  Pareto occupied region: a region that is occupied by  Definition 4.12
a vector in Z*
p(rie)  The number of vectors in |M;_;| occupying region r;;  Definition 4.13
ri¢ A region with coordinates i at time ¢ Definition 4.9
rtc A root region of a region with co-ordinate vector ¢ Definition B.1
ubg;  The upper boundary of the adaptive grid in objective =~ Definition 4.7
k at time t
Z  The finite objective space Definition 4.1
Z*  The Pareto optimal front Definition 4.2
Zet  The set of vectors available for removal from the  Definition 4.19
crowded regions, C' R,
z; A vector in Z generated at time ¢ by Gen(t) Definitions 4.1

and 4.4
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4.3 Evaluation of archiving strategies

Definition 4.11 We say that a vector z in M;_y occupies a region ri; if Vk, zp > rlby ;A
2z < rubgii. We call a region ri; that has a vector z in M; 1 occupying it, an occupied

region.

Definition 4.12 We say that the vector z € Z* Pareto occupies a region ri; if for all k,
2 > rlbgie N 2z < rubgig, even if the vector is not in M;_1. We call a region that has a

z € Z* (and not necessarily in My_1) occupying it, a Pareto occupied region (POR).

Definition 4.13 The population p(ri;) of a region is the number of vectors in My_ occu-

pying it.

Definition 4.14 The set of vectors from a vector set Z occupying a region is Occ(ry, Z) C
Z.

Definition 4.15 The region occupied by a vector z is denoted 1y, ;.

If there is no difference between minz;, n, and mazxz;, n, for some objective k then the adaptive
grid boundaries are undefined, and the boundaries of all regions are undefined. In this case,
the rules called by Reduce() that use the grid populations to perform crowding are also
undefined. In the following, we make the assumption that the grid boundaries are always
well-defined. This is a reasonable assumption since the archive is full whenever any of the rules
that use the adaptive grid are executed, so there will normally be some difference between

the vectors in M; in each of the objectives.

We also make the constraint that arcsize > 2K . This ensures that the archive is large enough

to accommodate all nondominated extremal vectors.

In the adaptive grid archiving strategy we want to protect uniquely extremal vectors from
being removed from the archive once they have entered it (except by domination), so that
the vectors in the archive will converge to a set which covers the largest possible range in
objective space, in each objective. However, the archiving strategy will be removing vectors
from crowded regions. To avoid removing extremal vectors from these regions we will need a
way of counting the number of vectors that occupy a region, (i.e. how crowded it is) excluding
the number of uniquely extremal vectors. In the following, we define some terms needed to
do this.
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4.3 Evaluation of archiving strategies

Definition 4.16 Let the set of uniquely extremal vectors in Ny be defined:

Ztext = {zezvt c Nt | (Hk S 1..K, /Hz c Nt,Z 7& Zemt,zk < Z,Sxt)\/
(E”f € IK, /HZ € Nt,z 5& Zext,Zk > Z;émt)}

Definition 4.17 Let the population of non-uniquely extremal (nue) vectors of a region at
time t be defined:
Pnue (’)”i, t) = p(ri,t) - |OCC(Ti,t7 Ztef{”

Definition 4.18 Let the set of crowded regions be defined:

CRy = {Ti,t €ER | pnue(ri,t) = mawiel(pnue(ri,t))}

Definition 4.19 Let the set of vectors in the set of crowded regions that are available for

removal from the archive at time t be defined:

Zep= |J Oce(rip, My_1)
it cCRy

In other words, this is the set of vectors that are in the set of most crowded regions, where the
most crowded regions are defined as those with the largest population, not counting uniquely
extremal vectors. Let the vector z©' be a wvector selected uniformly at random from within
e g

Let the function Reduce() for the AA.;4 algorithm be defined as:

Reduce({z} U M;_1):
Update_boundaries(t)
Fill(t)

Domination(t)
Diverge(t)
Low_pop_region(t)
Steady_state(t)
return(M;)

with archiving rules Fill(¢) and Domination(¢) as previously defined for AAg4,,, and the fol-

lowing additional rules:
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4.3 Evaluation of archiving strategies

Update_boundaries(t):

foreach (k € 1..K)
{

rangey, < max.en, (z) — min.en, (2x)

ubg ¢  max,en, (2) + (1/(2.div))(rangey ;)

Iby; < min,ep, (2) — (1/(2.div))(ranger)}

Re-calculate grid region boundaries for &
}
In other words, Update_boundaries(t) updates the boundaries based on the nondomi-
nated set IV; defined above. Note that this rule is not conditional: it is executed at
every time step. The effect of the rule is to set the regions at time ¢ before the archive M,
is updated to allow the archive to be updated based on the current region boundaries.
The effect of the Update_boundaries(t) rule is illustrated in Figure 4.15

Diverge(t):

if ( |[M;—1| = arcsize N zy ~ My N (3Fk, (mazz N, # mazzg v, )V (minzg N, #
minzia, ) N Zey #0) then { My + (M1 U{z}) \ {z%'} }

In other words, if the archive is full and the new vector has a component beyond the
extremes of the archive at the last time step. then accept the new vector and remove
a vector from one of the set of most crowded regions, ensuring it is not extremal on
any objective. Notice that this rule (and the two that follow below) also depend on
the condition that the set of vectors available for removal from the set of crowded
regions is not empty. This is always true provided that arcsize > 2K, as we have
already assumed. Note also that the fact that the boundaries have changed implies that
zy < My or z; ~ M, _1; the latter case will have been dealt with by the Domination(t)

rule.

Low_pop_region(t):

if (|M;—1| = arcsize N zg ~ My N (VE,(mazzp N, = mazzgm, ) A (minzg N, =
minzk,Mt_l)) A= S Iapnue('ri,t) >1 A die Iapnue(""i,t) > pnue(""izt,t) A Zc,t a 0 )
then M; + (M; 1 U {z}) \ {z°'}

In other words, if the archive is full and the new vector is nondominated with respect
to the archive and the new vector lies within the extremes of the archive and the region
(at the last time step) that the new vector would go in is less crowded than some other
region(s), and there is a region with a population of non-uniquely extremal vectors of
greater than 1, then accept the new vector and remove a vector from one of the set of

most crowded regions.
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4.3 Evaluation of archiving strategies

The rule Steady_state(t) is also updated to remain compatible with the other rules, as follows:

Steady_state(#):
if (|M;—1] = arcsize N (Vk,(mazzy N, = mazzg ;) A (minzg, N, = minzga,_,)) A
(Zc,t =0v Ai € I, ppye ('r'i,t—l) > pnue('r'izt,t—l)v EiSUChthatpnue(""i,t) # 1) N zg £ My
) then M +— M4

By inspection, it can be seen that in function Reduce for algorithm AA, ;4 exactly two rules
will execute at each time step, ¢: rule Update_boundaries(t) always executes, and then ex-
actly one of Fill(¢), Domination(t), Diverge(t), Low_pop_region(t), Steady_state(t) executes. The
boundaries of the grid at time ¢ are set so that the nondominated vectors from the archive at
the previous time step and the new vector z; all lie within the boundaries. Figure 4.15 shows

how the boundaries are set.

Also, by inspection, it is clear that the archiving rules ensure that the archive is always a

nondominated set.
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Figure 4.15: When a new vector z; increases the range of the grid in some objective k, a
new rangeg is calculated, and the grid boundaries are set so that rangey, , - max,¢ N (28) —
min,en, (z;) and wby; < max.en,(zx) + (1/(2.div))(ranger;) and lby; < min.en, (2x) —
(1/(2.div))(rangey ), which means that the two extremal vectors in objective £ will be located
at the center of the outer grid regions.

We begin the proofs relating to the adaptive grid archiving strategy by showing that the

lower boundaries of the adaptive grid always converge.

Lemma 4.13 If a vector z € Zy with component z, = minzy,z, for some k is generated at

time t, then minzy v, = Minzg,z, -
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Figure 4.16: The figure shows the meaning of uby; and lby ;, for a two objective plot. The
region labelled A has co-ordinates i = (2,4) and boundaries, rub;;; = 2/10.(ub1; — b1 ),
lel,i,t = 1/10(ub1,t - lbl’t), ’)”’u,bg’i,t = 4/10(ub27t - lbgyt) and ’)"lbg,ht = 3/10(ub27t - lbgyt).

Proof 4.15 Assume that at time t, a vector z € Zy with component z, = minzkyzf for some
k is generated. It will enter the archive if Domination(t) or Diverge(t) or Low_pop_region(t)
or Fill(t) executes, and hence minzyy, = minzk,zf. If z* does not enter the archive,
it is because Steady_ state(t) ezecutes. However, one of the conditions for Steady_state(t)
to execute is that /3Ik such that minzyn, # minzga,_,. So we have zp = Minzg,z,
and Yk, minzy n, = minzgm, ,, and Steady_state(t) executes. Therefore, since z € Ny,
then minzy av,_, = minzg N, = minzkyzf, and because Steady_state(t) executes minzy p, =

MiNzg,M,_,, SO MINZg M, = MANZk 7, as required.

Lemma 4.14 If, for some k € 1..K,3z € M, with z;, = minzy,z, then V¥t > ty,,3z € M

with z, = Minzg,z, -

Proof 4.16 Assume that for some k € 1..K,3z € M, with 2, = minzg,z,. We show that

no archiving rule is capable of removing all the vectors with component z, = minzy, z,.

Let us consider each of the rules that can remove vectors. These are the rules Diverge(t),

Low_pop_region(t), and Domination(t).
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Domination(t) can remove multiple vectors at once. However, it cannot remove any vector
with component z, = minzy, 7z except by replacing it with another vector also with a component

2z = minzy,z since the new vector must dominate the one(s) replaced.

Diverge(t) can remove only one vector z& from the archive. If there is only one vector z € M,
with z = minzy z then it is a unique extremum in the archive and Diverge(t) cannot remove
it by the definition of Diverge(t). If there are n > 1 wectors in the archive with z, = minzy z

then Diverge(t) may remove one but one or more will remain.

Low_pop_region(t) can also remove only one vector from the archive and only if it is not a

unique extremum. The same argument as for Diverge(t) applies.
Theorem 4.3 The lower boundaries of the grid lby; converge for all k.

Proof 4.17 To show that the lower boundaries converge it is sufficient to show that there is
a time tp, such that Vt > tp,,Vk, minzg v, = minzk,zf. This is proved by Lemma 4.13 and
Lemma 4.14.

Although it is possible to prove that the lower boundaries converge in all cases, unfortunately
this is not true for the upper boundaries. However, it is possible to specify an additional
condition under which the upper boundaries can be proved to converge. Appendix A contains

proofs showing that the upper boundaries converge under this condition.
Assumption 4.1 The upper boundaries uby; converge for all k.

Corrollary 4.2 Since the lower boundaries of the grid converge (Theorem 4.3) and by As-
sumption 4.1, the upper boundaries of the grid also converge, then so do all the boundaries

of all of the regions in the grid.

In the following, our proofs rely on Corollary 4.2. This allow us to consider all of the regions
as being static, enabling us to prove that some of the regions containing Pareto optimal points
will become constantly occupied by points in the archive. We now introduce some additional

terminology relating to the grid regions, needed for these proofs.

Definition 4.20 Let a set of regions whose boundaries are converged be called a converged

set of regions, and each region in the set be called a converged region.
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Definition 4.21 If a converged set of regions also has a subset of regions which remain
occupied over time then we say that there is a converged set of occupied regions, Roor. The

regions that comprise this set are called constantly occupied regions (CORs).

The following three definitions introduce dominance relationships between regions, and are
illustrated by Figure 4.17.

2 4 ( superior to .
weakly superior to .

A Region A is < incomparable with

weakly inferior to

K inferior to

21

Figure 4.17: The dominance relationships between a region A and the other regions in a grid.

Definition 4.22 We say that a region r1 is superior to another region ro iff r1’s coordinates
are all strictly less than r9’s. In addition, r9 is said to be inferior to ri. Notice that all
vectors in ro are dominated by vectors in ri. Thus, any region that is inferior to another

Pareto occupied region cannot itself be a Pareto occupied region.

Definition 4.23 We say that a region ry is weakly superior to a region o if r1’s coordinates
dominate r9’s and 11 is not superior to ro. In addition, T9 is said to be weakly inferior to
r1. Notice that it is possible for a region that is weakly inferior to another region, to contain

efficient vectors, and hence to be a Pareto occupied region.

Definition 4.24 Two regions are incomparable with respect to each other if neither is supe-

rior nor weakly superior to the other.

Definition 4.25 In a set of converged regions, Pareto occupied regions that are not weakly in-
ferior to any other Pareto occupied region are called critical Pareto occupied regions (CPORs).

An important property of a CPOR is the following: no vector that occupies a critical Pareto
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occupied region can be dominated by any vector z € Z that occupies any other region. The
set of CPORs is denoted Ropor-

Definition 4.26 A Pareto non-inferior region PNIR is any (converged) region that is weakly
inferior to a Pareto occupied region, or is itself a Pareto occupied region. Figure 4.19 illus-
trates the concept of a PNIR.

Note that the set of Pareto occupied regions (PORs) contains the Pareto front. The set
of PNIRs includes these, together with any additional regions (such as ro5 in Figure 4.19)
which, informally, fill in the gaps. That is, given any path (ri,72,73,74,...,7,) Where rj44
shares at least one corner with r;, and in which r; is inferior to a POR and 7, is superior to
a POR, the path must include at least one PNIR.

29 )
o) -
O  (globaly) efficient vector
o ©  dominated vector
, ©
z, converged region
1 9
Z
° Q
O | Pareto occupied region
Q o
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Figure 4.18: A set of (globally) efficient vectors (white points) within a space of converged
regions is shown. Although both vectors z' and z? are nondominated, the region that z'
occupies, roz, is weakly superior to the region z? occupies, ro3. Because ro3 is weakly inferior
to ra9, there are points in ra3 that are dominated by points in r99, e.g., the grey point in 29
is dominated by z;. Region ryo, in contrast, is a critical Pareto occupied region because it
is not weakly inferior to any other Pareto occupied region. This means that any vector in it
cannot be dominated by any feasible vector in any other region. Consider the grey vector in
r99. Although it is dominated (by z!), clearly it cannot be dominated by any vector not in

929.

Lemma 4.15 If a critical Pareto occupied region is occupied at time t;, then it is occupied
for all t > t;.
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Z9 4

O  (globaly) efficient vector

e feasible non-efficient vector

. Pareto noninferior region (PNIR)
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Figure 4.19: The feasible objective vectors within a converged set of regions is shown. The
Pareto non-inferior regions (P NIRs) are shaded.

Proof 4.18 Assume at time t; a C POR has a population of n > 1 vectors z',2%,23,...,2",

and at some time t; > t; all of them are removed from the archive.

Only Rules Low_pop_region(t) and Domination(t) and can remove vectors from the archive?
Howewver, Low_pop_region(t) can only remove one vector from a region. Therefore, if n > 1

it cannot remove all the vectors.

On the other hand, if n = 1, then Low_pop_region(t)cannot remove the single vector in
the CPOR because ppue(Tigpor.t) # 1. That is, the critical Pareto occupied region we are
considering does not have a population (of non-uniquely extremal vectors) greater than 1.
Therefore, either it is not one of the most crowded regions i.e. it is not in CRy or there does
not exist any region with a population greater than 1. In either case, Low_pop_region(t)cannot

remove a vector from this critical Pareto occupied region.

Thus, Rule Domination(t) must remove the n wvectors. But, by the definition of a critical
Pareto occupied region, no vectors exist that can dominate any wvector in a CPOR, except
another vector in the same CPOR. Therefore Domination(t) can remove the n vectors only

by replacing them with another vector in the same C POR.

Therefore all cases contradict our original assumption that there is a time t; > t; such that

no vectors in the archive occupy the CPOR.

Theorem 4.4 The maximum number of mutually non-inferior regions in a K dimensional

®Diverge(t) cannot execute because we have already assumed that the region boundaries have converged.
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4.3 Evaluation of archiving strategies

vector space divided up into div equal divisions in each dimension, is div® — (div — 1)K,
Proof 4.19 The proof of this theorem is given in Appendiz B.

Lemma 4.16 For all t, if arcsize > div® — (div—1)X +2K and an efficient point z; € Z* is
generated by Gen(t), then p(ri, ) > 1. In other words, if a Pareto optimal point is generated

at time t, its region will be occupied in the same time step, provided the archive capacity is
greater than divK — (div — 1)K 4 2K.

Proof 4.20 Consider the time t when zy € Z* is generated by Gen(t). Then following the
execution of Update_boundaries(t) (which may or may not alter the grid regions), ezxactly
one of Fill(t), Domination(t), Low_pop_region(t) or Steady_state(t) executes. If either Fill(t),
Domination(t) or Low_pop_region(t) executes then z; is accepted and clearly p(rs,, ) > 1.

In order to prove that one of Fill(t), Domination(t) or Low_pop_region(t) always ezecutes it
is sufficient to prove that Steady_state(t) does not execute. We show that Steady_state(t)
does not execute when p(rizwt,l) =0 i.e. it can only execute when the z;’s region is already

occupied, leaving it occupied.

Assume M;_1 = arcsize. Then we have My_y > div® — (div —1)X +2K. From Theorem 4.4,
it follows that My occupies at most div® — (div — 1)X regions. Now, at most 2K wvectors are
uniquely extremal. Therefore, it follows that 3i, ppye(rie) > 1. Since My_1 > 2K, Z.; # 0.
Now, if p(ri,, 1—1) = 0 then 3i,p(riz—1) > p(ri,, t—1)- So, we now have 3, ppye(riy) >
LA Zey #0 A Fi,p(rip—1) > p(riz“t,l), therefore Steady_state(t) does not execute.

On the other hand, if My_1 # arcsize, Steady_state(t) cannot execute either.

Theorem 4.5 3t,, such that ¥t > t,,,Vris € Ropor,p(rit) > 0, provided arcsize > divk —
(div—1)K +2K . In other words, there is a time after which all of the critical Pareto occupied

regions become constantly occupied, provided the archive is sized appropriately.

Proof 4.21 From lemmata 4.15 and 4.16 we see that the number of critical Pareto occupied
regions that are occupied by vector in the archive monotonically increases over time, provided
arcsize > div® — (div — 1)¥ + 2K. Since the number of critical Pareto occupied regions is

finite this implies that the set of occupied C PORs converges to Ropog-

Theorem 4.6 If at time t,, the set of occupied C PORs has converged to Ropor then for
all t > t,,, all vectors in My reside in a PNIR.
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4.3 Evaluation of archiving strategies

Proof 4.22 Regions that are not PNIRs are either weakly superior to, superior to, or infe-
rior to, a critical Pareto occupied region. But for all t, no vector generated by Gen(t) can lie
i a region that is superior or weakly superior to any critical Pareto occupied region, since
they are all occupied for all future t. And, any vector generated by Gen(t) that is inferior
to an occupied region will not be accepted (from the definition of domination and the rule
Steady_state(t) ).

29 [}

O  nondominated vector

. mutually noninferior regions

o
&

21

Figure 4.20: A set of mutually nondominated vectors is shown. All of them must lie within
a set of regions that is mutually non-inferior.

The implications of Theorems 4.5 and 4.6 are that the vectors in the archive will become
well distributed and close to the Pareto front in a well-defined way: after a certain number of
iterations, a subset of them will always occupy all of the critical Pareto occupied regions, and
the remainder will be in a PNIR. In order to guarantee achieving this, the archive should
be given a capacity of 1 + div® — (div — 1) + 2K, at least.

In practice, however, the archive can probably be given a capacity smaller than this, provided
it is larger than the number of critical Pareto occupied regions. We made the constraint that
arcsize > div® — (div — 1)K 4+ 2K in order to prove Lemma 4.16, which ensures that if an
efficient point is generated, its region becomes or remains occupied. This was needed to prove
that all C PORs will become constantly occupied. But we would generally expect all of the
C' PORs would become (constantly) occupied even without Lemma 4.16. This is because,
as a result of rule Domination(¢), non-efficient vectors will generally be removed in favour
of efficient ones that dominate them, over time. Thus, any set of mutually nondominated
vectors that do not occupy all of the critical Pareto occupied regions, will usually give way

to an archive in which one more critical Pareto occupied region is occupied. The reason this
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4.3 Evaluation of archiving strategies

is not guaranteed is because it may be the case that all of the unfound vectors in the critical
Pareto occupied regions do not dominate any vector in the archive, for all future iterations.
Assuming this unlikely event does not occur, there will still be a monotonic increase in the
occupation of critical Pareto occupied regions. Thus, if the archive is greater than the number
of critical Pareto occupied regions then eventually all of the critical Pareto occupied regions

will become constantly occupied.

So, if a small chance of “sub-optimal” convergence can be tolerated then the requirement
for arcsize goes down to the maximum number of critical Pareto occupied regions (plus the

number of extremal Pareto occupied regions) that there are in a grid space.

Conjecture 4.1 The maximum number of critical Pareto occupied regions in an objective

space of K dimensions and divided into div divisions in each dimension is given by:

(4.3)

(s—K)/div K (K/2.(div + 1) — div.j — 1)!
vs = ;0 [(—1)]- (K — )K" (K — D){(K/2.(div + 1) — div.j — K)!

when s is set to | K/2(div +1)].

A proof of this conjecture is not provided but some supporting argument is given. A crit-
ical Pareto occupied region (CPOR) cannot have coordinates that put it on the same one
dimensional ‘row’ as any other C POR, otherwise one of them would be weakly superior to
the other. From this we can see that in any list of critical Pareto optimal regions, no pair of
regions can have an identical set of any K — 1 coordinates. In addition, all the regions must
be non-inferior so no two vectors should share the same root region. Such an arrangement of
regions can be achieved if the sum of all the coordinates of each region is equal to a constant
value. This ensures that the above constraints are satisfied because any two regions that are
different will be different in K — 1 coordinates if their sum is equal, and any two regions with
the same root region would surely have a different coordinate sum. The number of regions
that have the same coordinate sum is given by equation 4.3. This equation actually gives
the number of ways there are of achieving a total of s from K dice, each with div faces. The
equation was obtained from [Rob01], and a derivation is given in Appendix C When the sum
is set to | K/2(div + 1)| this number appears to be maximized, although no proof of this has

yet been found.

In summary, the adaptive grid archiving algorithm is guaranteed to:

- store and maintain points at the extremes of all objectives (Theorems 4.3 and A.1);

- store and maintain points in all of the critical Pareto occupied regions (Theorem 4.5);
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4.4 Efficient implementation of an adaptive grid archiving algorithm

- and distribute its remaining points amongst the Pareto non-inferior regions (Theo-
rem 4.6),

provided the upper boundaries of the grid converge, arcsize > div® — (div — 1)¥ + 2K,
the generating function generates all points with positive probability, and the search space is
finite.

Table 4.1 gives the required size of the archive for different values of div and K, for the
case where convergence is guaranteed (3rd column), and the case where it is only probable
(4th column). Clearly, in the two-dimensional case, the required archive size to guarantee
convergence is small, even with 64 divisions per objective. As the number of objectives
increases, the required archive sizes for guaranteed convergence rapidly increase to numbers
that are larger than usually used as the population in an EA. However, with 8 objectives and
4 divisions per objective, arcsize > 8092, a manageable number, is large enough to cover the

C PORs, if our conjecture 4.1 is true.

The formal description of the AGA strategy given in this section was required to evaluate
its convergence properties. In the next section, we consider how the archiving rules may be

actually implemented to give an archiving algorithm that is computationally efficient.

4.4 Efficient implementation of an adaptive grid archiving al-

gorithm

In the last section, several alternative archiving strategies for use in the archiving hillclimber
were proposed and analyzed. The adaptive grid archiving (AGA) strategy was shown to
have several advantages over the other proposed strategies: it preserves a bounded archive,
it is not efficiency preserving so that no region of the Pareto front is ever unobtainable,
and it works adaptively, without the need for setting any critical parameters; the number of
divisions of the objective space in each objective must be chosen but this is an independent
choice, not affected by any properties of the objective space. Furthermore, we showed that
under certain conditions (see Appendix A), this strategy also converges to a set spanning the
extremes of the Pareto front, and provided the archive can be given a large enough capacity,
it distributes the other vectors so that a certain set of superior regions — the critical Pareto
occupied regions — are always occupied, and the remaining vectors distribute themselves

between grid regions that are weakly inferior to these.

In this section, we propose an efficient implementation of an adaptive grid archiving algorithm
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4.4 Efficient implementation of an adaptive grid archiving algorithm

K div | div® = (div = )X +2K | v g/adiv+1)]
2 2 7 2
2 4 11 4
2 8 29 8
2 16 35 16
2 32 67 32
2 64 131 64
3 2 13 3
3 4 43 12
3 8 175 48
3 16 727 192
4 2 23 6
4 4 183 44
4 8 1703 344
4 16 14919 2736
8 2 272 70
8 4 58991 8092
8 8 11012431 1012664

Table 4.1: The required size of the archive for various values of div and K. The third
column is the required size if convergence to all the critical Pareto occupied regions must
be guaranteed. The fourth column is the required size to allow storage of vectors occupying
the maximum number of critical Pareto occupied regions, but without guaranteeing that
convergence to this set of regions will occur. The bold lines are the numbers of objectives
and divisions chosen for problems tackled in this thesis.

based on the AGA strategy. The archiving algorithm, as specified here, drops the requirement,
seen in the AGA, that ‘crowded regions’ (from which solutions may be removed) must have
a population greater than one. This could easily be included if guaranteed convergence is
required but we drop this requirement to make the algorithm slightly simpler. In other
respects the archiving algorithm is the same as the AGA strategy, except for one more

restriction.

Efficient implementation of the adaptive grid archiving algorithm is achieved by using a
quadtree encoding of the grid regions (Figure 4.22). In order to use this approach, the
number of divisions of each objective range, div, is constrained to be a value of 2!, where
I € Z* is the user-selected subdivision parameter, controlling div. Now, when each new
vector is generated, its grid region is calculated using iterated subdivision of the objective
space, and recorded using a quadtree encoding. At each step, the relevant bit in the encoding

is set, if the vector lies in the larger half of the division currently being checked, in the
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4.4 Efficient implementation of an adaptive grid archiving algorithm

Algorithm: Quadtree_encode

z is the vector whose region is to be located

The two-dimensional matrix @Q is the required quadtree coding of
z’s region, and every element of it, g ; is initially set to zero
ubg and [bg are the values of the upper and lower boundary of
the grid in objective k, respectively

foreach (k € 1..K)
subrange;, < uby — lby,
sublby, < lby
foreach (5 € 1..0)
subhal f, < sublby, + subrange,, /2
if (zx > subhal fi)
qk,j ~—1
sublby < subhal f,
subrange,, < subrange, /2

Figure 4.21: Algorithm for calculating the region occupied by an
objective vector z, within a grid with known upper and lower
boundaries.

objective currently being checked. The number of steps required to encode a vector’s region
is thus [.K. An algorithm for calculating the region occupied by an objective vector is given

in Figure 4.21.

The overall time complexity of the adaptive grid archiving algorithm, in terms of the number
of comparisons that must be made, may be calculated in terms of the number of solutions in
the archive, | M|, the number of subdivision levels being used, [, and the number of objectives
of the problem, K. We have seen that finding the grid region of a single objective vector
requires [.K comparisons. Once this is found for a vector in the archive, it is stored with the
vector for future lookup. Only if the grid boundaries are changed, must it be recalculated.
The population of each region is also stored in an array so that this can be retrieved in O(1)

time.

If the functions that must be performed are ordered in an efficient way then very few op-
erations must be performed to keep the adaptive grid updated and carry out the crowding
procedure. An efficient implementation of the archiving algorithm is shown in Figure 4.23,

giving the number of comparisons and significant operations for each function of the algo-
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Figure 4.22: A grid for a 2-objective problem with the subdivision parameter [ = 3, giving
div = 2! = 8 grid divisions in each objective. Each region is coded using a quadtree encoding,
in which the k&, jth bit is set in a K x [ binary matrix if the region is in the larger half of the
jth bisection of the grid in the kth objective. The matrices for each region are shown.
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rithm. Using this implementation, if z; is not dominated by any members of the archive and
is not outside the current grid boundary then only O(|M; 1| + [.K) operations are needed
altogether, worst case. If it is outside the boundary then updating the boundaries and grid
populations takes an additional O(|M;_;|.l.K) significant operations. Since [ and K will
typically be very small compared to the size of the archive, the overall time complexity can
be written as O(|M;|) per iteration. Any time z; > M; 1, or the archive is not full, or z;
dominates just one or two vectors in M;_; then the actual number of operations is signifi-
cantly less than this, however. In contrast, niching methods require O(N?) comparisons, for

a population of size N, to calculate niche counts.

if My £ 24
if z; is outside current boundaries of the grid
-update boundaries (= 2.K comparisons)
-recalculate grid populations (= |M;_1|.[.K comparisons)
-calculate grid region of z; (= I.K comparisons)
if zy < My 4
-increment population of z;’s region and decrement population of all
dominated vectors’ regions (= O(|M;_,|) operations (worst case))
else if z; ~ M;_1 and archive is full and z; in less crowded region than some vector in M
-find all vectors in more crowded regions (= O(|M;_1|) operations)
-increment population of z;’s region and decrement
population of discarded vector’s population (= O(1) operations)
else if z; ~ M;_; and archive is not full
-add z; to the archive and increment population of z,’s region (= O(1) operations)

Figure 4.23: Time complexity of operations in the adaptive grid archiving algorithm.

4.5 Enhancing the acceptance function

In the last sections, an efficient and effective means of maintaining a bounded archive of
the best solutions found has been proposed and analyzed. By incorporating the adaptive
grid archiving strategy in the Reduce function of the archiving hillclimber, an algorithm that
satisfies the requirements put forward earlier is obtained. However, in order to accelerate the
discovery of diverse and high quality solutions it may also be beneficial to bias the acceptance
function to favour (a) solutions in less crowded regions, and (b) solutions that dominate one

or more members of the current archive.

In general, some sort of neighbourhood function will be used to alter the current solution to

generate the mutant. In other words, a mutant will usually be ‘close’ in decision space to its
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parent solution. Assuming that close in decision space implies close in objective space (which
we do, implicitly, when we use any sort of selection process and neighbourhood function),
then a mutant of a solution in an uncrowded region will also be more likely to be in an
uncrowded region of objective space. Thus, it may be beneficial to accept these more isolated
solutions over the current solution, because they will encourage the further exploration of

under-populated regions of the objective space.

Similarly, a mutant that dominates one or more members of the archive is, in a sense, stronger
than a solution that is just nondominated with respect to the archive (as is the current
solution). Therefore, such a mutant might be considered preferable to the current solution

as a place from which to explore further, and should thus be accepted.

In order to bias the acceptance function towards solutions in uncrowded regions, the adaptive
grid crowding algorithm, used as the archiving strategy, can be re-utilized. This could be
achieved by accepting the mutant x’ only if its image in objective space is in a less crowded

region than the image of x.

In order to bias the acceptance function towards solutions that dominate one or more members
of the archive, mutants that dominate the archive can be accepted independently of whether

or not they occupy a less crowded region than the current solution.

In order to incorporate this biasing of the acceptance function into the archiving hillclimber
algorithm given in Figure 4.3, the functions Reduce and Inferior must be combined, because the
replacement of x by x’ depends upon knowing the region that z’ occupies, and its population,
and whether z’ actually dominates any member of the archive. The (141)-PAES algorithm
described in the next section orders these functions so that biasing of the acceptance function

and the adaptive grid archiving strategy are achieved with minimal computational overhead.

4.6 (1+1)-PAES

The complete (1+1)-PAES algorithm is shown in Figure 4.24. Like a hillclimber, it has a
population of 1 (the current solution), it generates a mutant of this, then selects the “best”
from the pair to become the current solution of the next iteration. This is a known as a
(141) selection strategy in ESs [Rec65], and gives rise to the name (1+1)-PAES.

In (141)-PAES, the acceptance function is biased towards accepting mutants which dominate
the archive, and mutants in less crowded regions of the adaptive grid. It also incorporates an

efficient implementation of the adaptive grid archiving algorithm described earlier, although
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the bookkeeping operations to maintain the grid are not shown. The algorithm may be made
still more efficient if a domination-free tree [SS96a, SS96b] were used and maintained, to store

the vectors in the archive®. However, to date, this has not been implemented.

4.7 The time complexity of (141)-PAES

The time complexity of (1+1)-PAES can be reduced to the complexity of the acceptance/rejection
of the mutant solution, and of the updating of the archive. In these processes, PAES requires
K comparisons to compare the candidate solution with the current solution and a further
|M;_1|.K comparisons (in the worst case) to compare the current solution with the archive,
where |M;_;| is the size of the archive of the previous iteration and K is the number of
objectives in the problem. It requires [.K to find the candidate’s grid location. A further
2.K comparisons are required to update the grid ranges and another |M;|.l.K comparisons
if the grid ranges have changed and the archive grid region populations require updating.
The complexity of finding a solution in a crowded region to be discarded from the archive
is also O(|M;_1]), as is discarding all dominated members of the archive. Overall, this gives
(141)-PAES a time complexity of O(arcsize), per iteration, where arcsize is the capacity of
the archive. This worst-case time complexity is equivalent to the O(n?) time complexity of

many generational MOEAs.

However, the best and average case number of operations used by PAES is significantly
different from the worst case outlined above. It requires only K comparisons to ascertain
that the candidate solution is dominated by the current solution and in this case no further
comparisons are required in that generation. Similarly, if the candidate is dominated by
anything in the archive, no updating of the grid ranges or region populations is necessary. In
PAES, the latter case occurs frequently since the archive represents a diverse sample of the
best solutions ever found. Also, in many cases, the archive is not full, i.e. |M;| < arcsize ,
so that the number of comparisons to accept or discard a solution is relatively small. If large
archive sizes were needed then it would be worth implementing the archive as a domination-
free tree so that the number of comparisons to determine the candidate solution’s dominance

relationship to the archive would be reduced further.

3In a domination-free tree, nondominated vectors are stored in a quadtree data-structure, based on relations
between the components of all the vectors, that can reduce the number of comparisons required to identify if
a new vector is nondominated. The method is particularly effective when the number of objectives is large.
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Algorithm: (1+1)-PAES

Data:

M, is the archive of solution vectors discovered
x 1s the current solution vector

x’ is the mutant solution vector

Functions:

Terminate(t, M) returns TRUE if a termination condition based on
the archive or number of iterations is satisfied

Init() returns a solution vector in x € X

Mutate(x) returns a neighbour of x

Grpop(x) returns the population of x’s grid region

ND(X) returns the nondominated vectors from a set X

t<+0 /* Initialization */
M; 0
x € X <« Init()
t+t+1
My +— My U {X}
while (Terminate(t, M) # TRUE) /* Main Loop */
t—t+1
x' € X < Mutate(x)
if (x’ < x)
x  x'
Mt — ND({X,} U Mt—l)
else if (x' # M; 1)
if (XI < Mtfl)
Mt — ND({X,} U Mt—l)
x + x'
else if (x' ~ M;_1)
if (|M;—1| < arcsize)
M; + {X,} UM;_4
else if (x' increases the extent of the grid)
My + {x'} UM;_; \ {x“"} where x° is one
randomly selected solution from the
set {x' € M;_ | VxI € M;_y, Grpop(x') > Grpop(x?)}
else if (3x* € M; 1 such that Grpop(x’) < Grpop(x’))
M; {X,} UM; 4 \ {Xcr}
if (Grpop(x’) < Grpop(x))
x + x'
return My, ., /* Termination */

Figure 4.24: Pseudocode for (141)-PAES.
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4.8 Other variants of PAES

The (141)-PAES algorithm can be extended in a number of different ways, bridging the
gap between it and the more sophisticated, and computationally costly, MOEAs seen in the
literature. In Section 5.2.3 of the next chapter, we propose two population-based variants of
PAES. These, it was hoped, might be able to reduce the likelihood of PAES getting stuck
in local optima. However, as the experimental results in Section 5.2.5 show, these variants
did not generally perform as well as (14+1)-PAES, on a number of test functions we used
(although they did in some isolated cases). Here we present a number of other alternative
variants of the basic (141)-PAES algorithm.

