
Analysis and Prediction of User Behaviour in a Museum

Environment

A thesis presented

by

Karl Grieser

to

The Department of Computer Science and Software Engineering

in partial fulfillment of the requirements

for the degree of

BSc (Hons)

University of Melbourne

Melbourne, Australia

October 2006



Thesis advisor(s) Author
Steven Bird Karl Grieser
Timothy Baldwin

Analysis and Prediction of User Behaviour in a Museum Environment

Abstract
Visitors to a museum enter an environment with a wealth of information. However
not all of this information may be located in physical form. It may be accessible
through an online web-site and available for download, or this information could be
presented by a tour guide that leads you through the museum. Neither of these
sources of information allow a visitor to deviate from a set path. If a visitor leaves a
guided tour, they will not have access to the resource that is supplying them with the
extra information. If they deviate from a downloaded tour, they again will not have
the correct information sheets for an exhibit that is not directly on their tour. The
solution is to create a Recommender System based on the conceptual similarity of the
exhibits. This system creates a dynamic tour through the museum for a given visitor
by recommending exhibits that the visitor is interested in. Conceptual similarity of
exhibits can be comprised of elements including the physical proximity, the semantic
content of the exhibit, and the opinions of previous visitors. By using a combination
of these similarities, we have produced a system that recommends relevant exhibits
in 51% of test cases.
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Chapter 1

Introduction

Portable technology such as mobile phones and Personal Digital Assistants (PDAs)
are becoming the norm in everyday life. This technology is slowly but inexorably being
adopted by all sectors of society. The major reason for this adoption of technology is
its ability to enrich our lives through availability and enhanced communication, and
to help co-ordinate our lives through the use of calendars and diaries. However, with
few exceptions, these technologies do not take into account how the physical world
and information contained in it affect our decisions and actions. Knowledge of how
users relate to an information rich environment, and the way they respond to it, can
be used to guide and supply information on topics that are relevant to the user’s
behaviour within a related physical environment. Information about surrounds can
be categorized and streamlined to enhance a user’s knowledge of a locale, allowing
them to make more informed decisions, or to provide the user with detailed additional
content that is not normally accessible in a physical space. This research examines
the use of heterogeneous content to enhance a user’s experience of an environment.

1.1 Task Background

The use of non-physical information to provide added meaning to physical envi-
ronments has been developed as part of large scale research projects aiming to explore
the relationships between the physical and digital worlds. Two notable projects are
Equator1 (an Interdisciplinary Research Collaboration (IRC) aiming to bridge the
divide between the physical and digital worlds), and the HIPS (Hyper-Interaction
within Physical Space) project(Benelli et al. 1999). Both of these projects analyse
the way in which digital content and virtual representations of physical environ-
ments can enhance the way that people live, or perform daily tasks. A key aspect
of this integration of technology is the issue of content adaption and presentation.
ILEX(Hitzeman et al. 1997) is a virtual museum that tailors information to a spe-

1The Equator Project Website: http://www.equator.ac.uk/
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Chapter 1: Introduction 2

cific visitor’s preferences. Using this method, visitors are able to access content that
they find interesting, and have their own personalised guide tour through the virtual
museum.

Guided tours have long been available for visitors to museums, and tourists in
cities. The tour guides give museum visitors and tourists additional information
about the surrounding environment which they would not normally have knowledge
of. Museums such as the Louvre in Paris also give visitors the opportunity to construct
their own tours before they visit the museum.2 The Louvre uses predefined Thematic
Trails that take the form of web-pages that can describe the background of exhibits,
and define the route taken. The visitors can print off these pages or load them onto a
portable device to browse as they tour the museum. The problem with the Louvre’s
Thematic Trails and a tour guide in a city is that they are statically defined. Once the
visitor or tourist has made a choice to follow a Trail or a tour guide they do not have
extra content available for other exhibits or locations not directly associated with the
tour. If a tourist wishes to explore a location outside the scope of a guided tour, they
have to leave the tour group and will not have a guide to tell them about the location
they wish to visit. If a museum visitor wants to examine an exhibit outside the scope
of their Thematic Trail, they will have to leave their path. They are able to resume
their tour at any time, but they will not have the same level of information available
as with the exhibits on the pre-made tour.

1.2 Methodology

How users relate actions and previously visited locations to one another indicates
how they conceptualise connections and relationships between the locations. Patterns
that people follow can help to indicate what future actions they might take. These
future predictions can be used in all manner of applications, from personal scheduling
to presentation and dissemination of information content. For this purpose, I have
chosen to work with the Melbourne Museum to create a system to recommend related
exhibits to visitors to the museum. In this case the visitor would be presented with
a list of exhibits that they may like to visit, based on the previous exhibits they
have seen. Other relevant information about the exhibits can also be presented to
the visitor to enhance their visiting experience. This research aims to form dynamic
recommendations to a museum visitor in order to create a personalised tour based
on visitor interests. This will eliminate the need for static pre-made paths and allow
the visitor to create their own tour as they move around the museum.

An environment such as a museum offers an advantage over other information
rich environments such as a city because of size: a smaller environment is easier
to deal with, but also because of the nature of the data within the museum. The

2Paths of Discovery: http://www.louvre.fr/llv/activite/liste parcours.jsp?bmLocale=
en
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heterogeneity of a curated information rich environment allows effective analysis of
how users interact with it, without being hindered by patchy data, or missing content.
A museum can also be divided into sub-sections. These include exhibitions, exhibition
areas, and individual exhibits. A hierarchical structure such as a museum and its
exhibitions is referred to as a taxonomy or ontology.

This research explores the notion of conceptual relationships between exhibits
through the similarity of semantic content, and offers a comparison of different mea-
sures of relatedness and similarity over WordNet (Fellbaum 1998). Also studied are
the effectiveness of simple physical attributes of the exhibits in determining concep-
tual relatedness. The effect of group training methods versus individual histories
as a source of prior path data as an effective means of prediction is also analysed.
Specifically, this project aims to determine whether users make use of a conceptual, se-
mantically based, model when touring an information rich environment, and whether
accurate predictions can be made based on prior paths. This research shows that
users use semantic content associated with exhibits they encounter in order to make
decisions on what to visit next.

1.3 Overview

Multiple aspects of computing, user modelling, and even architecture, make up
the background of this research. We will begin with an in depth discussion of how
these fields of research relate to one another is a necessary precursor to the creation
of any recommendation system (Chapter 2). This discussion will lead into a detailed
analysis of the data to be used in this research, as well as the environment it describes.
The environment must be considered carefully in the way that it relates to the data
that describes it (Chapter 3). Visitors’ conceptual models are comprised of multiple
aspects of the surrounding environment. The development of these attributes of both
physical and semantic spaces into a set of conceptual models designed to create per-
tinent recommendations is the core contribution of this research (Chapter 4). The
outcomes of experimentation are evaluated to determine the validity of these concep-
tual models (Chapter 5), and the contribution of this research to future work in the
field is analysed (Section 6.1).



