
Probability of Implication� Logical Version of

Bayes Theorem� and Fuzzy Logic Operations
Hung T� Nguyen�� Masao Mukaidono�� and Vladik Kreinovich�

�Mathematics� New Mexico State University� Las Cruces� NM ������ USA
�Comp� Sci�� Meiji University� Kanagawa�Ken� Japan

�Comp� Sci�� University of Texas� El Paso� TX �		
�� USA

contact email vladik�cs�utep�edu

Abstract� Logical inference starts with con�

cluding that if B implies A� and B is true� then A
is true as well� To describe probabilistic inference

rules� we must therefore de�ne the probability of

an implication �A if B�� There exist two di�erent
approaches to de�ning this probability� and these

approaches lead to di�erent probabilistic inference

rules	 We may interpret the probability of an im�

plication as the conditional probability P �A jB�� in
which case we get Bayesian inference� We may also

interpret this probability as the probability of the

material implication A � �B� in which case we get

di�erent inference rules� In this paper� we develop

a general approach to describing the probability of

an implication� and we describe the corresponding

general formulas� of which Bayesian and material

implications are particular cases� This general ap�

proach is naturally formulated in terms of t�norms�

a terms which is normally encountered in fuzzy

logic�

I� INTRODUCTION

Intuitively� when we say that an implication �A if B�
�A � B� is true� we mean that whenever B is true� we
can therefore conclude that A is true as well� In other
words� implication is what enables us to perform logical
inference�

In many practical situations� we have some con�dence in
B� but we are not �		
 con�dent that B is true� Similarly�
we may not be �		
 sure that the implication A � B is
true� In such situations� we can estimate the probability
P �B� that B is true� and the probability P �A� B� that
an implication A� B is true� How can we perform logical
inference in such situations� Intuitively� we expect to be
able to conclude that in this case� A should also be true
with a certain probability� this probability should tend to
� as the probabilities P �B� and P �A� B� tend to ��

How can we extend logical implication to the probabilis

tic case� Depending on how we interpret the probability
of an implication� we get two di�erent

There are two known answers to this question� and these
answers are di�erent because they use di�erent formaliza

tions of the probability of implication� The �rst answer
from Bayesian approach� in which P �A � B� is inter

preted as the conditional probability P �A jB�� see� e�g��

���� The second answer comes from logical reasoning �see�
e�g�� ����� where the probability P �A � B� is interpreted
as the probability of the corresponding �material implica

tion�� i�e�� the probability P �A��B� that either A is true
or B is false�

From the purely logical viewpoint� the second answer
may sound more reasonable� but there are examples where
the �rst answer is in better accordance with common
sense� Indeed� suppose that we are analyzing animals in a
national park� and we are looking for a probability of the
implication A � B� where A is �the animal is a white��
and B is �the animal is a tiger�� In plain English� the
probability of the statement �A if B� is naturally inter

preted as a probability that a tiger is white� If out of
�	�			 animals� �		 are tigers� and �	 of these tigers are
white� then� in commonsense terms� the probability that
a tiger is white is �	��		�	��� This is exactly the prob

ability provided by the Bayesian approach� However� the
logical approach produces a di�erent result� the probabil

ity of A��B� i�e�� the probability that an animal is either
white or not a tiger is equal to ����	��	�			�	���� � be

cause the statement A � �B is true not only for �	 white
tigers� but also for ���		 animals which are not tigers�

This examples show that there is not a single �correct�
probabilistic interpretation of an implication� but depend

ing on the situation� di�erent interpretations may be rea

sonable� It is therefore desirable to provide a comparative
analysis of di�erent interpretations�

In ��� ��� it was shown that the above two interpreta

tions can be presented as particular cases of a more general
approach� in which the di�erence corresponds to the di�er

ence between di�erent t
norm
like operations �for detailed
information on t
norms� see� e�g�� ��� ����

In this paper� we describe this general approach in pre

cise terms� and we describe all possible implication opera

tions covered by this approach and the corresponding logi

cal inference rules� Speci�cally� in Section II� we overview
the main properties of Bayes formalism� in Section III�
we overview how logical implication can be described in
similar terms� and in Section IV� we describe the corre

sponding general approach to probability of implication�
Several auxiliary results are presented in Section V� The
main ideas of the proofs of the results from Section IV are
described in Section VI�



II� BAYESIAN APPROACH	 A BRIEF

REMINDER

In Bayesian approach� we interpret the probability of an
implication as the conditional probability

P �A jB� �
P �A�B�

P �B�
� ���

Due to this formula� if we know the probability P �B� of
B and the probability P �A jB� of the implication� then
we can reconstruct the probability P �A�B� that both A
and B are true as follows�

P �A�B� � P �A jB� � P �B�� ���

Since A�B means the same thing as B �A� we therefore
conclude that P �A�B� � P �B �A�� i�e�� due to ���� that

P �A jB� � P �B� � P �B jA� � P �A�� ���

This formula is the essence of the well
known Bayes the

orem� In this theorem� we have a comprehensive list of
n incompatible hypotheses H�� � � � � Hn� and we know the
�prior� probabilities P �H��� � � � � P �Hn� of these hypothe

ses� Since these hypothesis cover all all possible situations
and are incompatible� we conclude that

P �H�� � � � � � P �Hn� � �� ���

We want to know how these prior probabilities change
when we make observe some evidence E�

We assume that� for each of these hypotheses Hi� we
know the conditional probability P �E jHi� that under
this hypothesis� we will observe the evidence E� What
we want to describe is the updated probability P �Hi jE�
with which the hypothesis Hi is true in the situation when
the evidence E was actually observed� According to the
formula ����

P �Hi jE� � P �E� � P �E jHi� � P �Hi�� ���

therefore�

P �Hi jE� �
P �E jHi� � P �Hi�

P �E�
� ���

So� to determine the desired posterior probability
P �Hi jE�� we must know P �E jHi�� P �Hi�� and P �E��
We know P �E jHi� and P �Hi�� The only value that we
do not know yet is P �E�� but this value is easy to de

termine� since the hypotheses are incompatible� and their
list is comprehensive� we conclude that

P �E� � P �E �H�� � � � � � P �E �Hn�� ���

Due to formula ���� we have

P �E �Hi� � P �E jHi� � P �Hi��

hence

P �E� � P �E jH�� �P �H�� � � � ��P �E jHn� �P �Hn�� ���

and therefore� the formula ��� take the familiar Bayes
form�

P �Hi jE� �

P �E jHi� � P �Hi�

P �E jH�� � P �H�� � � � � � P �E jHn� � P �Hn�
� ���

III� LOGICAL APPROACH REFORMULATED

IN SIMILAR TERMS

Assume now that we interpret implication as the material
implication A � �B� In this case� the probability of the
implication is interpreted as the probability P �A � �B��
If we know this probability and if we know P �B�� how
can we determine P �A�B�� Based on the additivity of
the probability and the fact that A and �A are incompat

ible� we conclude that P �B� � P �A�B� � P ��A�B��
Therefore�

P �A�B� � P �B�� P ��A�B�� ��	�

The statement �A�B is the negation of A � �B� hence

P ��A�B� � �� P �A � �B�� ����

Substituting ���� into ��	�� we conclude that

P �A�B� � P �B� � P �A � �B�� �� ����

This formula is similar to the formula ���� both formulas
can be described as

P �A�B� � P �A� B�� P �B� ����

for some binary operation a�b� In the formula ��� � which
corresponds to the Bayesian case � we used the function

a� b � a � b� ����

In the formula ���� � which corresponds to the logical
implication cases � we used the operation a�b � a�b���

Since the meaning of the operation � is to transform
probabilities into a new probability� and probabilities only
take values from the interval �	� ��� it is reasonable to re

quire that the operation a�b always takes the values from
the interval �	� ��� The operation a � b � a � b � � does
not always satisfy this requirement� because when a and
b are both� say� less than 	��� we have a� b� � � 	� This
does not a�ect our application because we always have
P �B� � P �A � �B� � �� However� to make the operation
a� b everywhere de�ned as a function from probabilities
to probabilities� it is reasonable to set its value to 	 when
a � b� � � 	� i�e�� to consider a new operation

a� b � max�	� a � b� ��� ����



Both operations ���� and ���� are examples of t�norms�
operations describing �and� in fuzzy logic� Informally�
the appearance of a t
norm makes sense because A�B is
true if B is true and the implication A	 B is true� so it is
reasonable to conclude that our degree of belief P �A�B�
in A�B is equal to the result of an �and�
operation �t

norm� a � b applied to the degrees of belief P �B� that
B is true and the degree of belief P �A � B� that the
implication is true� This justi�cation is informal� In the
following text� we will make a more formal justi�cation�

Meanwhile� since the formula ���� is similar to the for

mula ���� we will use this analogy to deduce the logical
inference analogue of the Bayes formula� Since A�B
means the same thing as B �A� we therefore conclude
that P �A�B� � P �B �A�� i�e�� due to ����� that

