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Abstract

We consider a logistic regression model with a Gaussian prior distribution
over the parameters. We show that an accurate variational transformation can
be used to obtain a closed form approximation to the posterior distribution
of the parameters thereby yielding an approximate posterior predictive model.
This approach is readily extended to binary graphical model with complete
observations. For graphical models with incomplete observations we utilize
an additional variational transformation and again obtain a closed form ap-
proximation to the posterior. Finally, we show that the dual of the regression
problem gives a latent variable density model, the variational formulation of
which leads to exactly solvable EM updates.

1 Introduction

Bayesian methods have a number of virtues, particularly their uniform treat-
ment of uncertainty at all levels of the modeling process. The formalism also al-
lows ready incorporation of prior knowledge and the seamless combination of such
knowledge with observed data (Bernardo & Smith 1994, Gelman 1995, Heckerman et
al. 1995). The elegant semantics, however, often comes at a sizable computational
cost—posterior distributions resulting from the incorporation of observed data must
be represented and updated, and this generally involves high-dimensional integra-
tion. The computational cost involved in carrying out these operations can call into
question the viability of Bayesian methods even in relatively simple settings, such
as generalized linear models (McCullagh & Nelder 1983). We concern ourselves in
this paper with a particular generalized linear model—logistic regression—and we
focus on Bayesian calculations that are computationally tractable. In particular we
describe a flexible deterministic approximation procedure that allows the posterior
distribution in logistic regression to be represented and updated efficiently. We also



show how our methods permit a Bayesian treatment of a more complex model—a di-
rected graphical model (a “belief network”) in which each node is a logistic regression
model.

The deterministic approximation methods that we develop in this paper are known
generically as variational methods. Variational techniques have been used extensively
in the physics literature (see, e.g., Parisi 1988, Sakurai 1985) and have also found
applications in statistics (Rustagi 1976). Roughly speaking, the objective of these
methods is to transform the problem of interest into an optimization problem via the
introduction of extra degrees of freedom known as variational parameters. For fixed
values of the variational parameters the transformed problem often has a closed form
solution, providing an approximate solution to the original problem. The variational
parameters are adjusted via an optimization algorithm to yield an improving sequence
of approximations. For an introduction to variational methods in the context of
graphical models see Jordan et al. (1999).

Let us briefly sketch the variational method that we develop in this paper. We
study a logistic regression model with a Gaussian prior on the parameter vector. Our
variational transformation replaces the logistic function with an adjustable lower
bound that has a Gaussian form; that is, an exponential of a quadratic function of
the parameters. The product of the prior and the variationally transformed likelihood
thus yields a Gaussian expression for the posterior (conjugacy), which we optimize
variationally. This procedure is iterated for each successive data point.

Our methods can be compared to the Laplace approximation for logistic regression
(cf. Spiegelhalter & Lauritzen 1990), a closely related method which also utilizes a
Gaussian approximation to the posterior. To anticipate the discussion in following
sections, we will see that the variational approach has an advantage over the Laplace
approximation; in particular, the use of variational parameters gives the variational
approach greater flexibility. We will show that this flexibility translates into improved
accuracy of the approximation.

Variational methods can also be contrasted with sampling techniques, which have
become the method of choice in Bayesian statistics (Thomas et al. 1992, Neal 1993,
Gilks et al. 1996). Sampling techniques enjoy wide applicability and can be power-
ful in evaluating multi-dimensional integrals and representing posterior distributions.
They do not, however, yield closed form solutions nor do they guarantee mono-
tonically improving approximations. It is precisely these features that characterize
variational methods.

The paper is organized as follows. First we describe in some detail a variational
approximation method for Bayesian logistic regression. This is followed by an evalu-
ation of the accuracy of the method and a comparison to Laplace approximation. We
then extend the framework to belief networks, considering both complete data and
incomplete data. Finally, we consider the dual of the regression problem and show
that our techniques lead to exactly solvable EM updates.



2 Bayesian logistic regression

We begin with a logistic regression model given by:
P(S = 11X,60) = ¢ (67X), (1)

where g(z) = (1+e7%)7! is the logistic function, S the binary response variable, and
X ={Xy1,...,X.,} the set of explanatory variables. We represent the uncertainty in
the parameter values 6 via a prior distribution P(6) which we assume to be a Gaussian
with possibly full covariance structure. Our predictive distribution is therefore:

P(S|X) = / P(S|X, 0)P(6)df. 2)

In order to utilize this distribution we need to be able to compute the posterior param-
eter distribution P(#| DY, ..., DT), where we assume that each D' = {S?, X}, ... X!}
is a complete observation. This calculation is intractable for large n or 7', thus we
consider a variational approximation.

Our approach involves finding a variational transformation of the logistic function
and using this transformed function as an approximate likelihood. In particular
we wish to consider transformations that combine readily with a Gaussian prior in
the sense that the Gaussian prior becomes the conjugate prior to the transformed
likelihood. We begin by introducing the type of variational transformations we will
use for this purpose.