Chapter 2

Background

There currently exist multiple projects around the world that are investigating the
integration between physical and digital worlds. These projects address many issues
that arise from such integration: environmental awareness, social interaction, content
adaption, and personalisation. Examples of content adaption and personalisation in-
clude tailoring presented information to a user based on their age or knowledge back-
ground, and remembering user preferences to create recommendations restaurants the
user might like. The interaction a user has with their surrounding environment (ei-
ther physical, or digital) can supply important information about how the user acts in
certain situations. This can be as simple as saying a user turns right at intersections
82% of the time, hence recommend that they always turn right. Or more complex
recommendations such as anticipating when to buy stock in a particular company.

2.1 The Digital-Physical Divide

The Equator Project is an IRC formed by eight academic institutions in the United
Kingdom. In broad terms the goal of Equator is to address and evaluate all chal-
lenges that the integration of digital and physical worlds poses. The digital world
is the unseen space encompassed by digital technology. This includes resources like
the Internet, as well as digital technology that is integrated into objects within the
surrounding environment (such as digital billboards, interactive department store di-
rectories and, more broadly, Global Positioning Systems). Equator was conceived to
address the social issues associated with large scale integration of digital technology,
as well as the technical challenges. Its key contribution to the field has been to ex-
amine how the physical and digital worlds interact with one another. It is this aspect
that our research examines: analysis of how an information rich non-physical space
can be used to impart meaning onto objects within a physical space.

The term hypernavigation describes the navigation of a virtual environment. Such
a representation can allow a virtual representation of a physical space, and hence the

4



Chapter 2: Background 5

navigation of a physical space by proxy. The HIPS project (Benelli et al. 1999) extends
this concept one step further, into the realm of hyper-interaction. Hyper-interaction
describes the overlap between the physical environment, and the digital information
content describing it. Certain actions in the real world will translate into actions
in the digital world. For example moving closer to a real world object will display
information associated with the that object. The overall aim of the HIPS project was
to create a digital tour guide that would be able to recommend objects within the
local physical environment and provide information about them. This research aims
to analyse the importance that different components of objects have on the effect of
recommendations. Specifically this research identifies the key aspects of real world
object content to examine when creating recommendations within an information rich
space.

A key component in predicting a visitors future movement is the ability to keep
track of their current movement. This history must be up to date for any predictions
based on it to be valid. If a visitor has just seen something that we are about to
recommend, then recommending it is useless. Thus the need for a system that can
quickly and accurately track visitor movement is an essential component in creating a
prediction system. The most ideal method of tracking visitors is to give each visitor a
wireless device that can have its position relayed back to a central server (as in Benelli
et al. (1999)). Sparacino et al. (1999) suggests several methods of using wireless
devices to enhance the visiting experience in addition to tracking the visitors through
the museum. The two major methods suggested are fixed “Smart Rooms,” which
uses a restricted physical space to present non-physical content or to allow visitor
interaction, and wearable computers which act as a means for extra audio as well as
video content to be presented to the user. These methods Such an implementation is
out of the scope of this research. This study deals with path prediction, not locational
awareness and visitor tracking. We assume that all tracking is done implicitly, and
that visitor paths are known in advance. However, it is necessary to acknowledge the
different ways in which visitor are able to interact with a physical environment while
relating back to an associated virtual space.

2.2 Content Extraction, and Prediction

Visitors to an Information Rich space have an abundance of information to deal
with, whether it be advertising, or other content they wish to access. The notion of
information being “pushed” onto visitors, and being “pulled” by visitors was explored
in Cheverst and Smith (2001). With respect to a museum environment there is an ever
present level of information push from all exhibits within the museum. But individual
sections were pulled by visitors that approached the exhibits and examined their
content. This is one of the aspects that this research will address. By predicting and
recommending exhibits to visitors, less time will be lost by visitors trying to work out
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which exhibits are pushing desired content, and can go directly to the exhibits they
wish to pull content from. Ascertaining what information a visitor is trying to pull
from an exhibit can be modelled as determining relationships between exhibits. If a
visitor examines two exhibits (i.e. pulls information from both of them), we can use the
information overlap to determine what information the visitor pulled from the exhibit.
This overlap can then be used to find exhibits with a similar information content, and
selective supply the information so that only the desired content is pushed. While this
research only deals with recommendation based on exhibit similarity, future studies
could further examine this method of content adaption.

Content adaption was also explored notably as part of the Intelligent Labelling
Explorer (ILEX) project (Hitzeman et al. 1997). In this case the content adaption was
more focussed on Natural Language Generation, based on visitor exhibit preferences.
A virtual museum in the form of a website was developed to allow users to navigate to
any areas or exhibits that they expressed interest in. These navigational histories were
used to identify aspects of the exhibits that the users found interesting. These aspects
were then related to other exhibits and referenced against a database of facts about
each exhibit. Text was then generated to explain connections, unseen aspects, or more
detailed content(if desired). However this positive content adaption did not allow
users to remove content if they inadvertently strayed towards an uninteresting section.
The discourse produced for each exhibit is logged so as not to repeat information,
so in this respect all information about an exhibit will be new for each time the
visitor sees the exhibit, and even if the user disliked the exhibit it will be related
to aspects of other exhibits that they may have enjoyed. This again falls under the
category of content adaption, rather than content recommendation, but the methods
described here dealing with uncovering unexpected relationships can be extrapolated
to a recommendation system. automatically scoring overlap between all exhibits, even
seeming unrelated exhibits can be recommended to a visitor (who will then have a
nice surprise of uncovering an hidden fact).

Recommender Systems (Resnick and Varian 1997) have the purpose of using a sta-
tistical or histographic model to predict user paths. Some well known recommender
systems include websites such as del.icio.us,1 and the internet radio stations Last.fm2

and Pandora.com.3 All of these systems attribute a set of identifying keywords or
phrases to the objects being recommended (web-pages, songs). These terms are then
used to gauge similarity between songs or web pages. Whereas ILEX does not take
into account the order of such a history, other studies have analysed the effect of
ordered history on Recommender Systems. Such a system was proposed in Chalmers
et al. (1998) at the seventh World Wide Web Conference as a solution to the relative
dearth of effective search engines at the time.4 The order of a users history is impor-

1http://del.icio.us
2http://www.last.fm
3http://www.pandora.com
4Interestingly enough, this paper was presented at the same conference as Sergey Brin and
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tant, as visitors are less likely to remember exhibits long ago in their path, and are
more likely to make decisions based on their current context. This research will ex-
amine methods of sequential prediction when making recommendations. The length
of the path will also be taken into account when performing sequential predictions.

A user without a history can be managed in several ways: we can wait until
they do something, and base predictions on that, or we can assume that the visitor
will act in the same way as previous visitors have, and hence use previous visitor
paths to create a model. The collaborative approach relies on there being a sufficient
amount of previous visitor data to create an (at least partially) accurate classifier
for new visitors to the museum. The individual user approach on the other hand
can be much better at correctly predicting future movements, but this accuracy is
based on the size of the history, the more training data the better. The two methods
also allow for different methods of prediction to be used. The collaborative methods
knows the most likely future patterns based on examples it has seen. The individual
method on the other hand must make judgements based on current data, about
future elements it has not seen before. Zukerman and Albrecht (2001) gives a good
discussion of the relative drawbacks and advantages of these two approaches. As well
as predictive methods and statistical models available in these two classes for the
purpose of user modelling. The paths of prior visitors can be used as a means of
supplying collaborative recommendations to new visitors. Collaborative as well as
individual methods of exhibit recommendation will be used in this research.