P �A� B�� P �B� � P �B � A�� P �A�� ����

In particular� for the exhaustive list of n incompatible hy

potheses H�� � � � � Hn� and for an evidence E� we conclude
that

P �Hi � E�� P �E� � P �E � Hi�� P �Hi�� ����

Therefore�

P �Hi � E� � �P �E � Hi�� P �Hi��
 P �E�� ����

where a
b is the inverse operation to �� i�e�� an operation
for which �a
 b�� b � a�

It is worth mentioning that for a general t
norm �� the
corresponding inverse operation 
 is usually called a fuzzy
implication ��� ���

For multiplication ����� the inverse operation is division
a 
 b � a�b �as used in the formula ����� To make sure
that the values of this operation stays within the interval
�	� ��� we should replace it with

a
 b � min�a�b� ���

For our particular operation ����� the inverse operation is

a
 b � min�� � a� b� ���

here� similarly to the case of division� we added min��� � � ��
to make sure that the value of this operation stays within
the interval �	� ���

Due to formula ��� and the fact that

P �E �Hi� � P �E � Hi�� P �Hi��

we get an expression for P �E��

P �E� � P �E � H���P �H���� � ��P �E � Hn��P �Hn��

So� we conclude that

P �Hi � E� � �P �E � Hi�� P �Hi��
 ����

�P �E � H��� P �H�� � � � � � P �E � Hn�� P �Hn�� �

This is a direct logical analogue of the Bayes theorem�

IV� GENERAL APPROACH TO DESCRIBING

PROBABILITY OF AN IMPLICATION AND

ITS RELATION WITH FUZZY LOGIC

A� General De�nition

Let us describe a general de�nition of the probability
P �A � B�� This probability should only depend on the
events A and B� Thus� our �rst requirement is that once
we know the probabilities of all possible Boolean combina

tions A and B� we should be able to determine the desired
probability P �A� B��

It is well known that in order to determine the probabil

ities of all possible Boolean combinations of A and B� it is
su�cient to know the probabilities P �A�B�� P �A��B��
P ��A�B�� and P ��A��B� of four atomic statements
A�B� A��B� �A�B� and �A��B� For simplicity�
in the following text� we will denote the corresponding
probabilities by P��� P��� P��� and P��� The correspond

ing four atomic statements make up a comprehensive list
of incompatible events� so their sum should be equal to ��

P �A�B� �P �A��B� �P ��A�B� �P ��A��B� � ��

Thus� we can de�ne a general implication operation as a
function of these four probabilities�

De�nition 
� By a probability distribution P � we mean a

quadruple of non�negative values P��� P��� P��� and P�� for
which P���P���P���P�� � �� The set of all probability
distributions is denoted by P �

De�nition �� By an probabilistic logical operation� we

mean a function F � P 	 �	� ��� For every two events

A and B� the result of applying the probabilistic logical

operation F is then de�ned as

F �P �
def
�

F �P �A�B�� P �A��B�� P ��A�B�� P ��A��B���

For the Bayesian de�nition ���� we have P �A�B� � P���
and P �B� � P �A�B� � P ��A�B� � P�� � P��� hence

F �P��� P��� P��� P��� �
P��

P�� � P��
� ��	�

For the logical de�nition P �A � B�
def
� P �A � �B�� we

have �due to ����� P �A��B� � ��P ��A�B� � ��P���
hence

F �P��� P��� P��� P��� � �� P��� ����

B� What Does It Mean to be an Implication�

De�nition � is a general de�nition of a probabilistic logi

cal operation� it does not distinguish between implication�
conjunction� disjunction� etc� What makes an operation
an implication operation� One thing that is true for im

plication A � B and not for other operations is that the
implication depends only on what happens when B is true



and should not be a�ected by what happens when B is
false� In other words� if for two distributions� we have the
same values of P �A�B� and P ��A�B�� then for these
two distributions� we should get exactly the same value of
P �A� B��

Another condition describing implication is that if when
B always implies A� i�e�� when �A�B is impossible �i�e��
when P ��A�B� � P�� � 	�� then A � B must be true
with probability ��

Let us describe these conditions formally�

De�nition �� We say that two probability distributions

P and P � are equivalent when B is true if P�� � P �

�� and

P�� � P �

���

De�nition 
� We say that a probabilistic logical oper�

ation F is an implication operation if the following two

conditions hold�

� F �P � � F �P �� for all pairs P and P � that are equiv�

alent when B is true�

� if P�� � 	� then F �P � � ��

Both operations ��	� and ���� are implication operations
in this sense� In general� the following simple proposi

tions provides a complete descriptions of such implication
operations�

Proposition 
� A probabilistic logical operation F is an

implication operation if and only if F depends on only two

variables P�� and P��� i�e�� if F �P � � f�P��� P��� for some
function f of two variables for which f�P��� 	� � � for all

