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Abstract

In this paper we examine the problem of estimating the parameters of a multinomial
distribution over a large number of discrete outcomes, most of which do not appear in
the training data. We analyze this problem from a Bayesian perspective and develop
a hierarchical prior that incorporates the assumption that the observed outcomes
constitute only a small subset of the possible outcomes. We show how to efficiently
perform exact inference with this form of hierarchical priorand compare our method
to standard approaches and demonstrate its merits.
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1 Introduction

One of the most important problems in statistical inference is multinomial estimation: Given
a past history of observations independent trials with a discrete set of outcomes, predict the
probability of the next trial. Such estimators are the basic building blocks in more complex
statistical models, such as prediction trees [1, 15, 14], hidden Markov models [12] and
Bayesian networks [3, 7]. The roots of multinomial estimation go back to Laplace’s work
in the 18’th century [10].

In Bayesian theory, the classic approach to multinomial estimation is via the use of
the Dirichlet distribution (see for instance [4]). Laplace’s “law of succession” and other
common methods can be derived using Bayesian inference with the Dirichlet distribution
as a prior distribution. The Dirichlet distribution entertain several properties which become
very useful in statistical inference. In particular, estimates derived using Dirichlet priors are
consistent (the estimate converges with probability one to the true distribution), conjugate
(the posterior distribution is also a Dirichlet distribution), and can be computed efficiently
(all queries of interest have a closed-form solution). Furthermore, theoretical studies of
online prediction of individual sequences show that prediction using Dirichlet priors is
competitive with any other prior distribution (see for instance [9, 2, 5] and the references
therein).

Unfortunately, in some key applications, Dirichlet priors are unwieldy. These applica-
tions are characterized by several distinct features:

o The set of possible outcomes is very large, and often not known in advance.

e The number of training examples is small compared to the number of possible outcomes.

o The outcomes that have positive probability constitute a relatively small subset of the
possible outcomes. However, this subset is not known in advance.



In this situation, a prediction based on a Dirichlet prior, in particular, the uniform distri-
bution, tends to assign most of the probability mass to outcomes that were not seen in the
training set.

For example, consider a natural language application, where outcomes are words drawn
from an English dictionary, and the problem is predicting the probability of words that follow
a particular word, say “Bosnia”. If we do not have any prior knowledge, we can consider
any word in the dictionary as a possible candidate. Yet, our knowledge of language would
lead us to believe that in fact, only few words, such as “Herzegovina”, should naturally
follow the word “Bosnia”. Furthermore, even in a large corpora, we do not expect to see
many training examples that involve this phrase. As another example consider the problem
of estimating the parameters of a discrete dynamical system. Here the task is to find a
distribution over the states that can be reached from a particular state s (possibly after
the system receives a particular external control signal). Again, although the number of
possible state can be large, we often believe that the set of reachable states, from any state
s, is much smaller.

In this paper, we present a Bayesian treatment of this problem using an hierarchical
prior that averages over an exponential number of hypotheses each of which represents a
subset of the feasible outcomes. Such a prior was previously used in a specific context
of online prediction using suffix tree transducers [14]. As we show, although this prior
involves exponentially many hypotheses, we can efficiently perform predictions. Moreover,
our approach allows us to deal with countably infinite number of outcomes.

The paper is organized as follows. We start in Section 2 with a short review of Dirichlet
priors. In Section 3 we describe the hierarchical prior for multinomial distributions. In
Section 4, we examine how to apply our approach to countably infinite sets of outcomes.
Section 5 we describe experimental results that show the effectiveness of our approach in
language modeling. We conclude in Section 6.

2 Dirichlet priors
Let X be a random variable that can take 7. possible values from a set X. Without loss of
generality, let ¥ = {1,...L}. We are given a training set D that contains the outcomes
of N independent draws z!, ... 2™ of X from an unknown multinomial distribution P *.
We denote by N; be the number of occurrences of the symbol ¢ in the training data. The
multinomial estimation problem is to find a good approximation for P * (which is also a
multinomial distribution).