4.8.1 Multi-start PAES

In a multi-start hillclimber, the overall best solution from each mini-run (restart) is stored
and updated so that at the end of the run, it can be returned as the best solution found. The
equivalent of this in PAES would be to store and update the best combined nondominated
front found from all the mini-runs. Ideally, this set should be bounded and should be as

diverse a set as possible, as in the normal PAES archive.

Thus, the simplest way to store solutions effectively in a multi-start version of PAES, is to
have two archives: a global archive that maintains a diverse sample of the nondominated
solutions discovered, independently of which of the mini-runs the solutions were generated
in. A second, local archive is needed because a mini-run of PAES will not be independent if
it interacts with the global archive, which may have solutions in it from previous mini-runs.
The local archive is voided for each mini-run, so that PAES starts from ‘zero’ each time. The
global archive is never voided. At the end of the run the global archive is returned. Both
the local and global archive are updated at each iteration, according to a similar archiving

strategy.

To control when restarts occur, a multi-start hillclimber usually estimates the rate of change
of the evaluation of the current solution, restarting when this rate falls below a threshold.
The estimate may be achieved by simply using the number of consecutive iterations that have
the same evaluation, or the number of iterations between ‘moves’, as a threshold to initiate
a restart. This simple method can be used in a multi-start version of PAES, as shown in
the pseudocode given in Figure 4.25. Some investigation of the multi-start PAES algorithm
has given promising results (not reported in this thesis) and it appears that it can be an

even more challenging algorithm than (1+1)-PAES for baselining MOEAs against, on some
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Algorithm: multi-start PAES

Data:

My is the (local) archive of solution vectors discovered

G, is the global archive of solution vectors discovered

x is the current solution vector; x’ is the mutant solution vector
it records the number of iterations between accepting a candidate
maz_t is a threshold for it that causes a restart

Functions:

Terminate(t, G¢) returns TRUE if a termination condition based on the global
archive or number of iterations is satisfied

Init(), Mutate(x), Grpop(x), ND(X) all as previously defined for the (1+1)-
PAES algorithm

Update(Gy, x) updates Gy with x according to the adaptive grid archiving strat-

egy

t+<0 /* Initialization */
Gt — @
while (Terminate(¢, M;) # TRUE) /* Main Loop */
M;
x € X + Init()
t+t+1
My +— My 1 U {X}, Update(Gt,x)
1t <0
while ((it < max_it) A (Terminate(t, M;) # TRUE)) /* Mini loop */
t+t+1
x' € X + Mutate(x)
if (x' <x)
x« x5t 0
My +— ND({X/} U Mt—l); Update(Gt, XI)
else if (x' ¥ M;_q)
if (X/ < Mtfl)
M; +— ND({XI} @] Mtfl); Update(Gt,x’)
x+ x5t 0
else if (x' ~ M;_)
if (|Mi—1] < arcsize)
M; +— {X’} UMy
else if (x’ increases the extent of the local archive’s grid)
M; + {x'} UM;_; \ {x"} where x°" is one
randomly selected solution from the
set {x' € My | Vx/ € M;_q, Grpop(x®) > Grpop(x?)}
else if (3x' € M, ; such that Grpop(x') < Grpop(x'))
My +— {XI} UM 4 \ {XCT}
if (Grpop(x’) < Grpop(x))
x x5t 0
Update(Gy, x')
return Gy, , /* Termination */

Figure 4.25: Pseudocode for multi-start PAES.
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4.8 Other variants of PAES

problems.

4.8.2 Thresholding and annealing PAES

In thresholding algorithms, candidate solutions are accepted if they are not worse than the
current solution by a certain threshold; the rule is deterministic, and the threshold may
be constant or decreasing according to a schedule. Simulated annealing algorithms accept
candidate solutions probabilistically, based on a distribution (usually the Boltzmann distri-
bution), a ‘temperature’ parameter, and the difference between the current and candidate
solutions’ evaluations. A cooling schedule reduces the ‘temperature’ and hence the proba-
bility of accepting degrading moves. In general, simulated annealing and other probabilistic
strategies have better convergence properties, and work better in practice, than deterministic

thresholding strategies, but both allow escape from local optima.

Unfortunately, neither thresholding nor annealing appears to be easily adaptable to a variant
of PAES. There are two reasons for this: first, measurable differences between solutions are
never utilized in PAES — only the dominance relation is used; and second, if the algorithm
were to sometimes accept dominated solutions, and these were simultaneously accepted into
the archive, then the archiving strategy would be grossly affected, because it is based on
keeping an entirely nondominated set of solutions at every stage, and much of its efficiency
comes from this simplification. It is possible to overcome these problems, to some extent,
however. Let us first consider the acceptance function only, and then we will consider the

archiving strategy.

In order to preserve the use of the dominance relation from PAES within a thresholding
algorithm, a threshold could be set in terms of the ‘number’ of archive members that dominate
the candidate solution, or in terms of the number of different grid regions that are occupied by
solutions that dominate the current solution. These calculations do increase the mean number
of comparisons that are necessary between the candidate solution and the archive, however.
Another alternative, that is non-deterministic, is to use a random sample of the archive
for comparison with the candidate. This rule would first check if the candidate dominates
any member of the entire archive. If it does, it is accepted in the normal way. Otherwise
it is checked against the smaller sample of the archive. If the candidate is nondominated
with respect to this sample then it can be accepted, other things allowing it. Obviously,
the size of the sample can be adjusted easily, allowing for a cooling schedule to be used.
The sampling can be made more or less evenly distributed in objective space if occupied
regions are selected with uniform probability, and then solutions are selected from within
the selected region (without replacement), as is done in PESA-IT [CJKOO1]. This approach
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4.8 Other variants of PAES

does not increase the number of comparisons as much as counting the number of solutions or

regions dominating the candidate, and is in keeping with the main principles of PAES.

The archiving strategy in (1+1)-PAES always accepts a candidate solution into the archive
if it is accepted as the new current solution. However, this is not necessary. If candidate
solutions that are dominated by the archive are accepted as the new current solution then
they need not be accepted into the archive. This makes the archiving strategy simpler, and
also ensures that the convergence properties of the archiving strategy still apply. Obviously,
once a dominated solution is accepted as the current solution, a new candidate solution may
be accepted based solely on its dominating the current, even if it is dominated by members
of the archive. However, this is fine, and in keeping with how simulated annealing algorithms
work. After a ‘bad’ solution is accepted, it becomes easier to accept other ‘bad’ solutions.

Eventually, though, a good solution is found, and stronger selection pressure returns.

So, if the normal archiving strategy is maintained, and the acceptance function is based on
sampling the archive, as outlined above, then one obtains the annealing PAES algorithm
shown in Figure 4.26. Some preliminary experiments with this algorithm have been carried
out but many more are needed to establish how the cooling schedule should be determined,

and whether the algorithm outperforms (1+1)-PAES significantly on any problems.

4.8.3 Tabu search PAES

Tabu search algorithms generally use a strategy whereby the best move from a set of potential
moves is chosen, irrespective of whether this represents a degradation from the current solu-
tion’s evaluation. This can be seen as (1, ) selection, in the terminology of ESs. Using this
kind of selection allows local optima to be traversed, which would be advantageous in PAES.
Tabu search algorithms also incorporate the use of memory to avoid returning to recently or
frequently visited solutions. (1+1)-PAES does not have this facility, at present, and in many

search landscapes this may be beneficial.

In general, tabu search algorithms incorporate the following features:

1. (1,A) selection, allowing traversal of local optima;

2. A tabu list that restricts the set of possible moves to those that have not been recently

or frequently performed;

3. Additional mechanisms for guiding (intensifying or diversifying) the search.
The first two of these features would be beneficial in PAES, as it suffers from the potential
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Algorithm: Annealing-PAES

Data:

M; is the archive of solution vectors discovered

x is the current solution vector

x' is the mutant solution vector

T is the temperature parameter and T4, is its initial value

Functions:

Terminate(t, M;) returns TRUE if a termination condition based on the archive
or number of iterations is satisfied

Init() returns a solution vector in x € X

Mutate(x) returns a neighbour of x

Grpop(x) returns the population of x’s grid region

ND(X) returns the nondominated vectors from a set X

Sm(My, T) takes a sample of the solutions in M;. The size of the sample depends
on the temperature, T

Cool(T, My) returns a new value of T' depending on the current value of T, and
possibly the state of M,

t+0 /* Initialization */
Mt — @
x € X « Init()
t+t+1
T < Tstart
M; +— M; U {X}
while (Terminate(t, M;) # TRUE) /* Main Loop */
t+—t+1
x' € X « Mutate(x)
if (x' <x)
x %
My ND({XI} U Mt—l)
else
if (x' < My_1)
M; + ND({XI} U Mtfl)
X+ x
else if (x' ~ Sm(M;_),T)
if (|Mi—1| < arcsize)
My +— {X,} U M4
else if (x’ increases the extent of the grid)
M, + {x'} UM,;_1 \ {x"} where x°" is one
randomly selected solution from the
set {x' € M; 1 |Vx/ € M; 1, Grpop(x’) > Grpop(x/)}
else if (3x* € M; ; such that Grpop(x') < Grpop(x’))
M+ {x'} UM\ {x}
if (Grpop(x’) < Grpop(x))
x  x'
T + Cool(T, My)
return M(ipq) /* Termination */

Figure 4.26: Pseudocode for Annealing-PAES.
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to get stuck in local optima, and also to cycle (e.g. on plateaus). The third item, which is
really optional in tabu search, may be beneficial for use in PAES also, but its expediency

depends upon finding good rules for the problem at hand.

Incorporating these features in PAES is not straightforward, however. This is because PAES
was designed for a (141) selection strategy. In Section 5.2.5, some of the drawbacks of the
population-based variants of PAES are explained. Any tabu search-based variant of PAES
would have to avoid the deficiencies of the proposed selection and archiving strategies put
forward for the population-based variants of PAES. Along these lines, we sketch the elements

needed for selection and archiving to be effectively performed.

In order for the set of neighbours of the current solution, N, to be evaluated with respect
to the current archive, M; ;, the union of the two sets can be taken and nondominated
sorting [SD93] can be applied. The best ‘neighbours’ are then those from the set N for which
there does not exist any other element of N in a higher equivalence class in My ; UN. From
this set of best neighbours, one of them from amongst the least crowded regions is selected

as the overall best, to replace the current solution.

Archiving should allow that any of the set N in the first equivalence class of M;_; U N are
given the opportunity to enter M; ;. To achieve this, a temporary store Temp of solutions can
be used and the following order of operations can be carried out. 1. Temp <~ ND(M;_; UN).
2. If |Temp| > arcsize then repeatedly select a solution from the most crowded region(s)
to remove, excluding solutions that are uniquely extremal on one or more objectives, until

| Temp| = arcsize. 3. My < Temp.

These selection and archiving strategies allow for an implementation of a tabu search variant
of PAES. Its main relation to (1+1)-PAES is its use of the adaptive grid for performing
crowding, which ensures that the same convergence guarantees exist as for (141)-PAES.
However, it is also more complicated than PAES because of the need to perform nondominated
sorting on the set of solutions in order to rank them. It is unclear whether this added
complication in selection would be balanced by improved ability to escape local optima, and
to avoid cycling. No implementation of Tabu-PAES has yet been implemented, but pseudocode

for it is given in Figure 4.27.

4.9 Summary

Hillclimbers are good, general-purpose search methods for optimization. They are simple

to use, with few controlling parameters, they use little computation beyond the evaluation
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Algorithm: Tabu-PAES

Data:

M is the archive of solution vectors discovered

x is the current solution vector

A is the number of neighbour solutions generated at each iteration

N is the set of neighbour solutions of x

B is the set of best solutions from among N

Temp is a temporary set used for updating the archive with the new solutions
tabu_l is the set of tabu lists

attr_l is the set of attribute lists

Functions:

Terminate(¢, M;) returns TRUE if a termination condition based on the archive
or number of iterations is satisfied

Init() returns a solution vector in x € X

Mutate(x) returns a neighbour of x

ND(X) returns the nondominated vectors from a set X

Tabu(N, tabu_l, attr_l) returns the subset of N allowed by the current tabu lists
and attribute lists

Eq_best(X,Y) returns the set of solutions in Y which are in the best nondomi-
nated sorting equivalence class of X

Low_pop(X,Y) returns the solutions in Y the from the least crowded regions
in X

Rand(X) returns a uniformly randomly selected solution from X
Most_crowded(X) returns the solutions in X from amongst the most crowded
regions

t+0 /* Initialization */
Mt — @
x € X « Init()
t+t+1
T « Tstart
M; +— M; U {X}
while (Terminate(t, M;) # TRUE) /* Main Loop */
t+—t+1
N0
foreach(j € 1..)\)
x/ € X < Mutate(x)
N «+ NuU{x/}
B « Tabu(N, tabu_l, attr_l)
B <+ Eq_best(BU M;_1, B)
B + Low_pop(B U M, 1, B)
x « Rand(B)
Temp < ND(B UM; 1)
while (|Temp| > arcsize)
Temp < Temp \ Most_crowded (T'emp)
Update tabu_l
Update attr_l
return M(%fina) /* Termination */

Figure 4.27: Pseudocode for Tabu-PAES.
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4.9 Summary

of solutions, and they provide adequate performance on many problems. They are also
useful for ‘baselining’ the performance of more sophisticated approaches, such as evolutionary

algorithms.

In this chapter, we developed a hillclimber for Pareto optimization, called (14-1)-PAES. This
algorithm is unique in combining the use of a (1+1) selection strategy based on Pareto
dominance, and an archive for storing nondominated vectors. Its acceptance function uses
the archive as a comparison set to help estimate the relative quality of current and mutant

solutions so that ‘incomparable’ solutions can be effectively evaluated.

PAES relies on a strategy for updating and maintaining a bounded archive of nondominated
solutions. We proposed and evaluated several alternative archiving strategies and considered
their convergence properties. In particular, a new crowding strategy, based on an adaptive
grid in the objective space was shown to have several desirable attributes. The computational
cost of an algorithm based on this adaptive grid archiving strategy was shown to be low, in
terms of the number of solutions stored in the archive. The algorithm also requires no
knowledge of the objective space for parameters to be selected (in contrast to phenotypic
niching), and maintains those solutions that lead to a diverse and well-distributed set of

points.

The generality of the methods used in the (1+1)-PAES algorithm facilitates the specification
of many different variants of it. In order to demonstrate this we outlined the design of

multi-start, simulated annealing, and tabu search variants of PAES.

In the next chapter, the efficacy and efficiency of the (1+1)-PAES algorithm is tested empir-
ically.
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Chapter 5

Empirical Testing of PAES

5.1 Overview

In this chapter we present two separate empirical studies comparing the performance of
various MOEAs and our PAES algorithm. The first study, described in the next section, has
been previously published in very similar form in [KCO00b]. It is a comparison of the well
known MOEAs, NPGA [HNGY94] and NSGA [SD94], on a suite of six test functions. The
second study, described in Section 5.3, has also been previously published in similar form,
in [KC99a]. This study compares the performance of SPEA [ZT98a] with (1+1)-PAES on a
different suite of test functions from [ZDT00].

5.2 Initial comparative assessment of PAES

5.2.1 Test functions F|,—Fj

In the suite of six test functions we use in this study, the first four are the same as used
by Bentley and Wakefield [BW97]; i.e. Schaffer’s functions Fy, Fy, and Fj [Sch84], and

I commonly used

Fonseca’s fi [FF95], the latter renamed here as Fy. These functions are now
by researchers to test multiobjective optimization algorithms. For reasons noted next we also

designed a further test function which we call here F5.

- F} is a single-objective minimization problem with one optimum:

! At the time of performing these experiments (1998).



5.2 Initial comparative assessment of PAES

(plotted at z3 = 0)
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(5.1)

- F5 is a two-objective minimization problem with a single range of Pareto optima which

liein 0 <z <2:

70

60 r\

50
40
30
20
10

Pareto optimal range =5

Y =fn
y=Tor
i 2 o 2 4 s
xT
foo = =
fo2 = (z—2)

- Fj3 is two-objective minimization problem with two separate
which liein 1 <z <2and 4 <z <5:
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(5.2)

ranges of Pareto optima
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5.2 Initial comparative assessment of PAES

fs31 = —x where z <1
= —2+4+z where 1<z<3
= 4—z where 3 <z <4 (5.3)

—4+2x where 4<zx
fs2 = (z—5)*

- Fy is a two-objective minimization problem on two variables with a single range of

Pareto optima running diagonally from (—1,1) to (1, —1):

y=fn —
Y =fr

(5.4)

The above test functions are useful in testing multiobjective optimizers because they implic-
itly set two challenges: First, the set of nondominated solutions delivered by the optimizer
should contain all of the function’s Pareto optima; second, it is generally felt best if there
is no strong bias favouring one Pareto optimum over others. In other words, in a MOGA,
for example, the number of copies of each Pareto optimum in the final population should
be similar. If not, this would seem to reveal a bias which may be undesirable in practical

applications.

We designed F5 (described below) to provide stronger challenges in these respects; it is easily
defined, but is a non-trivial problem. Each Pareto optimum is intrinsically difficult to find,
and there are k£ distinct Pareto optima for chromosomes of length k, each of which has a
different frequency i.e. some are far easier to find than others. This makes both challenges

(as described above) stringent tests for any multiobjective optimizer.

The function Fj uses a k-ary chromosome of k genes. There are two objectives to be mini-

mized, defined by the following two functions:
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5.2 Initial comparative assessment of PAES

k—2 .
1 if Gi+1 - GZ =1
=k—-1- 5.5
Js1 ; { 0 otherwise (5:5)
k—2 .
1 if Gz - Gi—l—l =1
=k—-1- 5.6
Js2 iz% { 0 otherwise (5.6)

where G; is the allele value of the ¢th gene. For example a chromosome of length k£ = 5 with
allele values ‘1 2 3 2 2’ scores (5 — 1) — 2 = 2 for the first objective (because there are two
sites where, reading the chromosome from left to right, the allele value increases by exactly
1), and (5 — 1) — 1 = 3 for the second objective, using similar reasoning. From this, we can
see that the best score possible for either objective is 0 and the worst is k — 1, and the Pareto

front is formed by solutions for which f51 + f50 = k — 1.

5.2.2 Test problem Fg

The Adaptive Distributed Database Management problem (ADDMP) is a problem faced by
the providers of distributed database services, such as video-on-demand, scientific databases
(such as genome databanks), and so forth. Oates and Corne (1998) gives a detailed description
of the ADDMP, and C source code for the evaluation function can be found via the author’s
website?. In this paper, we provide basic details of the ADDMP, aimed at conveying an
understanding of its multiobjective nature, and an appreciation of the various forms which
instances of the ADDMP can take.

The provider of a distributed database service needs to regularly ensure that database users
(clients) are receiving an adequate quality of service (QoS). Indeed, clients’ subscription to
the database may have come with guarantees from the service provider of distinct levels of
QoS (perhaps different fro different clients, according to subscription cost). The key factor
(sometimes the only factor) in QoS is the response time experienced by a client for a typical

database query.

If client ¢; issues a request (database query) @ at time ¢, and the response arrives at time ¢,
then the client has experienced a delay d; = ¢; — 3. In maximizing QoS, a service provider
aims to minimize d; for each client ¢;. However, in a distributed database provision scenario,
in which copies of all or part of the database are on several servers in places distributed
throughout the globe, this minimization must occur in the context of load balancing. That
is, we may be able to minimize the delays experienced by certain clients by routing their

queries to the fastest server which contains the required data; however, the extra load on

http:/ /www.reading.ac.uk/~ssr97jdk
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5.2 Initial comparative assessment of PAES

this server will degrade the response times. So, the optimal solution will involve a careful

balancing of clients across servers.

The ADDMP is hence the problem of finding the best client/server connection configuration,
based on a static environment which details the underlying communications network, server
speeds, and current access rates for each client. What counts as best depends on many things,
but a single-objective QoS measure will typically involve a measure of the worst client delay
(i.e.: max;d;) combined with a measure of the mean or median client delay. However, the
single objective view is inadequate for many current versions of the ADDMP, and growing
more so as distributed database service provision becomes more widespread and complex as
regards the range of service guarantees on offer. For example, consider two potential solutions
to a 5-client ADDMP in which the client delays (in milliseconds) are as in Table 5.1.

Clients 1 2 3 4 5
Solution 1 155 130 140 140 140
Solution 2 350 80 90 90 90

Table 5.1: Two solution configurations for a simple 5-client ADDMP.

In solution 1, the worst delay is 155 ms, and the mean delay is 141 ms. In solution 2, the
worst delay is far worse than in solution 1 at 350 ms, but the the mean delay is slightly better
than solution 1 at 140 ms. Also, the median delay is considerably better in solution 2 than
in solution 1. In a single-objective approach, which of solution 1 or 2 is preferred depends
very much on the relative weightings given to the worst and mean (or median) components.
It is therefore complex, and perhaps impossible, to arrive at a ‘correct’ relative weighting for
these components, especially considering the widely different kinds of ADDMP scenarios (in

terms of numbers of clients and patterns of database usage) which exist.

A multiobjective approach therefore seems more sensible and flexible. The growing complex-
ity of QoS accounting and guarantees makes this even more necessary. Client 1, for example,
may have paid for QoS guarantee which indicates that their delay will always be below 200
ms. Client 2, on the other hand, may have been given a guarantee that their delay would be
always within 20median delay level at any snapshot in time. meanwhile, clients 3—5 may have
taken a standard QoS guarantee specifying that their mean delays for a session would never
exceed 150 ms. With a complex set of factors like this, the task of an optimizer addressing an
ADDMP would be to quickly produce a good and diverse spread of solution configurations,
leaving it to a later decision process to then choose from these on the basis of the various QoS
guarantees in operation for the clients currently using the service. This makes the ADDMP

a problem well-suite to Pareto optimization.
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Test function Fg is an example instance of the ADDMP problem, involving ten nodes (each
is both a client and a server), and in which quality of service is measured by two objectives,
both of which must be minimized. The first objective is the worst response time (measured
in milliseconds) seen by any client. This is clearly something which a database provider needs
to minimize by reconfiguration. However, it is insufficient as a quality of service measure by
itself. For example, if we have just three clients, then a situation in which the response times
are respectively 750ms, 680ms, and 640ms will appear better, with this quality of service
measure, than if the response times were 760ms, 410ms, 300ms. To achieve a more rounded
consideration of quality of service, we therefore look at the tradeoff between this objective
and another: the mean response time of the remaining (non-worst) clients. Hence, the two
scenarios in this example would yield the following nondominated points: (750, 660), (760,
355).

5.2.3 Population-based variants of PAES

In this study we also investigate the performance of (1+ ) and (u+ A) variants of the PAES

algorithm.

The generation of A mutants of the current solution increases the problem of deciding which
one to accept as the next current solution(s). This is, in fact, carried out by assigning a
fitness to each mutant based upon both a comparison with the archive and its grid location

population.

Each of the ;4 + X\ population members is compared to the archive as it appeared after the
last iteration and is assigned a dominance score as follows: Its score is initially zero and is
set to 1 if it finds an archive member which it dominates. A score of 0 thus indicates it is
nondominated by the archive. If it is dominated by any member of the archive its score is set
to -1 and no more comparisons are necessary. All those mutants which could potentially join
the archive are used to recalculate the ranges of the phenotype space. If this has changed by
more than a threshold amount then the grid locations of the archive and potential archive
members is recalculated. The archive is then updated. Finally, a fitness is assigned to each
population member such that members with a higher dominance score are always given a
higher fitness regardless of their grid location population. Points of the same dominance

score have higher fitness the lower the population of their grid location.

Updating of the archive occurs as in (1 + 1)-PAES, ensuring that it contains only nondomi-
nated solutions and no copies. If it becomes full then solutions in sparse regions of the space

will be favoured. This ensures that the comparison set covers a diverse range of individuals
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so that the dominance score assigned to population members reflects their true quality.

In (1 + A)-PAES the A\ mutants are generated by mutating one of the y current solutions,
which is selected via binary tournament selection using the fitness values assigned in the

previous iteration.

5.2.4 Rival MOGASs tested

We compare the performance of PAES with that of two of the most well-known and respected
MOEAs, the niched Pareto GA of Horn and Nafpliotis [HNG94] and a GA employing non-
dominated sorting [SD94]|. In order that we give each algorithm an equal opportunity of
generating a good set of diverse solutions we add two extensions to the two genetic algo-

rithms:

1. An archive of the nondominated solutions found is maintained (as in PAES) for pre-

sentation at the end of a run.

2. An elitist strategy.

The archive is not used to aid in selection, acceptance or any other part of the GA; it is
merely there to give the GA the same opportunity as PAES has to present the best solutions
it has found. Elitism is implemented as follows: In the case of the NSGA this is straight-
forward as fitness values are assigned and we can merely place into the new population the g
fittest solutions, where ¢ is the generation gap parameter. Thus, the NSGA has four different
variants: the standard NSGA without elitism or archiving (NSGA), the NSGA with archiving
(NSGA+ARC), the NSGA with elitism (NSGA+ELITE) and the NSGA with both elitism
and archiving (NSGA+A+E). Elitism cannot be carried out easily in the niched Pareto GA,
however, because explicit fitness values are never assigned. Thus, we have only three variants
of the niched Pareto GA. These are the standard niched Pareto GA (NPGA), the NPGA
with archiving (NPGA4+ARC) and the NPGA with archiving and elitism (NPGA+A+E).
The latter works by placing all individuals which were archived in the previous generation

into the next generation.

Each of the algorithms require two or more parameter values to be set. A complete discussion

regarding these choices is not included here. Instead, they are summarized in Table 5.2.

The NPGA uses the simple triangular sharing function Sh[d] = 1 — d/ogspare for d < ospare
and Sh[d] = 0 for d > ogpere, where d is the phenotypic Euclidean distance between two

solutions. We find that the NPGA requires a fairly large comparison set size in order for its
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NPGA NSGA PAES

variants variants variants
Population size n 100 100 lorA
Archive size a 100 100 100
Tournament size 4o, 4 <tgom <10 - 2
Crossover peross 0.9 0.9 -
Mutation py, 1/k 1/k 1/k

Table 5.2: Summary of algorithm parameters.

estimate of the dominance ranking of individuals to remain fairly accurate. Similarly, the
tournament size, cannot be set too low if accurate selection is to occur. Values of csg;,. = 80
and tournament size, 10 > t4,,, > 4 are usually acceptable. The niche size parameter, ogpqre,
must also be set. Here, some experimentation is required as the niched Pareto GA can be
quite sensitive to this parameter. So, for each of the problems attempted several test runs
were undertaken to find reasonable values for the niche count parameter and the tournament

size.

The nondominated sorting GA requires fewer parameters to be set. To set the niche size
parameter several test runs were carried out to obtain reasonable performance. In our elitist
variants of the NSGA we must also set the number of solutions, g, which are to be carried

through to the next generation. In all experiments g = 5 was used.

With the exception of test problem, Fj, uniform crossover was used in both of the above
MOGAs. Single point crossover is more suited to finding solutions in F5 and this was used,
again in both MOGAs. Values of crossover probability, peross = 0.9 were used in both
MOGAs and a bit mutation rate, p,,, = 1/k for a chromosome of k genes, was used in all
of the algorithms including PAES. In addition, (i + A\)-PAES requires a tournament size for

selection. For this, a value of t4,,, = 2 was found to be acceptable on all problems.

5.2.5 Results and discussion
Experiments conducted

Each algorithm tested was allowed the same number of function evaluations, max_evals, on
each of the test problems. Following a number of trial runs to obtain good parameter set-
tings, twenty uniquely seeded runs were carried out, and the resulting solution sets recorded.
For each test function, the number of function evaluations allowed and the length of the

chromosome, k, are given in Table 5.3.
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| | B [ B | B [ B | 5|
maz_evals | 1000 | 5000 | 5000 | 20000 | 20000 | 5000
k|| 16 | 14 | 14 16 16 10

Table 5.3: The allowed number of function evaluations and chromosome length for each of
the six test functions.

The single objective test problem, F, presents no difficulty to any of the optimizers considered
in this section. The PAES algorithms all converge to the optimal solution and return, in
their archive, the single nondominated solution only. The three GA versions which employ
archiving exhibit the same behaviour, as expected. When no archive is used, the population
of both the NPGA and the NSGA converge to this solution, subject to random mutations in
the last generation. Because F} presents no difficulty to any of the optimizers here, and is
not itself a multiobjective problem, no further discussion or results relating to this problem

are presented.

For each of the remaining five problems, tests were carried out in the following way: First, all
of the NPGAs were compared, in pairs, one against the other (and also against (1 + 1)-PAES
as a baseline), each time taking the combined space of the pair as the range over which to
test, and using the statistical techniques outlined in Section 3.12. Next, in the same way, the
NSGAs and the PAES algorithms were internally compared. From these three sets of internal
tests, we chose the best NPGA, NSGA and PAES algorithm and compared these in the same
fashion. Sometimes it was not clear from the original tests which algorithm in the initial
groups should be carried forward to the ‘final’. Where this happens, further internal tests
were performed and/or two inseparable algorithms were both carried forward for inclusion
in the final. The set of best algorithms were also compared on their total combined space in
terms of the percentages on which they were unbeaten, and beat all of the others. Finally, the
combined space of all the algorithms was used and n(n — 1) comparisons were performed on
the n = 13 algorithms. Again, results were collected in terms of the percentages of the space
on which each algorithm was unbeaten and beat all. All comparisons use a Mann-Whitney

rank-sum test at the 95% confidence level.

For reasons of clarity we do not present the complete set of results described above. Nonethe-
less, only the tests carried out to decide on the best algorithm to carry forward to the ‘finals’
and the finals themselves are absent. All of the results for the internal tests for the niched
Pareto GA are presented in Table 5.4. Similar sets of results for the NSGA and the PAES al-
gorithms can be found in Tables 5.5 and 5.6, respectively. The results of testing all algorithms

against each other on their combined phenotype space are given in Table 5.7.
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5.2 Initial comparative assessment of PAES

| NPGA+arc | NPGA+ate | (1+1)-PAES |

F5 - Schaffer’s function Fy
NPGA [0, 97.0] [0, 98.4] [0, 96.2]
NPGA+arc — [7.1, 9.6] [11.0, 7.6]
NPGA-+a+e — — [10.9, 4.1]
F3 - Schaffer’s function Fy
NPGA [0, 99.5] [0, 99.4] [0, 99.0]
NPGA+arc — [4.9, 1.0] (0.9, 13.0]
NPGA-+a+e — — (0.2, 19.3]
F, - Fonseca’s function f;
NPGA [0, 100] [0, 100] [0, 100]
NPGA+arc - [12.8, 1.3] [12.8, 1.6]
NPGA-+a+e — — [2.9, 8.6]
F5 - k-optima problem
NPGA [0, 100] [0, 100] [0, 100]
NPGA+arc — [93.6,0] [34.7, 48.2]
NPGA+a+e — — [0, 100]
Fg - the ADDMP
NPGA [0, 99.8] [0, 98.0] [0, 95.7]
NPGA+arc — [0.4, 0] [6.6, 90.0]
NPGA-+a+e — — [2.2, 89.5]

Table 5.4: Comparison of three variants of the niched Pareto GA.

On Fj5, the k-optima problem, the results presented warrant further analysis and discussion.
To this end, plots of the best, worst and median distributions over the phenotype range are
included. These plots help to clarify the statistical data and also illustrate different methods

of visualizing the performance of multiobjective optimizers.

We find that the test, described above, in which all algorithms are tested against all others,
in general, accurately reflects the results from the comparisons on pairs of algorithms on their
own combined space. The percentage of the space on which an algorithm is unbeaten seems
particularly reliable. For this reason, most of the following discussion is limited to the results
presented Table 5.7 only. In addition, a summary of these results is provided in Table 5.8, at
the end.
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| NSGA+arc | NSGA+elite | NSGA+a+e | (1+ 1)-PAES |

F5 - Schaffer’s function Fs

NSGA [0, 97.8] [9.4, 6.0] [0, 99.9] [0, 97.6]
NSGA+arc — [100, 0] [7.6, 5.4] [10.4, 2.7]
NSGA +elite — — [0, 98.2] [0, 98.2]
NSGAtate — — — [11.3, 2.3]
F35 - Schaffer’s function F3
NSGA [0, 99.7] [41.6, 43.6] [0, 99.0] [0, 98.7]
NSGA+arc — [100, 0] [3.8, 1.7] [3.8, 2.8]
NSGA +elite — — [0, 100] [0, 100]
NSGA+a+e — — — [2.6, 3.3]
F, - Fonseca’s function f
NSGA [0, 97.7] [1.8, 3.7] [0, 98.8] [0, 99.0]
NSGA+arc — [98.8, 0] [4.0, 3.2] [9.7, .32]
NSGA +elite — — [0, 99.1] [0, 99.3]
NSGA+a+e — — — [8.5, 5.1]
Fy - k-optima problem
NSGA [0, 38.1] [6.1, 0] [0, 28.9] [0, 100]
NSGA+arc [70.0, 0] [1.4, 0] [0, 77.4]
NSGA +elite — [0, 70.7] [0, 100]
NSGA+a+e — — [0, 79.0]
F§ - the ADDMP
NSGA [0, 84.4] [1.0, 19.3] 0, 92.9 [0, 84.8]
NSGA+arc — [53.9, 0] 0, 69.4 [1.7, 16.6]
NSGA +elite — — 0, 76.2 [0, 38.6]
NSGA+a+e — — — [4.0, 0]

Table 5.5: Comparison of four variants of the nondominated sorting GA.
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| (14+10)-PAES | 1450 | 1041 | 10410 | 10450 |
F, - Schaffer’s function Fy
(1+1)-PAES [5.8, 2.1] [17.1, 1.4] [12.7, 1.4] [3.9, 5.4] [5.3, 3.7]
1+10 — [16.8, 1.8] [9.3, 2.8] [1.1, 6.8] [4.2, 5.7]
1+50 — — [4.3, 10.4] 0.8, 24.5 1.6, 19.9
10+1 — — — 1.1, 16.5 1.7, 10.9
10410 — — — — [6.1,4.7]
F3 - Schaffer’s function Fj
(1+ 1)-PAES [9.5, 0.9] [10.0, 0] [11.6, 0.7] 33,14 [5.2, 0.8]
1+10 — [3.1, 1.8] 2.5, 1.2 0.6, 6.5 1.3, 55.3
1+50 — — 2.0, 3.3 0.1, 8.2 0.2,45.3
10+1 — — — 0.7,6.9 0.9, 55.5
10410 — — — — [2.5, 2.1]
F, - Fonseca’s function f
(1+ 1)-PAES [6.5, 5.2] 4.4, 3.9 19.0, 1.6 8.1, 2.9 [12.4, 1.8]
1+10 — 3.1,7.6 18.0, 1.5 6.1, 2.0 9.5, 1.3
1+50 — — 19.6, 0.9 6.8, 2.2 7.1,0.7
10+1 — — — [2.4, 15.3] 4.3, 8.4
10410 — — — — 6.9, 1.8
F5 - k-optima problem
(1+ 1)-PAES [74.7, 0] [100, 0] 100, 0 89.3,0 92.3,0
1+10 — [38.6, 0] 100, 0 53.5, 0 70.0, 0
1+50 — — 100, 0 19.6, 0 [2.2, 0]
10+1 — — — 0, 82.1 [0, 100]
10410 — — — — [0, 1.9]
Fg - the ADDMP
(1+1)-PAES [79.0, 0] [22.0, 0] [48.7, 0] [15.4, 0] 15.4,0.5
1+10 — [0, 0.2] [0, 0] [0, 0] 8.0, 75.3
1+50 — — [4.3, 0] 0,0 0, 37.6
10+1 — — — 0,0 0, 12.3
10410 — — — — [0, 3.0]

Table 5.6: Comparison of six variants of the Pareto archived evolution strategy.
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5.2 Initial comparative assessment of PAES

(1 + 1)-PAES results

The performance of (1 4+ 1)-PAES on the test functions used here provides considerable
evidence that it is a capable multiobjective optimizer on a range of problem types. In fact,
amongst the thirteen algorithms tested here, it is the most consistent performer. Table 5.7
shows that, where all algorithms are pair-wise compared against the combined nondominated
front, (1 + 1)-PAES is unbeaten on, in the worst case, 68% of the front (problem F;). On
problem F5, (14 1)-PAES covers the largest part of the Pareto front and manages to find the
most demanding solutions, not generated by any of the other algorithms tested. (Problem
F5 is discussed further towards the end of the results section.) It seems that (1 + 1)-PAES
works well for the same reasons that it is computationally simple: it is an aggressive algorithm,
testing each solution generated in a stringent manner, and investing few resources in solutions
which do not pass the test. In this sense, it is the analogue of a single-objective hillclimber.
This has drawbacks too. (1 + 1)-PAES (or 14+)) would be stumped by any search space
which contained local optima which could not be traversed by its small change (mutation)
operator, as it has no facility for moving from the current solution to an inferior one (in the
Pareto sense). This is possibly less of a flaw in multiobjective spaces than in single objective
ones because with more objectives the occurrence of functions with true local optima may be
reduced. However, test function Fj is an example of a function where a hillclimbing approach
could get stuck. If an optimizer were to start in the right hand range of optima i.e. with
5 > x > 4 it would not be able to move to the left optima by small changes to the variable
z. PAES does not suffer from this problem because z is encoded as an m-bit binary string
and PAES is allowed to move by changing one or more of the n bits. Therefore, it is able to

jump across the divide.

