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Abstract— Logical inference starts with con-
cluding that if B implies A, and B is true, then A
is true as well. To describe probabilistic inference
rules, we must therefore define the probability of
an implication “A if B”. There exist two different
approaches to defining this probability, and these
approaches lead to different probabilistic inference
rules: We may interpret the probability of an im-
plication as the conditional probability P(A|B), in
which case we get Bayesian inference. We may also
interpret this probability as the probability of the
material implication AV =B, in which case we get
different inference rules. In this paper, we develop
a general approach to describing the probability of
an implication, and we describe the corresponding
general formulas, of which Bayesian and material
implications are particular cases. This general ap-
proach is naturally formulated in terms of t-norms,
a terms which is normally encountered in fuzzy
logic.

I. INTRODUCTION

Intuitively, when we say that an implication “A if B”
(A < B) is true, we mean that whenever B is true, we
can therefore conclude that A is true as well. In other
words, implication is what enables us to perform logical
inference.

In many practical situations, we have some confidence in
B, but we are not 100% confident that B is true. Similarly,
we may not be 100% sure that the implication A < B is
true. In such situations, we can estimate the probability
P(B) that B is true, and the probability P(A < B) that
an implication A < B is true. How can we perform logical
inference in such situations? Intuitively, we expect to be
able to conclude that in this case, A should also be true
with a certain probability; this probability should tend to
1 as the probabilities P(B) and P(A + B) tend to 1.

How can we extend logical implication to the probabilis-
tic case? Depending on how we interpret the probability
of an implication, we get two different

There are two known answers to this question, and these
answers are different because they use different formaliza-
tions of the probability of implication. The first answer
from Bayesian approach, in which P(A «+ B) is inter-
preted as the conditional probability P(A|B); see, e.g.,

[7]. The second answer comes from logical reasoning (see,
e.g., [5]), where the probability P(A + B) is interpreted
as the probability of the corresponding “material implica-
tion”, i.e., the probability P(AV —B) that either A is true
or B is false.

From the purely logical viewpoint, the second answer
may sound more reasonable, but there are examples where
the first answer is in better accordance with common
sense. Indeed, suppose that we are analyzing animals in a
national park, and we are looking for a probability of the
implication A <+ B, where A is “the animal is a white”,
and B is “the animal is a tiger”. In plain English, the
probability of the statement “A if B” is naturally inter-
preted as a probability that a tiger is white. If out of
10,000 animals, 100 are tigers, and 10 of these tigers are
white, then, in commonsense terms, the probability that
a tiger is white is 10/100=0.1. This is exactly the prob-
ability provided by the Bayesian approach. However, the
logical approach produces a different result: the probabil-
ity of AV B, i.e., the probability that an animal is either
white or not a tiger is equal to 9,910/10,000=0.991 — be-
cause the statement A V =B is true not only for 10 white
tigers, but also for 9,900 animals which are not tigers.

This examples show that there is not a single “correct”
probabilistic interpretation of an implication, but depend-
ing on the situation, different interpretations may be rea-
sonable. It is therefore desirable to provide a comparative
analysis of different interpretations.

In [3, 6], it was shown that the above two interpreta-
tions can be presented as particular cases of a more general
approach, in which the difference corresponds to the differ-
ence between different t-norm-like operations (for detailed
information on t-norms, see, e.g., [2, 4]).

In this paper, we describe this general approach in pre-
cise terms, and we describe all possible implication opera-
tions covered by this approach and the corresponding logi-
cal inference rules. Specifically, in Section II, we overview
the main properties of Bayes formalism, in Section III,
we overview how logical implication can be described in
similar terms, and in Section IV, we describe the corre-
sponding general approach to probability of implication.
Several auxiliary results are presented in Section V. The
main ideas of the proofs of the results from Section IV are
described in Section VI.