This problem can be stated as the problem of predicting the outcome =™+ given
xY, ... 2N, Given a prior distribution over the possible multinomial distributions, the
Bayesian estimate is:

PNt 2l N ¢ = /P(xN"'l 160,6)P(0 |, 2N, 6d0 (1)

where 8 = (61, ...,0L) is a vector that describes possible values of the (unknown) proba-
bilities P*(1), ..., P*(L), and ¢ is the “context” variable that denote all other assumptions
about the domain. (We consider particular contexts in the next section.)

The posterior probability of 8 can rewritten using Bayes law as:
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The Dirichlet distribution is a parametric family that is conjugates to the multinomial
distribution. That is, if the prior distribution is from this family, so is the posterior. A
Dirichlet prior for X is specified by hyperparameters oy, . . ., «z, and has the form:

P& = %Hef‘"l (Zei = 1land ¢, > Oforall %)

where T'(z) = f0°° t*=e~tdt is the gamma function. Given a Dirichlet prior, the initial
prediction for each value of X is

P(X'=i|¢) = /aip(e | €)do =
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It is easy to see that, if the prior is a Dirichlet prior with hyperparameters a, . . ., a1, then
the posterior is a Dirichlet with hyperparameters a; + N1, ..., oo + Np. Thus, we get that
the prediction for X V+1 is
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We can think of the hyperparameters «; as the number of “imaginary” examples in which
we saw outcome i. Thus, the ratio between hyperparameters corresponds to our initial
assessment of the relative probability of the corresponding outcomes. The total weight of
the hyperparameters represent our confidence (or entrenchment) in the prior knowledge.
As we can see, if this weight is large, our estimates for the parameters tend to be further off
from the empirical frequencies observed in the training data.

3 A hierarchical prior

We now describe a more structured prior that captures our uncertainty about the set of
“feasible” values of X. We define a random variable V" that takes values from the set 2* of
possible subsets of . The intended semantics for this variable, is that if we know the value
of V,thend;, > 0iffi € V.

Clearly, the hypothesis V' = X/ (for X' C X) is consistent with training data only if X’
contains all the indices ¢ for which ; > 0. We denote by X° the set of observed symbols.
Thatis, Z° = {¢ : N; > 0}, and we let k° = |X°|.

Suppose we know the value of V. Given this assumption, we can define a Dirichlet prior
over possible multinomial distributions @ if we use the same hyper-parameter « for each
symbol in V. Formally, we define the prior:

P(O|V) = i%ﬁtﬂeal§:a_1mm9_men¢m 3)
ieV

Using Eq. (2), we have that:
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Now consider the case where we are uncertain about the actual set of feasible outcomes.
We construct a two tiered prior over the values of V. We start with a prior over the size
of V/, and then assume that all sets of the same cardinality have the same prior probability.
We let the random variable S denote the cardinality of V. We assume that we are given a

distribution P(S = k) for k = 1,..., L. We define the prior over sets to be:

P(V|S=k)= (g)_l ®)

We now examine how to com?ute the posterlor predictions given this hierarchical prior.
Let D denote the training data = N Then it is easy to verify that

N+l s _ a4+ N;
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Let us now examine which sets 1 actually contribute to this sum.

First, we note that sets that do not contain £ have zero posterior probability, since they
are inconsistent with the observed data. Thus, we can examine only sets 1/ that contain Z°.
Second, as we noted above, P(D | V) is the same for all sets of cardinality & that contain
>, Moreover, by definition the prior for all these sets is the same. Using Bayes rule, we
conclude that P(V | D) is the same for all sets of size & that contain X°. Thus, we can
simplify the inner summation in Eq. (6), by multiplying the number of sets in the score of
the summation by the posterior probability of such sets.

There are two cases. If ¢ € ¥°, then any set V' that has non-zero posterior appears in the
sum. Thus, in this case we can write:

P(XN* =4 | D) =
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If i ¢ X°, then we need to estimate the fraction of subsets of 1 with non-zero posterior
that contain ¢.  This leads to an equation similar to the one above, but with a correction
for this fraction. Note, however, that all unobserved outcomes have the same posterior
probability. Thus, we can simply divide the mass that was not assigned to the observed
outcomes among the unseen symbols.