Timings for six of the algorithms presented in this section are also included in Table 5.9. In
this case, the test function (F5) takes only a small proportion of the total computation time,
so the differing computation times of each algorithm are clear. (1 + 1)-PAES is 37% faster
than its nearest rival, the NPGA, on this test problem.

(1 + A\)-PAES results

The (14+10) and (1450) variants of PAES do not do nearly as well as the baseline (1 + 1)
approach. Only on one problem, Fy, does (14+50)-PAES generate better distributions over
the 20 runs than (1 + 1)-PAES, and (1+10)-PAES never does. The lack of competitiveness
of (14+X)-PAES might be explained with relation to its strategy for replacing the current

solution. As in (1+1)-PAES, the current solution is first compared with each mutant. In the

168



Test Problem

Algorlthm Distribution F2 F3 F4 F5 Fﬁ

NPGA unbeaten 0.2 0 0 0 31.5
beats all 0 0 0 0 0

NPGA+arc unbeaten 75.1 66.6 88.4 51.9 37.7
beats all 1.1 0.1 0.2 31.1 0

NPGA+a+e unbeaten 77.8 17.7 67.3 0 37.4
beats all 0.1 0 0 0 0

NSGA unbeaten 0 0 0 0 32.6
beats all 0 0 0.1 0 0

NSGA+arc unbeaten 80.9 51.9 87.0 27.9 42.7
beats all 0.1 0.3 0.2 0 0

NSGA +elite unbeaten 0 0 0.3 0 82.1
beats all 0 0 0 0 0

NSGA+a+e unbeaten 78.8 90.4 83.6 26.9 99.5
beats all 0 1.0 0 0 0

(1 +1)-PAES unbeaten 68.0 | 89.8 | 71.7 | 689 | 94.9
beats all 0 0 0 16.1 0

(1 + 10)-PAES unbeaten 65.7 35.0 65.6 31.0 324
beats all 0 1.0 0 0 0

(1+50)-PAES unbeaten 45.1 | 304 | 724 0 32.5
beats all 0 0 0 0 0

(10 + 1)-PAES unbeaten 51.8 30.8 47.1 0 32.3
beats all 0 0 0 0 0

(10 + 10)-PAES unbeaten 74.8 | 87.7 | 67.8 | 13.3 | 37.8
beats all 0 0 0 0 0

(10 + 50)-PAES unbeaten 69.0 | 82.5 | 55.0 | 10.7 | 53.7
beats all 0 0 0 0 0

Table 5.7: Pair-wise comparisons of all algorithms on the combined phenotype space for all
problems.

169



5.2 Initial comparative assessment of PAES

case where exactly one member dominates the current solution, this will be accepted as the
current solution of the next iteration. However, in all other cases, the acceptance is based
upon the result of comparing each mutant with the archive of the previous iteration. Mutants
are not compared one against the other. Any ties which occur are broken first with reference
to the population in the mutants’ grid locations and if this is inconclusive, randomly. This
approach can lead to acceptance of a mutant which is dominated by one of the other mutants
of its generation. In this case, some of the characteristic aggressiveness of (1 4+ 1)-PAES may
be lost. The archive of the previous generation was used to balance the need for a static
test of the current generation with computational parsimony. Comparing mutants against
a constantly updated archive results either in an inaccurate assessment of their dominance
rank, or requires tagging of those mutants which dominated the archive, scoring one, but
were later dominated by another mutant, in order to correct their scores. Rather than add
extra complexity, the option of using the archive of the previous generation was taken. It
is unclear at the time of writing if this issue is, in fact the only factor (or most important

factor) which affects the performance of (1+1)-PAES but this is under investigation.

(¢ + \)-PAES results

The population based variants, (10+1), (104+10) and (10+50) perform comparably with (1 +
1)-PAES on problems Fs, F3 and Fy. On Fj, (10+10)-PAES is superior to (1 + 1). However,
the population-based methods do not fare well on Fy or Fg and lack the consistently high
performance of (1 4+ 1)-PAES. The use of a population does not, in general, improve the
performance of the basic PAES algorithm, and adds considerable computational overhead
(see Table 5.9). However, similar comments as those regarding the acceptance strategy used
in (14+X)-PAES apply equally here to (u + A)-PAES.

On problems F5 and F6, which are both multimodal, we might have expected a population
to be beneficial to PAES. Indeed, to explain the poor performance, one may be tempted to
blame the lack of a recombination operator. However, the reader should notice that on these
two problems (1 + 1)-PAES (with no recombination) performs at a high level compared to
both NPGA and NSGA, which both use a population and recombination.

NPGA results
Turning now to the evolutionary algorithms, the first thing we notice is that without excep-
tion (not surprisingly), the archived versions consistently outperform the non-archived ones.

Also, elitism is generally beneficial. The elitist technique employed in the NPGA is not so
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5.2 Initial comparative assessment of PAES

successful, however, only enhancing the results in one of the test problems and degrading

them considerably in the others.

Overall, the NPGA with archiving does quite well in comparison to both (141)-PAES and the
NSGA. It is superior to both of them on problem Fj. On Fg, the ADDMP, its performance
is weak, however, and it does not perform as consistently well as either the NSGA with
archiving and elitism or our baseline approach (1 + 1)-PAES. It is also the most difficult
of the algorithms to use, requiring more parameters to be set, some of which can severely
degrade performance if set incorrectly. Its computational complexity is low compared to
either the population based PAES algorithms or the NSGAs because it does not have to
explicitly assign fitness values to the population. However, (1 + 1)-PAES seems both a more

consistent performer (see Table 5.8) and a faster algorithm on the results presented here.

NSGA results

The NSGASs recursively sort the current population into two sets, the nondominated and the
dominated. This approach gives a fairly accurate estimate of the dominance rank of each
individual, encouraging selection to focus on the best members of the population. This is
perhaps why the NSGAs, when coupled with the archiving of all nondominated solutions
and elitism performs slightly better than the NPGAs. It also employs a more accurate form
of niching than the NPGA which approximates the niching process using equivalence class

sharing.

The NSGA with archiving and elitism is ranked first on three of the five multiobjective
test problems, when all algorithms are compared pair-wise on the overall combined space.
Its lowest rank is on problem F5, where its performance is quite poor in comparison to
both the NPGA with archiving alone and those of some of the PAES algorithms. In fact
it is nondominated on only 26.9% of the combined space. These results are summarized in
Table 5.8.

The NSGA is computationally expensive compared with either the NPGA or the local search
versions of PAES. Tts average time complexity is greater than either, because it uses many
comparisons to rank the current population and to calculate the niche count so that fitness
values can be assigned. When the NSGA was timed on test problem Fj it was found to be the
slowest algorithm here (see Table 5.9). Nonetheless, this overhead is unimportant in many
applications where the evaluation of solutions is by far the most time-consuming process in

the search for solutions, and reducing the number of evaluations is more important.

171



5.2 Initial comparative assessment of PAES

Median Best
1 ' T T T 1 ' T T
! : NSGA+ARC —— s : NSGA+ARC ——

NPGA+ARC NPGA+ARC "
PAES(1+1) "~ 08 I PAES(1+1) -~ |

08 [~
0.6 [ 06 [~
04 [~

04 [~

02 [ 02 [~

Worst
1 T
: NSGA+ARC ——

NPGA+ARC
PAES(1+1) ~--- |

08 [~

0.6 [~

02 [ 7

I I I I
0 0.2 04 0.6 0.8 1

0

Figure 5.1: Best, median and worst attainment surfaces found on F5.

Test function Fj results

From Table 5.7 it appears that the algorithm which is unbeaten on the largest percentage of
the space does not always also beat all with the highest percentage. On Fj, the k-optima
problem, for instance, (1 + 1)-PAES is unbeaten on 68.9% of the combined phenotype space
but only beats all on 16.1%. The NPGA with archiving, on the other hand, is unbeaten on
less of the space but beats all on 31.1%. It would be interesting to see how these figures
vary with the use of different confidence levels. In the case of problem Fj, (1 + 1)-PAES
beats all on 16% of the space because it has generated solutions at the edges of the range of
optima, where other algorithms have failed to do so. The NPGA, by contrast, has a better

distribution in the centre of the Pareto front.

For the time being, we indicate the difference in the distributions of points generated by the
NPGA with archiving, and (1 + 1)-PAES by plotting graphs of the best, worst and median
attainment surfaces of these algorithms on problem F5. The best of the NSGAs is also
included in the graphs which are shown in Figure 5.12. The NSGA is also interesting because

3Note that all surfaces are orthogonal, although in the case of the median surfaces this is only apparent at
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| NPGA+a | NSGA+a+e | (1+1)-PAES |

Fy rank 4 2 7
unbeaten 75.1 78.8 68.0
F; rank 5 1 2
unbeaten 66.6 90.4 89.8
Fy rank 1 3 4
unbeaten 88.4 83.6 1.7
F5 rank 2 5 1
unbeaten 51.9 26.9 68.9
Fy rank 7 1 2
unbeaten 37.7 99.5 94.9
worst rank 7 5 7
overall sum of ranks 19 12 16
stats worst coverage 37.7 26.9 68.0
(unbeaten)
Table 5.8: Summary statistics for best 3 optimizers.
Run times on SPARC Ultra 10 300MHz
Algorithm Mean (seconds) | SD (seconds)
(1+ 1)-PAES 1.85 0.0446
(10+50)-PAES 4.48 0.0283
NSGA 8.16 0.0988
NSGA+a+e 8.45 0.0127
NPGA 2.96 0.0853
NPGA+a+e 3.03 0.0729

Table 5.9: Algorithm run times on test problem Fs5.
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although it appears to do relatively poorly from the statistical results, its best distribution
is rather better than that of the NPGA. The best attainment surfaces show that (1 + 1)-
PAES finds optima which extend the furthest towards the ends of the Pareto front. The
NSGA is nearly as good, and the NPGA is least impressive on this measure. This is why it
is beaten on approximately 49% of the space. The median, similarly, is not favourable for
the NPGA in the most part, although it beats the other two algorithms in a small portion
of the space near the centre. Finally, the plots of the worst attainment surface reveal why
the NPGA beats all the other algorithms on such a large percentage of the space. Its worst
attainment surface, again in the centre of the space, is significantly better than the other
two algorithms. Returning to the comparison of pairs of algorithms on problem F5, it can be
seen that (1 4+ 1)-PAES had a better distribution than the NPGA with archiving on 48.2%
of the space compared with 34.7% vice versa. This result seems to be borne out by the plots
in Figure 5.1, and gives in this case a truer picture of the algorithm with the best coverage

of the space than the ‘beats all’ statistic discussed above.

5.3 Assessment of PAES using Deb’s test functions

In this section, the raw data sets from the comparative study [ZDT00] by Zitzler et al.* are
taken and compared with the performance of (141)-PAES, on the same set of test func-
tions. As far as possible, attempts have been made to recreate the same operating modes
(i.e. number of evaluations, parameter settings etc.) for (141)-PAES as was set for each of
the multiobjective EAs in the Zitzler et al. study, and where this was not possible or demon-
strable, the parameters of PAES were varied to establish if any differences in performance
could be explained by the different conditions. The aim of these experiments is to establish
whether a local search optimizer can cope with the diverse set of test functions which are
used in [ZDTO00]. Furthermore, we wish to find out if, like the other MOEAs in that study,
PAES can be placed at some position in a hierarchy of performance, independently of the test
function, or whether it has any different areas of strength or weakness. Finally, a number of
further runs are also described, in which some tuning of the local optimizer is carried out. A
number of different mutation rates are tried, and the coding of the test functions is changed
from binary to Gray. These experiments are carried out to explore the best parameter set-
tings for PAES and to establish how the coding of problems may interact with the search

algorithm.

In the next section the test functions used in [ZDTO00] are reviewed. Section 5.3.2 provides

high resolution.
“available from http://www.tik.ee.ethz.ch/~rzitzler/testdata.html
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details of the experiments that were carried out in [ZDTO00], explains how these experiments
have been replicated for testing PAES, giving the parameter settings used and noting where
there are differences in experimental set up. The results of these experiments are tabulated,
graphical results are presented, and some discussion is provided. A summary of our experi-
ments and findings is then given. Finally, a concluding section presents a conjecture relating

to our findings and indicates lines of possible future research.

5.3.1 Deb’s test functions

In [Deb98], a procedure for creating tunable, multiobjective test functions with specific prob-
lem features was presented. In the paper, two tasks that any effective MOEA should perform

are identified. These are:

1. Guide the search towards the global Pareto-optimal region, and

2. Maintain population diversity in the current nondominated front.
A number of problem features, such as multimodality, deception, convexity, which can cause
difficulty in performing these two tasks, are considered. A general scheme for generating

test functions is then proposed. The scheme enables an algorithm’s response to each of the

identified problem features to be isolated and investigated.

In this scheme, each test function consists itself of three functions fi,g,h :

Minimize 7T (x) = (fi(z1), fa(x))
subject to  fao(x) 9(xzo, ... xm)h(f1(z1),9(z2, - s Tm)) (5.7)
where x = (z1,...,Zm)

The function f; is a function of z; only, g is a function of the remaining m — 1 variables, and
h is dependent on f; and g. Several example test functions are then given to illustrate how

problems incorporating some of these features can be constructed.

Six such test functions, constructed by Deb, were later used in a study by Zitzler et al. [ZDT00],
that compares the performance of eight different MOEAs. The six test functions (defined
below) comprise 77 with a convex Pareto front, 75 with a non-convex Pareto front, 73 having
a discontinuous Pareto front, 7; a multimodal problem with 21° local Pareto fronts, 75 a
deceptive problem, and 7T having a non-uniformly distributed search space with solutions
non-uniformly distributed along the Pareto front. Each of the functions is a two-objective

minimization problem on m parameters. In five of the problems the parameters x; are coded
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as a binary string, and decoded such that z; € [0,1]. The remaining function (75) also em-
ploys a binary chromosome but this time unitation is used to evaluate each of the parameters.
The experiments presented in our study here, employ identical functions to those presented
in [ZDT00] and are coded onto chromosomes using identical numbers of bits to represent each

parameter.

The test function 77 has a convex Pareto-optimal front and the solutions are distributed with

a symmetric density about a maximum which is far above the Pareto-optimal front:

fi(z1) = 1
g(x2, ... xm) = 149371, (5.8)

h(f1,9) = 1-+/fi/g

where m = 30 and z; € [0,1]. The Pareto-optimal front is formed with ¢g(x) = 1.

The test function 73 is the non-convex counterpart to 71. Again, the solutions are distributed

with a symmetric density about a maximum which is far above the Pareto-optimal front:

fi(z1) = o
g(z2, ..., 2m) = 14+9->" 1y (5.9)
h(f1,9) = 1-(f1/9)?

where m = 30 and z; € [0,1]. The Pareto-optimal front is formed with ¢g(x) = 1.

The test function 73 represents the discreteness features; its Pareto-optimal front consists of

several non-contiguous convex parts, and the search space is unbiased:

fi(z1) =
g(x2, ..., 2m) = 14937 (5.10)
h(f1,9) = 1—+/fi/g— (fi/g)sin(107 f1)

where m = 30 and z; € [0, 1]. The Pareto-optimal front is formed with g(x) = 1. The intro-
duction of the sine function in h causes discontinuity in the Pareto-optimal front. However,

there is no discontinuity in the search space.

The test function 7 contains 21° local Pareto-optimal fronts and therefore tests for the

optimizer’s ability to deal with multimodality:

fi(z1) = n
g(T2,..yzm) = 1+10(m —1) + > ", (z? — 10 cos(4mz;)) (5.11)

h(f1,9) = 1-+/fi/g
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where m = 10, z; € [0,1], and x2, ...,z € [—5,5]. The global Pareto-optimal front is formed
with g(x) = 1, the best local Pareto-optimal front with g(x) = 1.25. Note that not all local

Pareto-optimal fronts are distinguishable in the objective space.

The test function 75 describes a deceptive problem and distinguishes itself from the other

test problems in that z; represents a binary string:

fl(IEl) = 1 + U(Il)
9(@wo, -y mm) = Ty v(u(zi)) (5.12)
h(f1,9) = 1/h

where u(z;) gives the number of ones in the bit vector z; (unitation),

and m = 11, z; € {0,1}3°, and zo,...,z,, € {0,1}°. The true Pareto-optimal front is formed
with g(x) = 10, while the best deceptive Pareto-optimal front is formed with g(x) = 11. The

global Pareto-optimal front as well as each of the local ones is convex.

The test function Tg includes two difficulties caused by the non-uniformity of the search
space: firstly, the Pareto-optimal solutions are non-uniformly distributed along the global
Pareto front (the front is biased for solutions for which fi(x) is near one); secondly, the

density of the solutions is least near the Pareto-optimal front and highest away from the

front:
fi(z1) = 1 — exp(—4x1)sin®(6mz)
g(z2,...,m) = 14+9- (30, 2;)0% (5.13)
h(f1,9) = 1-(fi/9)?

where m = 10 and z; € [0,1]. The Pareto-optimal front is formed with g(x) = 1 and is

convex.

5.3.2 Experimental results

Experimental method

In [ZDTO00] eight algorithms are compared on the six Deb test functions. Each algorithm was
executed 30 times on each test problem, and off-line a record of all nondominated solutions

encountered was kept, and returned as the outcome of each run. For each pair of algorithms
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A, B and for each of thirty runs, a metric C was used to compute the proportion of nondom-
inated points in A covered by B and vice versa. The median and interquartile ranges of the

resulting C values were then plotted using box plots.

The results presented in the paper indicate that on four of the test functions, 77 — 73 and
Ts, the Strength Pareto Evolutionary Algorithm (SPEA) [ZT98a], generates solution sets
which consistently dominate all of the other algorithms tested. On test function 7 SPEA
is clearly superior to all other algorithms in terms of the median of the C value although
it no longer consistently beats two of the algorithms, namely NSGA [SD94], and SOEA (a
single objective EA run 100 times with a different randomly chosen linear combination of the
objectives). However, although SPEA is not consistently better than these two algorithms on
this function, it does produce a better overall distribution of C values. On test function 7,
very similar performance can be observed between NSGA and SPEA, while SOEA actually
does slightly better in terms of the median and the whole distribution of C values achieved.
To summarize these results, one can say that SPEA is the best algorithm overall and is
only beaten on one test function, 75, by one algorithm, SOEA, which was given far more

evaluations than any other algorithm (in fact 100 times as many).

Due to the dominance of SPEA alluded to above, PAES is initially tested only against the
raw results achieved by SPEA, on each of the test functions. Where PAES does not exhibit
clear superiority over SPEA on a particular test function, then further tests against the other
algorithms in [ZDTO00] are performed, again using the raw data available from the web-site
given earlier. This should give an indication of the approximate rank of PAES compared

with the other algorithms, without the need for explicitly testing against each of them.

The algorithms in [ZDT00] each employed a population of 100 solutions and were run for
250 generations on each of the test functions. The only exceptions to this were SOEA (using
the results from 100 runs) and SPEA which has two populations, an internal population and
an external population. Zitzler et al. chose to give SPEA an internal population of 80 and
external population of 20 out of fairness to the other algorithms. This immediately gives
us a problem when we wish to replicate the conditions given to the other algorithms for
PAES. Since we would like to be sure of our results we try all of the alternative options and
observe the effect of these different conditions. PAES has an internal population of just two
since it uses a (1+1) or hillclimbing strategy. However, like SPEA it does have an external
population, though it is used only as a comparison set for the purpose of ranking the current
and candidate solutions, and is never used as a pool from which selection can occur. All of
the algorithms in [ZDT00] have a total population of 100. Therefore, PAES could be given an

external population limit of 98 so that it too has a total population of 100. This seems to be
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Algorithm version
Problem || PAES on-line | PAES[98] | PAES[20] | PAES[98]Gray

Ti [47.6, 7.5] [88.5, 3.6] [24.9, 3.6] [0, 97.1]
Tz [93.5, 0.8] [86.9, 3.6] [90.1, 1.1] [2.3, 48.5]
Ts [97.6, 1.0] [95.9, 2.1] [95.1, 2.6] [0.3, 77.5]
Ta [0.0, 100.0] [0.0, 100.0] | [0.0, 100.0] [97.7, 0.1]
Ts [0.0, 100.0] [0.0, 100.0] | [0.0, 100.0] —

Te [100.0, 0.0] [100.0, 0.0] | [99.5, 0.0] [98.1, 0.0]

Table 5.10: PAES vs SPEA results from the AS2 metric on the six test functions. Four
different operating modes of PAES were tested. The result top left means that on 47.6%
of the sample lines the distribution of PAES on-line’s attainment surfaces were significantly
better than those of SPEA, and on 7.5% SPEA’s distribution was significantly better. (On
the remaining 54.9% the two distributions were not significantly different).

the fairest method of comparing these algorithms. However, SPEA was only given an external
population of 20. Potentially, this could have hindered its performance (although this set up
was chosen presumably to be the best compromise of internal and external population size
given a maximum total population of 100) so we also compare PAES |, using an external
population of 20, with SPEA.

The number of evaluations carried out in [ZDT00] by each algorithm is 25000 (250 x 100). The
total number of evaluations for all versions of PAES tested is also 25000. All of the algorithms
in [ZDTO00] were tested with respect to their off-line performance. Zitzler et al. note that this
changes the relative performance of some algorithms compared to when on-line performance
is considered. The performance of VEGA, for example, is improved greatly by considering
its off-line performance. Thus, to demonstrate the on-line performance of PAES we include
comparison of PAES with SPEA where PAES is only allowed to return the solutions stored
in its external archive population at the end of each run, a maximum of 100, in addition to

our off-line tests.
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Figure 5.2: T1 NSGA.

180



SPEA melzdian ------
SPEA best
0.8 L SPEA worst
. Pareto front
0.6
f2
0.4 r
0.2 -
0 | | | |
0 0.2 0.4 0.6 0.8 1
f1
Figure 5.3: T1 SPEA.
1 |
L PAES median ------
. PAES best
08 L PAES worst
. Pareto front
0.6
f2
0.4 r
0.2 -
0 | | | | :
0 0.2 0.4 0.6 0.8 1

1

Figure 5.4: T1 PAES.
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Figure 5.8: T3 PAES.
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Figure 5.11: T4 PAES with a mutation rate of 8 bits per chromosome.
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Figure 5.14: T5 PAES with a mutation rate of 4 bits per chromosome.
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Figure 5.17: Solutions found from 30 runs of SPEA and PAES to test function 7; with
0.9 < f1 < 1.0.

A mutation rate of 1% was used with each algorithm, on all problems in [ZDT00]. However,
we choose to use a mutation rate (in our initial experiments) of 1 bit per chromosome because
in previous experiments with PAES this setting has provided reasonable results. As the EAs
in [ZDT00] all employ crossover, and mutation is only a secondary operator, we do not deem
it necessary to choose the same mutation rate for PAES since its primary and only method
of generating new points is through mutation. Nonetheless, we note that in this study we are
unable to ‘tune’ the parameters of the MOEAs that we are using for comparison, and accept

that this may affect the strength of our conclusions.

The number of subdivisions used in the adaptive grid archiving strategy of (141)-PAES
was set to [ = 5, giving 1024 grid regions. Although using this crowding method is not
equivalent to the niching used by most of the EAs in [ZDT00], it is an integral part of the
PAES algorithm and we submit that its use does not represent an unfair advantage, since
we have previously shown that the crowding technique used by PAES is less computationally
expensive than niching 4.4. In any case, the SPEA algorithm of Zitzler also uses a unique

diversity maintenance technique: clustering.
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Figure 5.18: Solutions found to test function 7; from 5 runs of PAES with 25000 evaluations
per run and 500000 evaluations per run.

Initial results

The results for these initial experiments are shown in Table 5.10. PAES on-line refers to
runs in which the on-line performance of PAES was examined®. PAES[98] refers to PAES
with an archive population of 98, and similarly for PAES[20]. PAES[98]Gray uses Gray
coding of the parameters in place of binary. The results indicate that PAES outperforms
SPEA on functions 77 — 73 and 7g regardless of its operating mode (with the exception of
the Gray coded version). Using Gray codes adversely affects the performance of PAES on
functions 77 — 73 but causes PAES to outperform SPEA on function 7;. Otherwise, PAES
is outperformed by SPEA on problems 74 and 75, the multimodal and deceptive problems

respectively. Further investigation of these two problems is given below.

Unfortunately, the results in Table 5.10 do not indicate the degree to which PAES[98] and
SPEA outperform each other on each sample line. Plots of their median, best and worst
attainment surfaces (Figures 5.2-5.16), computed using the AS1 metric 3.12, give a clearer
picture of the relative achievement of each algorithm. (Some of these plots relate to different
mutation rates used in PAES, discussed below). On function T'1, the results of the nearest

competitor to SPEA in the Zitzler et al. study, NSGA, are also shown for comparison.

5The on-line version of PAES has an archive population of 100.
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For completeness, Figure 5.17 shows all of the solutions returned by PAES[98] and SPEA
over 30 runs on function 77 over a small region of the front (for clarity only). This plot relates
the attainment surface plots to a plot of points found, which the reader may be more familiar
with.

Mutation rate tuning

The results presented in the Table 5.10, and discussed above, were generated with no tuning of
the mutation rate of PAES. On the multimodal test function 74, where SPEA was found to be
superior to PAES using a mutation rate of 1 bit per chromosome, increasing the mutation rate
was found to improve the performance of PAES. A mutation rate of 8 bits per chromosome
or about 3% was found to give the following statistics [96.8, 0] when comparing PAES with
SPEA, in favour of PAES (see also Figure 5.11).

On function 74 a number of longer runs were also performed. The results of these show that
PAES continues to find better solutions even after 500000 evaluations. A plot showing this is
given in Figure 5.18, where 5 runs of PAES for 25000 evaluations are compared with 5 runs
of PAES for 500000 evaluations. The mutation rate was 8 bits per chromosome or 2.67% in

both sets of runs.

Improvements in performance were also found on 75 with increased mutation rates. These

are discussed in the next section.

On the other test functions, using a mutation rate of more than about 1% was found to be
extremely detrimental to the performance of PAES, however. These results indicate that
PAES is relatively sensitive to the mutation rate which is chosen and this can be problem
dependent. Nonetheless, the relationship between the best mutation rate and the type of
problem provides no surprises. Where the problem is unimodal, or at least not excessively
rugged, a mutation rate of 1 bit per chromosome works well because large mutations are
not needed to escape local optima, and this low mutation rate enables the evolving solutions
to approach the Pareto front to a high accuracy. On the other hand, where the problem is
multimodal and/or deceptive, higher mutation rates allow the exploration of a larger neigh-
bourhood, giving a better chance of escape from solutions that would be local optima under a
more restricted mutation operator. Thus, with minimal knowledge about the problem it may
be possible to choose an appropriate mutation rate. When this knowledge is not available,
a good strategy is to try out a mutation rate of 1 bit per chromosome, and to increase this
by factors of two until performance drops off. Using this strategy, we were able to produce

results better than those published for SPEA, on all but the deceptive function, 75, and using
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only two or three trial runs of PAES.

The deceptive function 7;

Test function 75 is a deceptive problem made up of 10 deceptive subproblems of 5 bits each,
and a 30-bit non-deceptive problem. The 5-bit subproblems are all fully deceptive [Whi91] i.e.
all schema of order four or less lead towards a sub-optimum which is the genotypic complement
of the optimum. The performance of PAES on this problem compared to SPEA at a mutation
rate of 1 bit chromosome (= 1.25%) is shown in Table 5.10, and indicates that the distribution
achieved by SPEA is better than PAES in 100% of the space. However, the degree to which
SPEA is better than PAES is not known. To investigate this, PAES was compared with the
other algorithms tested in [ZDT00]. It was found to generate poorer distributions of solutions
than SOEA, NSGA, HLGA [HL92] and VEGA but was slightly better than NPGA [HNG94]
with a statistic of [39.1, 27.4]. We can conclude that with the initial mutation rate tried,
PAES is significantly outperformed by SPEA on this test function, and does not compare
favourably with other population-based EAs either. However, increasing the mutation rate
to 4 bits per chromosome (=5.0%) increases the performance of PAES on this problem. At
this mutation rate comparisons with VEGA and HLGA favour PAES - [100, 0.0] and [90.7,
0.0] respectively - while it is still beaten by NSGA and SPEA. With long runs of up to 5
million evaluations, the solutions found by PAES continue to improve, indicating that with
this mutation rate at least, PAES does not converge prematurely. However, even with runs
of this length PAES does not approach the performance of SPEA or NSGA using just 25000
evaluations; a statistic of [0.0, 37.9] resulted from comparing the solutions generated by 30
runs of PAES, for 5 million evaluations each, to the original data from SPEA running for just

25000 evaluations.

5.3.3 Summary

In this study, a local search optimizer, PAES, has been compared with a modern, proven,
population-based EA, SPEA, on a suite of six difficult test functions. With no tuning of
the PAES algorithm to any of the test functions, and in several different operating modes,
it was found that PAES generated solutions that were statistically significantly better than
those generated by SPEA on four of the test functions. These functions are 77 and 72 with
convex and non-convex Pareto fronts respectively, 73 with a discontinuous Pareto-optimal
front, and 7g with both non-uniform density of the search-space and Pareto optimal solutions

non-uniformly distributed along the global Pareto front; all 900 bit problems.

192



5.3 Assessment of PAES using Deb’s test functions

On the two remaining functions 73 and 75, SPEA was found to generate solutions significantly
better than those generated by PAES. These two test problems are difficult examples of mul-
timodality and deception, respectively. The function 73 has 21° local optima and consists of
300 bits, and 75 has 10 fully deceptive 5-bit subproblems. Although, PAES was not compet-
itive with SPEA on these two functions it was still better than NPGA and FFGA [FF93]

Furthermore, with tuning of the mutation rate of PAES, on 74 the performance of SPEA
was bettered. With longer runs at this mutation rate PAES was shown to evolve solutions
to the global Pareto optimum. This result showed that on long runs, PAES has comparable
performance to an elitist version of NSGA tested in [ZDT00]. On test function 75 the per-
formance of PAES was again improved with an increase in the mutation rate. However, the
performance of SPEA on 75 was not bettered even with runs of up to 5 million evaluations.
Nonetheless, PAES does outperform all the other multiobjective EAs in [ZDT00] except for

NSGA with the increased mutation rate, running for the same 25000 evaluations.

Experiments in which the mutation rate was changed showed PAES is sensitive to this pa-
rameter, and the best setting of it depends on problem type. However, the most appropriate
mutation rate was found to conform to standard expectations of this: for highly rugged land-
scapes a high mutation rate is better, whereas for smoother landscapes a low mutation rate
is more appropriate. Unfortunately, in this study it was not possible to experiment with
the parameters of the other algorithms PAES was compared against. Therefore, we can’t be
sure that PAES would outperform tuned versions of SPEA and the other EAs on problems
like Ty, where it was initially worse before tuning of the mutation rate. However, on Ty, we
were able to replicate very similar levels of performance to experiments in [ZDT00] with long
runs of NSGA using elitism and very large population sizes. This indicates that even in this
highly multimodal function, PAES is probably competitive with most MOEAS, given the

right mutation rate.

The use of Gray coding on function 7y also caused a great improvement in the performance
of PAES. Whitley [Whi99] has shown using NFL arguments that Gray coding induces fewer
local optima, than Binary over the set of all functions with fewer than 2 — 1 optima. For a
hillclimbing algorithm this may help substantially when the number of local optima is large, as
in 74. However, when Gray was applied to the other problems in the test suite the performance
of PAES was substantially reduced. In fact using Gray codes had much the same effect as
increasing mutation rates. At present, the authors do not have a satisfactory explanation of
this phenomenon, but simply note that when tackling multimodal functions, employing Gray

coding and increasing mutation rates may be fruitful adjustments to experiment with.
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5.3.4 Discussion

® vector z
o Vvector in comparison set CS
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Figure 5.19: Tllustrating how solutions of lower fitness using a linear aggregation of objectives
may be of equal fitness when judged using a multiobjective approach with a comparison set
of solutions.

The results summarised above lead us to the conclusion that tackling multiobjective problems,
even those with specific features known to cause problems in proceeding to the Pareto front,
or maintaining a diversity of solutions along that front, should not be the exclusive preserve
of population-based evolutionary algorithms. In fact a simple hillclimbing or (141) selection
strategy is sufficient to tackle even the difficult problems used in this section. Nonetheless,
our conclusion cannot be as straight forward as this. It appears from our experiments that
certain of the problems in the test suite did cause PAES more difficulty than some EAs,
particularly SPEA. On others, PAES was substantially better. From this study it appears
that PAES cannot be placed into the hierarchy put forward by Zitzler et al., then. Rather,
PAES seems to have difficulty with deceptive problems and perhaps multimodality. Other
than this, it dominates all the algorithms in the Zitzler et al. study.

The empirical findings of this study suggest that local search may often prove a powerful
heuristic to be used in multiobjective spaces. Furthermore, we postulate that assessing the
quality of solutions using the notion of Pareto dominance may lead to fewer effective local
optima than when fitness is assigned using a linear aggregated objective function. This effect,
were it true, would mean that local-search Pareto optimizers would not be as susceptible to
becoming trapped as standard local-search algorithms are, when applied to linearly-scalarized
versions of multiobjective optimization problems. To see why this effect might be true,
consider Figure 5.19. The diagram shows a solution z in a two-objective space where each

objective is to be minimized. A line [ of equal cost under a linear aggregating function is
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shown passing through z. The region upper right of this line (shaded) are solutions of higher
cost than z under the aggregating function. In addition, a set C'S of vectors which are
nondominated with respect to z and representing a comparison set against which candidate
vectors are compared is also shown. The C'S defines an attainment surface S (shown with a
solid line) which divides the space into two regions, the dominated region (darkly shaded) and
the nondominated region. It can be seen that the ‘volume’ of solutions which are dominated
with respect to C'S (dark shaded region) is smaller than the volume of vectors that are
costlier than z under the objective aggregating function (total shaded region). So, if any of
the neighbours of z fell into the light-shaded portion of the shaded region, i.e. between [ and
S, and none of the neighbours of z were cheaper than z according to the aggregating function,
then z would be a local optimum under the aggregating function but not when judged using

the multiobjective comparison set.

The above illustrates that using multiobjective comparison of solutions can lead to situations
where there are fewer local optima. However, it is also possible to construct a counter-example
in which there is less volume for solutions of equal or greater fitness under a multiobjective
comparison set than under a linear aggregating function. To show statistically that, overall,
fewer local optima are induced when multiobjective selection is employed than using objective
aggregation will be a subject for future work. Nonetheless, we have already provided some

strong empirical evidence for this effect [KWCO1].

There are several other avenues for future research. It seems that PAES is sensitive to the
mutation rate chosen and that the best setting is dependent on the type of problem. Some
form of adaptive mutation rate may be examined to counteract this behaviour. The problems
PAES exhibited with the deceptive function may indicate that large populations and crossover
do have an important role to play in these kind of problems. This suggests that a memetic
version of PAES that employs local search much of the time but which occasionally employs

crossover, may also be a direction worth investigating.