2.1 A brief introduction to variational methods

Consider any continuously differentiable convez function f(z). Figure 1 provides
an example of a convex function that we will make use of later on. Convexity of
this function guarantees by definition that any tangent line always remains below
the function itself. We may thus interpret the collection of all the tangent lines as
a parameterized family of lower bounds for this convex function (cf. convex duality,
Rockafellar 1976). The tangents in this family are naturally parameterized by their
locations. From the point of view of approximating the convex non-linear function
f, it seems natural to use one of the simpler tangent lines as a lower bound. To
formulate this a little more precisely, let L(z; zp) be the tangent line at z = z,

I(z:20) = F(0) + o (2D smey (2 = 20), (3)

then it follows that f(z) > L(z; z) for all z, 2o and f(29) = L(20;20)- In the termi-
nology of variational methods, L(z; zg) is a variational lower bound of f(z) where the
parameter zy is known as the variational parameter. Since the lower bound L(z; zp)
is considerably simpler (linear in this case) than the non-linear function f(z), it may
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be attractive to substitute the lower bound for f. Note that we are free to adjust
the variational parameter zg, the location of the tangent, so as to make L(z;z2;) as
accurate an approximation of f(z) as possible around the point of interest, i.e., when
z & zp. The quality of this approximation degrades as z receeds from zy; the rate at
which this happens depends on the curvature of f(z). Whenever the function f has
relatively low curvature as is the case in Figure 1, the adjustable linear approximation
seems quite attractive.

Figure 1: A convex function f and its two tangent lines. The locations of the tangents
are indicated with short vertical line segments.

2.2 Variational methods in Bayesian logistic regression

Here we illustrate how variational methods, of the type described above, can be
used to transform the logistic likelihood function into a form that readily combines
with the Gaussian prior (conjugacy). More precisely, the transformed logistic function
should depend on the parameters # at most quadratically in the exponent. We begin
by symmetrizing the log logistic function:

log g(z) = —log(1 + e7%) = /2 — log(e*/? 4 e7%/?), (4)

and noting that f(r) = —log(e®/? + e~/2), is a convex function in the variable
2. (This is readily verified by taking second derivatives; the behavior of f(z) as
a function of x? is shown in Figure 1). As discussed above, a tangent surface to a
convex function is a global lower bound for the function and thus we can bound f(x)

globally with a first order Taylor expansion in the variable z:

flz) > FO+ gj(;(f)) (2 — €) (5)
= —&/2+logg(€) + %tanh@/z)(ﬁ - &) (6)

Note that this lower bound is exact whenever £2 = 2. Combining this result with Eq.
(4) and exponentiating yields the desired variational transformation of the logistic
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function:
P(S|X,0) = g(Hs) > g(¢) exp {(Hs — £)/2 — N€)(H% - €3}, (7)

where Hg = (25—1)67X and \(§) = tanh(£/2)/(4€). We also introduce the following

notation:
P(S|X,0,6) = (&) exp {(Hs — €)/2 = M&)(HE — €))}; (8)

that is, P(S|X,6,&) denotes the variational lower bound on the logistic function
g(Hg). As a lower bound it is no longer normalized. We refer to eq. (8) as a &-
transformation of the conditional probability.

For each fixed value of Hg we can in fact recover the exact value of the logistic
function via a particular choice of the variational parameter. Indeed, maximizing the
lower bound with respect to £ yields & = Hg; substituting this value back into the
lower bound recovers the original conditional probability. For all other values of £ we
obtain a lower bound.

The true posterior P(#|D) can be computed by normalizing P(S|X, §) P(#). Given
that this calculation is not feasible in general, we instead form the bound:

P(S|X,0)P(0) > P(S|X,0,£)P(0) (9)

and normalize the variational approximation P(S|X,6,&)P(6). Given that P(#) is
Gaussian and given our choice of a Gaussian variational form for P(S|X,6,¢), the
normalized variational distribution is a Gaussian. Note that although P(S|X,6,¢&) is
a lower bound on the true conditional probability, our variational posterior approxi-
mation is a proper density and thus no longer a bound. This approximate Bayesian
update amounts to updating the prior mean yp and the prior covariance matrix X
into the posterior mean and the posterior covariance matrix. Omitting the algebra
we find that the updates take the following form:

Soos = N H2X6)XXT (10)
fpos = Spos [S7' i+ (S —1/2)X] (11)

for a single observation (S, X), where X = [X; ... X,]T. Successive observations can
be incorporated into the posterior by applying these updates recursively.

Our work is not finished, however, because the posterior covariance matrix de-
pends on the variational parameter £ through A(§) and we have yet to specify £. We
choose £ via an optimization procedure; in particular, we find a value of £ that yields
a tight lower bound in eq. (9). The fact that the variational expression in eq. (9) is
a lower bound is important—it allows us to use the EM algorithm to perform the



optimization. We derive such an EM algorithm in Appendix A; the result is the
following (closed form) update equation for &:

52 =F {(HTX)Q} == XTZpost X + (XT,upost)za (12)

where the expectation is taken with respect to P(f|D, £%9), the variational posterior
distribution based on the previous value of £&. Owing to the EM formulation, each
update for £ corresponds to a monotone improvement to the posterior approximation.
Empirically we find that this procedure converges rapidly; only a few iterations are
needed. The accuracy of the approximation is considered in the following two sections.

To summarize, the variational approach allows us to obtain a closed form expres-
sion for the posterior predictive distribution in logistic regression:

P(S|X,D) = /P(S\X, 8)P(6|D)d6, (13)

where the posterior distribution P(0|D) comes from making a single pass through
the data set D = {D!,..., DT}, applying the updates in eq. (10) and eq. (11) after
optimizing the associated variational parameters at each step. The predictive lower
bound P(S!|X?, D) takes the form:

1
L+ 1og = 1

log P(S' X", D) = log (&) — £/2 + N€)E — 7S 1y + =

2 2
for any complete observation D', where p and ¥ signify the parameters in P(6|D)
and the subscript ¢ refers to the posterior P(6|D, D) found by augmenting the data
set to include the point D?.