II. BAYESIAN APPROACH: A BRIEF
REMINDER

In Bayesian approach, we interpret the probability of an
implication as the conditional probability

P(A|B) = %. (1)

Due to this formula, if we know the probability P(B) of
B and the probability P(A|B) of the implication, then
we can reconstruct the probability P(A & B) that both A
and B are true as follows:

P(A&B) = P(A|B) - P(B). 2)

Since A & B means the same thing as B & A, we therefore
conclude that P(A& B) = P(B & A), i.e., due to (1), that

P(A|B)-P(B) = P(B|A) - P(A). (3)

This formula is the essence of the well-known Bayes the-
orem. In this theorem, we have a comprehensive list of
n incompatible hypotheses Hy, ..., H,, and we know the
(prior) probabilities P(Hy), ..., P(H,) of these hypothe-
ses. Since these hypothesis cover all all possible situations
and are incompatible, we conclude that

P(Hy) + ...+ P(H,) = 1. (4)

We want to know how these prior probabilities change
when we make observe some evidence F.

We assume that, for each of these hypotheses H;, we
know the conditional probability P(E |H;) that under
this hypothesis, we will observe the evidence E. What
we want to describe is the updated probability P(H; | E)
with which the hypothesis H; is true in the situation when
the evidence E was actually observed. According to the
formula (3),

P(H; | E) - P(E) = P(E| H;) - P(H;), (5)
therefore,

P(E|H;) - P(H;)
P(E) . (6)

P(H; |E) =

So, to determine the desired posterior probability
P(H;|E), we must know P(E|H;), P(H;), and P(E).
We know P(E | H;) and P(H;). The only value that we
do not know yet is P(E), but this value is easy to de-
termine: since the hypotheses are incompatible, and their
list is comprehensive, we conclude that

P(E)=PE&H,)+...+P(E&H,). (7
Due to formula (1), we have

P(E& H;) = P(E|H;) - P(H;),

hence
P(E)=P(E|H:1)-P(H1)+...+ P(E|Hy,) P(H,), (8)

and therefore, the formula (6) take the familiar Bayes
form:
P(Hi| E) =
P(E|Hy)-P(H,)+...+ P(E|H,) -P(H,)
ITI. LOGICAL APPROACH REFORMULATED
IN SIMILAR TERMS

Assume now that we interpret implication as the material
implication A V —B. In this case, the probability of the
implication is interpreted as the probability P(A V —B).
If we know this probability and if we know P(B), how
can we determine P(A& B)? Based on the additivity of
the probability and the fact that A and —A are incompat-
ible, we conclude that P(B) = P(A& B) + P(-~A& B).
Therefore,

P(A& B) = P(B) — P(~A& B). (10)

The statement —A & B is the negation of AV =B, hence

P(-A&B)=1-P(AV-B). (11)
Substituting (11) into (10), we conclude that
P(A& B) =P(B)+ P(Av-B)—1. (12)

This formula is similar to the formula (2): both formulas
can be described as

P(A& B)=P(A <+ B)® P(B) (13)
for some binary operation a®b. In the formula (2) — which
corresponds to the Bayesian case — we used the function

a®b=a-b. (14)
In the formula (12) — which corresponds to the logical
implication cases — we used the operation a®b =a+b—1.
Since the meaning of the operation ® is to transform
probabilities into a new probability, and probabilities only
take values from the interval [0, 1], it is reasonable to re-
quire that the operation a®b always takes the values from
the interval [0, 1]. The operation a ©b = a + b — 1 does
not always satisfy this requirement, because when a and
b are both, say, less than 0.5, we have a + b —1 < 0. This
does not affect our application because we always have
P(B) + P(AV -B) > 1. However, to make the operation
a ® b everywhere defined as a function from probabilities
to probabilities, it is reasonable to set its value to 0 when
a+b—1<0,i.e., to consider a new operation

a®b=max(0,a+b—1). (15)



Both operations (14) and (15) are examples of t-norms,
operations describing “and” in fuzzy logic. Informally,
the appearance of a t-norm makes sense because A & B is
true if B is true and the implication A — B is true, so it is
reasonable to conclude that our degree of belief P(A & B)
in A& B is equal to the result of an “and”-operation (t-
norm) a ® b applied to the degrees of belief P(B) that
B is true and the degree of belief P(A < B) that the
implication is true. This justification is informal. In the
following text, we will make a more formal justification.
Meanwhile, since the formula (12) is similar to the for-
mula (2), we will use this analogy to deduce the logical
inference analogue of the Bayes formula. Since A& B
means the same thing as B & A, we therefore conclude

that P(A& B) = P(B & A), i.e., due to (13), that
P(A+ B)®P(B)=P(B «+ A)® P(A). (16)

In particular, for the exhaustive list of n incompatible hy-
potheses Hy, ..., H,, and for an evidence F, we conclude

that

P(H; + E)® P(E) = P(E + H;) ® P(H;). (17)
Therefore,

P(H; «+ E)= (P(E + H;) © P(H;)) o P(E), (18)

where a @b is the inverse operation to ®, i.e., an operation
for which (a@b) ®b = a.

