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Probability Theory and Fuzzy Logic

Lotfi A. Zadeh”

How does fuzzy logic relate to probability theory? Questions in this vein were
raised almost immediately after the publication of my first paper on fuzzy sets (1965).
Among the questioners, some have described fuzzy logic as merely a disguised
version of probability theory. Some have asserted that anything that can be done with
fuzzy logic can be done equally well or better with probability-based techniques. And
some, including myself, have argued that probability theory and fuzzy logic are

complementary rather than competitive.

In what follows, I advance a view that, to my knowledge, has not been advanced
before. More specifically, my contention is that probability theory should be based on
fuzzy logic, rather than on classical, Aristotelian, bivalent logic that served and is
continuing to serve as its foundation since the times of Bernoulli. The core of my
argument is that standard probability theory, call it PT, has fundamental limitations
that stem from the bivalent logic on which it is based. Today, my argument may sound
like a voice in the wilderness. Nevertheless, I have no doubt that eventually it will
gain wide acceptance. What should be underscored, however, is that saying that PT
has fundamental limitations does not mean that it has not achieved brilliant successes.
What it does mean is that alongside the brilliant successes there are many basic
problems which are beyond PT's reach; many questions which PT cannot answer; and

many instances of counterintuitive results.

Among the negative consequences of basing PT on bivalent logic there are three

stand out in importance. First, the conceptual structure of PT is brittle in the sense that
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in PT bivalent-logic-based definitions of basic concepts are lacking in robustness.
More specifically, if C is a bivalent concept and u is an object in the domain of C,
then it is either true that u is an instance of C or it is not true, with no partiality of
truth allowed. The problem is that bivalence of C leads to contradictions which were
brought to light in the ancient Greek sorites paradox. As an illustration, consider the
concept of independence of events. By definition, A and B are independent events if
and only if P(A,B)=P(A) P(B). Now, assume that this equality holds to within epsilon.
As epsilon increases, at what point will A and B cease to be independent? What this
question makes clear is that independence is not a bivalent concept; it is a matter of
degree. The same applies to the concepts of stationarity, normality and almost all
other concepts in PT. What we see is that bivalence of the conceptual structure of PT
is in fundamental conflict with reality—a reality in which almost everything has

shades of gray. It is this reality that is the point of departure in fuzzy logic.

The second problem relates to what may be called “the dilemma of it is possible
but not probable.” An instance of this dilemma is the following. Suppose that 99% of
professors have a Ph.D. degree, and that Robert is a professor. What is the probability
that Robert has a Ph.D. degree? PT’s answer is: between 0 and 1. More generally, if A
and B are events such that the intersection of A and B is a proper subset of B, and the
Lebesgue measure of the intersection is arbitrarily close to that of B, then all that can

be said about the conditional probability of B given A is that it is between 0 and 1.

Last, but most important, PT 1is lacking in capability to operate on
perception-based information. Such information has the form of propositions drawn
form a natural language--propositions which describe one or more perceptions. For
example, “Eva is young;” “Usually Robert returns from work at about 6 pm;” and, “It
is very unlikely that there will be a significant increase in the price of oil in the near

future.”

The inability of PT to operate on perception-based information is a serious
limitation because perceptions have a position of centrality in human cognition.
Thus, human have a remarkable capability to perform a wide variety of physical and
mental tasks without any measurements and any computations. Everyday examples of
such tasks are parking a car, driving in city traffic, playing tennis and summarizing a

story.

Basically, a natural language is a system for describing perceptions. Perceptions
an intrinsically imprecise, reflecting the bounded ability of sensory organs, and

ultimately the brain, to resolve detail and store information. More specifically,



perceptions are f-granular in the sense that (a) the boundaries of perceived classes are
fuzzy; and (b) the perceived values of attributes are granular, with a granule being a
clump of values drawn together by indistinguishability, similarity, proximity or

functionality.

F-granularity of perceptions induces f-granularity of their descriptions in a
natural language—and hence, f-granularity of perception-based information. Here we
come to a basic point, namely, f-granularity of propositions drawn from a natural
language puts them will beyond the reach of existing predicate-logic-based techniques

of meaning representation.

The implication of this point is that bivalent-logic-based methods of natural
language processing do not have the capability to deal with perception-based
information. This is the basis of the conclusion that PT do not have the capability to

operate on perception-based information.