5.4 Summary and conclusions

In this chapter, PAES was tested using two suites of test functions. On the first suite,
PAES was compared against archiving and elitist versions of NPGA and NSGA. It performed
favourably compared to these algorithms, and no significant weaknesses were found. In terms
of the trade-off between solution quality and computation time, PAES was very strong. In
terms of solution quality alone, PAES was, at worst, second amongst the algorithms tested,

beaten only by the slowest of the other algorithms.
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On the second test function suite, PAES was compared against the SPEA algorithm on six
challenging and diverse test functions. Here, some weaknesses in the PAES algorithm were
found. On the deceptive trap function 75, PAES could not compete with SPEA, and other
MOEAs tested in the original study conducted by Zitzler et al.. However, this function is
extremely biased towards recombination-based algorithms, since the bits were ordered on the
string in such a way that recombination events can relatively easily combine the components
together, particularly when 1-point crossover is used. With bit-reordering it is expected that
the performance of PAES relative to the MOEAs would not be so poor. PAES also performed
poorly on the highly multimodal function 74, using a default mutation rate of 1/I. However,
with a larger mutation rate PAES was able to compete successfully with the other MOEAs.
Overall, the results from the second test function suite indicate fairly robust performance of

PAES, and underline that it represents a strong baseline algorithm for multiobjective search.

No testing of PAES on problems with more than three objectives has been carried out in this
chapter. In the next chapter, some four-objective knapsack problems are tackled with PAES,
and these do not reveal that PAES has any difficulties with larger numbers of objectives.
However, with five or more objectives, the efficiency and accuracy of PAES might be expected
to deteriorate due to the need to have a very large archive. Few other Pareto MOEAs have
been tested on problems of more than four objectives, however, and this remains an important

area for future work.

Some variants of the standard (1+1)-PAES algorithm have also been proposed in this chap-
ter. The population-based variants did not perform favourably compared to (141)-PAES,
in general. The rules for updating the archive and performing selection were adapted from
(141)-PAES to account for the multiple candidate solutions, but the new rules seem to be
responsible for the poor performance of the population-based variants of PAES. The other
variants of PAES, outlined in the previous chapter have not been tested here. This will be

an important direction of future work.

In this chapter, the (14+1)-PAES algorithm has been extensively tested. Its level of perfor-
mance, compared to modern MOEAs, has been shown to be sufficient for the purpose of
baselining more sophisticated methods. Another of its potential uses, as a basis for designing

hybrids of population-based and local-search algorithms, is the subject of the next chapter.
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Chapter 6

The Memetic PAES Algorithm
(M-PAES)

6.1 Overview

Memetic algorithms (MAs) combine the benefits of population-based EAs and local searchers
in a single optimization method. The use of local search make MAs flexible with respect
to incorporating problem-specific heuristics and specialized operators, while the population
can exploit and recombine global information, and can help avoid suboptimal convergence.
Overall, MAs, as a class, are very general-purpose and loosely-defined algorithms, although
individually they tend to be highly tailored to the particular problem. It is this ‘tailor-ability’

that have given MAs the edge over other methods on many problems.

Of course, flexible methods, like MAs, should also perform well on Pareto optimization prob-
lems if they are tailored to the individual problem. Nonetheless, even a very flexible MA
framework for Pareto optimization must specify how and which discovered solutions will be
stored, and how the selection and acceptance functions (in the population-based and local-
search phases, respectively) should operate. As with other multiobjective search methods, a
central issue is whether to use Pareto dominance relations for evaluating solutions, or whether

the components of the objective vector should be aggregated into a single value.

In this chapter, we discuss the implications of this design choice and suggest that an MA
based on Pareto selection may exhibit quite different performance from recently proposed
multiobjective MAs based on scalarization of objective values. With an eye to the Pareto

local-search methods developed in Chapter 4, we specify a general framework for a Pareto



6.2 Recent multiobjective memetic algorithms

Feature H Pareto selection ‘ Linear aggregation
Efficient selection mech- Proven Some evidence of poor
anism for GA popula- performance
tions

Parallelizable Yes, but not completely Yes
independent processes
Searches all directions Yes No
simultaneously
Able to find non- Yes No
supported solutions
Works with local search With use of a compari- Yes
son set as in PAES, only
Range/scaling and ref- Yes No: requires the ranges
erence point indepen- to be equalized and the
dent utopian point for effec-
tive use

Table 6.1: Advantages and disadvantages of Pareto selection versus Linear aggregation.

MA. This framework is used to specify an algorithm, called memetic-PAES (M-PAES), which
makes use of our adaptive grid archiving strategy, and incorporates a local-search subroutine
based on (1+1)-PAES.

In the remainder of the chapter, M-PAES is tested against three modern, but fundamentally
different MOEASs: the evolutionary algorithm, SPEA; the memetic algorithm, RD-MOGLS;
and our baseline hillclimber approach, (141)-PAES. In these experiments, we employ non-
specialized operators in M-PAES to verify its general performance and to ensure judicious
comparison between it and the other algorithms. In the next chapter, we investigate the use
of M-PAES again, for tackling a particular class of problems, but in the studies presented

there we also design and exploit specialized encodings and associated operators.

6.2 Recent multiobjective memetic algorithms

Recently, two different (but similar) memetic algorithms for Pareto optimization, have been
proposed; one by Ishibuchi and Murata [IM96], and the other by Jaszkiewicz [Jas98]. Both
of these MAs use scalarizing selection (see Section 3.4.3) in both the reproduction and local-
improvement search phases. In this section, we briefly consider how the use of scalarizing
selection might affect the performance of these MAs, as compared with an MA using Pareto

selection.
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6.2 Recent multiobjective memetic algorithms

In both the proposed MAs, the weighting vectors, specifying the ‘direction’ of search in
objective space, are chosen at random, at each iteration, without regard to the solutions that
have already been found. This may be detrimental to obtaining an even distribution of points
along the nondominated front because in many cases, it will not be sufficient to select weights
in all directions with equal probability. Rather, because some areas of the Pareto front may
be easier to obtain than others, the algorithm may waste time searching for solutions in areas
where it has already found many solutions, while leaving other regions relatively unsampled.
Even when the distribution of points in the true Pareto front is even, the MA may obtain a
greater density of solutions in some areas than in some others, just via stochastic sampling
effects. For these reasons, some form of adaptive scheme may be a better solution, and Pareto

EAs that use niching mechanisms would certainly seem less susceptible to these problems.

Furthermore, these two MAs both perform local search on the offspring in the same direction
as was used for selecting the parents. This unidirectional searching means that a solution
generated during the local-search phase may be rejected because it scores poorly on the in-
cumbent weighting vector, even though it dominates one or more of the best solutions already
found, and may be an excellent solution when evaluated according to a different weighting
vector. In Pareto selection methods, there is more efficiency in this regard because solutions
are not usually discarded if they dominate solutions in the discovered nondominated front.
Effectively, Pareto selection methods search in all directions at once. More comparisons be-
tween solutions are required in Pareto selection methods, but they may be more efficient
in terms of the number of function evaluations required to obtain a given quality of non-
dominated set. Whether it is preferable to have lower computational overhead or to reduce
the number of function evaluations will depend on the overhead of evaluating solutions in
the given application, but Pareto-selection MAs and MAs based on scalarizing selection will

perform differently in this respect.

Further to the potential problems with the use of scalarizing selection employed in these two
MAs, just outlined, there is also some empirical evidence that weighted aggregation methods
are not as effective as Pareto selection, in population-based approaches. In [ZDT00], an elitist
EA using linear weighted aggregation of objectives, SOEA, was compared with other elitist
MOEAs, including SPEA. Even though the SOEA was run multiple times with different
weight vectors, using many more function evaluations than SPEA it did not achieve results
of the same quality, except on one out of six test functions. Furthermore, an elitist version of
Hajela and Lin’s weighted-sum GA, (HLGA* [ZDT00]) performed less effectively than elitist
MOEASs based on Pareto selection. Also, in work by Knowles et al. [KWCO01], some evidence
that Pareto selection-based methods were shown to be more effective than scalar selection

methods, even on problems that only naturally possess one objective.
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6.3 Pareto memetic algorithm design

Another issue relates to non-convex Pareto fronts or regions of the Pareto front. Pareto
methods are able to find non-supported efficient solutions where linear scalarizing selection
methods tend to miss these solutions. Although non-linear (e.g. Tchebycheff) scalarization is
possible, some experiments [BPH98] have found this to be less effective for search than linear

scalarization in one application.

Scalarizing methods may yet have an advantage in parallel MA implementations, however,
because local-search phases could be independently run on different processors with no need
for communication between them. This can be achieved less easily with Pareto MAs based on
using an archive as a comparison set (as in PAES) because the archive must be updated for
each parallel search to be carried out. This requires communication to some shared memory,

and so is not so readily parallelizable, or as efficient in this regard.

We give a summary of the possible advantages and disadvantages of Pareto selection compared
with linear aggregation in Table 6.1. The table entries indicate that a multiobjective MA
based on Pareto selection will have quite different features from the multiobjective MAs
currently available, which are based on scalarizing selection. In particular, the proven ability
of Pareto selection for use in GA populations warrants investigation in the context of a
multiobjective MA.

6.3 Pareto memetic algorithm design

The algorithms presented in Chapter 4 facilitate the design of new Pareto memetic algorithms
which rely entirely on Pareto selection. These MAs could use the procedures developed for
PAES to perform local improvement of solutions, avoiding some of the problems associated
with scalarizing selection. This method of carrying out local search could be naturally com-
plemented by the use of elitist Pareto selection methods, as employed in some MOEAs, for

selecting parents in the reproduction phases.

Additionally, it would be desirable for the MA’s local-search phases to be somewhat indepen-
dent so that they could be carried out in parallel. However, we would want these separate
local-search phases to contribute to a global archive of solutions so that the best solutions
from the whole run would be available at the end. We have already seen in Chapter 4 that an
algorithm that uses multiple, independent Pareto selection-based local searches, and also re-
turns a diverse nondominated set representing the best solutions from the whole run, requires

two archives, as in the multi-start PAES algorithm.

Using these general ideas we formulate a rudimentary outline of a memetic algorithm for
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6.3 Pareto memetic algorithm design

Pareto optimization, following the general design of the local-search-based MA described

in [Mos99]. This outline algorithm is shown in Figure 6.1.

The outline Pareto MA given in Figure 6.1 leaves a wealth of algorithm design choices un-
specified. In particular, we can identify the following list of remaining design choices or free

variables:

what global stopping criteria are used;
- what stopping criteria are used for each local improvement procedure;

- what the local improvement procedure is, e.g. PAES, multi-start PAES, annealing

PAES, etc., or some other Pareto local-search procedure;

- how the size of G and H and P should be controlled, and/or whether each should be

of constant or variable size;

- what procedures should be used for archiving in G and H, and whether all solutions
should be checked for entry into G;

- whether the pool of parents should be restricted to individuals in P, or G, or parents
should be chosen from P U G;

- whether multi-parent recombination is allowed, and how this is controlled;

- whether mutation is included as a separate process from local improvement, as it is in

the outline algorithm;
- whether mating restrictions are used;
- whether P is maintained as a mutually nondominated set;
- whether elitist selection and replacement are employed;

- how many new solutions are generated per ‘generation’, i.e. whether there is a generation

gap;
- and whether the algorithm has multiple restarting capability.
Initially, we would like to put the following restrictions on these choices, to reduce the number

of design variables, and to allow initial testing and comparison with MOEAs to be fairly and

easily carried out.
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Algorithm: Pareto MA Outline

Data:

P is the population of solutions

P’ an intermediate population

G is the global archive of solution vectors
H is the local archive of solution vectors
Xpar is a set of ‘parent’ solutions

x° is an ‘offspring’ solution

x' is a mutant solution

Functions:

Update(X, x) updates the set X with x according to some set of rules

Recombine(X,,,) returns a solution vector from recombination of the vectors in X4,
Reset(H, x) resets H such that it contains a set of solutions from G U P that will help
exert selection pressure on the solution x to be improved using PLS(x, H, G)

PLS(x, H, G) is some Pareto local-search procedure for improving x using and updating
H to exert selection pressure, and also updating G with all solutions encountered

G+ 0
Init(P)
P+
foreach x € P
Update(G, x)
Reset(H, x)
PLS(x, H,G)
P+ P'U{x}
P+ P
repeat
P+
parfor j < 1 to #recombinations do
Select a set Xpq, € P UG to be parents
x°0 « Recombine(Xpar)
Reset(H, x°f)
PLS(x°0', H,G)
P« P'uU{x°f}
endparfor
parfor j < 1 to #mutations do
Select x € P for mutation
x' < Mutate(x)
Reset(H,x')
PLS(x', H,G)
P+ P'U{x'}
endparfor
P « Selectfrom(P U P’)
if P has converged then P < Restart(P)
until termination condition is TRUE

Figure 6.1: An outline for a Pareto memetic algorithm with local archive
H, global archive G, and population P. Notice that mutation is included in
each generation, in addition to local improvement. Notice also the algorithm’s
restart capability.
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6.3 Pareto memetic algorithm design

1. The overall stopping criterion should be the maximum number of function evaluations,

allowing straightforward comparisons with other algorithms.

2. The adaptive grid archiving procedure developed for PAES should be used to control
both G and H, and G and H should have a bounded capacity;

3. P should be of constant size.

4. Standard local search (mutation) and recombination operators only should be used to

allow straightforward comparison with other MOEAs.
5. Mutation should not be included as a separate process from local search/improvement.
6. No restart facility should be included.
7. The mating pool of solutions should be P U G.

8. The number of newly generated solutions in each recombination phase should be |P]

i.e., the recombination phase is generational.

With these restrictions we can specify the Pareto MA framework shown in Figure 6.2. The
key defining features of the framework are: there are separate single-point local-search and
population-based search phases; all comparisons to determine acceptance/rejection of solu-
tions are Pareto comparisons; the archives G and H store mutually efficient solutions; H is
initialized for each local search phase; H is used to determine the acceptance of local-search
moves; G is updated for every new solution generated; in the population-based phase, G is

used to determine acceptance of the offspring.

The method used to generate solutions in the local search phase can be any operator based
on perturbing a single solution. The recombination method can be any operator based on
generating solutions using information from two or more solutions. The initialization of the
archive H can be achieved using any solution already stored in P or G and should encourage

an effective local improvement of the current solution x.

Elitism is inherent in the framework, and it can be controlled in several ways. Each time a
solution is compared with either the local archive H, or the global archive G, to determine
whether to accept it or not, a sample of solutions from the archive is used. By adjusting
the size of the sample, the degree of elitism can be controlled. The acceptance functions
themselves are not defined in the framework, either. What is specified is that all comparisons

used to accept or reject solutions are Pareto comparisons.

The framework leaves the following design choices open to investigation.
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1. Generate a population P of solutions using some initialization method.
2. Store the internally efficient solutions from P in a global archive G.
3. Repeat until a stopping criteria is satisfied:

(a) For each candidate solution x in P:

1. Initialize a local archive of solutions H.

ii. Perform a local search from x. At each step of the local search:
Generate neighbour solution(s) x", n = 1..N from x.
Compare x" with one or more solutions from H to determine which
(if any) of x™ is accepted.
Update current solution: x < accepted solution.
Update H with x" if applicable.
Update G with x" if applicable.

iii. Place improved solution x back in P.
(b) Set new population P’ + ()
(c) Perform recombination of solutions in P and G to obtain new population
P’ by repeating the following until |P’| = |P|:
i. Select parents from P U G.
ii. Recombine to form offspring x.
iii. Compare x with one or more solutions from G to determine whether
to accept x (P’ + P'U{x}), or reject it.
iv. Update G with x if applicable.
(d) Update population: P «+ P'.

4. Return global archive G of unique mutually efficient solutions.

Figure 6.2: A Pareto MA framework.
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1. What local-search procedure is used.
2. What stopping criteria should be used for controlling the local-search phase.
3. Whether/how elitist selection is incorporated into the recombination phase.

4. Whether mating restrictions should be used in the parent selection in the recombination

phase.

It is expected that the multiobjective MA framework will be most effective when very good
local-search heuristics are available for the particular multiobjective problem. However, to
test its general applicability we will first use the framework to define a very generally applica-
ble memetic algorithm: M-PAES, that does not incorporate any specialized operators, and is

based on the simplest local-search algorithm developed in the previous chapter: (141)-PAES.

6.4 Development of M-PAES

Having restricted the first of the design choices given above, that is, to the use of a local-
search procedure based on the simple (1+1)-PAES algorithm, there are three remaining
design choices to make. The first of these to consider is the stopping criteria to be used
for the PAES procedure. Previously, PAES has been terminated when a maximum number
of function evaluations is reached. This simple criterion could be transferred to the PAES
procedure but this choice would not be in the spirit of how the local improvement subroutine
in a memetic algorithm is supposed to work. Ideally, the local improvement subroutine
should be able to detect when a local optimum is reached and stop when this has occurred.
However, the intention here is to use a standard mutation operator as the neighbourhood
operator. Strictly, this means that all points in the search space can be visited from all other
points (for example with a bit mutation rate of 1/L). Thus the local optimum is strictly the
global optimum of the search space, and it would not be beneficial for the PAES procedure
to wait until one of these were found. In any case, in general, it may not be possible to detect
when a local (global) optimum has been found. These considerations mean that alternative

criteria should be used.

Although true local optima may not exist given the use of a standard mutation operator,
‘approximate’ local optima can normally be monitored by observing whether the evaluation of
the solutions visited stops improving for a ‘long’ time, or the rate of change of evaluation falls
below a threshold value. Now, in PAES, evaluation is a vector so this is not so straightforward.

However, the following means of detecting approximate local optima are proposed:
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6.4 Development of M-PAES

1. Count the number of consecutive PAES iterations that result in no changes to the

(local) archive, and stop when this number reaches a threshold.

2. Count the number of consecutive PAES iterations that result in the candidate solution

being rejected, and stop when this reaches a threshold.

3. Count the number of PAES iterations in which the candidate is dominated by the
archive, resetting the counter to zero if the candidate is accepted as the new current

solution. Stop when the count reaches a threshold.

4. Calculate the rate of change of the (local) archive, by measuring the discard rate from
the archive. That is, the number of solutions that are discarded from the archive due
to the entry of new candidate solutions, per iteration. This could be calculated as a
moving average over a moving window of iterations. Initially, when the archive is not
full the discard rate may be zero. However, once the archive becomes full the discard
rate should increase, if new solutions are being archived. Once a local optima is reached
the discard rate will fall again. The PAES procedure could be terminated if the average
discard rate has previously exceeded a threshold, and then fallen below this threshold
again. The discard rate should be used rather than the entry rate because this implicitly
takes into account the quality of newly archived solutions. For if a very good solution
is found, it may dominate several members of the archive, causing all of them to be

discarded, and increasing the measured rate of change of the archive.

Some investigation of the first three of these different stopping criteria was carried out in
initial development of the M-PAES algorithm. It was found that 3. was most effective.
However, the use of this criterion in isolation, led to some poor behaviour. If the threshold is
set too low, PAES does not search adequately before stopping. However, if it is set too high,
the PAES procedure can run indefinitely, causing the advantages of using the population and
recombination to be lost. Thus, the stopping criterion was found to work best in partnership

with a maximum number of iterations parameter.

The fourth stopping criterion outlined above has not been investigated to date. This may
be better than the other proposed criteria because it works with a (discrete) rate of change
rather than a counter. However, it is complicated and requires two parameters to be set -

the size of the moving window, and the threshold.

In the recombination phase, two further design choices must be made. First, is how elitism
should be incorporated into the reproductive selection, if at all. That is, whether newly
generated offspring should always be accepted in P’ (and should eventually replace their

parents in P), or whether their entry into P’ should be controlled by comparing the solutions
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to their parents, and/or to solutions in G. This was investigated in the early development of
M-PAES, and it was found that elitist reproductive selection was generally beneficial. The
second design choice, is whether mating restrictions should be used. This is very much a
problem-dependent choice. However, in M-PAES, mating restriction was tried on the 0/1
knapsack problem (see Section 6.6.1), and it was found to be detrimental to the performance
of the algorithm. Therefore, we do not include it in the M-PAES algorithm, described below.

6.5 The M-PAES algorithm

The memetic-PAES algorithm (M-PAES) is shown in pseudocode in Figure 6.3. It is based
on the local-search multiobjective algorithm, (141)-PAES, and the framework and design
choices discussed above. The archiving of solutions in M-PAES is a little more complicated
than in (141)-PAES. Recall that at the heart of PAES is a procedure for maintaining a finite
sized archive of internally efficient solutions. The solutions in the archive are representative
of the best nondominated solutions found by the algorithm as it searches the space. The
solutions in the archive serve a dual purpose in (14+1)-PAES: as a memory of the solutions
found during the run for presentation at the end; and as a comparison set to aid in estimating
the dominance rank of new candidate solutions. In order that these same jobs are performed
in M-PAES, two archives are required. This is because each local-search phase needs to be
partially independent of the global search being performed by the algorithm as a whole. Thus
we have a global archive G that maintains a finite set of internally efficient solutions found,
and a local archive H that is used as the comparison set in each of the local-search phases.
At the beginning of a local-search phase, H is cleared and filled with solutions from G which
do not dominate the candidate solution x. The archive H is then used as in (14+1)-PAES to
improve x, i.e. H is maintained and used as a comparison set, while G is continually updated

but plays no part in the estimation of the quality of new solutions.

The PAES local-search procedure used by M-PAES to improve solutions in P is almost the
same as the basic (141)-PAES algorithm. However, it differs in the way that termination
of the procedure is determined. Termination may be invoked when either of two conditions
are fulfilled: (1) If the maximum number of local-search moves [_opt is exceeded. (2) If
the maximum number of local-search fails [_fails is exceeded. To achieve (2), the variable
#fails, initially zero, is incremented every time the mutant is dominated by the current
solution. It is reset to zero every time a move occurs i.e. when the mutant is accepted as the
new current solution. Hence, #fails effectively counts the number of potentially detrimental

moves between improving moves. If this number exceeds the threshold [_fails, the local search
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Algorithm: M-PAES

Data:

P = {x',x%,...,x/"I} is the population of solutions

x’ is the sth member of P

G is the global archive of solution vectors

H is the local archive of solution vectors

t counts the number of objective function evaluations

F#retrials counts the number of recombination trials
recomb_trials_maz is the maximum number of recombination trials

Functions:

Terminate(t, G) returns TRUE if the stopping criterion of M-PAES is satisfied
Grpop(x) returns the population of x’s grid region

Update(G, x) updates G with x according to the adaptive grid archiving strategy
PAES(x,G, H,t,l_fails,l_opt) is a (14+1)-PAES subroutine shown in Figure 6.4
Recombine(x!, x?) returns a solution vector from recombination of vectors x' and x?

Rand(A) returns a solution, uniformly randomly selected from the set of solutions, A

t+0 /* Initialization */
G0
P+
foreach(i € 1..|P|)
x < Init()
P+ PU{x}
Update(G, x)
t+t+1
while(Terminate(G, t) # TRUE)
foreach(; € 1..|P|) /* Local-search phase */
H<+0
H+ HU{x|x¢£x' x€G}
H + HU{x'}
x! «+ PAES(x', G, H,t,1_fails,l_opt)
P« 0
while (|[P'| < |P]) /* Recombination phase */
#retrials < 0
do
xP1 <+ Rand(P U G); xP? + Rand(P UG)
x < Recombine(x?!, x"?)
Update(G, x)
t+t+1
#retrials < #Hretrials + 1
while (((x > G) V ((Grpop(x) > Grpop(xP!)) A (Grpop(x) > Grpop(x*?))))A
(#retrials < recomb_trials_maz))
if (x > Q)
if (Grpop(xP?) < Grpop(xP!))
xPL ¢ xP2
x  xP!
P+ P'U{x}
P+ P
return G
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Procedure: PAES(x,G, H,tl_fails,[_opt)

Data:

G is the global archive of solution vectors, passed as a parameter to the procedure
H is the local archive of solution vectors, passed as a parameter to the procedure
x is the current solution vector, initially passed as a parameter to the procedure
x' is the mutant solution vector

[_fails is the maximum number of consecutive dominated mutants, a parameter
[_opt is the maximum number of local optimization iterations, a parameter

# fails counts the number of consecutive dominated mutants

#moves counts the number of local optimization iterations

Functions:

Terminate(t, G) returns TRUE if the stopping criterion of M-PAES is satisfied
Mutate(x) returns a neighbour of x

Grpop(x) returns the population of x’s grid region

ND(X) returns the nondominated vectors from a set X

Update(G, x) updates G with x according to the adaptive grid archiving strategy

#fails <0 /* Initialization */
#moves < 0
while ((#fails < l_fails) A (#moves < [_opt) A (Terminate(t, G) # TRUE))
t—t+1 /* Main Loop */
#moves < #moves + 1
x' € X + Mutate(x)
if (x' < x)
x x5 #fails + 0
H «+ ND({x'} UH)
Update(G, x)
else if (x' # H)
Update(G, x)
if (x' < H)
H «+ ND({x'} UH)
x « x's #fails + 0
else if (x' ~ H)
if (|M;—1| < arcsize)
H+ {xX'}UH
else if (x' increases the extent of the grid)
H + {x'} UH\ {x"} where x" is one
randomly selected solution from the
set {x' € M; | |Vx/ € M;_1, Grpop(x*) > Grpop(x/)}
else if (Ix’ € M;_; such that Grpop(x') < Grpop(x'))
H«+ {X'}UH\ {x"}
if (Grpop(x') < Grpop(x))
x « x's #fails + 0
else
#fails +— #fails + 1

return x /* End procedure */

Figure 6.4: Pseudocode for procedure PAES(x, G, H,t,l_fails,l_opt).
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is stopped. The local-search procedure PAES(c,G, H) is shown in Figure 5.19.

In the recombination phase, parents are randomly selected from the union of the post local-
search population, and the global archive. The resultant child is accepted only if it is nondom-
inated with respect to the entire global archive, and it resides in a less crowded grid region
than at least one of its parents. If it dominates any member of G it is naturally accepted too.
However, solutions that are dominated by member(s) of G, or that reside in crowded regions
are rejected. In this case two new parents are selected again and recombination is applied
once more. The procedure is repeated until either a child is accepted or a threshold number
of recombinations recomb_trials_maz is exceeded. In the latter case, the current parent in
the lesser crowded region joins the intermediate population P’. The recombination strategy
is, as a whole, extremely elitist, following the general form of the (141)-PAES algorithm em-
ployed in the local-search phase. In the development of M-PAES, early versions did not have
the facility of repeatedly rejecting children of recombination. However, we found that this
weakened the effectiveness of the elitism inherent in (1+1)-PAES and so the recombination

phase was made more stringent in later versions.

6.5.1 Convergence properties of M-PAES

The M-PAES algorithm uses a global archive G to store nondominated solutions for presen-
tation at the end of the run. The archive is updated for every potential solution generated,
using the adaptive grid archiving strategy described in Chapter 4. Thus, the same conver-

gence properties exist for M-PAES as for PAES, given the same restrictions.

6.5.2 Parameter control in M-PAES

The M-PAES algorithm introduces a number of additional parameters that must be controlled

or selected. The following procedure for controlling these parameters is recommended.

1. Decide on the number of final solutions required, or alternatively, the number of divi-
sions in each objective that should be represented by a solution. Using the number of
objectives, K, of the problem, the archive G can then be set to the appropriate capacity,
with reference to Table 4.1. Alternatively, for comparison with the performance of an
MOEA, set the archive size G to correspond to the number of solutions that can be
returned by the MOEA. Set the size of H less than or equal to G. The default is to set
H=dG.

210



6.6 Initial study: M-PAES on the multiobjective 0/1 knapsack problem

2. Set maz_evals according to the maximum time available for the search, or equal to

other algorithms, if a performance comparison is being carried out.

3. Once maz_evals has been set, P, [_opt, |_fails, and recomb_trials_maz must be set.
These parameters cannot be set independently. In general, increasing [_opt decreases
the number of generations, and thereby the number of recombinations applied, while
increasing the length of local-search phases. If I_opt is increased then P must be de-
creased to allow a reasonable number of generations to occur. Similarly, the setting of
[_fails and recomb_trials_maz controls the amount of time spent on searching within
each local search and recombination phase respectively. Setting these high implies that
the number of generations will be low for a given P. Thus P should be reduced to
keep the number of generations to a reasonable level. It is unwise to be dogmatic about
what constitutes a reasonable minimum number of generations but one might expect

that fewer than ten generations is unlikely to yield good results.

In order to further ‘tune’ the parameters, P, [_opt, [_fails, and recomb_trials_mazx, we may
iterate step 3 of the procedure given above, to obtain better performance. This process must
be necessarily guided by one’s intuitions because the space of parameter choices is too large
for a thorough investigation. However, we have found that one can quickly ascertain whether
making changes to these parameters makes a significant difference to performance or not, on
a given problem instance. In our investigations outlined next, we found that ‘hillclimbing’ in
the space of these parameters always led to reasonable performance within several trial runs,
and after this, significant performance gains were not forthcoming. In this respect, M-PAES
does not seem to be over-sensitive to the choice of these parameters. However, at present,
we certainly do not suggest that we know a technique to set these parameters a priori, given

a problem instance, or how to relate landscape measurements to the setting of parameters.

6.6 Initial study: M-PAES on the multiobjective 0/1 knap-

sack problem

6.6.1 Experimental method

The M-PAES algorithm is tested on a suite of multiobjective 0/1 knapsack problems. The
problems are taken from a recent paper [ZT99] by Zitzler and Thiele, in which the general
ability of their strength Pareto evolutionary algorithm (SPEA) was demonstrated. In [ZT99],

the performance of SPEA on these problems was compared with eight other evolutionary
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6.6 Initial study: M-PAES on the multiobjective 0/1 knapsack problem

algorithms (EAs). Four of the algorithms, each a well-known multiobjective EA, as well as
two versions of SPEA, were run 30 times with different random seeds on each of the problems,
for 500 generations using the same population sizes'. The nondominated sets generated from

each of the runs were used to make a statistical comparison of the algorithms tested.

Zitzler and Thiele’s study found that SPEA is superior to each of the other MOEAs on all
of the knapsack problems. However, also included in the set of eight algorithms tested, are
two single-objective EAs that use weighted-sum aggregation of the objectives. The relative
performance of SPEA and these algorithms is not clear-cut. Hence, in the first part of our
comparative study we select as benchmarks, the data sets from the SPEA runs and those of
the more powerful of the two single-objective algorithms, SO-5. The other algorithms are not
considered. As additional comparators, we generated our own data sets for the (1+1)-PAES

algorithm, and an enhanced setup of SPEA, on the knapsack problems.

The second part of the study is a comparison with the memetic algorithm, RD-MOGLS. The
same problem instances are used, and once again we also compare performance with (1+1)-
PAES acting as a benchmark indicating a basic, good level of performance. The parameter

settings for all of the six algorithms that we compared are described in Section 6.6.3.

Multiobjective 0/1 knapsack problems

An excellent general text on knapsack problems is [MT90]. In it, the standard 0/1 knapsack
problem is described, including the history of methods for solving it, its numerous appli-
cations, and its links with fundamental integer programming problems. The multiobjective
version of the problem is not described, but it has become a favourite problem in multiob-
jective combinatorial optimization (see [GF98]). The following text reproduced from [Zit99]

defines the problem:

Given a set of n items and a set of k£ knapsacks, with

pij = profit of item j according to knapsack i,
w;; = weight of item j according to knapsack 1,
¢ = capacity of knapsack 1,

'In the case of SPEA, an internal and an external population exist. The sizes of these were chosen to
provide a fair comparison with the other MOEAs in the study.
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find a vector x = (z1,2,...,2y) € {0,1}", such that the capacity constraints
n
ei(x) = wij-x;<c¢ (L<i<k) (6.1)
=1
are satisfied and for which f(x) = (fi(x),..., frx(x)) is maximum, where

filx) =Y pij-xj (6.2)
j=1

and z; = 1 if and only if item j is selected.

Zitzler and Thiele generated nine instances of the problem altogether, of differing combi-
nations of size (number of items), and number of objectives (knapsacks). At the time of
writing, the problems are available from an Internet web-site?. In the following experiments,
we employ the same chromosome encoding and constraint handling techniques as described
in [ZT99], and no additional heuristics for use with the knapsack problems are employed.
This allows for a direct comparison between our results and those published by Zitzler and
Thiele.

6.6.2 RD-MOGLS

The RD-MOGLS algorithm, described in [Jas98], is given in outline in Figure 6.5. The algo-

rithm can be used with either weighted linear or weighted Tchebycheff scalarizing functions.

6.6.3 Parameter choices

The problem of setting parameters in comparative studies of algorithm performance is a
serious one. Our philosophy in this study is that each algorithm be run with settings, found
through some experimentation, to provide near-best performance for that algorithm. It is
not possible, or even desirable, to use exactly the same parameter settings for each algorithm,

as they differ considerably.

The study comprises two different sets of data, one where M-PAES is compared with the
results from [ZT99], and the other, where we implemented an algorithm, RD-MOGLS, ran it,
and collected the results ourselves. In the former, parameter control is obviously not possible,
although we did supplement the results from [ZT99] with two further algorithms: an SPEA

2http:/www.tik.ee.ethz.ch/~zitzler
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- Initialization - Repeat S times:

—

— Generate a random weight vector A.

— From a randomly generated solution z, perform local search,
using a scalarizing function S(Z,)\), to obtain z’.

— Add 2’ to the current set of solutions, CS.

Update the potentially efficient set PE with 2.

- Main Loop - Repeat until some stopping criterion is met:

—

— Generate a random weight vector A.
— Select the N < S best solutions from CS, using the measure
S(Z,\), to form a temporary population TP.
— Repeat N times:
* Do crossover on a pair of uniformly randomly selected
parents from TP.

x Do local search from the offspring z to form z’ using
S(#,X), and update PE with z’.

* If 2/ is better than worst member of TP, then add to
CS and TP, deleting worst member of TP.

*x Update set PF with z'.

Figure 6.5: RD-MOGLS.

implementation of our own; and (141)-PAES. The parameters of these algorithms, like those

of RD-MOGLS, were set empirically to give good performance.

To reduce some of the burden of testing different parameter settings, we do keep core param-
eters/conditions constant across those algorithms that we have control over. Further details
of the parameter choices made for each of the algorithms tested are given below. The data
from the setup of SPEA used in [ZT99] is referred to as SPEA(ZT). Our own setup of SPEA
is labelled SPEA(KC).

SO-5

The SO-5 data comes from one of two single-objective EAs used in [ZT99]. Unlike the other
algorithms considered, these single-objective EAs were run 100 times per test problem, each
run optimizing toward a different randomly chosen linear combination of the objectives. The

resultant internally efficient solutions among all those generated in the runs form the tradeoff
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front achieved by the algorithm. The two algorithms both employed equal population sizes to
their multiobjective rivals, and differed only in that one (SO-1) was run for 100 generations,
and the other (SO-5) was run for 500 generations in every single of the 100 runs used to form
the nondominated front. Thus, in the case of SO-5, one hundred times as many function
evaluations as in the other MOEAs in [ZT99] were performed in order to generate the (single)
set of internally efficient solutions. Zitzler and Thiele did not perform the whole process thirty
times to give thirty different data sets, but instead just used the same set repeatedly in the
statistical analysis carried out. We follow this approach, using Zitzler and Thiele’s data sets.
Hence, where statistical information is given in relation to the SO-5 algorithm, it should be
noted that, in fact only one data set for this algorithm is being used, in contrast to all the

other algorithms in this study for which 30 runs were performed.

As with the other algorithms in [ZT99], one-point crossover was used. The mutation proba-

bility and crossover rate were fixed at 0.01 and 0.8 respectively, as for SPEA(ZT).

SPEA(ZT)

The setup of SPEA is described fully in [ZT99]. The study was designed to show that SPEA
could clearly outperform the other MOEAs tested, even with very conservative choices of
parameters. Thus the authors kept the external population quite small - 1/5 of the population
size of the other MOEASs in the study.

It is important to note that the data sets for SPEA(ZT) record the off-line performance of the
algorithm. That is, all of the internally efficient solutions returned in a run were recorded.
With the exception of SO-5 the other algorithms in this study are judged using the on-line
performance. That is, only solutions stored in the external population (or archive) at the

end of the run are recorded.