values P���

Since

P�� � P ��A�B� � P �B�� P �A�B� � P�� � P���

where we denoted P��
def
� P �B�� we can reformulated

Proposition � as follows�

Proposition 
�� A probabilistic logical operation F is an

implication operation if and only if F depends on only two

variables P�� and P��� i�e�� if F �P � � g�P��� P��� for some
function g of two variables for which g�P��� P��� � � for

all values P���

Thus� to describe all possible implication operations� we
must describe the corresponding functions of two vari

ables�

C� Natural Implication Operations

Since we are considering the probabilistic uncertainty� it
is reasonable to consider not only individual events A� A��
etc�� but also �composites� �probabilistic combinations� of
such events� The general idea behind such combinations is
that we take a lottery with a certain probability p and then
pick A if the lottery succeeds and A� otherwise� According
to the probability theory� the probability of the resulting
event eA is equal to

P � eA� � p � P �A� � ��� p� � P �A��� ����

It is also true that

P � eA�B� � p � P �A�B� � ��� p� � P �A� �B�� ����

It is natural to require that in this case� if we keep the
same condition B� then the probability of an implication
with the conclusion eA should also be equal to the similar
probabilistic combination�

P � eA� B� � p � P �A� B� � ��� p� � P �A� � B�� ����

This requirements can be formulated as follows�

De�nition �� An implication operation g�P��� P��� is

called natural if for every four real numbers P��� P
�

��� P���
and p� we have

g�p � P�� � ��� p� � P �

��� P��� �

p � g�P��� P��� � ��� p� � g�P �

��� P���� ����

Proposition �� An implication operation is natural if

and only if it has the form

g�P��� P��� � ��
P�� � P��
h�P���

����

for some function h�P��� of one variable�

Both formulas ��	� and ���� can be thus represented� the
Bayes case corresponds to h�z� � z� and the logical case
corresponds to h�z� � ��

D� Final Result� Natural Implication Operations

Corresponding to Commutative Aggregation Rule

Due to Proposition �� for each natural implication g� if we

know a
def
� P �A� B� � g�P��� P��� and b

def
� P �B� � P���

then we can reconstruct the probability t
def
� P �A�B� �

P��� Indeed� in terms of a� b� and t� the formula ���� has
the form

a � ��
b� t

h�b�
�

hence

�� a �
b� t

h�b�
�

so ��� a� � h�b� � b� t and therefore�

P �A�B� � t�P �A� B�� P �B��� ����

where we denoted

t�a� b� � b� ��� a� � h�b�� ����

The function t�a� b� describe an aggregation operation
whose intuitive meaning �as we mentioned earlier� is
�and�� Since �A and B� means the same as �B and A��
it is reasonable to require that this aggregation operation
be commutative�



De�nition �� We say that a natural implication opera�

tion ���� corresponds to a commutative aggregation rule if

the corresponding aggregation operation ���� if commu�

tative�

Proposition �� A natural implication corresponds to a

commutative aggregation rule if and only if has the follow�

ing form�

P �A� B� � ��
P ��A�B�

� � ��� �� � P �B�
� ����

E� Conclusions and Discussions

Both the Bayes formula and the logical implication are
covered by the formula �����

� the Bayes formula corresponds to � � 	� and
� the logical implication formula corresponds to � � ��

Thus� our conclusion is that natural requirements deter

mine a �
parametric family of formulas for the probability
of implication� formulas which are intermediate between
the two extreme cases� Bayesian and logical�

In general� for h�b� � � � ��� �� � b� the corresponding
aggregation operation ���� has the form

t�a� b� � a� b � � � �a � b� �� � ��� �� � a � b� ��	�

One can easily check that this operation is always asso

ciative�

For this operation �� the inverse operation c � a 
 b
can be determined from the equation a � b � c� i�e�� a �
� � �b � c� �� � ��� �� � b � c� This is a linear equation in
terms of c� from which we conclude that

a
 b �
a � � � ��� b�

� � ��� �� � b
� ����

One can easily check that for � � 	� we get the Bayes 
inverse a�b� and for � � �� we get the inverse operation
� � a� b corresponding to the logical implication�

How can we interpret these new aggregation operations�
One can show that if we �renormalize� the probabilities
by using a transformation

P 	 s�P � � ��� �� � P � �� ����

then in this new scale� the aggregation operation ��	� be

comes a simple product� s�a� b� � s�a� � s�b��

The rescaling ���� makes perfect sense �see� e�g�� �����
Indeed� one of the natural methods to ascribe the subjec

tive probability P �A� to a statement A is to take several
�N� experts� and ask each of them whether he or she be

lieves that A is true� If N�A� of them answer �yes�� we
take d�A� � N�A��N as the desired certainty value� If all
the experts believe in A� then this value is � ���		
�� if
half of them believe in A� then t�A� � 	�� ��	
�� etc�

Knowledge engineers want the system to include the
knowledge of the entire scienti�c community� so they ask

as many experts as possible� But asking too many ex

perts leads to the following negative phenomenon� when
the opinion of the most respected professors� Nobel
prize
winners� etc�� is known� some less self
con�dent experts
will not be brave enough to express their own opinions�
so they will rather follow the majority� How does their
presence in!uence the resulting subjective probability�

Let N denote the initial number of experts� N�A� the
number of those of them who believe in A� and M the
number of shy experts added� Initially� d�A� � N�A��N �
After we add M conformist experts� the number of experts
who believe in A becomes N�A� � M out of the total of
M � N � So the new value of the subjective probability is

P ��A� �
N�A� � M

N � M
� ��� �� � P �A� � ��

where we denoted �
def
� M�N �

Thus� each new operation can be simply interpreted as
the Bayesian operation but in a di�erent probability scale
natural for expert systems�

V� AUXILIARY RESULT

In the previous text� we described how� knowing P �B� and
P �A � B�� we can reconstruct the probability P �A�B�
as P �a � B� � P �B�� A natural question is� what if we
want to reconstruct the probability P �A� instead�

Since we know A�B� and P �A�B�� this means that we
know� out of all cases in which B is true� in what portion
of them A is also true� To get the probability of A� we
must also know when A is true for cases in which B is
false� i�e�� we must also know the probability P �A��B��
Then� we will be able to reconstruct the total probability
P �A� of A as

P �A� � P �A�B� � P �A��B�� ����

By de�nition of an implication operation� we do not have
any information on whether A is true or not in cases when
B is false�

� It may be that A is always true when B is false� In
this case� P �A��B� � P ��B� � �� P �B��

� It may also happen that A is never true when B is
false� In this case� P �A��B� � 	�

� It is also possible for P �A��B� to take any value
from the interval �	� �� P �B���

Thus� due to formula �B��� the only information that we
have about the probability P �A� is that this probability
belongs to the interval

P �A� � P�A�
def
� �P��A�� P��A���

where�

P��A� � P �A� B�� P �B��

P��A� � P �A� B�� P �B� � �� P �B�� ����



In particular� for the Bayes implication� we have

P��A� � P �A� B� � P �B��

P��A� � P �A� B� � P �B� � �� P �B�� ����

For the logical implication� we have

P��A� � P �A� B� � P �B�� ��

P��A� � P �A� B�� ����

For the general implication operation� we have

P��A� � � � �P �A� B� � P �B�� ���

��� �� � P �A� B� � P �B��

P��A� � � � P �A� B� � ��� �� � ��� P �B���

��� �� � P �A� B� � P �B�� ����

VI� PROOFS	 MAIN IDEAS

A� Proof of Proposition �

In the formula ����� let us take P�� � � and P �

�� � 	�
Then� this formula turns into the following one�

g�p� P��� � p � g��� P��� � ��� p� � g�	� P���� ����

Thus� for p � P��� we have

g�P��� P��� � P�� � g��� P��� � ��� P��� � g�	� P���� ����

Substituting P�� � P�� � P�� into the formula ����� we
conclude that

g�P��� P��� �

�P�� � P��� � g��� P��� � ��� P�� � P��� � g�	� P���� ����

Combining together terms proportional to P��� we con

clude that

g�P��� P��� � g��P���� P�� � g��P���� ��	�

where we denoted

g��P���
def
� P�� � g��� P��� � ��� P��� � g�	� P����

g��P���
def
� g��� P���� g�	� P����

By de�nition of an implication operation� its result is � if
P�� � 	� Thus� in the formula ��	�� we have g��P��� � ��
so

g�P��� P��� � �� P�� � g��P���� ����

If we denote ��g��z� by h�z�� then� since P�� � P���P���
we get the desired formula ����� The proposition is proven�

B� Proof of Proposition 	

Commutativity t�a� b� � t�b� a� of the operation ����
means that for every two real numbers a and b� we have

b� ��� a� � h�b� � a� ��� b� � h�a�� ����

In particular� for a � 	� this equality leads to

b� h�b� � ���� b� � h�	��

hence
h�b� � b � � � ��� b��

where we denoted �
def
� h�	�� Combining terms propor


tional to b� we conclude that

h�b� � � � ��� �� � b�

Substituting this expression into ����� we get the desired
formula� The proposition is proven�
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