We note finally that the variational Bayesian calculations presented above need
not be carried out sequentially. We could compute a variational approximation to

the posterior probability P(€|D) by introducing (separate) transformations for each
of the logistic functions in

P(D|9) = HP (St X1, 0) Hg(2St )0 X") (15)

The resulting variational parameters would have to be optimized jointly rather than
one at a time. We believe the sequential approach provides a cleaner solution.

3 Accuracy of the variational method

The logistic function is shown in Figure 2(a), along with a variational approxima-
tion for £ = 2. As we have noted, for each value of the variational parameter &, there
is a particular point x where the approximation is exact; for the remaining values of
x the approximation is a lower bound.
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Figure 2: a) The logistic function (solid line) and its variational form (dashed line)
for £ = 2. b) The difference between the predictive likelihood and its variational
approximation as a function of g(y'), as described in the text.

Integrating eq. (9) over the parameters we obtain a lower bound on the predictive
probability of an observation. The tightness of this lower bound is a measure of
accuracy of the approximation. To assess the variational approximation according
to this measure, we compared the lower bound to the true predictive likelihood that
was evaluated numerically. Note that for a single observation, the evaluation of the
predictive likelihood can be reduced to a one-dimensional integration problem:

/ P(S|X,0)P(8)dd = / 9((28 — 1) X)P(6)d6 = / T g0)P'(@)de (16)
—0oQ

where the effective prior P'(¢') is a Gaussian with mean p’' = (25 — 1)’ X and vari-
ance 0> = XTX X where the actual prior distribution P(#) has mean p and covariance
Y. This reduction has no effect on the accuracy of the variational transformation and
thus it can be used in evaluating the overall accuracy. Figure 2(b) shows the difference
between the true predictive probability and the variational lower bound for various
settings of the effective mean p/ and variance o2, with £ optimized separately for each
different values of u' and o?. The fact that the variational approximation is a lower
bound means that the difference in the predictive likelihood is always positive.

We emphasize that the tightness of the lower bound is not the only relevant
measure of accuracy. Indeed, while a tight lower bound on the predictive probability
assures us that the associated posterior distribution is highly accurate, the converse is
not true in general. In other words, a poor lower bound does not necessarily imply a
poor approximation to the posterior distribution at the point of interest, only that we
no longer have any guarantees of good accuracy. In practice, we expect the accuracy of
the posterior to be more important than that of the predictive probability since errors
in the posterior run the risk of accumulating in the course of the sequential estimation
procedure. We defer the evaluation of the posterior accuracy to the following section
where comparisons are made to related methods.
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4 Comparison to other methods

There are other sequential approximation methods that yield closed form poste-
rior parameter distributions in logistic regression models. The method most closely
related to ours is that of Spiegelhalter and Lauritzen (1990), which we refer to as
the S-L. approximation in this paper. Their method is based on the Laplace ap-
proximation; that is, they utilize a local quadratic approximation to the complete
log-likelihood centered at the prior mean p. The parameter updates that implement
this approximation are similar in spirit to the variational updates of eq. (10) and

eq. (11):

Lot = X +0(1-p) XXT (17)
Hpost = H + (S - ﬁ)zpost X (18)

where p = g(u’ X). Since there are no additional adjustable parameters in this
approximation, it is simpler than the variational method; however, we would expect
this lack of flexibility to translate into less accurate posterior estimates.

We compared the accuracy of the posterior estimates for the two methods in the
context of a single observation. To simplify the comparison we utilized the reduction
described in the previous section. Since the accuracy of neither method is affected
by this reduction, it suffices for our purposes here to carry out the comparison in
this simpler setting.! The posterior probability of interest was therefore P(#'|D)
g(0")P(#"), computed for various choices of values for the prior mean ' and the prior
standard deviation o. The correct posterior mean and standard deviations were
obtained numerically. Figures 3 and 4 present the results. We plot signed differences
in comparing the obtained posterior means to the correct ones; relative errors were
used for the posterior standard deviations. The error measures were left signed to
reveal any systematic biases. Note that the posterior mean from the variational
method is not guaranteed to be a lower bound on the true mean. Such guarantees
can be given only for the predictive likelihood. As can be seen in Figures 3(a) and 4(a)
the variational method yields significantly more accurate estimates of the posterior
means, for both values of the prior variance. For the posterior variance, the S-L
estimate and the variational estimate appear to yield roughly comparable accuracy
for the small value of the prior variance (Figure 3(b)); however, for the larger prior
variance, the variational approximation is superior (Figure 4(b)). We note that the
variational method consistently underestimates the true posterior variance; a fact that
could be used to refine the approximation. Finally, in terms of the KL-divergences
between the approximate and true posteriors, the variational method and the S-L
approximation are roughly equivalent for the small prior variance; and again the

!Note that the true posterior distribution over  can be always recovered from the posterior
computed for the one-dimensional reduced parameter §' = 7 X.



variational method is superior for the larger value of the prior variance. This is
shown in Figure 5.
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Figure 3: a) The errors in the posterior means as a function of g(u'), where ' is the
prior mean. Here o = 1 for the prior. b) The relative errors in the posterior standard
deviations as a function of g(i'). Again o = 1 for the prior distribution.
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Figure 4: The plots are the same as in Figure 3, but now ¢ = 2 for the prior
distribution.