SPEA (KC)

In [ZT99], the authors chose to run the algorithms for a fixed number of generations and
increase population size with the size and number of objectives of the knapsack problem
being tackled. To make direct comparison possible, we choose to use the same number of
function evaluations as Zitzler and Thiele did, but do not deem it necessary to employ equal
population sizes. In fact, the total number of evaluations maz _evals used by each of the
algorithms in this study is the same for a given knapsack problem. Table 6.2 lists the value

of max _evals for each knapsack problem.

SPEA requires two population sizes, N and N’ to be set. Zitzler and Thiele selected to use
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N =4/5 and N’ = 1/4 of the size of population used by the other GAs in their study. Ex-
periments performed by us show that the performance of SPEA on these knapsack problems
is improved significantly when population sizes of N = 1/5 and N’ = 4/5 are used, for the
same total number of function evaluations. This use of a larger elite population significantly
increases the selection pressure, and as such this strategy may not be ideal for other appli-
cations. We find that in this application, however, where a form of indirect representation
is used to repair infeasible solutions, a high selection pressure is beneficial. This may be be-
cause good building-block discovery is not likely to occur quickly enough (given the indirect

encoding) for a low selection pressure to be preferable.

Our experiments also indicate that changing the crossover type from one-point to uniform
improves the performance of SPEA on the knapsack problems, especially with the use of high
selection pressure as discussed above. Thus, SPEA(KC) employs uniform crossover. A fixed
per-bit mutation rate p,, = 0.01 is used, as in [ZT99]. No experiments in which p,, was varied
were undertaken by us. Since no other parameters need to be set for SPEA, we believe that
SPEA(KC) is close to the best setup of SPEA possible for the problems tackled.

(141)-PAES

With (141)-PAES, very few parameters must be set. The archive size was set equal to the
external population size N’ of SPEA, so that the same number of solutions is returned by each
algorithm. Similarly, the number of evaluations is set in accordance with the total number
performed by SPEA.

The mutation rate p,, was set to 4/L (where L is the number of bits in the chromosome) for
all problems. This setting follows our principle of using the best setting for the particular

algorithm.

The number of bisections of the objective space [ used in the adaptive grid algorithm for
maintaining diversity was set according to the number of objectives of the problem. The
values [ =5, [ =4, [ = 3 were used for the 2, 3, and 4 objective multiple knapsack problems,

respectively.

M-PAES

The total number of evaluations, number of bisections of objective space, [, and per-bit
mutation rate used in M-PAES are as for (1+1)-PAES. The population size N, was set equal
to the internal population of SPEA(KC). The two archives were sized equally, to match the

external population of our setup of SPEA. Thus, the same number of solutions are returned by
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Knapsack Parameter
problem [_fails ‘ [_opt ‘ cr_trials ‘ maz_evals
2-250 20 100 25 75000
2-500 20 100 25 100000
2-750 20 100 25 125000
3-250 20 50 100 100000
3-500 5 20 125 125000
3-750 20 50 150 150000
4-250 20 50 125 125000
4-500 20 50 150 150000
4-750 5 20 150 175000

Table 6.2: Parameter settings used in the M-PAES algorithm for the various multiple objec-
tive knapsack problems. The same total number of function evaluations maz _evals, shown
for each problem, was used in M-PAES, SPEA(KC) and (1+1)-PAES.

SPEA(KC), M-PAES and (141)-PAES. The recombination operator was uniform crossover,
in line with SPEA(KC), and the mutation rate was set to 4/L, as with PAES.

In M-PAES, three more parameters must be set. These are the number of crossover trials,
the maximum number of local moves [_opt, and the maximum number of consecutive failing
local moves [_fails. Choices that give good general performance were found to be [_opt = 50,
I_fails = 20, and cr_trials = 25. However, it was found that increasing the number of
crossover trials for the 3 and 4-objective problems increased performance further. A list of
the best parameter selections found is given in Table 6.2. The results presented in Figure 6.6

and Table 6.4 are for these settings.

RD-MOGLS

The parameters chosen for RD-MOGLS are given in Table 6.3. The initial and temporary
population sizes were derived empirically from a few test runs of RD-MOGLS. The size of PE
was set equal to the equivalent nondominated archive, used in M-PAES and (1+41)-PAES.
There must also be a stopping criterion for each of the local-search phases. This detail is
omitted in [Jas98], so we choose to end each local-search phase when [_fails consecutive
moves do not improve the solution. This is similar to the method used in M-PAES. Once
again, [_fails was set empirically. As with M-PAES, the mutation rate p,, = 4/L, and the

recombination operator was uniform crossover.

To obtain solutions distributed across the whole Pareto front, RD-MOGLS selects a weight
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initial population size S: 100

temporary population size IV: 20
efficient solution set size |[PE|: 100
local-search fails [_fails: )
weight vector parameter n: 100

Table 6.3: Parameter settings for RD-MOGLS.

Algorithm
Instance || 1+1-PAES | SPEA(ZT) | SPEA(KC) |  S0-5

2-250 [87.2, 0] [61.6, 24.5] | [28.1, 21.8] | [64.3, 27.5]
2-500 [100, 0] [100, 0] 80.9, 7.2] [92.8, 3.6]
2-750 100, 0] [100, 0] 95.5, 0] [100, 0]

3-250 100, 0] (69.1, 18.7] | [53.6, 26.6] | [44.4, 51.8]
3-500 100, 0] 93.7, 0] [67.9, 20.8] | [74.5, 21.7]
3-750 100, 0] [100, 0] 84.2, 3.9] [94.2, 3.6]
4-250 [100, 0] [46.1, 31.6] | [32.9, 43.4] | [10.0, 85.9]
4-500 [100, 0] [92.5, 3.7] | [63.3,21.7] | [35.5, 56.6]
4-750 [100, 0] [100, 0] (82.9, 7.4] | [71.7, 25.4]

Table 6.4: The results of testing M-PAES against the algorithms shown, using our statistical
techniques. The knapsack problems have 2, 3 or 4 objectives and 250, 500 or 750 items, as
indicated.

vector at random at each step. We follow the same procedure used by Jaszkiewicz for doing
this, which was put forward in [BPH98], and gives a maximally dispersed set of weight
vectors. A random weight vector is generated in which each individual weight takes on one of
the following values {7*,m = 0,...,n}, where the fixed parameter n is any positive integer,
and the value of m is uniformly randomly distributed in O,...,n. The number of unique

weight vectors this results in is equal to:

k+n—1 e n+k—1)!
() e S o

Following Jaszkiewicz, we use a value of n = 100, in all experiments, giving respectively 101,
5151, and 176,851 weight vectors for the 2, 3, and 4 objective problems.
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Figure 6.6: Median surfaces calculated from 30 runs of each algorithm, on the two-objective
knapsack problems.

6.6.4 Results
Analysis: part 1

The results of the first part of the study, where M-PAES is compared with the algorithms
in [ZT99] are shown in Figure 6.6 and Table 6.4. In Figure 6.6 the median surfaces generated
by each algorithm are plotted for the two-objective problems. A number of observations
can be made from these plots. First, our setup of (141)-PAES gives very similar levels
of performance to the setup of SPEA used by Zitzler and Thiele on the three problems.
This observation is in keeping with previous research where (141)-PAES was compared with
SPEA (see Section 5.3). Second, in all cases SPEA(KC) outperforms SPEA(ZT). Third,
M-PAES is very competitive with SPEA(KC) and clearly outperforms both (1+1)-PAES and
SPEA(ZT). In the largest of the three problems, M-PAES generates a median surface that
is clearly superior to the median surface of any of the other algorithms. On the smaller
problems, M-PAES fails to generate solutions as far towards the extremes of the objective
space as either SO-5 or SPEA(KC), but has generated a median surface that dominates these

algorithms in the region where the two objectives trade off most rapidly with each other.
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Figure 6.7: Median surfaces calculated from 30 runs of the three algorithms, M-PAES, RD-
MOGLS, and (1+1)-PAES, on the 2-objective knapsack problems.
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The statistical results for all the problems are summarised in Table 6.4. Comparisons be-
tween M-PAES and each of the algorithms are presented only. Thus, the statistic [100, 0] in
the upper left entry in the table means that M-PAES gives a better distribution of surfaces
over 100% of the combined nondominated front than (141)-PAES on the 250 item, 2 knap-
sack problem. Again, several observations from these results can be made. First, the first
three rows of the table verify that M-PAES performs well on the two-objective problems,
as suggested by the plots in Figure 6.6. Its relative performance increases as the number of
items increases. This is true, not only on the 2-objective problem but on all the problems
presented. However, as the number of objectives increases, the performance of SPEA(KC)
and SO-5 increase relative to M-PAES, so that M-PAES is outperformed by SO-5 on the
two smaller four-objective knapsack problems. SPEA(KC) only outperforms M-PAES on one
problem, the smallest of the 4-objective knapsack problems, and only by a small margin,

according to our statistical analysis.

Analysis: part 2

Results collected from the second part of the study are shown in Figure 6.7 and Table 6.5.
In all three of the plots in Figure 6.7, the median surface generated by RD-MOGLS extends
beyond the surface generated by M-PAES in at least one of the objectives. However, the
M-PAES algorithm generates a median surface that dominates the surface of RD-MOGLS
over a larger portion of the tradeoff front. With increasing problem size (items), the M-PAES
algorithm’s performance improves relative to RD-MOGLS. Both M-PAES and the baseline
algorithm (141)-PAES give smoother, more convex median surfaces than RD-MOGLS. In-
deed, the plots of the nondominated fronts found by RD-MOGLS indicate that it has some
trouble approaching the true Pareto front in the middle region where the ‘compromise’ so-
lutions lie. Two explanations for this behaviour are proposed. First, RD-MOGLS is more
successful than the Pareto methods at finding extreme vectors and consequently its search
effort may not be so concentrated on the compromise region. Secondly, the RD-MOGLS algo-
rithm uses a form of restricted mating whereby only the best solutions in a particular search
direction (A-vector) are recombined to form the offspring for local improvement in the same
direction. Thus, there is less scope for recombining parts of good extremal solutions to form
good compromise solutions. In this application it seems that this form of restricted mating
is not beneficial. Indeed, it was trialled in M-PAES, and was found to degrade performance
slightly.

The statistical results for all the problems are summarised in Table 6.4. Comparison is made
between M-PAES and RD-MOGLS only. Thus, the statistic [65.4, 28.2] in the upper left entry
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Knapsacks Items
250 | 500 | 750
2 65.4, 28.2] | [49.4, 0] [ [61.5, 0]
3 [72.7,25.1] | [89.8, 0] | [100, 0]
4 [100, 0] [100, 0] | [100, O]

Table 6.5: The results of testing M-PAES against RD-MOGLS using our statistical technique,
AS2 (see Section 3.12) and with 30 independent runs of each algorithm. The knapsack
problems have 2, 3 or 4 objectives and 250, 500 or 750 items, as indicated.

in the table means that M-PAES gives a better distribution of surfaces than RD-MOGLS
over 65.4% of the tradeoff front, and vice-versa, RD-MOGLS gives a better distribution than
M-PAES on 28.2%, on the 250 item, 2 knapsack problem. Again, several observations from
these results can be made: The first row of the table verifies that M-PAES performs well on
the two-objective problems, as suggested by the plots in Figure 6.6. Its relative performance
increases as the number of items increases. This is true, not only on the 2-objective problem
but also the 3-objective problems. Clearly, as the number of objectives increases, the relative
performance of M-PAES increases compared to RD-MOGLS, with the results showing that
the distribution of solutions found from the runs of M-PAES show statistically significant
superiority to those of RD-MOGLS on 100% of the sampling lines used to probe the Pareto

fronts.

6.6.5 Summary

The efficacy of M-PAES was verified on a set of nine multiobjective 0/1 knapsack problems.
Two separate studies were conducted. In the first, the results from runs of M-PAES were
compared with the results gathered in a published study by Zitzler and Thiele. The re-
sults sets from the study were supplemented by also running our own implementation of the
strength Pareto evolutionary algorithm (SPEA), as well as (1+1)-PAES. The results indicate
that M-PAES performs better than the local-search algorithm, (14+1)-PAES (on which it is
based), on all of the problem instances. Compared with SPEA, the performance of M-PAES
is similar, for a setup of each algorithm empirically derived to give near-best performance.
Indeed, M-PAES appears to be superior on some problem instances, although comparison

between these very different algorithms is difficult.

In the second study, M-PAES was compared with another multiobjective MA, the random
directions multiple objective genetic local-search (RD-MOGLS) algorithm of Jaszkiewicz,

using (14+1)-PAES as a baseline, once more. Both algorithms work well, generating results
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that are better than (14+1)-PAES, produced. However, on the experiments carried out, M-
PAES, was found to be superior overall. The RD-MOGLS algorithm seemed capable of
generating solutions over a wider range in each of the objectives on the smaller 2-objective
problems, but as the size of the problem and the number of objectives were increased, M-

PAES exhibited superior performance according to our statistical measures.

On the negative side, the setting of parameters in the M-PAES algorithm is difficult at present.
It appears to be more sensitive to them than SPEA is. Some investigation into mechanisms
for controlling the parameters would be necessary for M-PAES to become a useful general

purpose optimizer.

Nonetheless, the findings indicate that further investigation into the use of memetic algo-
rithms in multiobjective combinatorial optimization is warranted. The M-PAES algorithm
only represents one instance of the new memetic algorithm framework put forward, and it
is anticipated that when good local-search heuristics are available for a particular problem,
algorithms based on the framework will have an advantage over standard evolutionary ap-

proaches.

6.7 Assessment of M-PAES, (141)-PAES, and SPEA on the
ADDMP

The adaptive distributed database management problem (ADDMP) was described in Sec-
tion 5.2.2, where a single instance was used as part of a test function suite. In this section,

we use a number of further ADDMP instances as the basis for an empirical study.

6.7.1 ADDMP instances

Instances of the ADDMP can occur in great variety. The numbers of clients and servers can
range typically between 2 and 20, and the number of clients between 10 and several thousand.
Access patterns can vary equally dramatically. For example, access to share price and similar
financial databases may be very frequent with constantly changing global activity, and hence
re-optimization of client/server access configurations may need to occur every few minutes.
In other scenarios, re-optimization may only need to occur every few hours involving a small

number of clients.

An ADDMP instance is defined by a number of arrays and parameters, defining server speeds,

typical latencies in the underlying communications matrix, client access rates, and other
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factors. The fitness function uses queuing theory to estimate the actual response times that
will ensue given a particular client/server connection configuration. The reader is referred
to [OC98] for a fuller description of the model; here, we need to say a little more about the

client access rates.

A single ADDMP scenario is defined by a datafile which provides the information alluded
to above, a key aspect of which is an array of access rates for each client. In the case of
a globally used service, we can expect access rates to vary in a particular pattern over the
course of 24 hours. Therefore, raw data for the ADDMP for the same database service will
change with time in the way indicated in Table 6.6. Table 6.6 indicates the possible situation
for two snapshots in time in a simple 5-node but globally distributed scenario. Access rates
are in ‘queries per second’, and each client is typically expected to represent a LAN or WAN
comprising several users of the database; hence, the rate for ‘client 1’ is actually the combined

rate from clients accessing the database via users ‘centred’ at client 1.

Clients: 1 2 3 4 5
Access rates: scenario 1.1 1.5 0.4 0.1 0.4 0.6
Access rates: scenario 1.2 0.1 0.4 0.6 1.5 0.4

Table 6.6: Access rates for two instances of the ‘same’ ADDMP, several hours apart.

Scenario 1.1 in Table 6.6 might refer to a situation in which it is about 3:00pm in the location
of client 1, very late at night or early morning in the area of client 3, and around 9:00am in
the area of client 5. Several hours later, in scenario 1.2, the access pattern changes to reflect
the same pattern, but ‘phase-shifted’ as it is now 3:00pm (say) for client 4, and perhaps
midnight for client 1.

In this study we tackle ADDMP scenarios involving 10, 20, and 40 clients, and in each case
we consider b separate problems which reflect changes in access patterns over time in the way
illustrated by Table 6.6. Thereby, we are comparing the quality of M-PAES and SPEA on
the ADDMP over a wide but representative range of potential instances. We are interested
particularly in the kind of ADDMP problem in which solutions must be calculated in a short
time-span. Hence, in increasing order of the problem sizes, the maximum allowed number of

evaluations is 500, 2000 and 5000, respectively.

We consider both 2-objective and 3-objective versions of each problem. In the 2 objective
version, the objectives are the worst delay figure and the median delay figure. In the 3-
objective version, the objectives are the 90% quartile delay figure (i.e.: 90% of clients will

have a better delay figure than this), the 80% delay figure, and the median figure.
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Finally, we need to note a point concerning the limitations of the fitness function model. It has
been found to be robust over a wide range of ‘normal’ scenarios, however it can be expected
to break down (and hence give inaccurate estimates of response times) for configurations
which highly overload certain servers. We deal with this by building in a conservative cutoff
of 1000 ms; that is, when the model estimates more than 1000ms for the worst client delay,
we return the result ‘1000’ for all the objectives rather, forcing the point to be rejected. In

this way, we avoid troubling the Pareto frontier with inaccurate phenotypes.

6.7.2 Parameter control and performance assessment

The parameter choices made for each algorithm were derived in the following way. First, it
was found that uniform crossover was more effective than 1-point crossover on the ADDMP
for both SPEA and M-PAES, from a small number of preliminary experiments, so this was
used throughout. Some experiments with the SPEA algorithm found that it generally worked
best with a crossover rate of 0.8, so this value was set for all further experiments. A mutation
rate of 1/L was chosen for all algorithms, and each uses flip mutation. That is, each gene is
changed with probability 1/L, to a uniformly randomly selected allele value in the allowed
range, other than its current one. This was found to work well with all algorithms in initial
experiments and was not further changed. The total population size was set to 100 for SPEA.
This was split between 5/95 to 20/80 internal/external population. The actual choice for each
problem was made after several preliminary runs. Similarly for M-PAES, the population was
set between 5 and 20 while the archives G and H were set between 95 and 80, depending on
problem. PAES was set up with an archive of 99 solutions. The other parameters of M-PAES
— [_fails, [_opt, and cr_trials — were set using ad hoc experimental trials. The ranges of

values used for all parameters are summarized in Fig. 6.8.

The performance assessment metrics employed are described in Section 3.12. Specifically, the
metrics AS3, S1, S2 are used.

6.7.3 Results

In the following, all results are based on thirty independent runs of each algorithm on each
problem instance. The first set of results (Fig. 6.9) was obtained using attainment surface
sampling and our n-algorithm comparison metric. These results, taken on their own, seem
to indicate that (1+1)-PAES is consistently difficult to beat, whereas SPEA and M-PAES
are closely matched but not as consistently good as PAES. Results obtained from our other

metrics, a key subset of which are presented below, are not always in agreement, however.
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parameter || M-PAES | SPEA | (141)-PAES |

De N/A 0.8 N/A
Crossover uniform | uniform N/A
Pm 1/L 1/L 1/L
mutation flip flip flip
internal
population 520 5-20 1
external
population 80-95 80-95 99
I_fails 1-20 N/A N/A
[_opt 2-100 N/A N/A
cr_trials 5 N/A N/A
[ 5/3 N/A 5/3

Figure 6.8: Parameter settings for the three algorithms. Bold face indicates a fixed value
in all experiments. The ranges of values used for the free parameters is shown. These were
investigated on an ad hoc basis to provide ‘best’ performance. The two values shown for [,
the number of bisection levels in the adaptive grid algorithm, refer to the values for the two
and three objective problems, respectively.

The results of calculating S; for three of the problems are shown in Fig. 6.10. First, notice
that the values for the three algorithms are very close and that a large number of figures are
significant. Nonetheless, the results here still provide extra information about the distribution
of solutions found by the algorithms over multiple runs. On the first two of the 3-objective
cases, two algorithms generate ezactly the same total dominated region. In all probability
this must indicate that the total set of non-dominated solutions found in each case is exactly
the same. Interestingly, the total dominated region measure favours SPEA over M-PAES,
although (141)-PAES is superior overall. Using our unbeaten and beats all statistics, M-PAES
is ranked ahead of SPEA, with (1+1)-PAES in first place. This disagreement must indicate
that SPEA tends to generate different solutions on different runs more often than M-PAES.
Still, the total dominated region preserves the position of (1+1)-PAES as the most consistent

algorithm, it winning on three of the six measurements, and being beaten only once.

In the next set of results presented (Fig. 6.11) the median attainment surface is first calculated
for each algorithm. The size of the region dominated is then measured. Once again, using
this measure alone could lead to different conclusions than if using it in conjunction with
other measures. For example, on the two-objective version of problem 10-3, the rank order
reported by this measure S,, the S; measure, and our unbeaten statistic are all different.
Clearly the algorithms perform at very similar levels on this problem, but which is best? On
the three objective version of the same problem, M-PAES and (1+1)-PAES are very similar
with regard to S, whereas M-PAES is a poor third when considering the whole distribution

226



6.7 Assessment of M-PAES, (141)-PAES, and SPEA on the ADDMP

of attainment surfaces, using the Mann-Whitney U test.

Finally, the coverage differences, S4\p and Sp\ 4 were calculated for pairs of the algorithms,
for each of the thirty runs. The median values of these differences are presented in Fig. 6.12.
These results exhibit a high degree of agreement with the equivalent results in Fig. 6.9.
According to the former, the attainment surface generated by (14+1)-PAES completely dom-
inates the attainment surface found by the other two algorithms on at least 50% of the runs,

on the three-objective versions of the two problems.

6.7.4 Concluding remarks

In this study we have compared the performance of three multiobjective algorithms with
respect to a suite of real-world problems related to the management of distributed databases.
Several test metrics were employed to measure and compare algorithm performance over
collections of solution sets found from several (30) runs. Three extensions to a metric based
on the size of the dominated space were used for the first time. The results show that with such
closely-matched algorithms, it is a very difficult matter to select the one that performs best.
In fact, from the results presented, (1+1)-PAES seems to be the best performer all-round.
However, results given by the different metrics indicated that the rank order of algorithms
was certainly not independent of the test metric, on all problems. This shows the benefits
of using a number of different metrics, when comparing algorithms: where a rank order is
inconsistent across different metrics, the extra information provided can help to understand

in what way one algorithm’s approximations may differ from another’s.

The performance of M-PAES on this problem is not as good as the much simpler (14-1)-PAES
algorithm. FEven with considerable tuning of the parameters it was not able to generate
better results than PAES, in the same number of function evaluations. Similarly, SPEA
did not outperform PAES, in general, although more detailed analysis of the full results
reveals that SPEA was most consistent at providing an even distribution of solutions along
the front, whereas (14+1)-PAES more often found very strong compromise solutions. These
findings suggest that the ADDMP, with the current encoding, is not optimized effectively
using recombination, in agreement with the findings of Oates [Oat00]. Overall, the dominance
of the (14-1)-PAES algorithm, underlines the importance of baselining results against simpler
algorithms. On the ADDMP, it appears that the (1+1)-PAES algorithm, which needs no
parameter tuning, performs adequately compared to other more complicated algorithms,
including M-PAES.
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ADDMP || statistic 2-objective 3-objective
instance M-PAES SPEA 1+1-PAES M-PAES SPEA 1+1-PAES
10-1 || unbeaten 93.8 83.1 99.2 98.0 81.3 100

beats all 0.8 0 5.0 0 0 2.0
10-2 || unbeaten 100 99.8 94.9 68.5 98.2 100
beats all 0 0 0 0 0 1.8
10-3 || unbeaten 100 98.7 95.2 77.3 78.4 100
beats all 0 0 0 0 0 8.3
10-4 || unbeaten 100 98.9 100 64.3 51.8 100
beats all 0 0 0 0 0 34.1
10-5 || unbeaten 99.8 49.7 100 35.3 54.9 100
beats all 0 0 0.2 0 0 16.3
20-1 || unbeaten 100 48.7 100 95.8 24.1 100
beats all 0 0 0 0 0 3.0
20-2 || unbeaten 65.0 67.2 100 63.7 63.7 99.8
beats all 0 0 32.8 0 0 36.3
20-3 || unbeaten 100 0 100 98.9 67.0 100
beats all 0 0 0 0 0 1.1
20-4 || unbeaten 52.1 0.5 100 95.2 41.0 100
beats all 0 0 47.9 0 0 4.8
20-5 || unbeaten 49.9 50.0 100 23.8 24.7 100
beats all 0 0 50.0 0 0 74.1
40-1 || unbeaten 92.0 15.6 99.9 77.4 31.0 70.8
beats all 0.1 0 8.0 9.9 0 22.6
40-2 || unbeaten 69.3 7.9 93.4 76.4 26.2 87.6
beats all 4.6 0 30.7 0.5 0 23.6
40-3 || unbeaten 68.7 10.3 93.8 71.7 15.0 77.4
beats all 4.2 0 31.3 10.9 0 28.3
40-4 || unbeaten 100 11.2 99.5 78.2 0.1 93.1
beats all 0 0 0 6.9 0 21.8
40-5 || unbeaten 68.2 12.9 94.7 69.1 57.7 73.0
beats all 4.9 0 31.8 0 0 30.9

Figure 6.9: The AS3 metric results. They show the unbeaten and beats all statistics for the
combined space inhabited by the solutions found. Two forms of the problem were investi-
gated: The 2-objective case, where the median response time and the worst response time
are minimized. And the 3-objective case, where the median response time, the response time
bettered by 80% of requests, and the response time bettered by 90% of requests are mini-
mized. The different problems are labelled by the number of nodes and the number of the
scenario. E.g. The third scenario of the twenty node problem is labelled 20-3.

ADDMP 2-objective 3-objective
instance || M-PAES SPEA 1+1-PAES M-PAES SPEA 1+1-PAES
10-3 0.33803  0.33776 0.33810 0.2703528  0.2703444  0.2703528
20-3 0.33580  0.34616 0.34070 0.1322440  0.1322490  0.1322490
40-3 0.27758  0.30131 0.30210 0.0498326  0.0498368  0.0498400

Figure 6.10: The values of the total dominated region, S;, for three problem instances.
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ADDMP 2-objective 3-objective

instance || M-PAES  SPEA  1+1-PAES M-PAES SPEA 1+1-PAES
10-3 0.1551 0.1590 0.1482 0.09570 0.0867 0.0960
40-1 || 0.342969  0.345659  0.345649 0.024767  0.026677  0.024202

Figure 6.11: The values of the Median Attainment Region, S,,, for two problem instances.

A= B= A= B= A= B=
ADDMP obj- M-PAES 1+41-PAES || SPEA 1+1-PAES || SPEA M-PAES
instance || -ectives SaB Sp\a Sa\B Sp\a SaB Sp\a
scl10-1 2 0.0327 0.0124 0.0384 0.0134 0.0353  0.0216
scl10-1 3 0.0678 0.0 0.0161 0.0 0.0002  0.0266
sc20-4 2 0.0187 0.0161 0.0286 0.0153 0.0248  0.0118
sc20-4 3 0.0026 0.0 0.0239 0.0 0.0084  0.0009

Figure 6.12: The median values of the coverage differences of alternate pairs of algorithms
on two problem instances.

6.8 Summary

In this chapter we have presented a new memetic algorithm framework for multiobjective
MAs. The framework specifies the use of Pareto selection in both local-search and reproduc-
tion phases of the MA. The potential advantages and disadvantages of this type of approach,
compared to using scalarizing selection were discussed, and we noted that while the com-
putational overhead per evaluation of a Pareto MA may be higher, it may be more a more

efficient searcher, in terms of progress per evaluation.

Using procedures developed in Chapter 4, we used the MA framework to design an MA called
M-PAES. This algorithm combines an elitist MOEA with a local improvement procedure
based on (1+1)-PAES. The objective vectors discovered during a run of M-PAES are stored
in a global archive which is updated using the adaptive grid archiving strategy developed for
(14+1)-PAES.

We have only begun to test the performance of M-PAES and it is clear that we need to
do a much more thorough investigation of how the setting of parameters might affect this.
Nonetheless, the performance of M-PAES on the knapsack problems indicates that this ap-
proach may offer potential performance advantages over other methods, even where tailored
heuristics are not utilized. In the next chapter we use M-PAES to tackle a problem where

the use of specialized operators may offer a more significant advantage to MAs.
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Chapter 7

Multi-criterion MST (mc-MST)

Problems

7.1 Introduction

7.1.1 Motivation

In the previous chapters a number of multiobjective optimization algorithms have been pro-
posed and tested. These are general-purpose methods, which it is hoped will achieve reason-
able search performance across a broad range of problems. However, in order for even better
performance to be obtained in any real application, it would be necessary to tailor these
algorithms specifically to the problem at hand. This tailoring may take different forms, for
example, specialist initialization procedures that ‘seed’ the population with good solutions;
tailored encodings of the solution space that aid search and discourage constraint violation;
and specialist operators that facilitate both exploration and exploitation, can all be used.

Indeed, even a whole heuristic technique may be embedded into these algorithms.

In this chapter, we use the evolutionary and memetic algorithms developed earlier in the
thesis to tackle a combinatorial problem which, in one form or another, has been of major
significance to the fields of operational research and combinatorial optimization: the minimum
spanning tree (MST) problem. In order to improve the performance of our algorithms on this
problem, we develop and use specialist operators, encodings, constraint-handling techniques,
and initialization procedures. After some testing and comparison of our methods, we finally
present a number of benchmark results for a diverse suite of instances of the multi-criterion

MST problem. To provide some context for these results, we begin, in this introduction,
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with a short review of the MST problem. We review the various EA and other approaches to
N P-hard versions of the problem, and focusing particularly on the degree-constrained and

multi-criterion MST problems, that we tackle in later sections.

7.1.2 The minimum spanning tree problem

The minimum spanning tree (MST) problem requires us to find a minimum cost set of edges
to connect up a set of vertices within a weighted graph. The problem is the simplest and
one of the most central models in the field of combinatorial optimization, and it has inspired
the development of many other problem domains in discrete optimization. Its applications
are varied, and are both practical and theoretical [Nes97]. Most importantly, the MST
problem arises in many systems, such as highways, computer networks, telephone lines, and
television cables, where we need to design a simplest network (spanning tree) that will connect
— at minimal total cost — geographically dispersed system components so that they can

communicate with each other [Pri57].

A lesser known application of the MST is clustering: if an MST is found between a set of
vectors (points) representing data in some metric space, and the m longest edges are then
removed, the data will be grouped into m clusters. This technique has it uses in many
fields of study wherever classification, taxonomy, and visualization of data, are important.
For example, Jones et al. used the minimal spanning tree to statistically analyze fungal
spore spatial patterns [JLM96], while Barrow et al. have used the problem in the analysis of
astronomical data [BBS85].

Other practical applications of MST problems include minimizing message-passing in dis-
tributed systems and making bitmaps for compressing large files, according to [ADGO0].
Theoretically, the MST is important because it may be used to approximate solutions to
other combinatorial problems such as the travelling salesman problem (TSP) [Kru56] and
steiner tree. Furthermore, the MST problem is partly responsible for the development of the
greedy algorithm and complexity measures [Nes97], and it has led to the development of new

data structures and many algorithms [GGST86].

Fortunately, for such an important problem, the MST, without additional constraints, is
solvable in polynomial time. The most popular MST algorithms are those of Prim [Pri57]
and Kruskal [Kru56], but recently, it has been discovered that in the pre-computer age these
and other procedures had already been invented [Nes97]. In particular, Jarnik [Jar30] had
already formulated Prim’s algorithm by 1930, while Boruvka [Bor26] had devised an efficient
approach by 1926. Reappraisal of the latter has led to a resurgence of interest in the methods
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for solving the MST, with Boruvka’s algorithm becoming the basis of several near-linear time
algorithms [KKT95, Kin95].

7.1.3 NP-hard MST problems

Although the basic MST problem is in P, the addition of one or more constraints often
transforms it into an N P-complete problem. In fact, thirteen different N P-complete problems
based on spanning trees are listed in Garey and Johnson [GJ79], of which six relate to
bounding (optimizing) the tree weight. Naturally, the existence of so many closely-related
problems of importance to network design has led to the proposal of many heuristic and

metaheuristic approaches.

Up to 1999, finding network trees had been the subject of 23 papers, according to Sinclair’s
review of the use of evolutionary algorithms for telecommunications problems [Sin99]. In
particular, Gen and colleagues have used GAs to tackle a variety of network design-related
problems based on N P-hard minimum spanning trees, including the quadratic MST, the
degree-constrained MST, the leaf-constrained MST, and the multi-criterion MST [Gen00].
Gen has also used a GA approach for ‘solving’ the multi-objective fixed charge transporta-
tion problem and a local area network (LAN) design problem, based on finding constrained
MSTs [Gen00]. In addition, Elbaum and Sidi also used spanning trees in a LAN design
problem involving the simultaneous optimization of criteria relating to traffic locality and
balancing, average and maximum delay and network cost [ES96]. And Palmer and Kershen-
baum [PK97] considered the importance of encodings to GA approaches for optimizing trees,
and proposed the node and leaf-biased encoding which was later reviewed by Gaube and
Rothlauf [GR0O1]. More recently, Li and Bouchebaba [LB99] and Li [Li00] have proposed

genetic algorithm encodings for the optimal communication spanning tree problem [GJ79].

7.1.4 Approaches to the d-MST problem

In the following, we review some of the many different approaches that have been taken to
the degree-constrained MST (d-MST) problem, one of the most practically important of the
N P-hard MST problems. This review will provide a basis for designing operators, encodings

and heuristics for tackling the less well-researched multi-criterion MST problem.

In a network or graph, the degree of a vertex is the number of edges that are incident to it. In
many real-world network applications, the vertices are subject to a degree-constraint, limiting

the number of edges that can be connected to one vertex. For example, in a communications
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network, many exchanges or switches can only be physically connected to a limited number of
linking wires. Also, when designing a network for maximum reliability, introducing a degree-
constraint limits the damage that may be caused by a single exchange failure. Unlike the
MST, the d-MST of a graph cannot, in general, be found using a polynomial time algorithm.
In fact, for a given rational number R > 1, finding a spanning tree of maximum degree at most
d, and of total weight at most R times that of the optimal solution, is N P-hard [RMR*93].

Several different heuristic approaches for solving the d-MST problem have been taken in
the literature. Narula and Ho [NH80] investigated three methods, one of which (a branch
and bound algorithm) is guaranteed to converge to a globally optimal solution. In their
methods, good upper bounds are generated by a modification to Prim’s algorithm [WW90];
the resulting algorithm, we will refer to as d-Prim’s. Savelsbergh and Volgenant [SV85] also
employed a branch and bound technique with improved heuristics leading to considerably
faster run-times than those achieved by Narula and Ho. Random, non-Euclidean graphs
were found to be far less tractable than Euclidean graphs, however, with the CPU time
needed to solve standard instances rising from a mean of 0.2 seconds (SD = 0.7s) for n = 30
to a mean of 74.2 seconds for n = 70 (SD = 369.5s), where n is the number of vertices in the
graphs. Khuller et al [KRY96] show that for an arbitrary collection of points in the plane
there exists a degree-3 spanning tree of at most 1.5 times the MST and a degree-4 spanning
tree of at most 1.25 times the MST. They also give algorithms that compute these trees in
O(n) time, given an MST as part of the input. They also extend these results to Euclidean
points in n-dimensional space. Fekete et al [FKKT97] report a network flow technique which
improves upon these results, working again in linear time. They do not consider the more
difficult non-Euclidean case, however. Recent research by Boldon et al [BDK95] describes a
‘dual simplex’ approach, based on Prim’s algorithm, which produces good results on random,
non-Fuclidean graphs where the underlying MST has degree up to twenty and the degree-

constraint is set to four.

Algorithms for the d-MST are often designed with Euclidean graphs in mind, and/or tested
only on Euclidean graphs. However, although the cost function defined on links can sometimes
be closely related to Euclidean distance, this relationship is often confounded in practice. For
example, where link costs are defined to be communications costs between nodes, physical
distance can be a very minor factor in comparison to others such as the type, quality, main-
tainability, speed, and corporate provider of the link in question. In general, therefore, it is
valuable to test and compare algorithms for the d-MST on non-Euclidean graphs. In such
cases, the algorithms of Khuller et al and Fekete et al are not applicable, while Savelsbergh

and Volgenant’s are cumbersome.
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A comparison of methods

In 1999, an empirical comparison of algorithms for the d-MST was carried out by Krish-
namoorthy et al. [KES99]. In it they discuss the advantages of different encoding techniques
for trees, including simple, direct representations of the edges (arcs in Krishnamoorthy et
al.’s terminology); predecessor trees [Li00]; Priifer numbering [ZG99, Priil8]; and a combined
Priifer/permutation-based encoding that they introduce for the first time. The performance
of a range of heuristics including genetic algorithms, simulated annealing, and a hybrid con-
structive technique, as well as exact algorithms based on branch and bound, and Lagrangian

relaxation, are compared.