It is worth mentioning that for a general t-norm ©, the
corresponding inverse operation @ is usually called a fuzzy
implication [2, 4].

For multiplication (14), the inverse operation is division
a®b=a/b (as used in the formula (6)). To make sure
that the values of this operation stays within the interval
[0, 1], we should replace it with

a ® b =min(a/b,1).
For our particular operation (15), the inverse operation is
a@b=min(l+a—0b,1);

here, similarly to the case of division, we added min(1,...)
to make sure that the value of this operation stays within
the interval [0, 1].

Due to formula (7) and the fact that

P(E& H;) = P(E + H;) ® P(H;),
we get an expression for P(E):
P(E) = P(E < Hi)®P(Hy)+...+P(E + H,)®P(H,).
So, we conclude that
P(H; + E) = (P(E + H;) ® P(H;))® (19)
(P(E+ H)) ®P(H1)+ ...+ P(E+ Hy,)® P(Hy,)).

This is a direct logical analogue of the Bayes theorem.

IV. GENERAL APPROACH TO DESCRIBING
PROBABILITY OF AN IMPLICATION AND
ITS RELATION WITH FUZZY LOGIC

A. General Definition

Let us describe a general definition of the probability
P(A + B). This probability should only depend on the
events A and B. Thus, our first requirement is that once
we know the probabilities of all possible Boolean combina-
tions A and B, we should be able to determine the desired
probability P(A < B).

It is well known that in order to determine the probabil-
ities of all possible Boolean combinations of A and B, it is
sufficient to know the probabilities P(A & B), P(A & —B),
P(-=A& B), and P(—~A& —B) of four atomic statements
A& B, A& —-B, A& B, and -A&—B. For simplicity,
in the following text, we will denote the corresponding
probabilities by Pi1, Pig, Po1, and Fyo. The correspond-
ing four atomic statements make up a comprehensive list
of incompatible events, so their sum should be equal to 1:

P(A& B) + P(A& ~B) + P(~A& B) + P(~A& -B) = 1.

Thus, we can define a general implication operation as a
function of these four probabilities:

Definition 1. By a probability distribution P, we mean a
quadruple of non-negative values Py1, Pio, Py1, and Py for
which Py + Pio+ Py1 + Poo = 1. The set of all probability
distributions is denoted by P.

Definition 2. By an probabilistic logical operation, we
mean a function F' : P — [0,1]. For every two events
A and B, the result of applying the probabilistic logical
operation F' is then defined as

F(P) Y

F(P(A& B), P(A& ~B), P(~A& B), P(~A& -B)).

For the Bayesian definition (1), we have P(A & B) = P4,
and P(B) = P(A& B) + P(mA& B) = Pi; + Py, hence

P,
F(Py1, Pio, Po1, P11) = 1

= 20
Py + Py (20)

For the logical definition P(A < B) def P(AV —B), we

have (due to (11)) P(AV—-B) =1—-P(-A& B) = 1— Py,
hence

F(Pi1, Py, Poi, P11) =1— Po. (21)

B. What Does It Mean to be an Implication?

Definition 1 is a general definition of a probabilistic logi-
cal operation, it does not distinguish between implication,
conjunction, disjunction, etc. What makes an operation
an implication operation? One thing that is true for im-
plication A «<— B and not for other operations is that the
implication depends only on what happens when B is true



and should not be affected by what happens when B is
false. In other words, if for two distributions, we have the
same values of P(A& B) and P(—A& B), then for these
two distributions, we should get exactly the same value of
P(A «+ B).