5 Extension to belief networks

A belief network is a probabilistic model over a set of variables {S;} that are
identified with the nodes in an acyclic directed graph. Letting 7 (i) denote the set of
parents of node S; in the graph, we define the joint distribution associated with the
belief network as the following product:
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Figure 5: KL-divergences between the approximate and the true posterior distribu-
tion as a function of g(y'). a) o = 2 for the prior. b) o = 3. The two approximation
methods have (visually) identical curves for o = 1.

We refer to the conditional probabilities P(S;|Sy(;)) as the “local probabilities” asso-
ciated with the belief network.

In this section we extend our earlier work in this paper and consider belief net-
works in which logistic regression is used to define the local probabilities (such models
have been studied in a non-Bayesian setting by Neal 1992 and by Saul, Jaakkola, &
Jordan 1994). Thus we introduce parameter vectors 6;, one for each binary variable
S, and consider models in which each local probability P(S;|Sy),0;) is a logistic
regression of node S; on its parents Sy;).

To simplify the arguments in the following sections, we will consider augmented
belief networks in which the parameters themselves are treated as nodes in the belief
network (see Figure 6). This is a standard device in the belief network literature and
is of course natural within the Bayesian formalism.

5.1 Complete cases

A “complete case” refers to a data point in which all of the variables {S;} are
observed. If all of the data points are complete cases, then the methods that we
developed in the previous section apply immediately to belief networks. This can be
seen as follows. Consider the Markov blankets associated with each of the parameters
(Figure 6(a)). For complete cases each of the nodes within the Markov blanket for
each of the parameters is observed (shaded in the diagram). By the independence
semantics of belief networks, this implies that the posterior distributions for the
parameters are independent of one another (conditioned on the observed data). Thus
the problem of estimating the posterior distributions for the parameters reduces to
a set of n independent subproblems, each of which is a Bayesian logistic regression
problem. We apply the methods developed in the previous sections directly.
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Figure 6: a) A complete observation (shaded variables) and the Markov blanket
(dashed line) associated with the parameters 6;,. b) An observation where the value
of Sy is missing (unshaded in the figure).

5.2 Incomplete cases

The situation is substantially more complex when there are incomplete cases in
the data set. Incomplete cases imply that we no longer have all the Markov blankets
for the parameters in the network. Thus dependencies can arise between the param-
eter distributions in different conditional models. Let us consider this situation in
some detail. A missing value implies that the observations arise from a marginal dis-
tribution obtained by summing over the missing values of the unobserved variables.
The marginal distribution is thus a mixture distribution, where each mixture compo-
nent corresponds to a particular configuration of the missing variables. The weight
assigned to that component is essentially the posterior probability of the associated
configuration (Spiegelhalter & Lauritzen 1990). Note that the dependencies arising
from the missing values in the observations can make the network quite densely con-
nected (a missing value for a node effectively connects all of the neighboring nodes in
the graph). The dense connectivity leaves little structure to be exploited in the exact
probabilistic computations in these networks and tends to make exact probabilistic
calculations intractable.

Our approach to developing Bayesian methods for belief networks with missing
variables combines two variational techniques. In particular, we augment the &-
transformation introduced earlier with a second variational transformation that we
refer to as a g-transformation. While the purpose of the ¢-transformation is to convert
a local conditional probability into a form that can be integrated analytically, the
purpose of the ¢g-transformation is to approximate the effect of marginalizing across
missing values associated with one or more parents.? Intuitively, the ¢-transformation

2Treating the parameter as a parent node helps to emphasize the similarity between these two
variational transformations. The principal difference is that a parameter node has only a single
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“fills in” the missing values, allowing the variational transformation for complete data
to be invoked. The overall result is a closed-form approximation to the marginal
posterior.

The correct marginalization across missing variables is a global operation that
affects all of the conditional models that depend on the variables being marginalized
over. Under the variational approximation that we describe below, marginalization
is a local operation that acts individually on the relevant conditional models.

5.2.1 Approximate marginalization

Consider the problem of marginalizing over a set of variables S’ under a joint
distribution:

If we performed the marginalization exactly, then the resulting distribution would
not retain the same factorization as the original joint (assuming S’ is involved in
more than one of the conditionals); this can be seen from:

S II P(SilSxy, 0:) = |T] P(Sir| Sy, 0 )| Y 11 P(Sit|Sriry 0i), (21)
S i

! S

where we have partitioned the product into the set of factors that depend on S’
(indexed by i) and those that do not (indexed by ¢"). Marginalization is not generally
a local operation on the individual node probabilities P(S;|Sx(s,), ;). Maintaining
such locality, a desirable goal for computational reasons, can be achieved if we forgo
exact marginalization and instead consider approximations. In particular, we describe
a variational approximation that preserves locality at the expense of providing a lower
bound on the marginal probability instead of an exact result.

To obtain the desired variational transformation, we again exploit a convexity
property. In particular, for a given sequence p;, i € {1,...,n}, consider the geomet-
ric average [[; p¥, where ¢; is a probability distribution. It is well known that the
geometric average is less than or equal to the arithmetic average >, ¢;p;. (This can be
easily established via an invocation of Jensen’s inequality). We can exploit this fact
as follows. Consider an arbitrary distribution ¢(S’), and rewrite the marginalization
operation in the following way:

(22)

ZP(Sl, 5.0 = Zq(s,) {P(Sl, . -,Sn|0)]

q(S")

child, while in general parents have multiple children.
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P(S., ..., S0
I l (5" ] (2)

Sl

v

= CTL [T PG50:00). 1)

%

where the inequality comes from transforming the average over the bracketed term
(with respect to the distribution ¢) into a geometric average. The third line follows
from plugging in the form of the joint distribution and exchanging the order of the
products. The logarithm of the multiplicative constant C'(g) is the entropy of the
variational distribution q:

a(s")
Clo) =11 [ﬁ] and therefore g O(a) = ~ S a(S)loga(S)  (25)

Let us now make a few observations about the result in Eq. (24). First, note that
the lower bound in this equation has the same factored form as the original joint
probability. In particular, we define the g-transformation of the ith local conditional
probability as follows:

Sl

the lower bound in Eq. (24) is then a product of these g-transformations. Second,
note that all the conditionals are transformed by the same distribution g. A change in
g can thus affect all the transformed conditionals. This means that the dependencies
between variables S that would have resulted from exact marginalization over S’ have
been replaced with “effective dependencies” through a shared variational distribution
q.