2.3 Museum-Visitor Interaction

As with any physical space, the space itself provides a restriction on the visitor
within that space. In the case of museums, this restriction can be because of the layout
of the exhibits themselves, such that the visitor must follow a set path (Bitgood
and Shettel 1997). In this case any predictions based on a collaborative method
would be useless, as they would all follow the same path (accurate, but useless), and
any predictions based on individual user history would just cause the visitor to go
backwards and forwards along the same route, thus passing most exhibits multiple
times. Studies such as Peponis et al. (2004) have shown that for museums that have
a sufficiently open plan environment, such effects are minimised. However Peponis
et al. acknowledge that analysis of visitor paths is needed to identify how any features
of a museum exhibition effect visitor motion.

Personalisation: does more feedback help or hinder. By tailoring a tour to a
visitor, we are personalising their visiting experience. Such personalisation can be
done beforehand by the visitor (as in Filippini (2003), or the Louvre’s Thematic
Trails), or the content can be dynamically created to a visitor’s preference (Hitzeman
et al. 1997). However this is done, the behaviour of the user changes if they have the

Lawrence Page’s definitive paper describing Google (Brin and Page 1998)
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knowledge that they are under observation, as mentioned in (Chalmers et al. 1998;
Chalmers 2001). When any recommendation is made to a museum visitor, they
will be temporarily aware that they are being tracked. This intrusion is minimal
and temporary and, if done well, will go unnoticed. In the case where feedback is
necessary for a predictive model to function, this feedback should be as minimal as
possible.



Chapter 3

Resources

Delivering non-physical information to people that are within a physical space re-
quires a rich source of information to draw from. It also requires a physical space that
corresponds with this information. In an environment such as a city this information
can be patchy. Not all objects and locations have a corresponding body of informa-
tion associated with them. It may be easy to find a description of the significance
of an office building (date built, services provided, etc.), however finding information
relating to a less well known object (an obscure statue in a park for example) can be
more difficult.

This chapter describes the sources of the data to be used in this research, as well
as the methods used to analyse this data. The environment in which the testing
takes place is important to consider carefully. The environment must be a visitable
space: people must want to visit it, or else recommending objects within it would
be useless. The environment must also be associated with a rich information source
that describes it. This information source must be readily accessible, and be of a
consistent quality.

This data must be processed and analysed. We are aiming to deliver content to
visitors, and using information rich content to enhance the visitor’s museum experi-
ences. In order to extract semantic content from bodies of text, the semantic content
needs to be identified. This content can be extracted using language processing meth-
ods such as Named Entity Detection. A versatile language technology toolkit will also
enable testing and evaluation over the collected data.

3.1 Museum Structure

The homogeneity of the information within a given space is an import factor when
considering an appropriate environment. A consistent standard of information content
across an environment ensures an even distribution of the environment’s semantic
representation. This simply means that the information is not clumpy or patchy

9



Chapter 3: Resources 10

when placed into a physical environment.
Museums are physical locations that provide homogeneous, information rich envi-

ronments. The information contained within museums is of a consistent standard of
quality, and is constantly kept up to date. The consistency of the information style
is necessary to avoid any patchiness in the overall content.

Museums are traditionally classified into levels of granularity: exhibitions, exhi-
bition areas, and exhibits. Exhibitions cover large sections of museums and group
together all exhibits revolving around a broad theme. Exhibition areas are smaller
collections of exhibits, and group exhibits based on a more specific or concise theme.
The lowest level of granularity in a museum is an exhibit. An exhibit may be one
individual item, such as a painting or a dinosaur bone, or a collection of objects such
as several pots or hats. This research deals with exhibits as the objects being recom-
mended, but the methods shown in this research can be used to recommend higher
levels of representation (such as exhibition areas) in the museum.

3.2 Melbourne Museum

Delivering non-physical adapted content to a user within a physical space necessi-
tates the acquisition of an information rich real world environment, i.e an environment
in which real world entities have information describing them that can be easily ac-
quired and accessed. This information can take the form of multimedia such as audio
or video, images, or simply descriptive text that describes physical entities is easily
accessible. This project was initially proposed as part of a collaborative project with
the Melbourne Museum, and as such we have access to the facilities at the Melbourne
Museum, as well as data collected by the marketing department within the museum.

The Melbourne Museum is a recently constructed museum located in Carlton
Gardens. The museum houses a broad showcase of exhibits compiled into exhibitions
on the Natural world, Science and Technology and Australian History. These indi-
vidual exhibitions are also sub-divided into smaller exhibition areas. The museum
is recently built, and as such does not suffer from physical restrictions that can be
created by using older buildings not suited to the task of housing a museum. In the
case of the Melbourne Museum’s previous residence at the State Library of Victo-
ria,1 visitors were funnelled through corridors, and passed exhibits in a designated
order. A rigid museum design does not allow visitors the ability to selectively access
pertinent exhibits. The open plan design at Melbourne Museum’s current residence
allows visitors to have knowledge of the existence of all exhibits within the current
exhibition or gallery. As a consequence they are able to make decisions about which
exhibits to visit without being restricted by physical constraints aside from distance.

1http://www.slv.vic.gov.au
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3.2.1 The Australia Gallery

The Australia Gallery showcases a range of exhibits that revolve around the central
themes of Melbourne’s culture and history. It contains exhibits such as CSIRAC,2

and the taxidermal remains of Phar Lap (Australia’s most famous race horse).
The exhibitions within this gallery are varied in topic and content, and offer a

sample distribution of different content types offered by a standard museum (exhibits
for all ages, knowledge bases and backgrounds). The exhibits are the lowest level
of granularity in a museum environment. The exhibits in the Australia Gallery are
organised into exhibit areas. These exhibit areas are organised into themes revolving
around a specific topic or common element. These themes include the life of Phar
Lap, the founding of Melbourne, and Sport in Melbourne. The grouping of similar
exhibits into close physical proximity contributes to the overall similarity displayed
between exhibits within the area.

For the purposes of experimentation, we define the exhibits as the locations rep-
resented in Figure 3.1. These locations each correspond to an exhibit. There are fifty
three exhibits in total.

3.2.2 Collected Visitor Data

In order to analyse the movement of visitors through galleries, and the museum
as a whole, the Marketing and Research Department at the museum routinely fol-
lows visitors through the museum and makes detailed recordings of their movements.
Statistics such as the path the visitor takes, the time spent at each exhibit, and
how they entered and exited the gallery/exhibition are recorded. The method used
to track the visitor paths is simple, but accurate. Museum staff use tracing paper
layered over a map of the gallery or exhibition, and hand draw in the path that the
visitor takes, noting the direction taken and the locations of all stops made. The time
that a visitor spends at each individual exhibit is recorded separately and placed into
a Microsoft Excel spreadsheet. The traced visitor paths are primarily used to study
how the layout and exhibit placement in the museum affects the flow of human traffic.
The recorded statistics are used to analyse which exhibits are being visited more or
less frequently than others, and why.