Another condition describing implication is that if when
B always implies A, i.e., when —A & B is impossible (i.e.,
when P(nA& B) = Py; = 0), then A + B must be true
with probability 1.

Let us describe these conditions formally:

Definition 3. We say that two probability distributions
P and P’ are equivalent when B is true if P;; = P{; and
Py, = Pj,.

Definition 4. We say that a probabilistic logical oper-
ation F' is an implication operation if the following two
conditions hold:

e F(P) = F(P') for all pairs P and P’ that are equiv-
alent when B is true;
e if Pyy =0, then F(P) =1.

Both operations (20) and (21) are implication operations
in this sense. In general, the following simple proposi-
tions provides a complete descriptions of such implication
operations:

Proposition 1. A probabilistic logical operation F' is an
implication operation if and only if F' depends on only two
variables P11 and Poy, i.e., if F(P) = f(Pi1, Po1) for some
function f of two variables for which f(Py1,0) =1 for all
values Piy.

Since
Py, = P(~A& B) = P(B) — P(A& B) = P,y — P11,
where we denoted P,; P(B), we can reformulated

Proposition 1 as follows:

Proposition 1'. A probabilistic logical operation F is an
implication operation if and only if F' depends on only two
variables Py and Py, i.e., if F(P) = g(P11, Py1) for some
function g of two variables for which g(Pi1,P11) =1 for
all values Py .

Thus, to describe all possible implication operations, we
must describe the corresponding functions of two vari-
ables.

C. Natural Implication Operations

Since we are considering the probabilistic uncertainty, it
is reasonable to consider not only individual events A, A’,
etc., but also “composites” (probabilistic combinations) of
such events. The general idea behind such combinations is
that we take a lottery with a certain probability p and then
pick A if the lottery succeeds and A’ otherwise. According
to the probability theory, the probability of the resulting
event A is equal to

P(A) =p-P(A) + (1 -p)- P(A). (22)

It is also true that

P(A&B)=p-P(A&B)+ (1 —p)-P(A'&B). (23)
It is natural to require that in this case, if we keep the
same condition B, then the probability of an implication
with the conclusion A should also be equal to the similar
probabilistic combination:

P(A« B)=p-P(A+ B)+ (1—p)-P(A' « B). (24)

This requirements can be formulated as follows:
Definition 5. An implication operation g(Pi1,Pi1) Is
called natural if for every four real numbers Py, P/;, P,
and p, we have

glp-Pui+(1—p)- Py, Pa) =

p-9(Pi1, Pa) + (1 =p) - g(Ply, Pa1). (25)

Proposition 2. An implication operation is natural if
and only if it has the form

P, — Py

P1,Pq)=1-
g( 11, 1) h(P*l)

(26)

for some function h(P.1) of one variable.

Both formulas (20) and (21) can be thus represented: the
Bayes case corresponds to h(z) = z, and the logical case
corresponds to h(z) = 1.

D. Final Result: Natural Implication Operations
Corresponding to Commutative Aggregation Rule

Due to Proposition 2, for each natural implication g, if we

know a % P(A « B) = g(Pr1, P.1) and b P(B) = P.,
then we can reconstruct the probability ¢ def P(A&B) =
Pyy. Indeed, in terms of a, b, and ¢, the formula (26) has

the form

b—t
ERETOL
hence
l—a= —b ¢t
~ h(b)’
so (1 —a) - h(b) = b —t and therefore,
P(A& B) =t(P(A + B),P(B)), (27)
where we denoted
t(a,b) =b— (1 —a) - h(b). (28)

The function t(a,b) describe an aggregation operation
whose intuitive meaning (as we mentioned earlier) is
“and”. Since “A and B” means the same as “B and A”,
it is reasonable to require that this aggregation operation
be commutative:



Definition 6. We say that a natural implication opera-
tion (26) corresponds to a commutative aggregation rule if
the corresponding aggregation operation (28) if commu-
tative.

Proposition 3. A natural implication corresponds to a
commutative aggregation rule if and only if has the follow-
ing form:

P(-~A& B)
a+(l-a)-P(B)’

P(A+B)=1- (29)

E. Conclusions and Discussions

Both the Bayes formula and the logical implication are
covered by the formula (29):

e the Bayes formula corresponds to a = 0, and
e the logical implication formula corresponds to a = 1.