While the bound in Eq. (24) holds for an arbitrary variational distribution ¢(S’),
to obtain a tight bound we need to optimize across ¢(S’). In practice this involves
choosing a constrained class of distributions and optimizing across the class. The
simplest form of variational distribution is the completely factorized distribution:

m

q(8") = T a:(S); (27)

i=1

which yields a variational bound which is traditionally referred to as the “mean field
approximation.” This simplified approximation is appropriate in dense models with a
relatively large number of missing values. More generally, one can consider structured
variational distributions involving partial factorizations that correspond to tractable
substructures in the graphical model (cf. Saul & Jordan, 1996). We consider this
topic further in the following two sections.
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Although the main constraint on the choice of ¢(S’) is the computational one
associated with evaluation and optimization, there is one additional constraint that
must be borne in mind. In particular, the ¢-transformed conditional probabilities
must be in a form such that a subsequent &-transformation can be invoked, yielding
as a result a tractable Bayesian integral. A simple way to meet this constraint is to
require that the variational distribution ¢(S’) should not depend on the parameters 6.
As we discuss in the following section, in this case all of the g-transformations simply
involve products of logistic functions, which behave well under the £-transformation.

5.2.2 Bayesian parameter updates

The derivation presented in the previous section shows that approximate vari-
ational marginalization across a set of variables S’ can be viewed as a geometric
average of the local conditional probabilities:

P(S|Sx,0) — [] P(S|Sx, 0)15" (28)

Sl

where ¢(S’) is the variational distribution over the missing values. Note that while
the &-transformations are carried out separately for each relevant conditional model,
the variational distribution ¢ associated with the missing values is the same across
all the g-transformations.

Given the transformation in eq. (28), the approximate Bayesian updates are ob-
tained readily. In particular, when conditioning on a data point that has missing
components we first apply the g-transformation. This effectively fills in the missing
values, resulting in a transformed joint distribution that factorizes as in the case
of complete observations. The posterior parameter distributions therefore can be
obtained independently for the parameters associated with the transformed local
probabilities.

Two issues need to be considered. First, the transformed conditional probabilities
(cf. Eq. (28)) are products of logistic functions and therefore more complicated than
before. The &-transformation method, however, transforms each logistic function
into an exponential with quadratic dependence on the parameters. Products of such
transforms are also exponential with quadratic dependence on the parameters. Thus
the approximate likelihood will again be Gaussian and if the prior is a multivariate
Gaussian the approximate posterior will also be Gaussian.

The second issue is the dependence of the posterior parameter distributions on the
variational distribution ¢g. Once again we have to optimize the variational parameters
(a distribution in this case) to make our bounds as tight as possible; in particular, we
set ¢ to the distribution that maximizes our lower bound. This optimization is carried
out in conjunction with the optimization of the £ parameters for the transformations
of the logistic functions, which are also lower bounds. As we show in Appendix B.1,
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the fact that all of our approximations are lower bounds implies that we can again
devise an EM algorithm to perform the maximization. The updates that are derived
in the Appendix are as follows:

S = St +2M(&) E {Sri)Shn } (29)
tpos: = Spos; | i+ E{(Si = 1/2)Sx} | (30)

where Sr(;) is the vector of parents of S;, and the expectations are taken with respect
to the varlatlonal distribution q.

5.2.3 Numerical evaluation

In this section, we provide a numerical evaluation of our proposed combination
of ¢g-transformation and &-transformation. We study a simple graph that consists
of a single node S and its parents S,. In contrast to the simple logistic regression
case analyzed earlier, the parents S, are not observed but instead are distributed
according to a distribution P(S;). This distribution, which we manipulate directly
in our experiments, essentially provides a surrogate for the effects of a pattern of
evidence in the ancestral graph associated with node S (cf. Spiegelhalter & Lauritzen
1990).

Our interest is in the posterior probability over the parameters 6 associated with
the conditional probability P(S|S;, 6).

Suppose now that we observe S = 1. The exact posterior probability over the
parameters 6 in this case is given by

P(4|D)

ZP = 1|8y, 0)P(S,)| P(6) (31)

Our variational method focuses on lower bounding the evidence term in brackets. It
is natural to evaluate the overall accuracy of the approximation by evaluating the
accuracy of the marginal data likelihood:

P(D) = / S P(S = 1[5, 0)P(Ss)| P(6)do (32)
- / S o (67 S, )P(S,)| P(6)db. (33)

We consider two different variational approximations. In the first approximation
the variational distribution ¢ is left unconstrained; in the second we use an approxi-
mation that factorizes across the parents S, (the “mean field” approximation). We
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emphasize that in both cases the variational posterior approximation over the pa-
rameters is a single Gaussian.