The data was collected during September and October of 2001. The age of the
data collection must be taken into account, as some exhibits have been added or
removed during this time. However this is only the case for two of the exhibits
within the Australia Gallery. One exhibit has been added and one removed. The two
exhibits are in a very similar position though, and for all intents and purposes can
be considered to be the same exhibit. The content of other exhibits has not changed
significantly over time, and the semantic content associated with the museum space

2Council for Scientific and Industrial Research Automatic Computer: The world’s fourth com-
puter, and Australia’s first.
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Figure 3.1: Map of the Australia Gallery, with exhibit positions labelled.
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has not undergone large changes in the intervening five years. We assume that any
changes made in the past five years have a minimal effect on the semantic ontology
of the museum space and will not harm analysis of the collected visitor paths.

There are a total of sixty visitor paths recorded within the Australia Gallery. By
combining the traced path of the visitors with the statistics recorded in the spread-
sheet, we have created a corpus of sequential paths that can be thought of as sentences
of exhibits with each exhibit representing a single word. These paths can be used to
form a collaborative model of how visitors in general will behave within the environ-
ment. These paths will also be used as real world sample data to test the conceptual
models developed.

3.2.3 Museum Website

The Melbourne Museum website3 provides an overview of the museum, the re-
search and collaborative projects associated with the museum, as well as additional
information about the exhibitions within the museum. The content on the website is
organised in the same fashion as the museum itself at the top level, with the content
divided into the three major exhibition areas. At the lower level, the website groups
together pages based on exhibition areas, and even goes as deep as having pages de-
scribing a single element of an exhibit display. This leads to areas of the web site
that are highly similar, and closely align with the real world museum content that
they are describing.

Along with the web pages describing the exhibits, there are available a number
of information sheets that provide additional information on exhibits. These infor-
mation sheets are available at the museum in hard copy, and provide information on
topics covered by groups of exhibits. The information sheets are also available on the
museum web site. They have been written by multiple authors, and hence they differ
in style. A combination of web pages and information sheets were used to describe
the content of each exhibit.

3.3 Natural Language Resources

A key component of this thesis is to demonstrate that natural language based
conceptual models will outperform conceptual models that revolve around physical
attributes of exhibits. As described in Chapter 4 one way of calculating similarity is
by semantic similarity. The semantic similarity of two exhibits is how close the content
of the exhibits are to one another. In order to process and analyse the information
content associated with each exhibit, a range of Natural Language tools were used.

3http://www.museum.vic.gov.au
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3.3.1 WordNet

WordNet is an ontology for the English language used to represent the way in
which lexical concepts are related. Within WordNet a concept is the lowest level
itemset. A concept is an entity that describes a word, its meaning, and the rela-
tionships it shares with other concepts. The structure of the WordNet ontology is
represented by lexical relationships such as synonyms, antonyms, hypernyms (general-
isations) and hyponyms (specialisations). Its goal is to provide a combined thesaurus
and dictionary that is usable for automatic text analysis. Words are classified into
four distinct parts of speech: nouns, verbs, adjectives and adverbs. In this application
WordNet is used to emulate visitor thought patterns, and to create a representation
of how visitors form relationships between lexical content.

The common example used when describing WordNet is to look at the word dog.
In this sense we are talking about the domesticated mammal. The meaning of dog in
WordNet is given as:

a member of the genus Canis (probably descended from the common wolf)
that has been domesticated by man since prehistoric times; occurs in many
breeds; the dog barked all night

Hypernyms of dog include canine and canid, while hyponyms extend to specific breeds
of dog. There also exist other relationships such as meronyms (part-of relationship:
dog is a meronym of pack) and holonyms (made-of or has-part relationship: dog is
a hyponym of fur). Using these relationships plus others present in WordNet allows
us to identify similarities between words of which we may not have been previously
aware.

WordNet (Fellbaum 1998) was created at Princeton University and is available for
use by the public as well as limited commercial use. The version used in this project
is WordNet v2.0.

3.3.2 WordNet::Similarity

Lexical relations describe how closely linked a given word pair is. There have been
many measures created to gauge similarity or relatedness between words using the
WordNet model (Jiang and Conrath 1997; Hirst and St-Onge 1998; Leacock et al.
1998; Lin 1998). These measures use differing lexical relationships between words to
create a score based on a function of the distance between the two.

The WordNet::Similarity (Pedersen et al. 2004) package is a freely available set
of Perl modules designed to provide a simple interface to WordNet. The interface
determines the relatedness or similarity of two concepts across WordNet. Word-
Net::Similarity implements a total of nine measures using several of these measures.
The three measures used in this project represent two chief methods of represent-
ing concept similarity (Lin 1998; Leacock et al. 1998) across WordNet, as well as
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a relatedness measure based on the glossary of a word (Patwardhan and Pedersen
2003).

We used the WordNet::Similarity package over the key terms collected from the
museum. The key terms describe the content associated with an exhibit, and so rela-
tionships between the key-terms equate to relationships between the exhibits them-
selves. Using the similarity measures available in WordNet::Similarity, the semantic
relatedness between exhibits has been established and turned into a set of transitional
probability matrices.

3.3.3 Lingpipe

Named Entity Detection and Recognition (NED/NER) is an active area of research
in NLP. Named Entities are words or phrases that carry some meaning other than
that implied by their dictionary definition. For example the Named Entity John
Smith refers to a person by the name of John Smith, it is not just two words in a
sentence. From this named entity we can infer in some way the subject of the body
of text that it appears in.

Lingpipe is an application that deals with text processing and content identifica-
tion and classification. Specifically it provides a means for identifying Named Entities
withing bodies of text.

The body of documents collected from the website (Section 3.2.3) has a large
amount of information content. In order to extract meaningful information from
the text surrounding it, we can use Named Entity Detection. Meaningful words
and phrases can be extracted from the documents and phrases can be automatically
extracted from the documents.

It is normally simple for a person to identify Named Entities in a body of text,
due to prior knowledge of a phrases meaning or its placement within a sentence.
However it is difficult to have a machine automatically extract Named Entities from
text without a predefined list of such Entities. Unfortunately there is no list of
meaningful terms available for the content of the museum website.

Automatic extraction of content using Lingpipe can be done using an Entity De-
tection method trained over news articles. The style of language used in this method
is too far removed from the style of the museum web-pages. This results in entities
only being partially recognised, or not at all in some cases. This necessitates that we
create a method trained over documents of the same language style as those used in
the web-pages. There is no ready made corpus of such documents, and so manual
annotation of the web-pages would be needed to create an accurate classifier. Manual
annotation negates the need for automatic classification.