Four types of problem are described and used in the paper. The first are 2-d Euclidean
problems, some instances with points scattered uniformly randomly in a square, and others
taken from TSPlib. Second, there are Euclidean problems in a higher dimension, d > 2, also
with a uniformly random distribution of vertices, obtained from Volgenant. Third, there are
‘structured’” (STR) problems where the nodes are in tight, well-separated clusters in a high
dimensional Euclidean space. Fourth, are structured problems that are particularly hard
(and contrived) using non-Euclidean distances. These SHRD problems are constructed by
assigning lengths of [ to all edges incident to the first node, 2/ for the second node (bar the
one connecting it to node 1) and so on. Afterwards, all of these weights are perturbed by

adding a uniform random deviate in [0.05/,0.9/] to all the edge weights.

From a large number of experiments, the authors present the average solution quality and
computation time on instances of differing size, constraint setting, and Euclidean dimension
(where applicable), on all of the problem types. They find the exact methods — Lagrangian
relaxation and branch and bound — to be most effective (both in terms of final solution
quality, and CPU time) for the simpler unstructured problems in Euclidean spaces. However,
for the structured problems the GA using a Priifer coding is best, and for the more contrived
structured hard problems (SHRD) both their simulated annealing algorithm, and more par-
ticularly their randomized constructive approach, PSS (similar to Raidl and Jusltrom’s weight

coding), are best.

The randomized primal method

In [KCO00a], the primal method of Narula and Ho [NH80], d-Prim, which constructs a low-
weight degree-constrained spanning tree, was adapted into a decoder encoding for use in
general-purpose optimization algorithms. This method, called RPM (Randomized Primal

Method) was employed in three different search algorithms: multi-start hillclimbing, sim-
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ulated annealing and a genetic algorithm. The quality of solutions found by these search
techniques were compared with each other, and also with those achieved by the dual simplex
algorithm of Boldon et al [BDK95] and the upper bound generated by Narula and Ho’s d-
Prim’s method. These comparisons were made on a variety of randomly generated d-MST
problems of from 50 to 250 nodes. Some of the random graphs used for testing were cre-
ated to be particularly difficult and misleading in order to emphasize differences in algorithm

performance.

Results showed that a genetic algorithm was able to take advantage of RPM most effectively
in terms of solution cost returned. It was found that the genetic algorithm employing RPM
consistently finds better solutions than both BF2 (the dual simplex approach of Boldon et
al) [BDK95] and d-Prim’s (the upper bound technique of Narula and Ho) [NH80], and the

advantage is most pronounced on the more challenging graphs.

The genetic algorithm with RPM was also compared with the Prifer number encoded GA
proposed by Zhou and Gen [ZG97]. It is able to find the optimal solution to a small 9-node
problem, used by Zhou and Gen, in far fewer evaluations and far more reliably than the GA

using a Priifer number encoding.

Weighted coding GA

Shortly after the paper of Knowles and Corne, Raidl and Julstrom [RJ00] proposed an ap-
proach to the d-MST using a weighted coding. Like the approach of Knowles and Corne, the
weighted coding uses d-Prim’s algorithm to build potential solutions to the problem. How-
ever, in a similar manner to Boldon’s dual simplex approach, this is achieved by temporarily
biasing the graph’s edge costs. The biases applied are encoded for by the chromosomes in
the population. This decoding algorithm enforces the degree constraint, so that all chromo-
somes represent valid solutions and there is no need to discard, repair, or penalize invalid
chromosomes. On the set of graphs put forward in [KC00a], whose unconstrained minimum
spanning trees are of high degree, a genetic algorithm using the weighted coding identified
degree-constrained minimum spanning trees that were shorter than those found by either

d-Prim’s, the dual-simplex approach of Boldon et al., or the RPM GA of Knowles and Corne.

An efficient EA using a direct encoding

In a further paper by Raidl [Rai00], a direct representation and specialized initialization,

mutation, and crossover operators were presented. The initialization is based on a perturba-

235



7.1 Introduction

tion of Kruskal’s classic algorithm, and works in O(|V'|log |V'|) time. The other operators are
designed to operate efficiently, in just O(|V]) time, giving an algorithm that can be run effec-
tively even on very large graphs. The direct representation and operators are also designed
to exhibit very good locality while also never generating infeasible or constraint-violating
spanning trees. Using efficient data structures, all of these operations can be performed in
O(|V]) time.

Raidl tests his evolutionary algorithm on two sets of test problems ranging in size from 15
vertices to 500. The first set of problems is taken from Krishnamoorthy et al. [KES99],
described above. Comparison is made between Raidl and Julstrom’s weight-coded EA, the
new direct-coded EA, and the algorithms tested by Krishnamoorthy et al.. The results show
that on the smaller problems, up to 25 nodes, the direct-coded EA is best (of all algorithms)
in terms of solution quality, while the weight-coded EA is best (of all algorithms) on the
largest 30 node problem. It is also clear from the run-times reported that the direct-coded

EA has linear time operators, whereas the weight-coded EA has not.

The second set of problems are from Knowles [KC00a], with some additional equivalently
structured problems of larger size (up to 500 vertices). The direct-coded and weight-coded
EA are compared once more, but this time results are reported against Knowles and Corne’s
EA with RPM encoding, and the dual simplex approach of Boldon et al. [BDK95]. In all
problems the direct-coded EA of Raidl finds the best solutions. Once again, its linear time

complexity is also demonstrated.

Variable neighbourhood search

Finally, a variable neighbourhood search (VNS) algorithm for the d-MST was recently pro-
posed by Ribeiro and Souza [RS01]. Beginning with a random feasible tree, the VNS algo-
rithm tries to improve it at each of increasing orders of neighbourhood moves. It does this by
producing a low-order neighbour of the current solution, applying a local descent procedure
to it, and checking if this is better than the original tree. If it is, then the process is repeated
at the same neighbourhood order. However, if the locally improved mutant of the current
solution is worse, then the current solution is retained and a neighbour at the next order up
is generated and locally improved. The algorithm stops when this whole process has been
repeated seqs times where seqs is a parameter. The local improvement procedure is itself
a variable neighbourhood method too. It uses a local search procedure which begins with
single edge exchanges and then goes on to use both two- and three- edge exchanges when
exchanges at the previous level fail to produce an improvement. Both the two- and three-

edge exchange operations, work by first making exchanges that violate a degree-constraint
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and then restoring feasibility with the final exchange.

The reported results of the VNS are very impressive for the STR and SHRD problems of
Krishnamoorthy and on the simpler problems of Zhou and Gen [ZG97], far outperforming
the range of methods used by Krishnamoorthy (in computation time and solution quality

found), and the genetic algorithm of Zhou and Gen.

7.1.5 The mc-MST problem

In the multi-criterion MST (mc-MST) problem, a vector of weights is defined for each edge,
and the problem is to find all Pareto optimal (or efficient) spanning trees (see Figure 7.1).
This is N P-hard [Ehr00] even in its unconstrained form. The mc-MST is commonly found
in network-design oriented applications. For example, one set of weights may be associated

with financial cost, while another may be associated with link reliability.

Recently, there has been much interest in the mc-MST in the operations research literature,
e.g. [Ehr00, HR94, RASG98]|. But, there has, to our knowledge, been only one EA previ-
ously proposed for the mc-MST: a Priifer-encoded multiobjective GA proposed by Zhou and
Gen [ZG99], which uses Srinivas and Deb’s Non-Dominated Sorting method [SD95] and a
Priifer based encoding. They apply their method to randomly generated bi-objective mc-
MSTs ranging from 10 nodes to 50 nodes in size. An important element of their paper is a
comparison between their EA and the results from an enumerative method (which is meant
to find all true Pareto optimal solutions) which they propose in the same paper. Although the
enumerative method is of course infeasible for large problems, comparisons of their EA with
the enumerative method were meant to give an idea of how much of the true Pareto front the
EA finds on small problems. However, in trying to replicate their enumerative method we
found that it is flawed, since it neither generates all Pareto optimal points, nor guarantees
that those points that it does generate are Pareto optimal. A proof of this result is given in
Appendix D and published in [KCO1b].

Furthermore, the problems Zhou and Gen used to test their genetic algorithm were very simple
and could be much better solved using good exact methods [RASG98] (smaller problems), or
heuristic approximation methods [EK97, HR94] (larger problems). In fact, we show in this
chapter that a method which simply scalarizes the weights on each edge and applies Prim’s
algorithm to the resulting single-objective MST can obtain a better nondominated front than
Zhou and Gen’s GA, on some mc-MST instances, when the former is iterated for different

scalarizing weight vectors.

Nonetheless, some instances of the mc-MST may not be easily or efficiently solved by such
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exact or heuristic methods. One example is when the number of objectives is greater than
two. It is then relatively straightforward for a multiobjective EA to be applied, whereas
some exact methods [RASG98] and heuristics have only been developed for the bi-objective
case. Furthermore, when other constraints need to be incorporated then this may be achieved
relatively easily in an evolutionary algorithm, using methods developed for other problems,
whereas this can be troublesome in some of the pure heuristic approaches. Unfortunately,
these more difficult mc-MST problems are not generally available and have not yet been

considered in other algorithm studies.

In order to aid in the further development of good evolutionary algorithms and other meta-
heuristics for a diverse variety of mc-MST instances, it would be useful to have a collection
of parameterized problem generators to provide benchmark problems that could be used in
comparative studies. In this chapter we present such a collection of simple problem gen-
erators. These can provide problems with different features, controlled by the generator’s
parameters. In particular, we can generate graphs with correlated and anti-correlated weight
components (which critically affect the shape of the Pareto front, and therefore the applica-
bility of different methods), problems with large regions that have no solutions on the convex
hull of the Pareto front, and problems which are especially difficult to solve when a degree
constraint is additionally imposed. All of the generators can generate problems of different
sizes, with a differing degree of sparsity, and with any number of objectives (except for the

concave graph generator).

These problem generators may also be used for testing the general strengths and weaknesses
of multiobjective EAs, as part of a wider test problem suite. Much progress has been made re-
cently in improving the variety, difficulty, and actual use of, test problem suites by researchers
in the evolutionary multiobjective optimization (EMO) community. However, there is still a
shortage of parameterized combinatorial problems, constrained problems, and problems with
large numbers of objectives. The generators proposed here can provide problems with all

these features, either in isolation or together in one instance.

7.1.6 Organization of this chapter

In the next section we formally define the mc-MST and mcd-MST problem. We then de-
scribe a simple iterative constructive approach which can find one or more supported efficient
solutions to the problem in polynomial time. This algorithm is later used as a baseline for
measuring the efficacy of the EA approaches. In Section 7.4, three alternative representa-
tions (and associated operators) are described, including the Priifer encoding favoured by

Zhou and Gen, and two of our own based on encodings for the d-MST, described above.
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(5,5,1) Total cost = (14,9,11)

(7,5,6) 7
27 (33,7

Figure 7.1: The mc-MST problem. Each edge in the graph has a vector of costs associated
with it, for example: construction, maintenance, and delay, in a telecommunications network
design scenario. The problem is to find all spanning trees in the graph that “minimize” the
vector of summed costs. This is a Pareto optimization problem. It is N P-hard even without
constraints because there may be exponentially many efficient spanning trees. An efficient
tree is shown (solid lines) together with its associated cost vector.

Section 7.5 describes a set of problem generators for producing benchmark instances of the

mc-MST problem of various types, with and without constraints.

Our experiments are in two parts, described in Section 7.7. Initially, we test the Priifer encod-
ing of Zhou and Gen on a set of simple random weight mc-MST instances without a degree
constraint. This places our second set of experiments in context. In the second part, we use
our two proposed representations (and associated operators) to tackle 15 benchmark problem
instances with degree constraints. The performance of PAES, an EA called AESSEA, and
M-PAES are compared. The results of both sets of experiments are described in Section 7.8

and the chapter is concluded in Section 7.9.

7.2 The mc-MST problem

A spanning tree of an undirected, connected graph, G = (V, E), is a subgraph T' = (V, Er),
with Er C FE, such that T contains all vertices in V' and connects them with exactly |V| —1
edges, so that there are no cycles. If G is complete, then the set S of spanning trees T' of G
has |S| = |V|IV1=2 members. If each edge (i,5) € E has K > 1 associated non-negative real
numbers, representing K attributes defined on it and denoted with w; ; = (wil, i w%, o ,wi{(j),

then the mc-MST problem may be defined as:
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“minimize” W = (WL W?2,... WK)
with Wk = > wh, kel.K (7.1)
(ivj)eET

where the term ‘minimize’ is in quotation marks to indicate that it may not be possible to
find a single solution that is minimal on all the components of W. Instead, one is required

to find a set of spanning trees S* C S, called the Pareto optimal set, with the property that:

VT* € S*, AT € S,T < T* (7.2)

where T < T* <= Vk € 1.K,Wk < WF A3k € 1.K, Wk < W**. The expression T < T* is
read as T dominates T, and solutions in the Pareto optimal set are also known as efficient

or admissible solutions.

If there is, in addition, a constraint d on the maximum vertex degree in the spanning tree,
then the problem is called the multi-criterion degree-constrained minimum spanning tree
(mecd-MST) problem.

7.3 Finding the supported efficient solutions

We now describe an efficient way of finding at least a subset of the true Pareto optimal
solutions to an instance of the mc-MST. First we recall Prim’s classic algorithm for the
single objective MST, and then we indicate how this can be embedded in a slightly more

sophisticated procedure for the multiobjective case.

Prim’s algorithm uses two sets of vertices, C' (connected) and U (unconnected). Initially, C
contains a single, arbitrarily chosen vertex, while U contains all of the remaining vertices.
The algorithm proceeds by moving vertices from U to C one at a time until U is empty. Each
such move is associated with the addition of a specific edge to the growing tree. When U is
empty, the tree is complete. The edge chosen at each step is one of minimal weight among
those for which the following is true: it connects vertex v € U to ¢ € C, and its addition will
not introduce a cycle. Clearly, having decided to add edge (u,c), vertex u is the one moved
from U to C.

This procedure quickly and efficiently solves the single objective MST. A simple modification,
in which we add an extra obvious feasibility test when moving a vertex between the two sets,

enables it to build solutions to the d-MST, but in that case it is an approximate heuristic
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‘(6,0,4)

WS

Figure 7.2: A set of evenly distributed A vectors can be generated by using every normalized
scalarizing vector, A, with components equal to [/s,l = 0..s where s is a parameter controlling
the number of different vectors that will be generated. This gives stX~1Cg ;| different
scalarizing vectors.

rather than an exact method [NHS80].

In preparation for the multiobjective version of Prim’s, we first observe that a true Pareto
optimal solutions to the mc-MST problem can be found by simply using Prim’s algorithm
(or any algorithm for the single-objective MST), by substituting the weight vector at each
vertex with a weighted sum. This may be achieved since, for any scalarizing vector A =
(AL A2, M) with ST M =1, and A, > 0, k = 1..K, the following holds:

K
D Awi =) MY why). (7.3)
k=1

A tree which optimizes the term on the left will be a solution to the MST for the single-
objective problem defined by the scalarization, and hence easily found by Prim’s algorithm.
But the rewrite of this term on the right reveals that this tree must also be on the true Pareto
front of the corresponding mc-MST. If not, a tree exists which must improve one or more
of the inner summed weight terms, contradicting the assumption that this sum was already

minimal.
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w2 §

L] ® Pareto optimal solution
) non-supported PO solution
A W=3 ° /
° solution that minimizes A.W
AW =2 . /
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Figure 7.3: Supported and non-supported solutions. The supported Pareto optimal solutions
are minima of A.W with a particular A. The non-supported Pareto optimal solutions are not
minima of A.W for any A.

So, we can find an optimal solution to the mc-MST by replacing the vector weights defined on
each edge in G by a scalar weight b formed by taking the inner product of A and w, b = A.w,

and then finding a spanning tree that minimizes the sum of the scalarized edge weights.

The algorithm, mc-Prim, shown in Figure 7.4 iteratively changes the scalarizing vector A and
uses Prim’s algorithm to find a set of optimal solutions to an mc-MST. At each iteration
of the main loop, a new scalarizing vector A is generated by the function nextvector(A),
which successively generates every normalized scalarizing vector, A, with components equal
to l/s,l = 0..s where s is a parameter controlling the number of different vectors that will be
generated. This gives *Cg different scalarizing vectors (see Figure 7.2). For each different A
vector, Prim’s algorithm is applied. This begins with the selection of a random vertex from
V' using the function rand(V'), and at each subsequent step a minimum weight edge, that

connects a vertex in the connected list to one in the unconnected list, is added to Ep.

For a large number of different scalarizing vectors (in our experiments we set s = 1000, giving
1001 different A vectors), mc-Prim may generate an approximation to S*, the set of Pareto
optimal spanning trees, that is satisfactory in many cases. However, in general mc-Prim
cannot usually discover the complete set S* because it can only find solutions on the convex
hull of the true Pareto front — the so-called supported efficient solutions (see Figure 7.3).

Such trees are Pareto optimal, but not minima of any single-objective scalarization.
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Algorithm: mec-Prim

Data:

U is the unconnected set of vertices

C' is the connected set of vertices

Er is the edge-set of the spanning tree T

S is the set of nondominated spanning trees

S0
10
while (i < *Cg) /* Main Loop */
A + nextvector()
ET — @
U+V
C+0
v + rand(V) /* Begin Prim’s Algorithm */
C + CU{v}
U<« U\{v}
while (|¢| < |V])
select an edge (u,v) with u € C,v € U so that
VieC,j eU Y Ak, < S0 Ak,
Er < Er U {(u,v)}
C + CU{v}
U<« U\{v}
S+« SUT « (V, Er)
11+ 1
return (.5) /* Termination */

Figure 7.4: mc-Prim.
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7.4 Representations and operators

We make use of three distinct representation for use in the evolutionary and memetic algo-
rithms, each with associated operators specific to it. These are described below. The first,
RPM, is a decoder representation, initially proposed by us for tackling the d-MST problem,
and adapted here for the mc-MST. The second is the Priifer encoding favoured by some
researchers for tackling spanning tree problems. The third employs a direct encoding of the

tree edges. This method employs the RPM for initialization.

7.4.1 The randomized primal method

The randomized primal method (RPM) was first proposed by Knowles and Corne [KC00a] for
tackling the d-MST problem. It has the advantages that it only generates feasible spanning
trees which do not violate the required degree constraint, and it uses edge weight information
to strongly bias the choice of edges towards lighter ones. It can also be used with standard
crossover and mutation operators, making it relatively simple to implement. On the negative
side, Raidl and Julstrom [RJ00] and Raidl [Rai00] have obtained better performance with
a weighted coding and with a direct representation and associated (specialized) operators,
respectively. Nonetheless, RPM is worth investigating alongside the methods of Raidl, on

the mc-MST problem, as it has exhibited good performance previously.

RPM employs a tabular chromosome of length n and depth d — 1, where n is the number
of vertices in the presented graph and d is the required degree constraint. It decodes the
chromosome to iteratively construct a degree-constrained spanning tree 7" with vertex set V'
and edgeset E7, initially empty. Initially all vertices are in a set U (unconnected) and the

set of connected vertices C' is empty. The decoder proceeds as follows:

First step : Move an arbitrary vertex' from U to C.

General step : Add an edge e to E7 which joins a vertex v in C' whose current degree d,, < d,
to a vertex w in U. Move w from U to C and increment the current degrees, d, and

dy of v and w.

The particular edge chosen in the General step above is dependent upon the edge weights in
the underlying graph and the values stored in the tabular chromosome. The general step is

implemented in the following way:

!For example, use vertex 1.
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Tabular chromosome Low-weight edge set, L

vertex, vV |
1234567
a=11,213223
dv=212,2,11211
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Figure 7.5: A schematic of the randomized primal method. The 7-vertex tree under con-
struction has a degree constraint of d = 3. The tabular chromosome thus has length 7 and
depth 2. The sorted lists, [, for each connected vertex form a table, shown on the right. The
entries are the vertices w which the respective connected vertex v could feasibly be connected
to, listed in weight order, lightest at the top. The circled entries are the ones encoded for by
the tabular chromosome. These circled entries form the low-weight edge set L, from which
the lightest edge is chosen to join the tree. In this case, the edge 7-5 is the shortest of the
circled entries, assuming weights are Euclidean distance.

1. For each vertex v in C whose current degree d, is less than d, construct a sorted list [,
containing each of the vertex’s incident edges which join it to vertices in U, in descending

order of weight.

2. For each list [, look up the allele value a(, 4,y stored in the tabular chromosome in
position (v,d,). Place the kth lightest edge from list [, into a low-weight edge set L,

where k = min(a(, q,), [lv])-

3. Select the lowest weighted edge in L.

RPM builds the same tree as the d-Prim algorithm if every gene in the chromosome has allele
value 1. Larger allele values in the chromosome will lead to heavier edges being included
in the constructed tree. In our work on the d-MST problem [KCO00a], chromosomes were
initialized using a negative exponential distribution giving a strong bias towards lower allele
values. The mutation operator was applied to each gene with probability 1%, and sets it
to an allele value drawn randomly from the same distribution as in the initialization phase.

Standard uniform crossover was employed.

To adapt the RPM for use in mc-MST and mcd-MST problems the edge weight vectors can
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be scalarized using a scalarizing weight vector A = (A1,...,A\g). Each chromosome is then
decoded into a spanning tree using the RPM with the vector of edge weights replaced by a
set of scalar edge weights, b; ;, produced by taking the inner product of the scalarizing vector
A and w: Y(i,j) € E, b;; = A.w; ;. The scalarizing vector forms part of the chromosome,
and is initialized from a uniformly random distribution such that 25:1 Ay = 1 and VK €
1.K, A\ > 0.

The other genes in the chromosome are initialized with a strong bias towards low values,
and hence towards choosing lower cost edges. Specifically, each gene is set to an allele value
q = |e*"1°eVD) | where  is a uniformly distributed random number in [0,1), and p is a
parameter that controls how strong is the bias towards lower allele values. We set p = 2 in

our experiments.

The mutation operator for RPM (mutate_RPM) works as follows. Each gene is mutated
with some small probability p,,. For the tabular part of the chromosome, the gene’s allele
value is set to a new value drawn from the same distribution as at initialization. The gene
representing the scalarizing vector is made up of K component values, \', A2, ... A with

,le A¥ = 1. To mutate this gene a Gaussian deviate with mean zero and standard deviation
of 0.05 is added to each component, and the component values are then re-normalized so that

they sum to one.

7.4.2 The Priifer encoding

Cayley [Cay89] proved that there are n 2 distinct labeled trees for a complete graph with
n vertices. By providing a constructive proof of this, Prufer established a bijective mapping
between the set of distinct labeled trees and the set of all combinations of n — 2 n-ary digits
from n [Pril8]. The details of the encoding are fairly well known and can be found in [ZG99],
for example. Using this encoding, a chromosome is simply a string of n — 2 digits, where each
can vary independently between 1 and n. Following [ZG99], our implementation of a Priifer
encoding EA uses single-gene random mutation (a gene is chosen at random, and changed to

any new integer between 1 and n), and uniform crossover [Sys89].

7.4.3 Direct tree encoding and operators with RPM initialization
In order to tackle the d-MST problem, Raidl [Rai00] used a direct encoding of a spanning

tree, and associated genetic operators. In the direct encoding, a spanning tree is explicitly

represented by the list of edges which comprise it; Raidl calls this the ‘edge-set’ representa-
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7.4 Representations and operators

Figure 7.6: Edge mutation: choose an edge to add into the tree where this choice is biased
towards cheaper edges; remove a random edge from the cycle created. The edge mutation
operator works in O(n) time where n is the number of vertices in the graph.

tion. In Raidl’s approach to the d-MST problem, he used a procedure based on Kruskal’s

algorithm [Kru56] to generate initial feasible trees which respect the degree constraint.

Raidl’s ‘edge mutation’ operator simply replaces one of the existing edges of a tree with a
new edge, all the time respecting feasibility constraints. In operation, it works as follows.
First, an edge currently not in the tree is chosen to insert; this choice is biased towards lower
cost edges. Naturally, this will temporarily introduce a cycle. A random choice among the
edges in that cycle is then made (excluding the new edge), and the selected edge is removed

from the tree.

Raidl’s ‘edge crossover’ operator is constructed on the principle of inheriting as many edges as
possible from two parent trees. Initially, a child is set to contain the intersection of its parents’
edge-sets, and hence will almost always be a forest of unconnected non-spanning trees. Next,
remaining edges (from those which were in one parent but not both) are successively selected,
and included in the tree if such inclusion is feasible. In order to bias this step towards
considering the lower cost edges, Raidl uses binary tournament selection. At the end of this
process, if the child is not yet a spanning tree, edges between its components are chosen

randomly until the required d-ST is produced.

To adapt the edge-set encoding and associated operators for use on the mc-MST problem,
we use a scalarizing vector A, which is encoded as a gene on the chromosome, to scalarize the
vectors of edge weights. The mutation and crossover operators are then adapted to take into
account this extra gene. The initialization procedure we use employs the RPM encoding,
described above, with the same parameters for setting the initial chromosome values and

scalarizing vector.

247



Parent 1 Parent 2

2 2

Figure 7.7: Edge crossover. To construct an offspring from two parents: 1. include all the
edges that appear in both parents; 2. add in edges that appear in either parent but not both,
adding in cheaper edges first (this is achieved using binary tournament selection of edges); 3.
if the edges do not form a tree after step 2, add in further edges, randomly.
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After the initialization procedure, the direct tree encoding only is used. In our adapted edge
crossover, the offspring inherits the scalarizing vector A from parent a. Then the scalarized
weights b; ; are used in the tournament selection of edges used in the edge union operation

of the heuristic edge crossover.

Adapting the edge mutation operator is a little more complicated. In Raidl’s operator, the
edges are sorted in order of weight (once at the beginning of the algorithm) and the heuristic
mutation operator uses this sorted list to bias the selection of an edge to be inserted, towards
cheaper edges. In the mc-MST problem, it is not possible to order the edges by weight, so this
method cannot be applied directly. However, if the vector weights of edges are replaced by
scalar edge weights c; ;, produced by taking the inner product of the edge weight vectors with
a scalarizing vector w, with 25:1 pr =1and Vk € 1.K, py, > 0: V(i,j) € E, ¢;j = p.w; 5,
then the edges can be sorted in increasing order of ¢, and the bias can be applied using this
sorted list. We could use the scalarizing vector A that is associated with each solution vector,
putting u = X, to generate all the ¢; j, but we do not wish to have to re-sort the edges for
each different A vector, as this would strongly compromise the computational efficiency of the
mutation operator. To get around this, we pre-sort the edges for a small sample of different,
evenly distributed p vectors at the beginning of the algorithm. In the mutation operator
itself, we first mutate the A vector of the current solution vector by adding a Gaussian
random deviate of mean zero and standard deviation o = 0.05 to each of the components
of A and then re-normalizing it. Then, when choosing an edge to insert into the current
tree, the sorted edge list that was generated using a p vector which most closely matches the
updated A vector of the solution undergoing mutation is used. In our experiments, 5 different
representative pu vectors: (0,1),(0.25,0.75),(0.5,0.5),(0.75,0.25),(1,0) are defined, so that just
5 edge-sorts must be performed (just once) at the beginning of the algorithm. Thus, our
adaptions of Raidl’s operators preserve their linear time complexity whilst also maintaining

the heuristic nature of their biasing edge choices towards lower-weighted edges.

7.5 Benchmark problem generators

We propose generators for the following types of non-Euclidean problems:

Random: Random (uncorrelated) integer or real number weighted graphs;
Correlated: Random correlated real number weighted graphs;

Anti-Correlated: Random anti-correlated real number weighted graphs;
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M-Correlated: Correlated real number weighted graphs with high vertex degree in the
underlying MST;

Concave: Real number weighted graphs that have a large concave region in their Pareto

front.

All of the above can be generated as either sparse graphs, or complete graphs. We consider
only complete graphs in this paper. Similarly, all but the concave graphs can be generated
with an arbitrary number of objectives, K, although here we restrict our attention to 2-

objective problems only.

7.5.1 Random

The random graph generator simply sets each component of each edge weight vector to a
value drawn from a uniformly random distribution within some range, U (min, maz). In this
paper we do not consider graphs of this type but we have already shown (above and published
in [KCO01a]) that our AESSEA algorithm using a direct coding and specialized operators is
superior to the AESSEA algorithm using a Priifer encoding [Priil8, ZG99] on problems of

this type. Here we restrict our attention to more difficult problem types.

7.5.2 Correlated and anti-correlated

The correlated (and anti-correlated) graphs are generated by using the algorithm given in
Figure 7.10. The procedure takes the required correlation o € [—1,1] as an argument and
returns a weight vector of K weights where the first component is drawn from a uniform
distribution, and all subsequent weights are either positively or negatively correlated with
respect to the first component, and lie within the same range of values. Note that since
the correlation exists between the first and each other component of the weight vector, a
correlation of || exists between all pairs of components w*, w' k,I € 2..K. The correlation
between the components of a weight vector affects the shape of the associated Pareto front of
the MST problem of the graph. A zero correlation gives a smooth, convex Pareto front with
a fairly constantly varying gradient along its length. In contrast, a large positive correlation
gives a convex Pareto front with more of a discontinuous change in the gradient. With a
correlation approaching +1, the front becomes smaller until in the limit, it will only contain
one optimal point. With a strong negative correlation, the front is convex but approaches a
straight line or flat surface in objective space. Because of this there tend to be a large number

of non-supported efficient solutions (those that do not lie on the convex hull of the Pareto
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front). This shape of Pareto front might make it difficult for methods based on the use of
scalarizing weight vectors to find a good approximation to the Pareto front since they tend
to find it difficult to discover non-supported solutions, and also rely on a changing gradient

in the Pareto front to find a good range of points on it.

7.5.3 M-correlated

The M-correlated graph generator is based on a graph generator developed by us [KC00a]
for producing ‘misleading’ or M-graph problems for the standard (single-objective) d-MST
problem, and combining this with the correlated graph generator described above. The M-
correlated graphs are designed to be particularly difficult to solve when a low maximum

vertex degree constraint must be satisfied.

In theory, the maximum vertex degree of a MST in a graph of random edge weights is
|V| — 1. However, in practice, when reasonably large uniformly random weight graphs are
generated, the maximum vertex degree of the graph’s MST rarely exceeds four or five. Due
to this fact, some researchers [BDK95, KES99] have developed methods for generating bi-
ased random graphs where the graphs’” MSTs have a high maximum vertex degree. Knowles
and Corne [KC00a] further developed the graph generator of Boldon et al. to bias the edge
weights in such a way as to mislead any algorithm that greedily chooses edges of low weight
in an attempt to grow a low-weight spanning tree. The M-graph generator, as it is called,

requires four parameters to be set:

|V| the number of vertices in the graph;

f the number of vertices with large degree;

Id  the lower bound on the degree of
large-degree vertices; and

ud  the upper bound on the degree of

large-degree vertices,

with the constraints that f.ud < |V| and ld < ud. The generator has two main stages. The
construction of an M-graph is illustrated in Figures 7.11-7.15. In the first stage a spanning
tree that will be the MST of the graph is formed. In the second stage other edges are added
to form a graph of the required density. The first stage begins by forming f different ‘star’
graphs with the degree of each star centre vertex chosen uniformly at random in [ld,ud]
(Figure 7.11). These disconnected components are then connected by adding f — 1 edges

at random, to form a tree (Figure 7.12). The set of connected vertices, Vp, in the tree will
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Figure 7.8: Plots showing the weight vectors assigned by the correlated-weights graph gen-
erator.
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Figure 7.9: The effect of correlated weights on the shape of the Pareto front.

have fewer than |V| members, so that the tree is not spanning. To span the whole graph,
additional vertices in V' \ Vi, not in any of the stars, will be connected. However, first the
edges in the (non-spanning) tree formed so far, are all assigned uniformly random weights in
[0, x). Next, all remaining unconnected vertices are connected to the tree by adding an edge
between them and exactly one of the star centre vertices. The weight of these edges is assigned
a uniformly random weight in [¢, x) (Figure 7.13). Additional edges are then added between
any pair of non-adjacent vertices, until the graph reaches the required density of connectedness
(Figure 7.15). The weights assigned to these additional edges are uniformly random in [y, w]
for any pair of vertices where both are members of V7, and uniformly random in [¢, w] for
all other vertex pairs. If the weight parameters are set so that 0 < ¢ < ¥ < 9 < w then
the resulting graph will be a misleading graph, that is the graph’s structure will successfully
mislead algorithms that favour choosing low-weight edges. This can be understood by first
noticing that the edges incident to the vertices in V' \ Vp have two different ranges of values.
Those edges whose other incident vertex is a star-centre have a low weight, whereas all others
have a high weight. However, often a greedy-style algorithm will be forced to choose the
higher weighted edge to connect these vertices because in earlier choices it will favour the

edges that are incident to a star centre vertex (because these have the lowest range of weights
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Algorithm: Gen_correlated_wts

Data: o € [—1,1] is the correlation, provided by the user

B is the offset, calculated from «

v is the variation, calculated from « and g

U(min,maz) is a uniformly distributed random deviate €
[min, max)

if (a > 0)
B+ 1/2(1 —«a)
v B
else
B 1/2(1+ )
v -«
foreach edge (i,7) € F
wil’j «—U(0,1)
foreach objective k € 2..K
wi-’fj — aw}’j +B+yU(-1,1)

Figure 7.10: An algorithm for generating a graph with correlated
weight vectors.

in the graph) thereby causing the star centre vertex to reach its maximum allowed degree,
and so preventing the connection of it to one of the vertices in V' \ V. Because 1) > x this

will lead to a heavier graph, overall.

To make a multiobjective version of an M-graph, we use the M-graph procedure to set the
weights of the first component of all the edge weight vectors. The others components of the
edge weight vectors are then set using the correlation procedure outlined above. If a large
positive correlation is used then the graph will be misleading in all of its components, and it
will be difficult for a greedy approach to find a low-weight solution if the degree constraint

is much lower than the parameter ud.

7.5.4 Concave
The Concave problem generator can only be used to make 2-objective problems at present.

It works by setting the edge weights of three ‘special’ vertices (labelled 1, 2, and 3) in such

a way that a large concave region in the Pareto front will result. If we restrict all edge
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/ 7
Edge weights key:
lightest
* heaviest
N\ J

Figure 7.11: Constructing an M graph. Step 1: Form f star graphs, using the lightest edges,
leaving some vertices unconnected.

/ 7
Edge weights key:
lightest
* heaviest
N\ J

Figure 7.12: Constructing an M graph. Step 2: Add f — 1 of the lightest edges between the
stars, to form a tree.
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Edge weights key:

lightest

heaviest

Figure 7.13: Constructing an M graph. Step 3: Connect up the unconnected vertices using
the second lightest edges. The resulting graph forms the “underlying” MST.

/ 7
Edge weights key:
lightest
heaviest
N\ J

Figure 7.14: Constructing an M graph. Step 4: Add in edges of the heaviest weight, incident
to the vertices not in the stars formed in step 1.
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4 N
Edge weights key:
lightest
heaviest
o /

Figure 7.15: Constructing an M graph. Step 5: Add in further edges of medium weight until
the graph reaches the required density of connectedness.

weights to lie in [0,1], then the weights that can be used are the following: Wy = ({, (),
Woo = (0,1 = ¢), and W5 = (1 —¢,0). All other edges are W, ; = (U(¢,n),U((,n)) for
i, >3 and W;; = (U1 —¢,1),U(1 —¢,1)) if i xor j <3, with i,j € V, ¢ a small positive
value of the order of 1/|V], ( < n < 1 — ¢, and U(min, max) giving a uniformly random

deviate in [min, max].

An example of (an approximation of) the Pareto front of a concave graph problem is given
in Figure 7.16. The graph has 25 vertices and the values of the parameters for generating it
were: ( = 0.05 and n = 0.2.