Notice that the single term in Eq. (3) that depends on N; can be moved outside the
summation. Thus, to make predictions, we only need to estimate the quantity:
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We can therefore think of C'( D, L) as scaling factor that we apply to the Dirichlet prediction
that assumes that we have seen all of the feasible symbols. The quantity 1 — C'(D, L) is
the probability mass assigned to novel (i.e., unseen) outcomes.

Using properties of Dirichlet priors we get the following characterization of C'(D, L).
Proposition 3.1
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Proof: To compute C'(D, L), we need to compute P(S = k | D). Using Bayes rule, we

have that
P(D|S=kP(S=k)

P(S=k|D)=
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By introduction of variables, we have that:
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Using standard properties of Dirichlet priors, we have that if £¢ C V/, then
I'(|V]e) I+ N;)
P(D|V) = (@)
(PIV) I'(|V]a+ N) Zg I«)

Now, using Eqg. (8) and (5), we get that if *° C V/, and k& = |V/|, then
(I (k) e
P(D|V)P(V|S=k) = (k) mr(a) 1;[ Tla+N;).  (9)
Thus,
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Note that the term in the square brackets does not depend on the choice of k. Thus, it
cancels out when plug Eq. (10) in Eq.(7). The desired equality follows directly. i
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(10)

From the above proposition we immediately get that
Corollary 3.2
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Figure 1: Left: Illustration of the posterior distribution P (.S | D) for different values of &V,
with k2 = 20, L = 100, « = .25, and P(S = k) o 0.25*. Right: Illustration showing the
change in C(D, L) for different values of N, with k° = 25, « = 1, and P(S = k) 0.9,

Note that P(S = & | D) and C'(D, L) depend only on £° and N and does not depend on
the distribution of counts among the & ¢ observed symbols. Note that when N is sufficiently

larger than 4° (and this depends on the choice of «), then the term ﬁ . % is
much smaller than 1. This implies that the posterior for larger sets decays rapidly. We can
see this behavior on the left hand side of Figure 1 that shows the posterior distribution of

P(S'| D) for different dataset sizes.
4 Unbounded alphabets

By examining the analytic form of C'(D, L), we see that the dependency on L is expressed
only in the number of terms in the summation. If the terms my, vanish for large &, then
C'(D, L) becomes insensitive to the exact size of the alphabet. We can see this behavior on
the right hand side of Figure 1, which shows C'(D, ) as a function of L. As we can see,
when L is close to k°, then C'(D, L) is close to 1. As L grows, C'(D, L) asymptotes to a
value that depends on NV and k° (as well as « and the prior P(S = k)).

This discussion suggests that we can apply our prior in cases where we do not know
L in advance. In fact, we can assume that  is unbounded. That is, X is isomorphic to
{1,2,...}. Assume that we assign the prior P(S = k) for each choice of L, and that
limzeo P(S = k) exists for all k. We define C'(D, o0) = limp 0o C(D, L). We then
use for prediction the term P(XV+! =i | D) = 2H-C(D, ).

For this method to work, we have to ensure that C'(D, oo) is well defined; that is, that
the limit exists. Two such cases are identified by the following proposition.

Proposition 4.1 If P(S = k) is exponentially decreasingin & or if « > 1 and P(S = k)
is polynomially decreasing in &, then C'(D, oo) iswell-defined.

To prove the above proposition we use Stirling’s approximation to T'(-) and show that
limy_ oo mzc® = 0 for some constant ¢ > 1 (details omitted due to lack of space).

In practice we evaluate C'(D, o) by computing successive values of (the logarithm of)
myg, until we reach values that are significantly smaller than the largest value beforehand.
Since my, is exponentially decaying, we can ignore the mass in the tail of the sequence. As
we can see from the right hand side of Figure 1, there is not much difference between the
prediction using a large 7, and unbounded one.

5 Empirical evaluation

We have used the proposed estimation method to construct a statistical models for predicting
the probability of characters in the context of the previously observed character. Such
models, often referred to as bigram models, are of great interest in applications such optical
character recognition and text compression.