In the end, this approach proved to be too arduous to be of any use. However it is
worth noting that semantic relations created using Named Entities could conceivably
prove more effective than the other method proposed in this research, and is worth
future investigation, especially when dealing with larger bodies of documents.
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Methodology

The basis of this research is the creation of a recommender system in the form of a
computational conceptual model designed to identify connections that visitors make
between exhibits within a museum collection. This recommender system differs from
traditional recommender systems in that it makes recommendations in a real world
environment. Traditional recommender systems as in Resnick and Varian (1997) are
based in an online environment, and do not take into account the effect that a physical
environment has on user behaviour. In order to create a recommender system working
within a physical space, environmental factors that can affect user behaviour need to
be taken into account. The history of a visitor also plays a part in determining what
related exhibits they might be interested in. In order to build a conceptual model
for a visitor, knowledge of what a visitor has seen in the past is needed. Previous
history provides a knowledge base of where the visitor currently is within the gallery,
and what information is associated with the exhibits the visitor has already seen.

For a recommendation to be valid to a given visitor, it must be related to a
visitor’s conceptual model of he museum space. The information collected by the
museum (Section 3.2.2) has been collated into a group of 60 paths, all represented by
a sequence of exhibits that the visitor took an interest in. This information does not
represent the conceptual model that the visitor adopts in the semantic space provided
by the museum. In order to determine whether a recommended exhibit is an exhibit
that the visitor does want to see, we analyse the total visitor history. After making
a set of recommendations, we check each recommendation to see if it occurs within
the visitor’s history. If a recommended exhibit appears within this history then the
recommendation is judged to be related to the conceptual model of the visitor. As
previously stated, a recommendation can only be made if the visitor hasn’t yet seen
that exhibit. Recommendations are considered to be single instance events. If a
recommendation is made to a visitor and they continue on their tour without visiting
a recommendation, the visitor has either decided that the recommended exhibit was
not relevant to their conceptual model, or decided that the recommendation was valid,
but was distracted by another exhibit on the way to the recommended one.

16
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Due to the nature of the visitor data collected, it is difficult to interpret which
of these reasons is the contributing factor. The data is static, and will not respond
to recommendations. For the purposes of the tests carried out within this research,
results dealing with the prediction of exhibits must be taken with a grain of salt. The
recommendations made will not alter the paths that the visitors take. The visitor
will not have been directed to an exhibit, and may not be aware of its existence.
However, if the visitor has encountered the exhibit further on in their path, it is
valid to make the claim that they have found an exhibit relating to their predicted
conceptual model. In this case we can claim that the initial recommendation was valid
due to the fact that they have visited the exhibit after it has been recommended, and
that it relates to their predicted conceptual model.

The induction of this recommendation validity model can be expressed as the
precision of the recommendations. We wish to make correct recommendations, not
a large number of recommendations that have a chance, however slight, of being
relevant. This means that the quantity of recommendations made is not as important
as the quality of the recommendations.

Each exhibit within the Australia Gallery has multiple levels of information as-
sociated with it. This is comprised of its physical location within the Gallery, the
semantic information associated with it, and a related web page located on the Mel-
bourne Museum website.

4.1 Physical Location

The Australia Gallery is a physical space and although we are using techniques
adapted from hyperspace recommender systems (Resnick and Varian 1997), we need
to recognise the impact the physical environment has on a visitor’s ability to get from
one exhibit to another. Visitors are less likely to travel directly to exhibits that are
far away, and there may be other exhibits in the path of the visitor, blocking their
view or travel route.

Physical proximity can be used as a measure of similarity between exhibits. It is a
natural way of showing the importance the real world has on how visitors think about
exhibit relationships. Exhibits closer to the current position of a visitor are more likely
to be visited next, and visitors are unlikely to appreciate being recommended to travel
to the opposite side of a collection. In a rigidly structured museum environment the
physical closeness of an exhibit does not provide any information on what the thought
processes of the visitor are. The visitors will simply progress from one exhibit to the
next in a sequence as the visitor has little or no choice. In an open plan environment,
the visitor is able to see the majority of the exhibits in the exhibition at once. The
visitor is able make a judgement about which exhibits most interest them from the
selection they are able to see. The visitor is then more likely to choose an interesting
exhibit that is closer than one on the other side of the room. Physical proximity is
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(a) (b) (c)

Figure 4.1: (a): Successful use of Manhattan Distance to avoid obstacles, (b): Taking
the long way around, (c): Going through an obstacle

one contributing factor that can be used to model a visitor’s thought process when
making judgements.

A physical environment places constraints on visitor movement (Peponis et al.
2004), even in an open plan environment such as the Australia Gallery. Objects
(seats, barriers, or other exhibits) prevent visitors from moving directly from one
exhibit to another. To represent this limitation, the straight line distance from one
exhibit to another cannot be used as an accurate measure of distance.

The measure of Manhattan Distance relates to movement in a two dimensional
grid system. A path from one point on the grid to another can be found by moving
in two straight lines: one movement East-West, and another North-South. The name
of this measure comes from the Street-Avenue grid present on Manhattan Island in
New York City. This measurement takes into account the obstacles that can be
encountered when moving from one location to another, but is only accurate when
the obstacles are arranged in a grid.

Unfortunately the exhibits within the Australia Gallery are not in a grid distribu-
tion, but are placed free-form around the exhibit space. Using Manhattan Distance
in this format can lead to two problems: the shortest path taken goes through an
intervening exhibit, or the path takes the long way around if there are no obstacles
in the way.

In order to avoid going through obstacles, a graph representation of the environ-
ment can be created (Figure 4.2) to model the common intersections that paths have.
This representation can be used by jumping from one node to another and finding
the shortest path from the starting node to the end node. Within an environment
where there are multiple paths from one location to another, the Shortest Path Prob-
lem becomes a factor. This can be solved using Dijkstra’s algorithm to compute the
shortest path from one node in a graph to another.

For the purposes of this experimentation, we use Manhattan Distance to describe
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Figure 4.2: Graph representation of a physical environment with obstacles.

the distance from one exhibit to another. We acknowledge that this is a simplification
of the problem, however the form of the physical locations used in the representation
of each exhibit makes the use of the node-graph method infeasible. The use of other
more complex distance metrics (node-graph representation) will be explored in future
work (see Section 6.1).

The proximity similarity of any two exhibits is the Manhattan Distance between
the two. This set of similarities is normalised into a transitional probability matrix

4.2 Collaborative Data

Many Recommender Systems use the opinions of previous users to give recommen-
dations to new users (along the lines of Amazon.com’s “people who liked this book
also liked. . . ”). The sequential visitor data described in Section 3.2.2 can be used to
form such a recommendation system. By expressing each visitor path as an ordered
series of exhibits, we can determine how other future visitors are going to react in
similar situations. If visitors do follow similar paths to previous visitors, either the
visitors are following the structure of movement dictated by the exhibit layout or
visitors are all attracted to similar items.

Collaborative methods make predictions based on the assumption that new users
will behave in the same way as previous users, and the proviso of what is good for
most will be good for all. This assumption works well if all users think alike, but
users can rarely be lumped into a single coverall characterisation. For the purposes of
this research, we are not assuming one user type, or multiple user types, simply that
there are users and that they may or may not follow the same movement patterns as
previous visitors.
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The methods of collaborative sequential data and physical proximity are super-
ficial in scope and do not extend into the conceptual space adopted by the visitors.
They do however give insight into how a physical space affects a visitors’ mental rep-
resentation of the conceptual areas associated with specific exhibit collections. Any
accurate recommender systems produced in this fashion will need to take into account
the limitations these two methods place on the thought processes of visitors.