The results of our experiment are shown in Figures 7 and 8. Each figure displays
three curves, corresponding to the exact evaluation of the data likelihood P(D) and
the two variational lower bounds. The number of parents in S; was 5 and the prior
distribution P(f) was taken to be a zero mean Gaussian with a variable covariance
matrix. By the symmetry of the Gaussian distribution and the sigmoid function, the
exact value of P(D) was 0.5 in all cases. We considered several choices of P(S;)
and P(6). In the first case, the P(S,) were assumed to factorize across the parents
and for each S; € Sy, P(S; = 1) = p leaving a single parameter p that specifies the
stochasticity of P(S;). A similar setting would arise when applying the mean field
approximation in the context of a more general graph. Figure 7 shows the accuracy of
the variational lower bounds as a function of p where in Figure 7(a) P(6) = N(0,1/5),
i.e., the covariance matrix is diagonal with diagonal components set to 1/5, and in
Figure 7(b) P(f) = N(0,%) where ¥ is a sample covariance matrix of 5 Gaussian
random vectors distributed according to N(0,1/5). The results of Figure 7(b) are
averaged over 5 independent runs. The choice of scaling in N(0,1/5) is made to
insure that |}, 0;| ~ 1. Both figures indicate that the variational approximations
are reasonably accurate and that there is little difference between the two methods.

In Figure 8 we see how the mean field approximation (which is unimodal) de-
teriorates as the distribution P(S,) changes from a factorized distribution toward
a mixture distribution. More specifically, let P;(S,|p) be the (uniform) factorized
distribution discussed above with parameter p and let P,,(S;) be a pure mixture
distribution that assigns a probability mass 1/3 to three different (randomly chosen)
configurations of the parents S;. We let P(S;) = (1 — pm)Pr(Sx|p) + pmPom(Sx),
where the parameter p,, controls the extent to which P(S;) resembles a (pure) mix-
ture distribution. Figure 8 illustrates the accuracy of the two variational methods
as a function of p,, where in Figure 8(a) p = 0.1 and in 8(b) p = 0.3. As expected,
the mean field approximation deteriorates with an increasing p,, whereas our first
variational approximation remains accurate.

6 The dual problem

In the logistic regression formulation (eq. (1)), the parameters 6 and the explana-
tory variables X play a dual or symmetric role (cf. Nadal and Parga 1994). In
the Bayesian logistic regression setting, the symmetry is broken by associating the
same parameter vector # with multiple occurences of the explanatory variables X
as shown in Figure 9. Alternatively, we may break the symmetry by associating a
single instance of the explanatory variable X with multiple realizations of #. In this
sense the explanatory variables X play the role of parameters while # functions as a
continuous latent variable. The dual of the Bayesian regression model is thus a latent
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Figure 7: Exact data likelihood (solid line), variational lower bound 1 (dashed line),
and variational lower 2 (dotted line) as a function of the stochasticity parameter p
of P(S;). In (a) P(#) = N(0,1/5) and in (b) P(f) = N(0,%) where X is a sample
covariance of 5 random vectors distributed according to N(0,1/5).
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Figure 8: Exact data likelihood (solid line) and the two variational lower bounds

(dashed and dotted lines respectively) as a function of the mixture parameter p,,. In
(a) p=0.1 and in (b) p = 0.3.

variable density model over a binary response variable S. Graphically, in the dual
interpretation we have a single “parameter” node for X whereas separate nodes are
required for different realizations of # (illustrated as ) in the figure) to explain suc-
cessive observations S(®). While a latent variable density model over a single binary
variable is not particularly interesting, we can generalize the response variable S to a
vector of binary variables S = [Si,...,S,]” where each component S; has a distinct
set of “parameters” X; = [Xj; ... X;n,]" associated with it. The latent variables 6,
however, remain in this dual interpretation the same for all S;. We note that strictly
speaking the dual interpretation would require us to assign a prior distribution over
the new “parameters” vectors X;. For simplicity, however, we omit this consider-
ation and treat X; simply as adjustable parameters. The resulting latent variable
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Figure 9: a) Bayesian regression problem. b) The dual problem.

density model over binary vectors is akin to the standard factor analysis model (see
e.g. Everitt 1984). This model has already been used to facilitate visualization of
high dimensional binary vectors (Tipping 1999).

We now turn to a more technical treatment of this latent variable model. The
joint distribution is given by

P(Si,...,5,|X) = / [H P(Si|X,, 9)1 P(6)dd (34)

where the conditional probabilities for the binary observables are logistic regression
models

P(8|X;,0) = g ((2Si — 1), X;65) (35)

We would like to use the EM- algorithm for parameter estimation. To achieve
this we again exploit the variational transformations. The transformations can be
introduced for each of the conditional probability in the joint distribution and opti-
mized separately for every observation D' = {S%, ..., S'} in the database consisting
only of the values of the binary output variables. As in the logistic regression case,
the transformations change the unwieldy conditional models into simpler ones that
depend on the parameters only quadratically in the exponent. The variational ev-
idence, which is a product of the transformed conditional probabilities, retains the
same property. Consequently, under the variational approximation, we can compute
the posterior distribution over the latent variables € in closed form. The mean and
the covariance of this posterior can be obtained analogously to the regression case
giving

o= ST > 2 XX (36)

o= S (ST 4 (8- 1/2)X, (37)
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The variational parameters £ associated with each observation and the conditional
model can be updated using eq. (12) where X is replaced with X;, now the vector of
parameters associated with the :** conditional model.