7.6 Problem instances

7.6.1 Simple random weight instances
Following [ZG99], we generate bi-objective MST instances using complete graphs of size

10, 20, 30, 40, and 50 vertices with uniformly randomly distributed edge weights wil,j €
[10,100], w}; € [10,50],Y(3,7) € E.
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W? 45+t

o R0
35r XEROBOW o0 & -

Figure 7.16: A plot showing nondominated points found by M-PAES on a run of a 25 vertex
concave problem.

Vertices Instance type
AC ‘ C ‘ M-C ‘ Conc
10 313 35 3
25 313 35 3
50 313 35 3

Table 7.1: The fifteen benchmark problem instances. Entries in the table are the degree
constraints for each instance.

7.6.2 Benchmark problem instances

Three graphs for each of the instance types: correlated, anti-correlated, M-correlated, and
concave were generated; one each at sizes of 10, 25, and 50 vertices, giving 12 graphs in all,
from which 15 instances are created by setting degree constraints of 3 on all of the graphs,

and an additional, lighter degree constraint of 5 on the three M-correlated graphs.

The correlations for the anti-correlated graphs, 10vAC, 25vAC, and 50vAC were set at -0.7.
For the correlated graphs, 10vC, 25vC, and 50vC, the correlation was set at 0.7. For the M-
correlated graphs the correlation was also set at 0.7, and the other parameters were f = 1,2, 5,
Ild = 6,6,7, ud = 8,10,9, for the 10vM-C, 25vM-C, and 50vM-C, respectively. There is
no correlation between the edge weight components in the concave graphs, and the other
parameters used for generating these graphs were ¢ = 0.1,0.05,0.03 and 1 = 0.25,0.2,0.125
for the 10vConc, 25vConc and 50vConc graphs respectively.
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7.7 Experiments

7.7 Experiments

The experiments described in this section are in two parts. The first part concerns preliminary
experiments on the simple random weight instances, designed to put the results of the second
set of experiments in context of previous published work on the mc-MST problem. The
second part uses the benchmark problem instances and compares the performance of PAES,
M-PAES and a multiobjective EA, AESSEA, which is based on PAES.

In previous work on the mc-MST problem by Zhou and Gen [ZG99], the Priifer encoding
was used in a MOEA to give results on small random instances of the problem. The au-
thors presented their results in terms of the number of true Pareto optimal solutions found,
compared with the number in the true Pareto front, as determined using their enumeration
algorithm. The reported results were surprisingly good, particularly as previous results us-
ing a Priifer encoding on the d-MST have not been impressive [GJRRO1]. Of course, the
proof we have given in Appendix D regarding their enumeration algorithm indicates that
the results reported may not be reliable. However, our preliminary experiments are aimed
to test the results reported by Zhou and Gen so that our later results can be placed into
context. To do this testing, we compare spanning trees found using a Priifer encoding with
those found using our own enumeration algorithm on the 10-vertex random weight graphs.
We also compare the Priifer encoding with our proposed direct encoding employing RPM
initialization, described above. To make a comparison between the two encodings we test
them in the same EA. The EA we use is called AESSEA and it is just a population-based
variant of PAES. AESSEA, described in detail below, allows us to use crossover, as in the
experiments carried out by Zhou and Gen. Finally, we compare both EAs with our iterated
constructive approach, mc-Prim, on all the problem instances to judge the quality of the EA

results on these simple problems.

In the second and main part of our experiments, the 15 benchmark problem instances are
tackled. Once again, the performance of the evolutionary methods are compared with an enu-
meration algorithm (10-vertex instances only) and with our constructive iterative approach,
mcd-Prim, to verify the efficacy of using EA methods on different instances of this problem.
M-PAES and AESSEA are compared using the same encoding method — the direct/RPM
encoding. These results are also compared with the baseline algorithm PAES which just uses
the RPM encoding and operators. The results generated represent the first set of bench-
mark results for mc-MST problem instances with a degree constraint and with correlated

and deceptive weights.
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Algorithm: Archived Elitist Steady-State EA

Data:

P is the population

N is the archive of nondominated spanning trees
a, b, c, and x are solution vectors

N« /* Initialization */
foreach (x € P)
init(x)
evaluate(x)
archive(x)
10
while (i < num_evals) /* Main Loop */
if rand() < p.
a < rand_mem(P)
b < rand_mem(P)
c < crossover(a, b)
else
a < rand_mem(P)
ca
¢ «+ mutate(c)
evaluate(c)
if (c < a)
archive(c)
P+ PU{c}\{a}
elseif (GjeN|j<a)A(Tke N |k<c))
P+ PU{c}\{a}
else if (-3Fje N |j<c)
if ((g-pop(c) < g-pop(a)) V (Fj € N | ¢ <))
archive(c)
P+ PU{c}\{a}
141+ 1
return (N) /* Termination */

Figure 7.17: AESSEA.
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7.7.1 AESSEA

An evolutionary algorithm, AESSEA, based closely on procedures already defined for the
Pareto archived evolution strategy (PAES) is presented in Figure 7.17. AESSEA is a steady-
state EA, that is, only one new solution is evaluated per ‘generation’. It keeps a set of
nondominated solutions in an archive, and uses this set of solutions to estimate the quality
of newly generated solutions. The algorithm is elitist in the sense that parents and offspring
compete, but the overall selection pressure of the algorithm is not too strong since selection
for mating is purely random, and offspring only replace one of their parents, rather than
the weakest member of the population. Some preliminary testing of this algorithm and
comparison with PESA [CK00] suggest that it is both an effective and computationally
efficient, multiobjective EA.

In AESSEA, the function rand() returns a uniformly distributed deviate in [0,1), and the
function rand_mem(P) returns with uniform probability a member of the current population,
P. The function archive(c) updates the nondominated solutions archive N with ¢, that is ¢ is
added to N if it is nondominated with respect to the other solutions in NV, and if ¢ dominates
any members of N the dominated members are removed. The archive NV has a finite capacity
arcsize and in the case where adding ¢ to N would cause |N| > arcsize, a solution in the
most crowded region in NV is removed. This archiving strategy is exactly the same as in the
PAES algorithm. The function g_pop(x) returns the number of solutions in the same grid

location in objective space as the solution x.

The functions, init(x), evaluate(x), crossover(a, b), and mutate(c), are to be defined depending
on the application of the algorithm. In the following experiments, AESSEA+Direct/RPM
uses the RPM initialization and the edge crossover and edge mutation described in Sec-
tion 7.4.3 and AESSEA +Priifer uses the operators and encoding described in Section 7.4.2.

7.7.2 Random weight instances

Three different instances at size 10 are generated, and on these instances the complete space
of solutions is enumerated so that we obtain all Pareto optimal solutions. For these problems
we then present results in terms of the proportion of the efficient set that is discovered by
the genetic algorithms, over 30 independent runs. This is a similar method to that used by
Zhou and Gen for verifying the effectiveness of their GA. However, we enumerate the set
of efficient spanning trees using a straightforward technique where every possible spanning
tree is generated using a Priifer code, and then those that are dominated are discarded.

Although better techniques exist [RASG98], we have been unable to obtain source code for
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Parameter | AESSEA+Priifer AESSEA+D/RPM
|P| 200 200
arcsize 100 100
Pe 0.2 0.2
DPm 1/L 1/L
num_evals 100000 20000
grid squares 1024 1024

Table 7.2: Parameter settings for the two AESSEA algorithms.

these methods to date. Nonetheless, our enumeration does correctly guarantee to find all and
only nondominated spanning trees, in contrast to the method used by Zhou and Gen (see
Appendix D).

For the other sizes of network, just one instance at each size is used. Because of the larger size
of these problem instances, we cannot use our enumeration method. Therefore, we instead
compute a subset of the supported efficient solutions using our mc-Prim algorithm for 1001
different A vectors from (0, 1), (0.001,0.999),...,(0.999,0.001), (1,0).

On the small problems, since we know the complete true Pareto front, we evaluate algorithm
results by looking at the percentage of the true Pareto front found by the algorithm. We in
fact look at the percentages of both the full Pareto front and its complete supported subset.
For the larger problems, however, only a subset of the true supported Pareto front is available
to us. In these cases we look at the size of the total discovered region. This is simply the
area (since our problems are two-dimensional) contained by the approximation to the Pareto

front which the algorithm discovers.

The parameters used in the AESSEA algorithms are given in Table 7.2. The mutation rate is
quoted as 1/L, where L is the length of the chromosome. For the Priifer encoding L = |V|—-2.
For the AESSEA+Direct/RPM, this parameter is not actually set but it refers to the fact
that using Raidl’s edge encoding and heuristic edge mutation, exactly one edge in the tree
is changed per mutation, which is equivalent to a mutation rate of 1/L on a direct edge

encoding.

7.7.3 Benchmark instances with degree constraints

The parameters used for each of PAES, AESSEA, and M-PAES are given in Table 7.3.
Each of the algorithms was given 30 independent runs on each of the 15 problems and the

nondominated archive returned by each algorithm from each run was stored for statistical
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mutation type

crossover type

# of function evaluations, num_evals
# of grid regions

mutate_ RPM edge-mutation

20k /50k /50k
1024

Parameter PAES AESSEA M-PAES
population size, |P| 1 200 50
archive size, arcsize 200 200 G =200, H = 200
initialization method RPM RPM RPM

edge-crossover
20k /50k /50k
1024

edge-mutation

edge-crossover

20k /50k /50k
1024

Table 7.3: Parameter settings for the three algorithms; in addition I_opt = 50, I_fails = 20,
cr_trials = 10 for M-PAES (see Section 6.5 for the meaning of these parameters). The three
figures for number of evaluations relate to the three different problem sizes, 10, 25, and 50
vertices, respectively.

analysis, and comparison with the other non-EA approaches. For each problem, mcd-Prim
was also run 5 times with a different start vertex, and the combined nondominated solution
set was stored. On the ten-vertex problems we also use an enumerative procedure to give us

the entire true Pareto front for comparison.

7.8 Results

7.8.1 Random weight instances

Table 7.5 shows the results on the 10-node problems. On the small problems, AESSEA+Di-
The
AESSEA+Priifer method performs considerably worse, often finding no true Pareto optima

rect/RPM finds all optima on all individual runs, and in only 20000 evaluations.

at all. On the larger problems, with results summarised in Table 7.6, the discovered Pareto
front of AESSEA +Priifer is considerably smaller than that from either of the other methods.

Such findings are illustrated in Figure 7.18, clearly indicating how well AESSEA+Direct/RPM
approximates the true Pareto front in comparison to AESSEA+Priifer. As we note from sim-
ilar figures (not displayed here) for the other problems, this difference is increasingly marked

as problem size increases.

The runtime figures given in Table 7.4 seem to indicate that both EAs scale well with in-

creasing problem size.
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Problem | AESSEA+Priifer AESSEA+D/RPM
20v1 19.7s 14.2s
50v1 49.6s 28.0s

Table 7.4: Run-times for the two algorithms on two different-sized problems. The algorithms
were run on a Sun SPARC Ultra 5 300MHz with 256 MB RAM. The timings are the mean
of 10 runs. On each run, AESSEA+Prifer performed 100000 function evaluations, and
AESSEA+Direct/RPM performed 20000, as in the experiments reported.

Problem AESSEA +Priifer AESSEA+Direct/RPM

instance |ZF| |Z*| | %|ZF| %|Z*| |Z9] |Zz°|o | %|ZE| %|Z*| |Ze] |Z%eo
10vl 10 42 80 76 247 133 | 100 100 42.00 0.00
10v2 12 28 67 71 0.50 0.78 | 100 100 28.00 0.00
10v3 12 25 83 84 0.57 0.82 | 100 100 25.00 0.00

Table 7.5: Results on three 10-vertex mc-MST instances using the two different EAs. |Z}| and
|Z*|, give the number of supported efficient points and the total number of efficient points on
the true Pareto front, respectively, for each problem instance. %|Z}|, give the percentage of
the supported efficient points that were found over the 30 runs combined, for each algorithm.
Similarly, %|Z*| gives the percentage of the total number of efficient points that were found
over the 30 runs combined, for each algorithm. |Z¢|, and |Z%| o, give respectively the mean
and standard deviation of the number of efficient points in the approximation sets generated
by the algorithms per algorithm run, for each algorithm.

Problem Upper limit of Size of the total discovered region
instance |Z]p,| bounding box | me-Prim AESSEA+Priifer AESSEA+Direct/RPM
20v1 25 832 x 574 0.2949 0.1488 0.2986
30v1 54 1280 x 838 0.3780 0.1249 0.3792
40v1 63 1882 x 1181 0.4200 0.1150 0.4196
50v1 85 2425 x 1494 0.4473 0.0943 0.4451

Table 7.6: The size of the total discovered region of the AESSEA algorithms and mc-Prim
on four mc-MST problem instances of increasing size. The column, |Z;‘ prls gives the number
of supported efficient solutions found by mc-Prim, using 1001 different A vectors. The upper
limit of the bounding box is determined, in each dimension, by taking the maximum value
(over all algorithms) of any point on the combined Pareto front of each algorithm. The lower
limit is taken to be zero in each dimension.

264



7.8 Results

1600 T

mc-Prim ¢
AESSEA+Direct/RPM  +
AESSEA+Prufer O

1400 -
1200 -
W? 1000 F
800

600 -

400 1 1 1 1
500 1000 1500 2000 2500 3000

Wl

Figure 7.18: Combined discovered points found by the two versions of AESSEA and mc¢-Prim
on a 50-vertex problem.

7.8.2 Benchmark test problem instances

The results of our first statistical analysis method are given in Table 7.7. The best results
are shown in bold. It is clear from the table that M-PAES and AESSEA both using a
direct coding and employing crossover do favourably compared to PAES using only the RPM
decoder encoding, and this superiority is emphasized further as problem size increases. M-
PAES and AESSEA using the same encoding are well-matched on most problems but M-
PAES is clearly best overall on the set of problems considered. It is particularly strong on

the largest of the M-correlated graphs, and the large concave graph problem.

The results of the second statistical analysis method are given in Table 7.8. The results paint
a similar picture overall, although there are some interesting points to notice as well. First,
mcd-Prim performs very well compared to the evolutionary algorithms on the correlated and
anti-correlated problems, and is considerably faster (but see Figure 7.19 for further help
visualizing the Pareto fronts discovered). However, on the M-correlated graphs it clearly
struggles. This is as expected because on these problems the degree constraint has a real
effect on the difficulty of finding good solutions. We can see that the EAs are managing to
cope with this; observe the size of the region discovered by them compared to the enumeration
method on the 10 vertex M-correlated problem for both d=3 and d=52. This is further shown
in a plot given in Figure 7.20. Finally, on the (larger) concave problems, it appears that mcd-

Prim does better than the EAs but in fact is unable to find any solutions in the concave

20n 10vM-C-d3 it appears that PAES has a larger than possible median size. However, this is due to the
sampling error of only using 500 sampling lines in measuring the attainment surfaces of this algorithm.
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Problem| PAES  AESSEA  M-DAES
10vAC | 32.7 (0) 97.6 (0) 100 (2.4)
25vAC|  0(0)  13.3 (7.3) 92.7 (86.7)
50vAC|  0(0) 17.4 (15.7) 84.3 (82.6)

10vC | 99.5 (0) 100 (0) 100 (0)
25vC | 45.1 (0) 99.6 (10.8) 89.2 (0)
50vC | 0(0) 3.8 (0) 100 (96.2)
10vM-C-d3 | 95.6 (0) 100 (0) 100 (0)
25vM-C-d3 | 0 (0) 99.3 (14.5)  85.5 (0.7)
50vM-C-d3| 0 (0)  17.3 (2.5) 97.5 (82.7)
10vM-C-d5 | 100 (0) 100 (0) 100 (0)
25vM-C-d5| 0 (0) 100 (3.8) 96.2 (0)
50vM-C-d5 | 0 (0) 19.2 (0) 100 (81.8)

10vConc | 52.1 (0) 100 (0) 100 (0)

25vConc | 9.2 (0.6)  68.5 (22.7) 74.6 (30.1)

50vConc | 0 (0) 6 (3.7) 96.3 (64)

Table 7.7: Unbeaten and (beats all) statistics for the three EAs on the full set of problems.

Problem Total size Median (Interquartile) size
Enum med-Prim PAES AESSEA M-PAES
10vAC | 21.3837  20.4108 | 21.2963 (0.2014) 21.3565 (0.0032) 21.357 (0.0044)
25vAC 246.256 | 239.248 (32.121) 245.175 (1.428) 245.5 (1.893)
50vAC 1240.27 | 1040.02 (440.492) 1224.07 (7.6) 1225.67 (13.85)
10vC | 36.0955  35.3919 | 35.7349 (0.0323) 35.7672 (0) 35.7672 (0)
25vC 363.233 |  362.400 (1.492)  363.329 (0.109) 363.386 (0.149)
50vC 1868.59 1853.01 (24) 1869.3 (3.52) 1873.29 (4.23)
10vM-C-d3 | 26.8362  23.6895 26.8399 (0) 26.8342 (0) 26.8342 (0)
25vM-C-d3 281.923 | 338026 (7.135)  343.892 (0.55) 343.988 (0.005)
50vM-C-d3 1302.33 1454.86 (40.14) 1493.89 (3.17) 1493.48 (8.9)
10vM-C-d5 | 40.0389  35.3428 40.0365 (0) 40.0365 (0) 40.0365 (0)
25vM-C-d5 345.62 |  383.684 (2.801) 384.511 (0) 384.439 (0)
50vM-C-d5 1496.8 | 1598.07 (26.44)  1615.49 (4.56) 1616.33 (7.79)
10vConc | 37.3255  37.0848 | 37.2362 (0.0061) 37.2367 (0) 37.2367 (0)
25vConc 334.694 332.901 (3.81) 334.644 (0.354) 334.491 (0.852)
50vConc 2122 | 2109.76 (19.39) 2118.39 (1.67) 2114.7 (4.29)

Table 7.8: Size of the median and interquartile dominated regions for the different evolution-
ary algorithms, and the total combined size of the dominated region found using five runs of
mcd-Prim. For the ten-vertex problems the true size of the dominated region is represented
by the results of the Enumeration algorithm.
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Figure 7.19: Median attainment surfaces on the 50 vertex correlated problem with a degree
constraint of 3.
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Figure 7.20: Median attainment surfaces on the 50 vertex M-correlated problem with a degree
constraint of 3.
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Figure 7.21: Nondominated points found from 5 runs of mcd-Prim, and the median attain-
ment surface achieved by M-PAES. Note how M-PAES finds points in the concave region of
the Pareto front.

region of the Pareto front. Its larger dominated region is due to it finding the very edge of
the Pareto Front, which the EAs do not achieve on every run. A plot showing the median
attainment surface for M-PAES, and the points found from 5 runs of mcd-Prim is given in
Figure 7.21.

7.9 Conclusion

The results indicate that a direct encoding is more effective than a Priifer-based encoding
when using an EA to address the mc-MST. We should point out that our conclusions differ
from those made by Zhou and Gen for their Priifer GA, which seemed to show that their
method was able to find high proportions of the true Pareto front on all sizes of problem,
which is surprising in light of the results we find using the Priifer encoding on large problems.
We suggest the discrepancy arises from Zhou and Gen’s use of an unreliable Pareto front enu-
meration method, as noted earlier. In addition to the results we report, reported theoretical
notes provide additional evidence for direct encodings being a better choice than the Priifer
encoding for MST problems. For example, Ehrgott and Klamroth [EK97] noted that, in 50
random instances in which they generated a complete set of efficient spanning trees, the set
was ergodic with respect to a single-edge exchange operator (although they prove that this
will not always be true). A direct encoding such as Raidl’s, which naturally allows for such
operators (as indeed used here) seems thus well-designed for the problem, while the high

non-locality of the Priifer encoding seems ill-chosen in light of this. A further difficulty with

268



7.9 Conclusion

the Priifer encoding is the fact that many real problems will have sparse graphs. That is,
although the problem may still be very large in terms of allowed edges, most edges will not
be allowable. This could be dealt with in Prim’s algorithm, for example, by giving those
edges massive weight (vectors), large enough to guarantee that they would never be chosen
in tree construction. A far better approach, however, is simply not to include these edges in
the edge array accessed by the algorithm. The latter natural and effective way to deal with
sparse problems is trivial for both RPM and Raidl’s direct encoding, but is unavailable to
the Prifer encoding. This is because it is impossible to control which edges are coded for
by a Priifer number, so the decoding process will typically yield infeasible trees (containing

edges not members of the sparse graph).

It is also worth noting that mc-Prim’s alone is capable of finding well-spread sets of true Pareto
optima for the mc-MST much faster than an EA. However, mc-Prim’s is incapable of finding
unsupported Pareto optima, of which there may be many between any two neighbouring
supported optima. For these reasons, mc-Prim’s is able to display impressive results in Table
7.6, but will always fail to offer a fine-grained view of the tradeoff surface, such as would
be desired in many applications. Also, note that although mc-Prim’s is easily adaptable to
degree-constrained problems, it certainly no longer guarantees to find true optima in those

cases.

We suspect that many real-world problems, as well as having degree-constraints, are also

quite sparse, and have a considerable number of unsupported solutions.

We have presented a number of graph generators that can produce a range of challenging
graph types for the mcd-MST problem. We show that on some problems it may not be
necessary to use an evolutionary algorithm or other metaheuristic technique for tackling these
problems, because a simple, iterative approach — mcd-Prim — can provide very good results
in a fraction of the time. However, we have also demonstrated that for certain problems
with constraints that are difficult to meet, the evolutionary algorithms do exhibit superior
performance. Furthermore, the evolutionary algorithms are able to find points in the non-
supported regions of the Pareto front, as was clearly demonstrated using the concave graph
generator. In real problems of interest to the telecommunications industry we suspect that the
number and variety of constraints that must be met will necessitate the use of evolutionary

algorithms similar to those investigated here.

We would also like to draw attention to the superiority of the memetic algorithm, M-PAES,
on these mcd-MST problems. Although M-PAES has been shown to perform well on other
problems, it seems that in this application, a local-search element is particularly useful. This
may well be due to the observation made by Ehrgott and Klamroth [EK97] that from a
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sample of 50 random instances of a random weight bi-objective MST problem, all of them
were ergodic with respect to a single exchange operator (although they prove this will not
always be true). In light of this, we predict that further advances in tackling these difficult
constrained mc-MST problems will come from techniques that incorporate a strong local

search element, as used in M-PAES.
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Chapter 8

Conclusions

8.1 Summary

In this dissertation, we have argued that local-search methods may be a valuable, and some-
what overlooked, alternative to population-based approaches to general-purpose Pareto mul-
tiobjective optimization. We postulated that simple, baseline algorithms such as hillclimbers
perform several useful roles in single-objective optimization: in verifying the expediency of
more sophisticated approaches; in the development of new approaches, particularly hybrids;
and in our theoretical understanding of problem types and search spaces, and how these re-
late to the efficacy of different optimization methods. From this perspective, we argued that
developing a ‘Pareto hillclimber’ might similarly help to develop new Pareto optimization
methods and theory. To support these ideas, we have devised, analysed, and tested several
new Pareto optimization algorithms based on single-point local search. These algorithms, we
argued, contribute to increasing the diversity of available methods for undertaking Pareto

optimization, and also allow powerful hybrid approaches to be devised and exploited.

The first element of our argument concerned the status of local search methods, in the
wider optimization community. We showed that local search methods such as hillclimbing,
simulated annealing, and tabu search, are broadly recognized as valuable alternatives to
evolutionary computation methods for searching ‘hard’ problem spaces, through a literature
review presented in Chapter 2. In addition, we noted that local-search methods can sometimes
be adapted to incorporate problem-specific heuristics, and partial evaluation of solutions,
resulting in further improvements in efficacy and efficiency. Furthermore, memetic algorithms
(MAs), which ‘improve’ solutions — often using local search — allow local search heuristics

to be incorporated into a population-based recombinative search strategy. This gives these
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hybrid approaches a significant advantage over standard genetic algorithms in many problem

domains.

In the next element of the dissertation our attention turned to multiobjective optimization,
and to the variety of approaches currently available. Chapter 3 reviewed the most popular
and influential MOEAs, as well as some local-search based metaheuristics for multiobjective
optimization. This survey indicated that MOEAs have converged somewhat towards two-
parent recombinative algorithms using niching for diversity maintenance and Pareto ranking
selection. Similarly, multiobjective local search algorithms, from the operations research com-
munity, also lack real diversity in some respects. Most of these local searchers use randomly
selected utility functions, and a scalar acceptance function. We argued that the use of utility
functions may not be as efficient as Pareto selection, in terms of searching for diverse solutions
with the fewest number of function evaluations, because at each step only one ‘direction’ is
favoured, and this direction is not dependent on any of the solutions previously found. On the
other hand, MOEAs that use Pareto selection, may not be the most efficient methods, either,
since local search may be more suited to many problems, particularly when good local-search

heuristics are known, or can be found.

We also noted that while local-search methods and hybrid approaches like MAs have received
significant attention in much evolutionary computation literature, there has been little in-
terest in these techniques for multiobjective optimization, until very recently. Although
simulated annealing and tabu search approaches for multiobjective optimization have been
previously proposed, they have not been tested against any of the popular multiobjective EAs.
There has been no real interaction (competitive or cooperative) between users of MOEAs and
users of other multiobjective metaheuristics. This means that there is a lack of any under-
standing, at present, of just how good the current breed of MOEAs is, on any given problem.
As yet, there is no real culture of baselining multiobjective EAs against likely competitors.
This is a problem because there is little impetus or scope for building hybrid approaches,
even though hybrid approaches are very successful in single-objective search. There is also
a lack of understanding of how the different landscape of a multiobjective problem affects
search, in general. Without a culture of competition and diversity of approaches, it is difficult
to see how we will come to understand how multiobjective landscapes and different search
methods interact. From these considerations, we proposed that a basic local-search Pareto

optimization algorithm, based on Pareto selection, should be devised.

In Chapter 4, the local search Pareto optimization algorithm, (1+1)-PAES was developed
according to the requirements specified in Chapter 3. Several difficulties with satisfying

these requirements were identified, particularly with the design of the acceptance function,
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and with methods for maintaining a diverse, but bounded set of solutions. However, each
of these was overcome in the final (1+1)-PAES algorithm we presented. Its acceptance
function uses Pareto comparisons, making use of an archive of previously found solutions
to aid in comparing the current and mutant solutions. The archive also allows a diverse,
but bounded set of solutions to be returned at the end of a run of the algorithm. Various
strategies for updating the archive were considered and we proposed a technique — adaptive
grid archiving — which has low computational overhead, and requires no niche parameter
or other measurements of the objective space to be made. As predicted, the development of
PAES allowed us to devise other local-search methods based on Pareto comparisons. Three
other variants of PAES were described: multi-start, simulated annealing, and tabu-search

algorithms.

Chapter 5 presented two empirical studies of the performance of PAES versus other MOEAs.
The first one showed that PAES is very competitive with the niched Pareto GA (NPGA)
and the nondominated sorting GA (NSGA), and has lower computational overhead than
these algorithms, as well as fewer parameters to set. The second study used a suite of test
functions, each with a specific feature that might cause difficulty for a MOEA. PAES performs
surprisingly well on this test set, too. It is only outperformed by SPEA on two of the six
problems: a deceptive trap function problem, and a very highly multimodal problem. On
the latter, the performance of PAES was found to improve with higher mutation rates, and
allowing this ‘tuning’ to be done, PAES gives better results than the published SPEA results
for that problem. On the deceptive problem, one-point crossover is a big advantage, and
it is clear that PAES cannot compete with SPEA on this problem. Overall, however, the
results showed that PAES is a capable baseline approach, able to compete with many previous
population-based MOEAs. It achieves this with little need for tuning, and low computational

overhead.

Memetic algorithms are generally used with problem-specific local improvement operators
that take a solution to a local optimum. However, in Chapter 6, we decided to design an
MA that we could first test using only standard operators, to allow comparison with other
MOEAS, initially. The MA proposed uses the basic (1+1)-PAES algorithm as a subroutine for
performing local improvement of solutions. Because PAES does not stop at a local optimum,
however, we had to experiment with stopping criteria for the PAES procedure. With the
recombination phase of the MA, we experimented with using restricted mating and elitist
selection. We found the latter useful but the former not, in some preliminary experiments.
The M-PAES algorithm presented combines local search and recombinative phases, uses the
diversity maintenance and archiving techniques developed for PAES, and Pareto selection

throughout.
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M-PAES was tested using a variety of knapsack problems. Results showed that it was not
very robust to parameter settings on these problems but that it outperformed SPEA, using
the same operators and number of evaluations. It also outperformed (141)-PAES. Further
testing of M-PAES on a telecommunications application, the ADDMP, revealed that M-PAES
and SPEA were both outperformed by PAES, emphasizing the fact that recombination may
not be useful on all multiobjective problems, and illustrating once more the usefulness of the
simple PAES algorithm.

In Chapter 7, constrained and multiobjective versions of the classic minimum spanning tree
problem were considered. A combination of direct and decoder representations were devel-
oped to tackle these problems, together with specialized mutation and recombination opera-
tors. A set of benchmark problem generators for producing problems with different features,
and numbers of objectives, was also described. A set of difficult instances was generated, and
low-weight spanning tree solutions to these were evolved using PAES, M-PAES and a steady
state EA based on PAES, called AESSEA. These trees were compared to those generated
by a constructive approximation approach, and for some problems, a complete enumeration
of the search space. The results for M-PAES were generally the best, particularly on the
problems with the most difficult constraints. The success of M-PAES was attributed to its

repeated use of the mutation operator to improve solutions effectively.

8.2 Contributions

Local search is a fundamental technique in optimization upon which hillclimbing techniques
and more sophisticated approaches are based. The development of a simple and effective
local search algorithm for Pareto optimization — PAES — is thus a significant contribution
to research in metaheuristic search and optimization. The contribution can be judged in
several ways. First, we should consider the usage of PAES in this thesis and by others, as a
baseline approach. Does PAES fulfil the requirements of a good baseline method, and what
has been learnt from comparisons between PAES and other methods? Second, we may ask
whether PAES performs well itself, as a multiobjective technique in its own right. To do this,
we can once again review our results and those of others who have used PAES. Third we
can ask whether PAES has shed any new light on the nature of multiobjective search spaces.
Finally, we can judge PAES as a means of developing new techniques, thereby increasing
the diversity of current approaches, and allowing other heuristics to be incorporated into

multiobjective evolution.

In addition to contributions relating directly to the PAES algorithm and its variants, contri-
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butions have also been made in in several other areas. These include: the M-PAES algorithm,
the use of new metrics for assessing and comparing the performance of MOEAs, a critical anal-
ysis of previous techniques for this, new test problem generators and benchmark instances,

and new benchmark results. In the following sections these contributions are evaluated.

8.2.1 The contribution of PAES

When verifying the quality of a new algorithm or approach, a simpler algorithm giving a
baseline set of results can be used for comparison. Baselining results in this way shows that
the new approach is, at least, sensible, and better than the most straightforward of plausible
methods. We argued that a ‘baseline’ algorithm that provides these baseline results is useful

only if it has the following attributes:

Easy to use with little or no setting or tuning of parameters necessary.

Flexible enough to be applied to a wide range of applications.

Provides a ‘good’ level of search performance i.e. not worse than random search.

- Simplicity in concept and design.

Thus we can ask: “Is (141)-PAES a good baseline multiobjective approach?” In answer, we
can argue that is easy to use: it has only 3 parameters, and these just relate to the stopping
criterion, the sizing of the archive, and the adaptive grid. None of them requires tuning. The
mutation rate is not really a parameter of the algorithm as such, but of the neighbourhood
operator. For best performance, this does need tuning but this is the same in a single-objective
hillclimber. We can also argue that PAES is easy to use because a number of researchers
have taken the C code and used the algorithm without need for further instruction. It has
also been used as a baseline algorithm for testing in two independent published papers, so
far, [DAPMOOb] and [CTO1].

PAES is also clearly flexible for use on a wide range of applications since it uses just two
operators that are easily designed for most problems: random mutation and initialization. It
can be applied to problems of different numbers of objectives, and the number of solutions

returned can be controlled.

PAES also provides a good level of search performance. This point is easy to argue since in
tests in this dissertation it has demonstrated better performance than some popular MOEAs

on some problems. It is therefore capable of providing the required ‘baseline’ at a high enough
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level for it to be of merit for a new approach to outperform it. It was also demonstrated
that it can generate good results on a broad range of problems. In both of the independent
papers where PAES has been used, it performed well also. In the paper by Deb [DAPMO00b],
PAES was not beaten by the new NSGA-II algorithm on all problems, nor by SPEA on all
problems, confirming the general quality of results reported in this thesis. In the paper by
Coello, numerical results were not given except for run-times, but visual results indicate that
PAES is at least close to competitive with NSGA-IT and the new micro-GA in terms of final

solutions obtained.

Finally, PAES is simple. It is conceptually simple because it is based on single-point search
and mutation only. It is also quite simple in its overall design, although the archiving mech-
anism does depend on a large cascade of rules. In any case, it is simple compared to most
specialized algorithms. This is enough to justify that it would be no more difficult to imple-
ment or embed in an application than a specialized algorithm which was outperformed by
it. This is important because a baseline algorithm should be a viable alternative to more

sophisticated approaches.

These points confirm that PAES is a contribution as a baseline approach. One further positive
point is that PAES has lower overall computational cost!, per function evaluation, compared
to other (MOEA) approaches. Although this is not essential in a baseline algorithm, it
is desirable because then it cannot be argued that the baseline algorithm is better only if

computational cost is neglected.

We should also consider what has been learnt as a result of using PAES as a baseline algo-
rithm. First, from the test problems F1-F6, we have learnt that the use of elitism and the
accurate judgment of solution quality, as used in PAES, appear as important for success-
ful search, as evolving solutions from a population of points, perhaps with recombination,
as used, for example, in NPGA. The test problems to which this observation applies are
sufficiently diverse, and the results achieved by PAES so consistent, that it seems that this
observation may apply to a wide range of problems. Similarly, in the second study in which
the performance of SPEA was compared with PAES, the results indicated that local search
was a viable alternative to population-based, recombinative approaches on all but the de-
ceptive trap function problem. In the combinatorial problem, knapsack, similar performance
between SPEA and PAES was also observed, and on a variety of instances of the ADDMP,
PAES actually performed better, according to our metrics. Although we are not yet able
to predict when local search may be as good or better than population-based recombinative

search, the results in this dissertation do suggest that (single-point) local search cannot be

!This refers to average-case time complexity; see Chapter 4. The runtimes of PAES given in Chapter 5
also confirm its relatively low computational cost.
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dismissed as unsuitable for Pareto optimization, in general.

Let us now consider whether PAES is a viable Pareto optimization technique in its own right.
Clearly, the results achieved, discussed above, provide evidence that PAES may be one of sev-
eral techniques that should be investigated given a new multiobjective optimization problem,
as it has outperformed other modern MOEAs on some problems. In the independent study
by Deb, as well, PAES outperformed both NSGA-IT and SPEA on the multimodal problem,
TC4, in terms of distance from the true Pareto front. In [CK00], PAES was competitive with
PESA and SPEA on some of the test problems, over the larger evaluation limit runs. PAES
has also been used or evaluated by several other researchers in real-world applications. These

applications include groundwater extraction and echo-location calibration.

We argued in Chapter 4 that a further reason for developing a Pareto hillclimber was to shed
some light on the nature of multiobjective landscapes, and whether they differed greatly from
single-objective landscapes. In Chapter 5 we conjectured that PAES may be able to move
around a multiobjective landscape more easily, in general, than a hillclimber can move around
a single-objective landscape. The reason stated was that more points are effectively of the
same evaluation because, given a general point in the search space, there are usually a large
number of tradeoff solutions that are mutually nondominated, and which are all valid places
to ‘move’ to. This is a case of having fewer effective local optima. If the number of effective
local optima is lower in multiobjective optimization problem we would expect local search
hillclimbers like PAES to do comparatively well. This conjecture has not been investigated
in the work presented in the body of the thesis but we discuss some published work in this
area, based on PAES, in Section 8.4.