As an illustration, consider a perception-based version of the balls-in-box
problem. A box contains about twenty balls of various sizes. Most are large. There are
several times as many large balls as small balls. What is the number of small balls?

What is the probability that a ball drawn at random is neither large nor small?

To enable PT to deal with problems of this kind, it is necessary to restructure
probability theory by replacing bivalent logic on which it is based with fuzzy logic.
The rationale for this replacement is that fuzzy logic is, in essence, the logic of

perceptions, while bivalent logic is this logic of measurements.

The result of restructuring of PT is what may be called perception-based
probability theory, PTp. Conceptually, mathematically and computationally, PTp is
more general and more complex than PT. The basics of PTp are described in my
recent paper,” Toward a Perception-based Theory of Probabilistic Reasoning with
Imprecise Probabilities,” Journal of Statistical Planning and Inference, Elsevier
Science, Vol. 105, 233-264, 2002. A key idea in PTp is that subjective probabilities

are perceptions of likelihood, and as such are intrinsically imprecise.

Basically, PTp is the result of a three-stage generalization of PT. The first stage
involves f-generalization and leads to PT", a probability theory in which probabilities,
events and relations are, or are allowed to be, fuzzy-set-valued. For example, the
probability of an event may be described as “very high,” and a relation between X and

Y may be defined as “X is much larger than Y.”



The second stage involves f.g-generalization and leads to a probability theory
labeled PT™". In PT"", probabilities, events and relations are, or are allowed to be,
f-granular. For example, if Y is a function of X, Y=f(X), then f may be described as
a collection of fuzzy if-then rules of the form: if X is Aj then Y is B, i=1,...,n, in

which the A;j and B; are fuzzy sets in the domains of X and Y, respectively.

The third stage involves nl-generalization and leads to perception-based
probability theory PTp. It is PTp that has the capability to operate on

perception-based information.

A concept which plays a key role in nl-generalization is that of Precisiated
Natural Language (PNL). Basically, PNL consists of those propositions in a natural
language, NL, which are precisiable through translation into a precisiation language.
In the case of PNL, the precisiation language is the Generalized Constraint Language,
GCL.

A key idea which underlies PNL is that the meaning of a proposition, p, in NL
may be represented as a generalized constraint of the form X isr R, where X is the
constrained variable, R is the constraining relation; and r is an indexing variable
whose value defines the way in which R constrains X. In general, X, R and r are
implicit in p. Thus, in PNL, representation of the meaning of p involves explicitation
of X, R and r. As a very simple example, the meaning of “Eva is young,” may be
represented as “Age(Eva) is young,” in which X=Age(Eva), R=young, and the
constraint is possibilistic in the sense that “young” defines the fuzzy set of possible
values of Age(Eva). The principal types of constrains are possibilistic (r=blank);
probabilistic (r=p); veristic (r=v); and usuality (r=u). Thus, X isu R means that usually
(Xis R).

Within PTp, PNL plays an essential role in (a) representation of imprecise
probabilities and probability distributions; (b) definition of basic concepts such as
independence and stationarity; and (c) deduction from perception-based information.

An important example is what may be called bimodal information, that is,
information which involves a mixture of possibilistic and probabilistic constraints.
More specifically, if X is a random variable, its bimodal probability distribution may
be represented as

X isp (Pi|A1+ Po|Axt.. . +Py|Ay),
where Aj,...,A, are fuzzy subsets of the domain of X, and Py,...,P, are fuzzy

probabilities of Aj,...,A,, respectively. For example, if X=Age(Robert) and the



domain of X is the interval [0,100], then

X=low|young + highjmiddle-aged + low|old
means that the probability that Robert is young is low; probability that Robert is
middle-aged is high; and probability that Robert is old is low.

In PTp, the default assumption is that probability distributions are bimodal. A
typical question is: What is the expected value of a bimodal distribution? In general,

the expected value of a bimodal distribution is fuzzy-set-valued.

In conclusion, standard probability theory, PT, is subsumed by perception-based
probability theory, PTp. An essential difference between PT and PTp is that in PT
only likelihood is a matter of degree. In PTp, everything—and especially truth and
possibility—is, or is allowed to be, a matter of degree. Conceptually, mathematically
and computationally, PTp is more complex than PT. In this instance, as in many others,
complexity is the price of constructing a probability theory which has a close rapport

with the pervasive imprecision, uncertainty and ill-definedness of the real world.