4.2.1 Naive Bayes Prediction

When taking into account that a visitor’s entire history will have an impact on
what exhibit the visitor next visits, the quantity of training data is necessary to take
into account. We can use an entire visitor path to predict the next exhibit, but for
a given sequence, it must have occurred at least once before in the training data. If
the sequence has not occurred, then the recommender will not be able to recommend
an exhibit. We can avoid this problem of sparse data (only sixty visitor paths are
available) by using using the naive Bayes classifier. The naive Bayes classifier uses
Bayes Theorem with the assumption that all events independent, and have no effect on
one another. Using the assumption that all conditional probabilities are independent
to all other elements in the sequence, we can rewrite the classification as follows.1

P (c|A1, . . . , An) = P (c)
n∏

i=1

P (Aj|c)

Now to select the most likely exhibit to go to next, we simply check the classifi-
cation for all exhibits (ci) given the current history (A1, . . . , At):

ĉ = arg max
ci

P (ci)
t∏

j=1

P (Aj|ci) ×
j

t

The final term is a scaling factor introduced to lessen the importance of exhibits
that appeared earlier in the visitors path, where t is the total length of their path,
and ĉ is the most likely next exhibit.

4.3 Semantic Content

The semantic content of an exhibit is described by a set of key-terms. These terms
describe physical attributes of the exhibit, as well as the themes within an exhibit.
The semantic similarity of two exhibits describes how close the exhibits are in terms
of information content or physical appearance. An exhibit’s semantic representation
is designed to represent how a visitor thinks about an exhibit. When a visitor thinks
of an exhibit that they have visited, they will recall the components that made up

1The full proof can be seen in Maron (1961)
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the exhibit, or revisit an emotional reaction they may have had while looking at the
exhibit. The similarity measures described later in this section are designed to infer
the reason a visitor has for going from one exhibit to the next. For instance, if a visitor
has spent a lot of time looking at exhibits to do with medical procedures, one may
assume that they are interested in the human anatomy. However, if the visitor takes a
keen interest in a display where carrion beetles are devouring an animal carcass,2 the
visitor may be interested in gory exhibits rather than medical exhibits. The problem
lies in determining for what reason the visitor chose to visit a specific selection of
exhibits.

4.3.1 Word Sense Disambiguation

We can describe a visitors path as a sentence of previously visited exhibits. With
each exhibit in the path being a word in that sentence. The terms used to describe
an exhibit can be considered different meanings (or senses) of the word. We can then
use previously appearing exhibits in the visitor’s path to identify why they visited a
particular exhibit.

Word Sense Disambiguation (WSD) is an NLP problem occurring when extracting
meaning from a body of text that contains words with multiple senses. The problem
lies in determining which sense of the word is the correct one to infer. The context
that the word appears in is key to disambiguating the word. Words that are related
to one another are more likely to appear in the same context.

WSD methods can be adapted to identify the similarity between exhibits in a
visitor path. Using the sentence-path analogy described above, we can consider the
task of determining semantic similarity between exhibits as a WSD application. The
definition of each exhibit is the set of terms that describe it. It is then a task of
gauging similarity based on the definitions of each exhibit.

4.3.2 WordNet Similarity and Relatedness

WordNet provides a rich ontology of the English language, with each word having
relationships and meanings. WordNet is a highly useful tool in WSD applications due
to the fact that it represents relationships between words. If words appear together
in a sentence, then the can supply information to help us disambiguate the meaning
of other words in the sentence. There have been many methods designed to take
advantage of WordNet’s structure in WSD applications. The three we will use here
provide a representative sample of different styles of measures. In WordNet ‘similarity’
refers to how close terms are with relation to the hierarchical structure of WordNet’s
IS-A (hypernym) and HAS-A (hyponym) relationships. These relationships are used
to find the distance to a Least Common Subsumer (LCS), and compute the relative

2This exhibit actually exists within the Melbourne Museum.
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path lengths from the terms to the LCS. Relatedness measures on the other hand
rely on the definitions and glossaries associated with terms. By analysing similarities
between the glossaries of words in a sentence, the most overlapping glossaries can
indicate the correct word sense.

Leacock-Chodorow

The Leacock-Chodorow method of similarity scoring uses the hierarchical struc-
ture of WordNet to find similarity between two words. The shortest path between
two words is calculated using WordNet’s hypernym and hyponym relationships. This
shortest path is then scaled against the depth of the words with in the hierarchy, i.e.
their distance from the root node. The deeper a word concept is within the hierarchy,
the more specific it is. Corgi is more specific than animal and is hence deeper in the
hierarchy. If two terms low down in the hierarchy have a very short distance between
them, then they will be highly similar.

Lin

The Lin method of sense disambiguation (Lin 1998) also makes use of the hypernym-
hyponym hierarchy of WordNet. The Lin method scores similarity based on com-
monality shared by word senses. The more commonality the two words share in their
paths, the higher the similarity. The more differences they share, the lower their sim-
ilarity. By describing the similarity of the paths to an LCS, the overall similarity of
the two words can be effectively determined. The Lin method scales the Information
Content of a word against its LCS with another word. With respect to its applica-
tion within this research, the information content of exhibits will be scaled on how
semantically diverse they are. If two exhibits contain a lot of detailed information,
but aren’t on the same topic, they will score low.

Banerjee-Pedersen

The algorithm developed by Lesk calculates the relatedness of words using glossary
similarities from a dictionary corpus. The variation on the Lesk algorithm described in
Patwardhan and Pedersen (2003) uses WordNet relationships to compute the overlap
between terms. Since a glossary defines a set of words with related meanings, the
magnitude of the overlap between two glossaries can be used to determine how related
two words are. Words that occur in definitions of a word sense as well as the same
context as which the word is used are likely to be highly related. This relationship
flows both ways, meaning that definitions of words help to disambiguate words in the
same sentence or context. This expansion can be used to more accurately determine
overlap between concepts. This method of sense disambiguation is intended to find
similarities between the concepts represented within exhibits through information
overlap.
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4.4 Evaluating Component Effectiveness

The quality of the exhibits recommended can be interpreted as the number of
correctly recommended exhibits versus the total number of recommendations. For
the purposes of evaluation over the supplied visitor paths, an exhibit is correctly
recommended if the exhibit appears in the visitor path after the point at which it
was recommended. We perform this evaluation using the measures of Precision and
Recall.