We tested two of prior distributions for the alphabet size Py(S = k): an exponential
prior, Po(S = k) o %, and a polynomial prior, Po(S = k) o< k=#. The training and test



Perplexity

Method Observed  Novel Overall
A(:25) 2819 1417 2820
B (Approximated Good-Turing) 28.15  802.7 28.19
Sparse-Multinomial (Poly) 2797 38129 28.02
Sparse-Multinomial (Exp) 2797 39131 28.03

Table 1: Perplexity results on heterogeneous character data.

material were derived from various archives and included different types of files such C
programs, core dumps, and ascii text files. The alphabet for the algorithm consists of all
the (ascii and non-ascii) 256 possible characters. The training data consisted of around 170
mega bytes and for testing we used 35 mega bytes.

Each model we compared had to assign a probability to any character. If a character
was not observed in the context of the previous character, the new character is assigned the
probability of the total mass of novel events. Note that this task is different than common
language modeling benchmarks where the probability of each individual word is estimated
either using the full context or by “backing off” to a shorter context [8], which is the null
context for bigram models.

We compared our approach with two estimation techniques that have been shown to
perform well on natural data sets [16]. The first estimates the probability of a symbol ¢ in
the context of a given word as NN - where r is the number of different characters observed
at given context (the previous character). The second method, based on an approximation
of the Good-Turing estimation scheme [6], estimates the probability of a symbol i as

ﬁ%&, where fi is the number of different characters that have been observed only
once at for the given context. This scheme requires a “fall-back” estimate when fi = n,
as described in more detail in [16]. For evaluation we used the perplexity which is simply
the exponentiation of the average log-loss on the test data. Table 1 summarizes the average
test-set perplexity for observed characters, novel events, and the overall perplexity. In the
experiments we fixed o = 1/2 for the parameters of the Dirichlet priors and 3 = 2 for the
exponentially and polynomially decaying priors of the alphabet size.

One can see from the table that predictions using sparse-multinomials achieve the lowest
overall perplexity. (The differences are statistically significant due to the size of the data.)
The performance based on the two different priors for the alphabet size is comparable. The
results indicate the all the leverage in using sparse-multinomials for prediction is due to
more accurate predictions for observed events. Indeed, the perplexity of novel events using
sparse-multinomials is much higher than when using either method A or B. Put another
way, our approach prefers to “sacrifice” events with low probability (novel events) and
suffer high loss in favor of more accurate predictions for frequently occurring events. The
net effect is a lower overall perplexity.

6 Discussion

In this paper we presented a Bayesian approach for the problem of estimating the parameters
of a multinomial source over a large alphabet. Our method is based on an efficient inference
algorithm that is based on hierarchical prior. Among the numerous techniques that have
been used for multinomial estimation the one proposed by Ristad [13] is the closest to
ours. Though the methodology used by Ristad is substantially different than ours, his
method can been seen as a special case of sparse-multinomials with « set to 1 and specific
forms for the prior over the alphabet sizes. The main advantage of fixing o = 1 is an
even simpler inference procedure. The simpler inference procedure demands, however, a
price which is loss of flexibility. In addition, our method explicitly represents the posterior
distribution. Hence, it is more suitable for tasks, such as stochastic sampling, where an
explicit representation of the approximated distribution is required. Our method can be



combined with other Bayesian approaches for language modeling such as the one proposed
by Mackay and Peto [11].

As briefly discussed in the introduction, there are applications other than language
modeling that can make use the proposed modeling scheme. Reinforcement Learning (RL)
is an example of such a domain. One of the approaches in RL is to first estimate the
parameters of an underlying Markov decision process. However, the number of states of a
typical Markov process might be very large. Hence, naive estimation schemes often yield
poor results. Instead, one can use sparse multinomials to build a robust estimate for the
transition probabilities of each state, despite the fact that the number of times each state
was visited might very small. Another possible domain is parameter estimation of large
Bayesian networks where one might want to keep the explicit form of posterior distribution
for the parameters.
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