Our last question regarding the contribution of PAES concerns whether it provides a basis or
an impetus for the development of new approaches to Pareto optimization. Once again, this
question can be answered in the affirmative. In Chapter 4, several variants of PAES were
proposed. The multi-start version is particularly promising as a simple but worthy competitor
to MOEAs, much as multi-start hillclimbers in single objective optimization. The tabu search
and simulated annealing algorithms are also based heavily on (141)-PAES, maintaining the
use of the dominance relation in the acceptance function, the archive as a comparison set, and
the adaptive grid crowding for diversity maintenance. These algorithms are quite different
from both current MOEAs and local search multiobjective optimizers that use scalarizing
selection. There is much work to be done in evaluating these variants of PAES but they
demonstrate that PAES can be used to devise new methods based on local search and the

use of Pareto selection.
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PAES is also the basis of the M-PAES algorithm developed in Chapter 6 which we evaluate
below. It may also have provided some of the impetus for the development of the NSGA-II
and the micro-GA. Both of these works cite PAES as an example of a low-computational
overhead technique with elitism and efficient diversity maintenance. Both algorithms also

use these elements themselves.

8.2.2 The adaptive grid archiving strategy

This contribution concerns the maintenance of the nondominated archive in PAES. The prob-
lems associated with using the dominance relation in the acceptance function of a single-point
searcher led us to adopt the use of a comparison set, in a similar way to Horn and Nafpliotis’
NPGA. This, in turn led to the question of how we should update the comparison set, so-
lution by solution, so that it remained bounded, diverse, and mutually nondominated. This
question arises whenever it is desirable to store a limited set of solutions to a multiobjec-
tive optimization problem. Realistically, all multiobjective search algorithms need to store a
representative set of the solutions they have found. However, few others have undertaken a
solution to this problem. Notably, Zitzler used clustering to reduce the external population
in SPEA, and this method works well when a number of solutions (a generation) are being
added at once to the set. But to use it for the addition of one solution at a time — as we
require for use in a single point searcher — would be computationally too expensive. We
investigated several approaches to the archiving procedure. Of these, a method based on
using an adaptive grid in the objective space to employ an approximate crowding strategy,
was proved to have desirable convergence properties under certain limiting conditions, whilst
being computationally very efficient, when used with a quadtree encoding of the grid regions.
The method also avoids the need for setting a niche parameter, or having to introduce any
scaling of objectives. No prior information about the search space is needed at all, in fact.
One parameter, controlling the number of grid regions is required but this only affects the
size of the archive needed to guarantee certain convergence properties. Recent studies by
Laumanns et al. [LZT00a] have independently confirmed the efficacy of the grid crowding ap-
proach at maintaining diversity. The use of the adaptive grid was also later used by Corne and
Knowles in the population based MOEA, PESA [CKO00], to carry out diversity maintenance

in the reproductive population.

Some strategies for updating an archive with several solutions at once were also proposed.
In the population-based variants of PAES, two problems arose. How to choose the best so-
lution(s) from among the A\ new ones, with respect to the archive, and how to update that

archive with the new solutions. The proposed approach did not seem to perform well, how-
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ever, as (1+1)-PAES was generally a better performer than the population-based variants.
For the tabu search version of PAES, we thus proposed a different method of updating the
nondominated solutions archive, and of choosing which of the solutions to ‘accept’. Although
the proposed method was not implemented or tested, we argued that its design should over-
come the problems identified in the original approach put forward for use in (1 + \) and
(u + A\) PAES.

8.2.3 Metrics for performance assessment

In Chapter 3, we considered the issue of assessing and comparing stochastic multiobjective
optimizers. Using the outperformance relations proposed by Hansen and Jaszkiewicz, we
were able to classify and critically evaluate many of the most visible methods of performance
assessment. We consider this an important contribution as many of the metrics in use do not
provide useful evaluations of the output of different optimizers. We hope that this review will
discourage the use of some metrics which were identified as being of very limited use, and
encourage those metrics which accurately measure more salient properties of nondominated

sets.

We also proposed some new assessment methods based on the S metric [Zit99] and sampling
of attainment surfaces, following Fonseca and Fleming. These methods combine, in different
ways, evaluations of the nondominated sets from a number of independent runs. A number of
these methods were used in this thesis, enabling sound evaluation of the different algorithms
tested.

We particularly encourage other researchers to report on ‘hard’ benchmark problems by using
some meaningful, absolute measure of the overall quality of the Pareto fronts achieved. This
would encourage competition and accurate evaluation of new methods. We contend that the
size of the combined attainment surface, the median attainment surface, and interquartile
attainment surfaces achieved, which we used to report the benchmark d-MST results will
allow others to compare their results meaningfully against ours, in the future. We also
endorse the utility function based metrics of Hansen and Jaszkiewicz [HJ98] for reporting on

benchmark results.

8.2.4 M-PAES

The memetic PAES algorithm developed and tested in Chapter 6 is the first multiobjective

memetic algorithm based entirely on Pareto selection. How much of a contribution this al-
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gorithm is will depend upon the outcome of testing M-PAES more thoroughly in future. In
particular, studies comparing M-PAES with RD-MOGLS, the cellular MOGLS algorithm,
and newer hybrid MOEAs such as Deb and Goel’s Hybrid MOEA [DGO1] should shed fur-
ther light on whether Pareto selection-based local improvement offers any advantage over
scalarizing selection methods. However, whether or not M-PAES is more effective than other
techniques, it is an original contribution to the available methods, and it has already been
independently compared with RD-MOGLS [Jas00]. The M-PAES results presented in this
thesis indicate that it is a promising approach, able to outperform MOEAs using the same op-
erators and heuristics. The true worth of M-PAES may be seen when good local improvement
heuristics are available for a particular problem. With the mcd-MST problem we glimpsed
the potential of M-PAES because on this problem local search seems to be particularly useful.
However, a more specialized local search procedure than successive random mutations may

offer a greater advantage to the M-PAES approach.

8.2.5 MST benchmarks

Further contributions have been made in the development of heuristics for the dMST and
multi-criterion MST problems. These heuristics have been tested on a range of benchmark
problem instances. Because existing available instances for these problems were not always
sufficiently difficult, new benchmark problem generators were also devised. The generator
for the d-MST was used by Raidl in [Rai00] to provide difficult problem instances for testing
his new GA approach. The generators developed for the multiobjective MST can produce
combinatorial optimization problem instances with different shaped Pareto fronts including
concave ones, and with varying difficulty in terms of constraints. These should be a valuable
addition to MOEA test suites. Benchmark results for some of these instances have also been

reported.

8.3 Limitations

8.3.1 PAES

There are a number of ways in which the central contributions of this thesis, namely the PAES
framework and algorithms, are limited. First, the empirical testing of (14-1)-PAES has only
just begun and there are a number of key issues relating to its performance that have not
yet been answered. In particular, PAES has only been tested on problems possessing integer

valued parameters. Even where the continuous test functions F'1-F'5 and 7 1-T5 were used,
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these functions were tackled using a binary encoding of the (heavily discretized) parameters.
The question of how well PAES performs should a more natural encoding be used, together
with an appropriate Gaussian mutation operator (or similar) like those used in real ESs, has
not been considered in this thesis. The use of real values, and continuous variation operators
also opens up the possibility of using and evolving strategy parameters, another avenue that

has not been considered here.

The experimental evaluation of PAES on test functions has not encompassed functions with
constraints, either. We have not proposed or investigated constraint handling techniques that
would work effectively within the PAES framework. Other researchers have recently applied
(14+1)-PAES to constrained problems, however [CT01], and further study on this important

aspect of the algorithm will surely follow.

More importantly perhaps, it would have been in keeping with the themes and philosophy of
this thesis to compare the performance of (14+1)-PAES with other simple approaches which
may be candidates for strong baseline approaches to Pareto optimization. For example,
it would be interesting to compare the performance of (14+1)-PAES with a random search
algorithm using the same archiving strategy. It remains an open question whether such an
approach would perform better than PAES on test functions such as the deceptive and highly
multimodal test functions 74 and 75. It is also regrettable that (1+1)-PAES has not been
compared directly with a simple local searcher that uses scalarizing selection. We have made
the hypothesis that Pareto selection using an archive is more efficient (in terms of function
evaluations) at obtaining a diverse and close approximation to the Pareto front, than if
scalarizing selection (with randomly selected scalarizing vectors at each step) is used, but we
have not empirically tested this hypothesis so far. It also remains an avenue of future research
for methods based on the PAES framework, including SA and TS versions, to be compared
with similar methods deriving from the MCDM literature which are based on scalarizing,

rather than Pareto, methods.

The testing of population-based variants of PAES has been limited. The early experiments
reported in [KCOOb] showed that on some problems the use of a population was beneficial
but because of the way selection and archiving were combined in these PAES variants, poor
performance was generally seen. The testing of multi-start PAES and the other variants

carried out to date has been unstructured and is not reported in this thesis.
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8.3.2 M-PAES

The key limitation with the M-PAES algorithm is the difficulty we have at times experienced
in setting its various parameters. Much further investigation is required to express the useful
ranges of the parameters, and how they interact with one another, and to devise a reliable
method of setting them. On the mc-MST problems we found that M-PAES was robust to the
settings we used, across the set of instances tackled. This is encouraging because on some of

the earlier test function problems, it was quite difficult to set parameters effectively.

8.3.3 Performance metrics

In this thesis, some of the performance metrics used to assess algorithm performance, sta-
tistically, are subject to several objections. First, the method AS3 for testing multiple runs
from multiple algorithms is not statistically significant in the same way as the metric AS2
(for testing runs from only two algorithms) is. Fonseca has noted? that there are multiple
testing issues with AS3. For example, if three samples a, b, ¢ from three different algorithms
A, B, C are to be compared then three tests must be carried out: a vs b, a vs ¢, and b vs c.
If a beats both b and ¢ at the 95% confidence level in separate tests using the same sample
from A in both cases then it is not statistically correct to conclude that A beats both B and
C with 95% confidence. In fact, it is not even possible to say that A beats both B and C' with
a confidence of 0.952. This is because only one sample (a) is being used to make inferences
in two separate tests. Using separate samples does not solve this problem either. For now,
we accept that the interpretation of the output of AS3 should not be that the ‘unbeaten’
and ‘beats all’ statistics are significant at the confidence levels used in each individual test.
Rather, they are significant at some lower level which may be difficult to calculate. Further
research is needed to be able to estimate the « level that should be used in the pair-wise tests

to achieve a particular confidence level in the outcome of the multiple test.

Second, it is possible to calculate the median attainment surface exactly (that is, without
sampling) in any number of dimensions, provided that the total number of attainment surfaces
« is odd?, although the computational cost of doing this is high if the number of objectives
is greater than two. Thus we could obtain more accurate values for the metric S2 which
measures the hypervolume of the median attainment surface. In two dimensions, the median
attainment surface can be found in O(nlogn) time by first sorting the points in the first

objective and then finding all the points that define where the ‘middle’ surface in the other

2Personal communication.
3Personal communication with Carlos Fonseca.
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dimension lies. Using such an approach, we could have calculated exact S2 values for the

mc-MST problems with low computational overhead.

8.4 Further work

8.4.1 Reducing the effect of local optima in search

To date, little research in Pareto optimization has focused on characterizing the nature of
search landscapes under different multiobjective selection strategies, and how these might
differ from landscapes in single-objective optimization. One interesting question related to
this is whether local optima (defined on some neighbourhood operator) in a single-objective
problem can be “removed” if the problem is re-formulated as a Pareto optimization prob-
lem. The reason for thinking that this might be possible is that in a Pareto optimization
landscape, points may be equal to, better (dominating), worse (dominated), or incomparable
(nondominated) with respect to other points in the search space. In contrast, in single objec-
tive optimization, they may be only equal, better or worse. The fact that points in a Pareto
optimization problem can be incomparable opens the door to the possibility of the landscape
looking quite different. Consider using a (local search) Pareto selection algorithm which al-
lows moving from one solution to any other solution that is incomparable. Allowing this kind
of move means that the number of solutions that it is possible to ‘walk’ to from any given
solution may be increased relative to the situation in single-objective local-search. Therefore,
the number of effective local optima in the search landscape may be reduced compared to

what is usually experienced in single-objective optimization.

In work recently published by Knowles et al. [KWCO01], the effect on local search of potentially
reduced optima was investigated. In the paper, two different single-objective problems were
“multiobjectivized”, that is, reformulated as Pareto optimization problems: H-IFF [WP00]
and TSP. On both problems the performance of (1+1)-PAES on the transformed (multi-
objective) landscape was compared with that of a simple hillclimber (SHC) on the original
landscape. On both problems, PAES was able to search more effectively than SHC using
the same neighbourhood operators. On H-IFF, PAES was competitive with using simulated
annealing. In the case of the TSP problem, the multiobjectivization of the problem was
achieved by arbitrarily defining two sub-tours, and seeking to minimize both. Over a set of
different types of instance, PAES was always significantly better than SHC in terms of the
average of final tour lengths found, given equal numbers of evaluations. Other experiments
showed that the effect was still significant when population-based (non-recombinative) local

searchers were used, as well.
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This study leaves many questions unanswered, and motivates several new lines of research.
In further work it might be fruitful to investigate if there exist any real-world problems where
a multiobjectivization can be found in which PAES performs competitively with simulated
annealing or tabu search, or other local search methods that deal effectively with local optima.
Other lines of enquiry include investigating the optimal number of objectives to balance
exploration and exploitation in the search space. It may be best to begin search with a
large number of objectives, which would reduce local optima and encourage exploration, and

gradually conglomerate these back to a single objective function to encourage exploitation.

8.4.2 Highly multiobjective problems

It is an unfortunate fact that the vast majority of the research in evolutionary multiobjective
optimization actually concerns problems of only two objectives. In this thesis, some problems
with three and four objectives have been attempted but the test functions and problems that
are currently available mean that (14+1)-PAES and the other algorithms have not been tested
on highly multiobjective problems. Fonseca and Fleming [FF95] conjectured some time ago
that pure Pareto EAs would not perform well on problems with large numbers of competing
objectives, partly because the tradeoff front would become too large and unmanageable for
good compromise solutions to be found. This led them to develop methods for incorporating
preferences into their Pareto ranking methods. Similarly, preference approaches have been
developed by Cvetkovic and Parmee [CP99], who have tackled conceptual design problems
with up to 13 objectives. Despite the undoubted need for these kind of mixed search/decision
making approaches for engineering applications, it seems that the question of how to deal
with large numbers of objectives in the absence of preferences is still an interesting theoretical

question.

This question may not be entirely academic, either. In some game-playing applications, in
which many different strategies exist, a player can only be accurately evaluated by considering
its success against other players. In many interesting games the payoff relationships between
the different strategies are intransitive. Thus, to evaluate a new strategy it may be necessary
to test it against a large number of other game-playing opponents. In this scenario, the score
against each opponent can be considered as a different objective. In a recent paper [NWO01],
Noble and Watson showed that better strategies were co-evolved in a game of Texas Hold’em
poker when Pareto selection was used to select nondominated playing strategies than if selec-
tion was based on the aggregated scores against all opponents. In this kind of co-evolutionary
application, one is not trying to find a single good compromise solution; rather, one hopes

to leverage the performance of the whole co-evolving population by using a good selection

284



8.4 Further work

strategy. Clearly, in this kind of application the number of objectives may be quite high.

In applications like the game-playing one just described, and also on truly multiobjective
test problems (i.e. with K >> 2) like those proposed in [DTLZ01], the archiving strategy of
PAES might perform very poorly. This is because the number of solutions desired (and hence
the archive size) will be small compared to the number of objectives in the problem. This
will mean that many of the requirements necessary to achieve a good distribution of solutions
in the archive will be violated. Other Pareto methods will face similar problems because in
high dimensional objective spaces too many nondominated solutions exist. This might be
overcome in a number of different ways. One strong possibility is to use other scaling and
range independent relations in place of the dominance relation, in order to rank solutions.
For example, favour [DDB01] may help rank solutions that are normally incomparable using
Pareto dominance alone. The epsilon-dominance relation, recently used in archiving strategies
proposed by Laumanns et al. [LTDZ01], is another technique capable of restricting the number
of incomparable solutions discovered. Improvements to the ability of the PAES archiving

strategy to handle numerous objectives will be a key area of further work.
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Appendix A

Proof that Upper Grid Boundaries

Converge

Convergence of the upper grid boundaries can only be proved under certain conditions. Con-
sider a three objective case in which the vector in the efficient set with largest value in
objective 1 is z! = (6,1,3). Another vector in the Pareto set is z2 = (6,3,1). However, the
non-efficient vector z* = (7,3,2) also exists. If z! (but not z2) is currently in the archive
and z3 is generated at the next step, then it will be accepted and the grid boundaries will
be updated. Thus, the upper grid boundary on objective 1 will become larger than the any
vector in the efficient set’s value in this objective. However, this value of the grid boundary
may not be maintained because if z? is generated at some future time, z> will be dominated,
and removed from the archive, and the grid boundaries will be appropriately updated, ac-
cordingly. Because it is possible for z? to be ‘lost’ from the archive, in future iterations, the
same cycle of events can occur again. Therefore, in this kind of situation the upper grid

boundaries may never converge.

Condition A.1, below, formalizes the properties which must be true of Z* if we are to avoid
situations such as the above, hence enabling us to prove that the upper grid boundaries will
converge. In the following, we prove the convergence of the upper boundaries in the restricted

case when Condition A.l is true.

Condition A.1 Vk, Az € C(Z*),z, > maxzy z-,32* € Z*, 2z, = maxz z-,2 ~ z*, where
C(Z*) denotes the complement of the efficient set. In other words, on any objective, there
are no non-efficient vectors that have a component value that is larger than or equal to the

largest component value of any efficient vector, and that are also nondominated with respect



to any of the efficient vectors with the maximum component value.

Lemma A.1 If Condition A.1 is true and a vector z* with component z, = maxzy z- for

some k 1is generated at time t, then maxzy v, = maxzy, z«.

Proof A.1 Assume that a vector z* with component z, = mazzy 7+ for some k is generated

at time t. Then we have maxz, N, = maxrzg, z«.

The vector z* will enter the archive if Domination(t) or Diverge(t) or Low_pop_region(t) or
Fill(t) executes, and hence it is clear that maxzy, p, > maxzy, z+. But because Condition A.1
18 true, we also know that My, which is always a nondominated set, cannot contain any

non-efficient vector with zp > maxzy z+. Thus, maxzy pr, = mazzy z+.

if z* does not enter the archive, it is because Steady_state(t) executes. However, one of the
conditions for Steady_state(t) to execute is that Vk,maxzy N, = mazzyn, . So we have
Z, = maxzg z- and Yk, maxrz, Ny, = maxzy ,_,, ond Steady_state(t) executes. Therefore,
since z* € Ny, then maxzy v, , = Mmaxzy, N, = maxzy, z+, and because Steady_state(t) ezecutes

MATZ M, = MATZk M,_,, SO MATZE M, = MATZE 7+, A4S required.

Lemma A.2 If Condition A.1 is true, and for some k € 1..K,3z* € M;,, with z;, = mazxzy z-
then Vt > t,,,, dz € My with z, = maxzy z-.

Proof A.2 Assume that for some k € 1..K,3z* € M;,, with z;, = mazxzy z-. We show that

no archiving rule is capable of removing all the vectors with component z, = mazzy, z-.

Let us consider each of the rules that can remove vectors. These are the rules Diverge(t),

Low_pop_region(t), and Domination(t).

Diverge(t) can remove only one vector from the archive. If there is only one vector z € M,
with z, = maxzy z+ then, since Condition A.1 is true, there can be no vectors in M; with
Zk > maxzy z- (because they would be dominated). Thus z is a unique extremum in the

archive and Diverge(t) cannot remove it by the definition of Diverge(t).

On the other hand, if there are m > 1 wectors in the archive with z, = mazzg z- then

Diverge(t) may remove one of them. However, one or more will remain in the archive.

Low_pop_region(t) can also remove only one vector from the archive and only if it is not a
unique extremum. Thus, the same argument as for Diverge(t) applies, so Low_pop_region(t)

cannot remove all vectors with z, = mawzy z-.
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Domination(t) can remove multiple vectors at once. However, it cannot remove any efficient
vector. Since Condition A.1 is true any vector in M; with component z, = mazzy z+ must

be efficient. Therefore Domination(t) cannot remove these vectors.

Theorem A.1 If Condition A.1 is true then the upper boundaries of the grid uby; converge
for all k.

Proof A.3 To show that the upper boundaries converge it is sufficient to show that there is

a time t,, such that Vt > t,,,Vk, mazxzy rr, = mazzy z+. For this we just require:

1. If a vector z* with component z;, = mazzy 7~ for some k is generated at time t, then

maxzg v, = maxzy z+. This is Lemma A.1.

2. If for some k € 1.K,3z* € M;, with z;, = mawzg 7z~ then Vt > tp,, 3z € M; with

2, = maxzy, z+. This is Lemma A.2.

Due to Condition A.1, Item 2. ensures that ¥t > tp,,Vk,maxzy r, = maxzg z- because

vectors with zp > mazxzy 7z« are always dominated.

We now provide two cases when Condition A.1 is always true, so that the upper boundaries

of the adaptive grid converge.
Theorem A.2 if K =2 then Condition A.1 is true.

Proof A.4 Assume K = 2 and Condition A.1 is not true. Then there is a vector z € C(Z*)
and an objective k € 1..2 such that z;, > mazzy 7+, and z is nondominated with respect to a

vector z* € Z* with component 2, = maxzy z=.

Without loss of generality, we choose k = 1. Since z1 > maxz1 z+ and z ~ z*, then we have
z9 < z3. But this must mean that z is efficient (a contradiction) because if it were not there
would have to be another vector z** € Z* < z. But then z** < z* because zi* < maxzy z-

and z5* < z9. This is also a contradiction since z* is efficient.

Theorem A.3 if Vk, Az € C(Z*),z, > maxzy z+ then Condition A.1 is true. In other
words, if the efficient set spans the feasible objective space in all objectives then Condition A.1

18 true.

Proof A.5 Vk, Az € C(Z*),z, > maxzyz- = Yk, [z € C(Z%),z, > mazzy z-, 32" €

2", 2, = MaTzg 7+, % ~ L.
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Appendix B

Proof of Theorem 4.4

Conjecture B.1 The mazimum number of mutually non-inferior regions in o K dimensional

vector space divided up into div equal divisions in each dimension, is div™ — (div — 1)¥.

Lemma B.1 There are divE —(div—1)% regions with a co-ordinate vector c = (cy,ca,...,cK)
such that Vi € 1..K,¢; = 1..div,3j € 1..K,cj = 1. In other words, there are div™ — (div —1)%

regions with a co-ordinate vector in which at least one of component has the value 1.

Proof B.1 Let ¢ = (¢1,c2,...,cx) be the co-ordinate of a region, with Vi € 1..K, ¢; € 1..div.
Clearly there are div® such regions.

Let d = (dy,ds,...,dx) be the co-ordinates of a region with no components having the value
1. So, Vi € 1..K,d; € 2..div. Clearly there are (div — 1)K of these regions. Therefore, by
subtracting the second set of regions from the first, we have that there are div® — (div — 1)X

regions with a co-ordinate vector in which at least one of its components has the value 1.

Definition B.1 Ewvery region with co-ordinates ¢ = (c1,¢2,¢3,...,cx) with Vi € 1..K,¢; €
l..div, can be mapped to a unique root region of ¢ with co-ordinates rt. = (¢1 — ac,co —
¢, C3 — Qg - .. ,CK —Gc), Where a, = min({¢; | i € 1..K'}) — 1. Notice that a root region has the

property that at least one of its co-ordinates has the value 1.

Lemma B.2 Two regions with co-ordinates ¢ = (c1,¢2,¢3,...,ck) andd = (dy,ds,ds, ..., dg),
with Vi € 1..K, ¢; < d;, share the same root region if and only if Vb € N*,Vi € 1..K,d; = ¢;+b,
and Vi € 1..K(¢;,d; € 1..div).
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Figure B.1: An illustration of root regions. Diagonal lines have been drawn to show all of
the regions that map to the same root region. Clearly, if two vectors are in different regions
on the same diagonal then one must be superior to the other. Therefore, any nondominated
set (like the one shown) cannot occupy more regions than there are root regions.

Proof B.2 We have:

c = (c1,69,¢3,...,¢x) and d = (¢y + b,cg + bycs +b,...,cx +b) and a, = min({¢; | i €
1.K}) — 1,04 =min({¢; +b|i € 1.K}) — 1.

Clearly, a. = aq —b.

Now, rt. = (¢1 — @¢y,C2 — e, C3 — Gy ..., Cx —ac) and vty = (¢ +b—ag,co +b—ag,c3+b—
ag,...,cx +b—agq)

By substituting aq — b for a. in the expression for rt. we have:

rte = (c1 +b—ag,c2 +b—ag,c3 +b—agq,...,cxk +b— ag) = rty, proving the sufficient
condition.

To prove the necessary condition:

Assume rt. = rty and ¢ = (¢1,c9,¢3,...,¢k) and d = (¢1 + bi,¢co + ba,e3 + b3, ..., cx + bi)
and =(by = by =b3 =... =bg). Nowrt. = (c1 — ac,c3 — Gc,C3 — Qg,...,Cx — a¢) and
rtg = (c1 + b1 —ag,c2 + b2 —ag,c3 + b3 —aq, ..., cx + bx — aq)

Since rt. = rtq, (b1 —aq,bo —agq,bs—agq, ..., bx —aq) = (—ae, —ae, —a, ... —a.) which implies
that b1 = b2 =b3 = ... = bg, a contradiction.

Lemma B.3 If two regions have different co-ordinates but map to the same root region then

one is superior to the other.
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Proof B.3 From lemma B.2 the two regions must have co-ordinates ¢ = (c1,¢2,C3,-..,CK)
and d = (c1 +b,ca +b,c3 +b,...,cx +b) with b € N, Therefore c is superior to d because

1ts co-ordinates are lower in every dimension.

Corrollary B.1 In any set of mutually non-inferior regions, each region must map to a

different root region. This follows from lemma B.3.

Theorem B.1 The mazimum number of mutually non-inferior regions in a K dimensional

vector space divided up into div equal divisions in each dimension, is div® — (div — 1)K,

Proof B.4 We can see that there are ezactly div™ — (div — 1)X root regions in the vector
space from lemma B.1 and the definition of a root region. Since every non-inferior region

maps to a different root region B.2 then the mazimum number of non-inferior regions is also
div® — (div — 1)K,

Figure B.2: An illustration of the equation div® — (div — 1)¥.
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Appendix C

Derivation of Equation 4.3

Reproduced from [Rob01]

Q. What is the number of ways of getting the sum s on n dice with z faces each?

A. The generating function for one die with z sides is
fR)=z2+22+22+... + 2% (C.1)

The coefficient of a term tells you how many ways you can roll the exponent of z in the term.
In this case, for numbers from 1 to z, you can roll each in one way. For other numbers, like
0 and numbers greater than z, you can roll them in zero ways. Thus the above generating
function is right for one die. For two dice, square the above function. For n dice, raise it to
the nth power. Then you want the coefficient of z® in that expression. When calculating this
coefficient for some specific value of s, you can do the arithmetic and ignore all powers of z
with exponents bigger than s. If you want all the probabilities, you can ignore all exponents
bigger than (n.z + 1)/2, because the number of ways of rolling s is the same as the number

of ways of rolling n.x + 1 — s, and if one is larger than (n.z 4+ 1)/2, then the other is smaller.



To express this in binomial coefficients, you can write:

flz) = (z=2"")/(1-2)
f" = [z=2""/0-2)"
= M(1— 21— 2™

= ") (-1)k <Z> 2R, <n +% - 1) 2
k=0 1=0 !

R
k=0 t=0

Now the coefficient of z° in this will be given by:

(s_:/x(_nk. (Z) | (S _ng;._kl— 1>‘

s |

(C.7)
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Appendix D

Proof of Incorrectness of Zhou and
Gen’s Proposed Enumeration
Algorithm for Pareto Optimal

Multi-criterion Spanning Trees

D.1 Statement of the problem

The multi-criterion minimum spanning tree (mc-MST) problem can be simply stated. Given
a weighted graph G = (V, E) with vertex set V' and edge set E and edge weight vectors
w;i(e) € R, e € E,i € 1..K where K is the number of criteria, find a spanning tree T in G

such that there does not exist another spanning tree whose total weights Pareto dominate T'.

D.2 Zhou and Gen’s proposed enumeration algorithm

In an article by Zhou and Gen [ZG99], an algorithm for enumerating all Pareto optimal

spanning trees was proposed. The operation of the algorithm can be summarised as follows:

Step 1: Pick an arbitrary start-vertex v;. In turn, consider each edge adjacent to v;. Put

all edges that are nondominated into a set of subtrees S.



D.3 Incorrectness of the proposed approach

Step 2: For each subtree s € S consider, in turn, each adjacent edge that does not cause
a cycle to be created when added to s. For each such edge that can be added to s to
form a new subtree ¢ which is nondominated by any other subtree sprouting from s,

put t into a new set T

Step 3: S <+ T, T <+ (. Compact down the set of subtrees S such that all dominated

subtrees, and all repeated subtrees, are removed.

Step 4: If the subtrees in S have V' — 1 edges then S is the required set of unique, Pareto

optimal spanning trees. Else return to Step 2.

In [ZG99] the above algorithm was used to enumerate the set of Pareto optimal spanning
trees on some small mc-MST instances. The resulting solution sets were then used to measure
the proportion of solutions that were Pareto optimal from those generated by the authors’
proposed genetic algorithm. In the next section we prove that the enumerative algorithm is
incorrect: it neither guarantees returning all Pareto optimal solutions, nor that those returned

are Pareto optimal.

D.3 Incorrectness of the proposed approach

Theorem D.1 The proposed algorithm is not guaranteed to generate all Pareto optimal span-

ning trees.

Proof D.1 The proof is by example. Consider o 4-vertex weighted complete graph Gi in

which each edge has two weights associated with it as follows:

edge weights 0 34 !
0-1  (3,4)
0-2 (2,6)
0-3  (4,3) (4.3 (1,10
-2 (1,10)
-3 (6,2)
23 (2,2)
3 (2,2 2

In total there are 16 spanning trees of the graph Gy, of which 6 are Pareto optimal. The

complete list of spanning trees of Gy is given in Table D.1 with the 6 Pareto optimal spanning
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D.3 Incorrectness of the proposed approach

trees shown diagrammatically.

Given G1 and a start-vertex of 0, the algorithm of Zhou and Gen generates the trace given in
Table D.2. The trace is interpreted as follows: The left hand column lists all the edges that
can be added to v1 = 0, and next to each listed edge, its corresponding weight vector is given.
Since all of these edges are nondominated each becomes a subtree in S, to which other edges
can be joined. The second column shows each of the edges that can be added to each of the
subtrees in column 1, each forming a new subtree of two edges. Similarly, for each subsequent
column, the edges that can be added to the subtree of the previous column are listed. Next to
each subtree in the trace the total vector subtree weight is given. A double-asterisked subtree
denotes one which is dominated by other subtrees sprouting from the same subtree at the
previous level, and a single-asterisked solution denotes one which is dominated by a subtree
sprouting from a different sub-tree at the previous level. Both single and double-asterisked
solutions are discarded in Zhou and Gen’s algorithm, and no further edges are added to them.
The final solutions returned by the algorithm are thus those in the right column with no
asterisks. A repeated tree, i.e. one with identical edges to another one, is denoted by an “R”.
The trace shows that the algorithm generates only 4 of the 6 Pareto optimal spanning trees
of the graph G1.
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Edges Total tree weights Pareto optimal Figure
0-1,0-2,0-3  (9,13) no
0-1,0-2,1-3  (11,12) no
0 (34) 1
0-1,0-2,2-3 (7,12) yes @9
3 2,2 2
0-1,0-3,1-2  (8,17) no
0 (34) 1
0-1,0-3,2-3 (9,9) yes @9
3 22 2
0-1,1-2,1-3  (10,16) no
0 34 1
0-1,1-2,2-3 (6,16) yes o)
3 22 2
0 (34) 1
0-1,1-3,2-3 (11,8) yes (G,Z)E
3 2,2 2
0-2,0-3,1-2  (7,19) no
0-2,0-3,1-3  (12,11) no
0-2,1-2,1-3  (9,18) no
0-2,1-2,2-3 (5,18) yes o
3 (22) 2
0-2,1-3,2-3  (10,10) no
0-3,1-2,1-3  (11,15) no
0-3,1-22-3  (7,15) no
0 1
0-3,1-3,2-3 (12,7) yes w|

3 (22

2

Table D.1: The spanning trees of G.
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0-1 (3,4)

0-2 (2,6)

0-3 (4,3)

2 (5,10)*
3 (7,7
2 (4,14)%
3 (9,6)*

0-1 (5,10)%*
0-3 (6,9)**
-2 (3,16)

2-3 (4,8)

2-3

-3 (7,19)**
-3 (9,18)**
2-3 (5,18)

-1 (7,12)
-2 (5,18)R
1-3 (10,10)*

0-1 (9,9)
1-2 (7,15)*
1-3 (12,7)

Table D.2: The trace of the algorithm of Zhou and Gen as it generates spanning trees of the

graph G, using start-vertex v; = 0.
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D.3 Incorrectness of the proposed approach

Theorem D.2 The algorithm of Zhou and Gen can generate spanning trees that are not

Pareto optimal.

Proof D.2 The proof is by example. Consider a 5-vertex weighted complete graph Go in

which each edge has two weights associated with it as follows:

edge weights

0-1  (356,979) 0

0-2 (587,285)

0-3  (745,225) (356,979)

0-4 (26,603) A )
1.2 (926,138)

-3 (826,546)

1-4  (857,231)

2-3  (375,323) (10.275) (926,138)
2-4  (422,711)

3-4  (10,275)

(375,323) 2

Then given Go and a start-vertex of 0, the algorithm of Zhou and Gen generates the trace
given in Table D.3. The generated spanning tree 0-3,1-4,2-3,3-4 with total weight vector =
(1987,1054) is not dominated by any other generated in the trace, and is thus returned as
an optimal solution. However, this spanning tree is dominated by the feasible spanning tree
0-2,1-2,2-3,8-4 (shown in Figure D.1) which has a weight vector = (1898,1021).

(10,275) (926,138)

(375,323)

Figure D.1: The spanning tree 0-2,1-2,2-3,3-4 in Gbs.
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0-1 (356,979) **
0-2 (587,285)

0-1 (943,1264) **
0-3 (1332,510) *
0-4 (613,888) *
1-2 (1513,423)
0-3 (2258,648)
0-4 (2284,1251) **
1-4 (3115,879) *
2-4 (2680,1359) **
3-4 (2268,923)
0-4 (1539,1026) *
1-3 (2339,969) **
1-4 (2370,654) **
2-3 (1888,746) *
2-4 (1935,1134) **
2-3 (962,608) *
2-4 (1009,996) **
0-3 (745,225)
0-1 (1101,1204) **
0-2 (1332,510) **
0-4 (771,828) **
1-8 (1571,771) **
2-3 (1120,548) **
3-4 (755,500)

0-1 (1111,1479) *
0-2 (1342,785)
0-1 (1698,1764) *
1-2 (2268,923) *
1-3 (2168,1331) *
1-4 (2199,1016) *
1-3 (1581,1046) **
1-4 (1612,731)
0-2 (2199,1016) *
1-2 (2538,869)
2-3 (1987,1054) R
2-4 (2034,1442)%*
2-3 (1130,823)
-1 (1486,1802)*
-2 (2056,961)
-3 (1956,1369)*
-4 (1987,1054)

)

2-4 (1177,1211) **
0-4 (26,603)
0-1 (382,1582) **
0-2 (613,888) **
0-3 (771,828) *
1-4 (883,834) **
2-4 (448,1314) **
3-4 (36,878)
0-1 (392,1857)
0-2 (979,2142)
1-2 (1318,1995) *
2-3 (767,2180)
2-4 (814,2568) **
0-2 (623,1163)
0-1 (979,2142) R
1-2 (1549,1301)
1-3 (1449,1709) *
1-4 (1480,1394) *
1-3 (862,1424) **
1-4 (893,1109)
0-2 (1480,1394) *
1-2 (1819,1247)
2-3 (1268,1432)
2-4 (1315,1820) **

2-3 (411,1201)

0-1 (767,2180) R
1-2 (1337,1339)
1-3 (1237,1747)
1-4 (1268,1432) R

2-4 (458,1589) **

Table D.3: The trace of the algorithm of Zhou and Gen as it generates spanning trees of the
graph G2, using start-vertex v; = 0.
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