Precision and Recall are used as measures of success for applications of prediction
or retrieval where the correct outcome is known beforehand. This allows one to
interpret how successful a method was at its task as compared to a gold standard.
These measures use the statistics of the True Positives and Negatives (TP and TN)
and False Positives and Negatives (FP and FN) to calculate the correctness of a given
classifier or prediction metric. The functions of precision and recall are:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

These measures will return a value in the interval of zero to one. The precision of
a given method is the number of correctly classified instances over the total number
of instances classified. The recall of a measure is the number of correctly classified
instances over the number of gold standard positive classifications. The measure of
F-Score is a weighted harmonic average of the precision and recall:

F-Score =
2 × Precision × Recall

Precision + Recall

The use of Precision and Recall in the evaluation of Recommender Systems is an
appropriate and valid application, and has been used effectively in studies such as
Raskutti et al. (1997); Basu et al. (1998) (as cited in Zukerman and Albrecht (2001))
to evaluate predictive user modelling. The precision of a set of recommendations will
give an indication of the quality of the recommendations returned. If the number of
correct recommendations outweighs the number of incorrect recommendations, then
the precision will be greater. In this case the recall of recommendations is less im-
portant. High recall indicates that a majority of the exhibits that a visitor visits are
correctly recommended. This can also happen if many recommendations are made,
meaning that the overall precision can drop if many incorrect recommendations are
made. I.e. many correct recommendations are made, but also many incorrect ones.
This will be detrimental to the success of the system. If many incorrect recommen-
dations are made, the visitor will begin to ignore the recommendations after a while
due to their overall irrelevance. If a high precision is achieved, this indicates that
the system is able to correctly anticipate what a visitor is interested in, and hence
forms a valid computational model of that user’s thought patterns within the museum
environment.
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We describe the Accuracy of a recommender as the percentage of exhibits that
the recommender correctly guessed would immediately succeed the currently visited
exhibit. Accuracy is largely unused in this evaluation, as the sequence of exhibit
visitation does not need to be predicted. The recommender functions adeptly if it is
able to precisely predict exhibits that will be visited some time in the future.
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Experiments and Evaluation

Recommendation of similar exhibits can be modelled as a problem of predicting
which exhibits are most likely to be seen. In this chapter predictive methods are
created using the statistics of the gathered data detailed in Section 3.2. For a given
visitor path, each predictive method produces a set of exhibits that are predicted to be
relevant to the visitor’s path. Measures of physical proximity, semantic relatedness,
and the paths of previous visitors are used to create these predictive methods. These
methods are analysed individually, as well as in combination. Their effectiveness
as methods of validly recommending exhibits, as well as their use in slightly more
advanced predictive models is evaluated.

5.1 Experiment Design

Prediction of visitor paths can be expressed as selecting the most similar exhibit
from a set of unvisited exhibits (as stated in Chapter 4). The experimentation in this
chapter takes place over the collected visitor paths (Section 3.2.2). The predictive
methods are tested by finding the exhibit most similar to a visitors prior path. For
each exhibit a visitor has seen, a recommendation is made. For initial tests, the
length of the recommendation set and the original path is identical. This results
in identical Precision Recall and F-score for each method. These scores have been
grouped under a single heading ‘Bag-of-exhibits’ (BOE). This describes the fact that
these evaluations are made without considering the order of the recommendations.
The measure of Accuracy is used to evaluate recommendations in the correct order,
i.e. exhibits that were visited directly after they were recommended, not just some
time in the future.

25
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Method BOE Accuracy

Proximity 0.270 0.192
Collaborative 0.406 0.313
Cosine 0.187 0.070
Lin 0.129 0.039
Leacock-Chodorow 0.116 0.024
Banerjee-Pedersen 0.181 0.072

Table 5.1: Single Component Prediction Results

5.2 Single Component Predictive Methods

The predictions made in this section are made using only single similarity measures
as discussed in Chapter 4. Evaluated are the effectiveness of physical similarity, pre-
vious visitor paths, cosine similarity, and the WordNet similarity measures described
in Section 4.3.2.

From these results (Table 5.1) it can be seen that the similarity measure based on
the paths of previous visitors is most effective in determining which exhibit a visitor
will next see. Physical proximity manages to correctly identify the next exhibit to
be visited approximately one out of every five times. This is not a highly successful
method of prediction, but it indicates that visitors do not put as high an importance
on physical similarity as previously assumed.

Recommendations made using cosine similarity across the semantic terms within
the exhibits achieves a precision of 18.7%, closely followed by similarity calculated
using the Banerjee-Pedersen Lesk algorithm. Both of these methods outdone by the
(relative) success of the physical and collaborative methods. At first glance, this
indicates that visitors do not make use of semantic based conceptual models when
visiting a museum. However this conclusion does not take into account the application
of this conceptual model to a physical environment. The constraints posed on the
visitors by the environment contribute to the building of a valid conceptual model.
Without the additional representation of the physical environment imposed on the
conceptual model, recommendations from semantic based conceptual models will be
incorrect more than 80% of the time.

5.2.1 Sequential Prediction

The naive Bayes method defined in Section 4.2.1 can be used in conjunction with
any of the similarity measures above. The results of experimentation using the spec-
ified probability distributions are shown in Table 5.2.

These results are noticeably worse than the non-sequential predictive methods.
This can mean that visitors do not make a full use of their history within the museum
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NB-Method BOE Accuracy

Proximity 0.212 0.144
Collaborative 0.234 0.129
Cosine 0.151 0.055
Lin 0.144 0.057
Leacock-Chodorow 0.153 0.036
Banerjee-Pedersen 0.153 0.031

Table 5.2: Naive Bayesian Based Prediction Results

to make choices. Visitors use their immediate context to make their decision, rather
than taking a considered approach to selecting their next exhibit. This indicates
that visitors may not place specific importance on all items in their history, and only
exhibits which the visitor found exceptional in some way will be remembered. With
the collected visitor paths in their current state, it is very difficult to tell if a visitor
has found an exhibit to be exceptional. The length of time that a visitor spends at
an exhibit can provide a significant insight into how exceptional the visitor finds the
exhibit. This is a factor that needs to be explored in future research.

5.3 Multiple Component Conceptual Models

The similarity between exhibits that form a visitor’s conceptual model are made
up of multiple components. The transitional matrices can be combined to produce
predictive models that represent multiple aspects of the museum space. Combinations
of transitional probabilities, as well as their effectiveness using the naive Bayes method
is shown in Table 5.3.

The combination of multiple similarity measures are designed to express the multi-
modal nature of the Australia Gallery. By combining probability distributions, we
are able to express many qualities of an exhibit, and gain a more accurate picture of
how visitors think about the relationships between them.

With regard to Tables 5.1 and 5.2, when a method is combined with the Collabo-
rative method, its BOE score jumps significantly. The exception to this statement is
Physical Proximity, this method when combined with Collaboration, comes out lower
than as in Table5.1. This indicates that people follow the same general paths as other
people, but the exhibits in these paths are physically not that close to each other.