We can solve the M-step of the EM-algorithm by accumulating sufficient statistics
for the parameters X;, u, > based on the closed form posterior distributions corre-
sponding to the observations in the data set. Omitting the algebra, we obtain the
following explicit updates for the parameters:

S« LYy, (38)

T4

1

B TZM (39)

¢
X; <+ A7'b (40)

where
A= Y 2ME) (B4 pmepy) (41)
t

b= YS! 1/2)m (42)

t

and the subscript ¢ denotes the quantities pertaining to the observation D;. Note that
since the variational transformations that we expoited to arrive at these updates
are all lower bounds, the M-step necessarily results in a monotonically increasing
lower bound on the log-probability of the observations. This desirable monotonicity
property is unlikely to arise with other types of approximation methods, such as the
Laplace approximation.

7 Discussion

We have exemplified the use of variational techniques in the setting of Bayesian
parameter estimation. We found that variational methods can be exploited to yield
closed form expressions that approximate the posterior distributions for the parame-
ters in logistic regression. The methods apply immediately to a Bayesian treatment
of logistic belief networks with complete data. We also showed how to combine mean
field theory with our variational transformation and thereby treat belief networks
with missing data. Finally, our variational techniques lead to an exactly solvable
EM algorithm for a latent variable density model—the dual of the logistic regression
problem.

It is also of interest to note that our variational method provides an alterna-
tive to the standard iterative Newton-Raphson method for maximum likelihood es-
timation in logistic regression (an algorithm known as “iterative reweighted least
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squares” or “IRLS”). The advantage of the variational approach is that it guarantees
monotone improvement in likelihood. We present the derivation of this algorithm in
Appendix C.

Finally, for an alternative perspective on the application of variational methods
to Bayesian inference, see Hinton and van Camp (1993) and MacKay (1997). These
authors have developed a variational method known as “ensemble learning,” which
can be viewed as a mean field approximation to the marginal likelihood.
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A Optimization of the variational parameters

To optimize the variational approximation of eq. (9) in the context of an observa-
tion D = {S, X1,..., X, } we formulate an EM algorithm to maximize the predictive
likelihood of this observation with respect to £. In other words, we find & that maxi-
mizes the right hand side of

/ P(S|X,0)P(6)do > / P(S|X,0,£)P(6)dd (43)

In the EM formalism this is achieved by iteratively maximizing the expected complete
log-likelihood given by

Q(&l¢”") = E {log P(S|X,0,€)P(6)} (44)

where the expectation is over P(f|D,£%4). Taking the derivative of @ with respect
to & and setting it to zero leads to

a old a)\ 5 T 2 2
sotele = -5 [5 @2 - ] ~ o (45)
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As A(€) is a monotonically decreasing function® the maximum is obtained at
£ =FE(0"X)? (46)

By substituting £ for £%¢ above, the procedure can be repeated. Each such iteration
yields a better approximation in the sense of eq. (43).

B Parameter posteriors

To fill-in the possible missing values in an observation D, = {S,...,S!} we
employ the ¢-transformations described in the text. As a result, the joint distribution
after the approximate marginalization factorizes as with complete observations. Thus
the posterior distributions for the parameters remain independent across the different
conditional models and can be computed separately. Thus

POIDLa) o [T P(S15.0.0%"| P(3) (a7)

The form of this posterior, however, remains at least as unwieldy as the Bayesian lo-
gistic regression problem considered earlier in the paper. Proceeding analogously, we
transform the logistic functions as in Eq. (7) corresponding to each of the conditional
probabilities in the product and obtain

P(6;|Dy,q,&) < | ]] P(Si‘sﬂ(i);ei:&)q(y)] P(0;) (48)
| 5

= [T {ate) < 2@ 0 pig) - gag

L S’

= |otee S a(s){ s, &0 2-Ne 2~ } ] P@;)  (50)
= [g(&;) e B2 A(&)(E{H?éi}—f?)] P(6;) (51)
= B(S|sw<,),0z,a, q)P(6;) (52)

where Hg, = (25;—1)6; Sx(i), Sr(i) is the vector of parents of S;, and the expectations
are with respect to the variational distribution g. For simplicity, we have not let the
variational parameter & vary independently with the configurations of the missing
values but assumed it to be the same for all such configurations. This choice is
naturally suboptimal but is made here primarily for notational simplicity (the choice
may also be necessary in cases where the number of missing values is large). Now,

3This holds for ¢ > 0. However, since P(S|X,8,¢) is a symmetric function of &, assuming & > 0
has no effect on the quality of the approximation.
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since Hg, is linear in the parameters 6;, the exponent in Eq. (51) consisting of averages
over Hg, and its square with respect to the variational distribution ¢, stays at most
quadratic in the parameters ;. A multivariate Gaussian prior will be conjugate to
this likelihood, and therefore the posterior will also be Gaussian. The mean 1,5, and
covariance X, of such posterior are given by (we omit the algebra)

S = Ui+ 2M&) E {Sr)ST } (53)

pos;

Pposi =  Lipos; [ Zi_llui +E {(Sz - 1/2)S7r(i)} ] (54)

Note that this posterior depends both on the distribution ¢ and the parameters &.
The optimization of these parameters is shown in Appendix B.1.