Thus, our conclusion is that natural requirements deter-
mine a 1-parametric family of formulas for the probability
of implication, formulas which are intermediate between
the two extreme cases: Bayesian and logical.

In general, for h(b) = a + (1 — @) - b, the corresponding
aggregation operation (28) has the form

ta,b) =a®b=a-(a+b—1)+(1—-a)-a-b. (30)

One can easily check that this operation is always asso-
ciative.

For this operation ®, the inverse operation ¢ = a @ b
can be determined from the equation a = b ® ¢, i.e., a =
a (b+c—1)+ (1 —a)-b-c Thisis a linear equation in
terms of ¢, from which we conclude that

a+a-(1-0)

b= .
¢ a+(1—a)-b

(31)
One can easily check that for a« = 0, we get the Bayes’
inverse a/b, and for & = 1, we get the inverse operation
1+ a — b corresponding to the logical implication.

How can we interpret these new aggregation operations?
One can show that if we “renormalize” the probabilities
by using a transformation

P—s(P)=(1-a) -P+a, (31)

then in this new scale, the aggregation operation (30) be-
comes a simple product: s(a ® b) = s(a) - s(b).

The rescaling (31) makes perfect sense (see, e.g., [1]).
Indeed, one of the natural methods to ascribe the subjec-
tive probability P(A) to a statement A is to take several
(N) experts, and ask each of them whether he or she be-
lieves that A is true. If N(A) of them answer “yes”, we
take d(A) = N(A)/N as the desired certainty value. If all
the experts believe in A, then this value is 1 (=100%), if
half of them believe in A, then t(4) = 0.5 (50%), etc.

Knowledge engineers want the system to include the
knowledge of the entire scientific community, so they ask

as many experts as possible. But asking too many ex-
perts leads to the following negative phenomenon: when
the opinion of the most respected professors, Nobel-prize
winners, etc., is known, some less self-confident experts
will not be brave enough to express their own opinions,
so they will rather follow the majority. How does their

presence influence the resulting subjective probability?
Let N denote the initial number of experts, N(A) the
number of those of them who believe in A, and M the
number of shy experts added. Initially, d(A) = N(A)/N.
After we add M conformist experts, the number of experts
who believe in A becomes N(A) + M out of the total of
M + N. So the new value of the subjective probability is
N(A)+M

P == =0

—a)-P(A) + a,
where we denoted o & M/N.

Thus, each new operation can be simply interpreted as
the Bayesian operation but in a different probability scale
natural for expert systems.

V. AUXILIARY RESULT

In the previous text, we described how, knowing P(B) and
P(A < B), we can reconstruct the probability P(A & B)
as P(a + B) ® P(B). A natural question is: what if we
want to reconstruct the probability P(A) instead?

Since we know A(B) and P(A & B), this means that we
know, out of all cases in which B is true, in what portion
of them A is also true. To get the probability of A, we
must also know when A is true for cases in which B is
false, i.e., we must also know the probability P(A & —B).
Then, we will be able to reconstruct the total probability
P(A) of A as

P(A) =P(A& B) + P(A&—-B). (32)
By definition of an implication operation, we do not have

any information on whether A is true or not in cases when
B is false.

e It may be that A is always true when B is false. In
this case, P(A&—-B) = P(-B) =1 — P(B).

e It may also happen that A is never true when B is
false. In this case, P(A& —B) = 0.

e It is also possible for P(A& —B) to take any value
from the interval [0,1 — P(B)].

Thus, due to formula (B1), the only information that we
have about the probability P(A) is that this probability
belongs to the interval

P(4) € P(A) ¥ [P~(4), P+ (4)],

where:
P~ (A) =P(A + B)® P(B);

Pt (4) =P(A+ B)o P(B)+1-P(B).  (33)



In particular, for the Bayes implication, we have

P~(A) = P(A « B) - P(B);

PT(A)=P(A+ B)-P(B)+1- P(B). (34)
For the logical implication, we have
P~ (A)=P(A«+ B)+P(B)—1;
Pt (A) = P(A «+ B). (35)