Semantic similarity measures in both the case of naive Bayes results and non-
sequential results make a marginal improvement, but not significant enough to be
noteworthy. The naive Bayes based methods continue to perform worse overall than
their non-sequential counterparts.
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Method Combination BOE Accuracy

Collaborative - Cosine 0.417 0.321
Collaborative - Proximity 0.223 0.130
Collaborative - Lin 0.361 0.271
Collaborative - Leacock-Chodorow 0.387 0.286
Collaborative - Banerjee-Pedersen 0.211 0.127
Proximity - Cosine 0.274 0.201
Proximity - Lin 0.237 0.154
Proximity - Leacock-Chodorow 0.250 0.154
Proximity - Banerjee-Pedersen 0.180 0.105

Naive Bayes Combinations

Collaborative - Cosine 0.232 0.129
Collaborative - Proximity 0.226 0.157
Collaborative - Lin 0.225 0.114
Collaborative - Leacock-Chodorow 0.242 0.130
Collaborative - Banerjee-Pedersen 0.163 0.064
Proximity - Cosine 0.214 0.148
Proximity - Lin 0.180 0.114
Proximity - Leacock-Chodorow 0.220 0.151
Proximity - Banerjee-Pedersen 0.205 0.105

Table 5.3: Multiple Component Prediction Evaluation.

5.3.1 Improving Precision through Thresholds

The Precision Recall and F-score for all of the predictive methods are identical.
This is due to the fact that the set of recommendations for a given visitor is the
same length as their path. This results in the number of False negatives and False
Positives being equal. To increase recommendation precision, the number of False
Negatives must reduced. The methods in section 5.2 will recommend an exhibit
even if the transitional probability is very low. Low probability recommendations
come from a visitor being at an exhibit that is highly unique, and does not share
many similarities with other exhibits. This problem is more noticeable with semantic
similarity as exhibits are more likely to be semantically different than for physical
reasons. To prevent exhibits with low transitional probability being recommended,
it is necessary to introduce a threshold that defines a minimum confidence that a
transitional probability must achieve in order to be recommended.

A threshold will have the effect of reducing the recommendations recalled (a rec-
ommendation will not be made unless the certainty that it is relevant is high). Intro-
ducing a threshold will also increase the overall precision of a method. The threshold
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Method Threshold Precision Recall F-Score

Single Component Prediction

Proximity 0.03 0.271 0.270 0.270
Collaborative 0.04 0.471 0.283 0.354
Cosine 0.02 0.217 0.129 0.161
Lin 0.01 0.129 0.129 .0129
Leacock-Chodorow 0.01 0.117 0.117 0.117
Banerjee-Pedersen 0.01 0.182 0.180 0.181

Multiple Component Prediction

Collaborative - Cosine 0.001 0.511 0.168 0.253
Collaborative - Proximity 0.001 0.262 0.144 0.186
Collaborative - Lin 0.0005 0.383 0.316 0.348
Collaborative - Leacock-Chodorow 0.0005 0.430 0.349 0.385
Collaborative - Banerjee-Pedersen 0.001 0.236 0.151 0.184
Proximity - Cosine 0.001 0.290 0.244 0.265
Proximity - Lin 0.0005 0.239 0.237 0.238
Proximity - Leacock-Chodorow 0.0005 0.252 0.250 0.251
Proximity - Banerjee-Pedersen 0.0005 0.182 0.180 0.181

Table 5.4: Results of predictive measures using thresholds to improve precision.

values were found using a manual hill-climbing approach to achieve maximum preci-
sion. Accuracy no longer plays a part as we are not recommending an ordered set or
exhibits.

Using the methods described above thresholds have been introduced in order to
increase their precision. The results of the threshold introduction are shown in Ta-
ble 5.4. The small thresholds are because of the number of exhibits within the ex-
hibition. All fifty-three exhibits within the Australia Gallery have a chance of being
visited, and the average transitional probability is around 2% without any similarity
taken into account. The multiple component conceptual models are even lower due
to the fact that transitional probabilities are multiplied.

Using the requirement that we care about the quality of recommendations rather
than the quantity, the introduction of thresholds greatly improves the results from
our classifiers. The most precise method is the conjunction of prior visitor paths and
cosine similarity of the semantic content associated with the exhibits. As in Sec-
tion 5.3 all methods that use the prior visitor paths as a component have a markedly
increased success rate. With thresholds introduced, the base precision of the individ-
ual Collaborative similarity measure is 47.1%. This in itself is a large improvement
on the non-threshold results. When used in conjunction with other methods, this
precision is reduced. Most notably when used in conjunction with the measure of
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physical proximity, scoring lower than physical proximity alone.
We interpret this poor result as meaning that visitors generally follow the same

paths as other visitors, but those paths are not affected by how close a given exhibit is.
This indicates that visitors are not effected by the physical structure of the museum.
From the combination of the Collaborative measure and the Cosine measure of se-
mantic similarity, the highest Precision is achieved. Recommending a related exhibit
more than 50% of the time. The best interpretation of this result is that visitors like
what other visitors liked, but also place tend to remain on a similar theme to what
they are currently viewing.



Chapter 6

Conclusion and Future Work

This research has shown that exhibit similarity based on the semantic content
of the exhibits, and the exhibits contained in a visitor’s previous path can be used
to form recommendations about which future exhibits the visitor may wish to see.
As the museum is a real world environment, the visitor is effected by the physical
constraints placed upon them by the structure of the exhibit. This can lead to multiple
visitors following similar paths. Predictive methods based on the paths of previous
visitors to the museum returned noticeably better recommendations than all other
methods. Through the introduction of thresholds to produce a higher quality (if
lower quantity) of recommendations resulted in the highest precision achieved. The
combination of prediction based on the paths of previous visitors and augmented with
cosine similarity produced a precision of 51.1%, when using a confidence threshold of
0.1%. Meaning that the method was able to give a successful recommendation more
than 50% of the time.

More complex semantic similarity measures (Section 4.3.2) failed to score as highly
as simple term matching (cosine similarity). This could be attributed to visitors not
forming a complex conceptual model relating to each exhibit, and instead only exam-
ining superficial features of each exhibit. Physical proximity also failed to perform as
expected, this can be explained by two elements: the open nature of the Australia
Gallery in which the testing took place, and the nature of the distance measure used
(see Section 4.1. Without a rigid exhibit layout to follow, visitor had the freedom
to move about the collection however they pleased. The fact that the visitors still
followed similar paths to previous visitors are attracted to the same exhibits for the
same reason, whether they are eye catching, or just prominently placed within the
collection.

31
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6.1 Future work

The poor results when using physical proximity as the predictive method can be
attributed to the distance metric used to calculate similarity. A distance metric that
more correctly modelled the structure of the collection, would most likely have a
marked improvement over the current results. The user themselves is another factor
that was not taken into for this study. A reasonable hypothesis is that younger
visitors are going to want to visit more interactive, or colourful exhibits, whereas
older visitors are more likely to want information. The adaption of content presented
to the visitors as in Hitzeman et al. (1997) is area of further expansion that could
provide fascinating results. Visitors are more likely to respond positively to exhibits if
the visitor is presented with information that they can easily enjoy, whether because
it is aimed at their knowledge base or because the information has been adapted to
include their own interests. Visitor feedback is most interesting area that has yet to be
explored. If visitors can directly tell the recommender system what they want through
approval or disapproval of the exhibits they have seen, highly specialised recommender
systems can be made for individual visitors. Ideally these recommender systems will
be tested out in an actual museum environment, providing recommendations and
receiving feedback in real time.
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