B.1 Optimization of the variational parameters

We have introduced two variational “parameters”: the distribution ¢ over the
missing values, and the £ parameters corresponding to the logistic or £-transformations.
The metric for optimizing the parameters comes from the fact that the transforma-
tions associated with these parameters introduce a lower bound on the probability of
the observations. Thus by maximizing this lower bound we find the parameter values
that yield the most accurate approximations. We therefore attempt to maximize the
right hand side of

log P(D;) > log P(D:€,q) (55)
— log [ P(Dil6.¢,q)P(6)df (56)
= IOgH/B(Si\Sw(i),9i,§iaQ)P(9i)d91 +1log C(q) (57)

where D, contains the observed settings of the variables. We have used the fact that
the joint distribution under our approximations factorizes as with complete cases.
Similarly to the case of the simple Bayesian logistic regression considered previously
(see Appendix A), we can devise an EM-algorithm to maximize the variational lower
bound with respect to the parameters ¢ and &; the parameters 6 can be considered
as latent variables in this formulation. The E-step of the EM-algorithm, i.e., finding
the posterior distribution over the latent variables, has already been described in
Appendix B. Here we will consider in detail only the M-step. For simplicity, we solve
the M-step in two phases: the first where the variational distribution is kept fixed
and the maximization is over &, and the second where these roles are reversed. We
start with the first phase.

As the variational joint distribution factorizes, the problem of finding the optimal
& parameters separates into independent problems concerning each of the transformed

23



conditionals. Thus the optimization becomes analogous to the simple Bayesian logis-
tic regression considered earlier. Two differences exist: first, the posterior over each
6; is now obtained from Eq. (52); second, we have an additional expectation with
respect to the variational distribution q. With these differences the optimization is
analogous to the one presented in Appendix A above and we won’t repeat it here.

The latter part of our two-stage M-step is new, however, and we will consider it
in detail. The objective is to optimize ¢ while keeping the £ parameters fixed to their
previously obtained values. Similarly to the £ case we construct an EM-algorithm to
perform this inner loop optimization:

Q(dlg™) = Ep{log P(D;,0/¢, q)} (58)
= > B, {IOgB(Si\Sn(i), 0i, &, Q)P(ﬁi)} +log C(q) (59)

where the first expectation is with respect to P(0|¢, ¢°'¢), which factorizes across the

conditional probabilities as explained previously; the expectations Ejy, are over the
component distributions P(6;|¢;, ¢°¢), obtained directly from Eq. (52). Let us now
insert the form of the transformed conditional probabilities, P(S;|Sx),6:,&:,q), into
the above definition of the @) function. For clarity we will omit all the terms with no
dependence on the variational distribution g. We obtain:

Qlgl®) = ZE&{Eq{HSi}/2—/\(§,-)Eq{H§i}}+logC(q)+... (60)
= B, > { Es{Hs}/2 = MN&) Eo{HE} }+H(@) +...  (61)

where E, refers to the expectation with respect to the variational distribution gq.
The second equation follows by exchanging the order of the (mutually independent,)
expectations Ejy, and E,. We have also used the fact that log C(g) is the entropy
H(q) of g (see the text). Recall the notation Hg, = (25; — 1)0] Sy(;), where Sy is a
binary vector of parents of S;. Before proceeding to maximize the ) function with
respect to ¢, we explicate the averages Ej, in the above formula:

Eg{Hgs} = (28 —1)p) S« (62)

2

Eﬁi{Hg‘,} = <N17);S7r(i)) + SZ(i)EpiSW(i) (63)

Here p,, and X, are the mean and the covariance, respectively, of the posterior

P(6;)&, ¢°'%) associated with the " conditional model. Simply inserting these back
into the expression for the () function we get

Qqlg™) = qZ{ Si = 1/2)py, Seiy — M&) (Mﬁsﬂnf
~A(&) SEoSpiSn) }+Hig) + - (64)
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Now, some of the binary variables S; have a value assignment based on the observation
D; and the remaining variables will be averaged over the variational distribution gq.
Assuming no a priori constraints on the form of the ¢ distribution, the maximizing q
is the Boltzmann distribution (see e.g. Parisi 1988):

2
q(S') oc exp (Z { (Si — 1/2)pt Swiy — (&) (M;.Sn(i)) — A&) S1iyEpiSri) }) (65)
Whenever the variational distribution is constrained, however, such as in the case
of a completely factorized distribution, we may no longer expect to find the ¢ that
maximizes eq. (64). Nevertheless, a locally optimal solution can be found by, for
example, sequentially solving

0
a—qu(QIQ"ld) =0 (66)

with respect to each of the components gy = (S = 1) in the factorized distribution.

C Technical note: ML estimation

The standard maximum likelihood procedure for estimating the parameters in
logistic regression uses an iterative Newton-Raphson method to find the parameter
values. While the method is fast, it is not monotonic; i.e., the probability of the
observations is not guaranteed to increase after any iteration. We show here how to
derive a monotonic, fast estimation procedure for logistic regression by making use
of the variational transformation in eq. (7). Let us denote H; = (25; — 1)67 X, and
write the log-probability of the observations as

L(0) = ZlogP(St\Xt,H) = Zlogg(Ht)

> 3 logg(&) + (Hy — &)/2 — M&) (H — &)
= L£(0,¢) (67)

The variational lower bound is exact whenever & = H; for all £. Although the
parameters § cannot be solved easily from L£(0), L£(0,&) allows a closed form solution
for any fixed &, since the variational log-probability is a quadratic function of #. The
parameters f that maximize £(6, ) are given by #' = A~'b where

A=>"2N&) HH," and b= (S, — 1/2)H, (68)

t

Successively solving for § and updating £ yields the following chain of inequalities:

L(0) = L(6,§) < L(0,§) < L(0,€) = L) (69)
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where the prime signifies an update and we have assumed that & = H; initially.
The combined update thus leads to a monotonically increasing log-probability. In
addition, the closed form #-updates make this procedure comparable in speed to the
standard Newton-Raphson alternative.
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