For the general implication operation, we have
P~ (A)=a-(P(A+ B)+ P(B) — 1)+
(1-a)-P(A <« B)-P(B);
Pt(A)=a -P(A+ B)+(1-a) (1 - P(B))+

(1-a)-P(A« B)-P(B). (36)
VI. PROOFS: MAIN IDEAS
A. Proof of Proposition 2

In the formula (25), let us take P;; = 1 and P{; = 0.
Then, this formula turns into the following one:

9P, Pi1) =p-g(1, Paa) + (1 —p) - g(0, Pu1). (37)

Thus, for p = Py, we have
g(Pi1,Pi1) = P11 - g(1,Pi1) + (1 — Pi1) - g(0, Py1). (38)

Substituting Py1 = P.1 — Pp1 into the formula (38), we
conclude that

g(P11,Pa) =
(P*l - P01) -g(l, P*l) + (1 — P+ P01) . g(O,P*l). (39)
Combining together terms proportional to Py, we con-

clude that

g(Pi1,Pi1) = g1(Pi1) — Po1 - g2(Pi1), (40)

where we denoted

def

g1(Psa1) = Pi1 - g(1, Paa) + (1 = Pua) - 9(0, Pay);

92(Par) & g(1, Puy) — g(0, Puy).

By definition of an implication operation, its result is 1 if
Py; = 0. Thus, in the formula (40), we have g;(Py1) = 1,
SO

9(Pi1,Pi1) =1— Py1 - g2(Pa).

If we denote 1/g2(z) by h(z), then, since Pyy = Py — P11,
we get the desired formula (26). The proposition is proven.

(41)

B. Proof of Proposition 3
Commutativity #(a,b) = t(b,a) of the operation (27)
means that for every two real numbers a and b, we have

b—(1—a)-h(b) =a—(1—b)-h(a). (42)

In particular, for a = 0, this equality leads to
b— h(b) = —(1—0b) - h(0),
hence
h(d) =b+a-(1-0),
def

where we denoted a = h(0).
tional to b, we conclude that

Combining terms propor-

h(b) =a+ (1 —a)-b.

Substituting this expression into (26), we get the desired
formula. The proposition is proven.

ACKNOWLEDGMENTS

This work was supported in part by NASA under cooper-
ative agreement NCC5-209 and grant NCC 2-1232, by the
Air Force Office of Scientific Research grants F49620-95-1-
0518 and F49620-00-1-0365, by grant No. W-00016 from
the U.S.-Czech Science and Technology Joint Fund, and
by NSF grants CDA-9522207, ERA-0112968, and 9710940
Mexico/Conacyt.

REFERENCES

[1] B. Bouchon-Meunier, V. Kreinovich, A. Lokshin, and
H. T. Nguyen, “On the formulation of optimization
under elastic constraints (with control in mind)”,
Fuzzy Sets and Systems, 1996, Vol. 81, No. 1, pp. 5—
29.

[2] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic:
Theory and Applications, Prentice Hall, Upper Sad-
dle River, NJ, 1995.

[3] M. Mukaidono and Y. Yamauchi, “Logical version of
Bayes’ theorem”, Proceedings of the Second Vietnam-
Japan Bilateral Symposium on Fuzzy Systems and
Applications VJFUZZY’2001, Hanoi, Vietnam, De-
cember 7-8, 2001, pp. 17-21.

[4] H. T. Nguyen and E. A. Walker, First Course in
Fuzzy Logic, CRC Press, Boca Raton, FL, 1999.

[5] N. J. Nilsson, “Probabilistic logic”, Artificial Intelli-
gence, 1986, Vol. 28, No. 1, pp. 71-78.

[6] Y. Yamauchi and M. Mukaidono, “probabilistic in-
ference and Bayesian theorem based on logical impli-
cation”, In: N. Zhong, A. Skowron, and S. Ohsuga
(eds.), New Directions in Rough Sets, Data Mining,
and Granular-Soft Computing, Springer-Verlag Lec-
ture Notes in Artificial Intelligence, Vol. 1711, 1999,
pp- 334-342.

[7] H. M. Wadsworth, Jr. (eds.), Handbook of statistical
methods for engineers and scientists, McGraw-Hill
Publishing Co., New York, 1990.



