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ABSTRACT

A real-time computer vision system designed for the
limited environment of city sidewalks is presented. This
system is part of a prototype mobility aid for the blind.
The overall device endeavors to keep blind pedestrians
on a safe path down the sidewalk, and also warn of
upcoming obstacles. The scene analysis algorithm uses
semantic models of the environment to interpret edges
in the multi-frame image data as borders of various
objects, as well as to assign distance estimates to these
objects. The input is a 64 by 64 by 6 bit gray-scale image
taken from the vantage point of the shoulder of a pedes-
trian once a second. Along with each image, the three
dimensional transformation of the camera location since
the previous frame is assumed to be provided by
hardware. After an initial segmentation into edge lines
represented as arcs of circles, predictions of edges (gen-
erated by analysis of previous frames) are used to iden-
tify edges in the current frame. Edges not identified by
this process are incorporated into the portion of the
three dimensional world model that they are the most
consistent with. The induced three dimensional world
model of objects can then be used to provide mobility
information to the blind user. The emphasis throughout
the system has been on efficiency. The design trade-offs
and techniques used to obtain high processing rates are
discussed. Most of the vision system is currently running
in real-time on a 16 bit micro-processor. Field trials of
the complete prototype device will begin soon.

| Introduction

An effort to produce an optically based electronic
mobility aid for blind pedestrians has led to the develop-
ment of a natural scene analysis program for the typical
scenes encountered by a pedestrian. The restriction to
the semanticly rich domain of city sidewalks has allowed
the visual processing to be performed in real time on a
16 bit microprocessor. The nature of the task is such
that perfect object detection and recognition are not
required, but rather the probabilistic detection of poten-
tial obstacles. The main goal of the system is to deter-
mine approximately where the sidewalk is (with respect
to the user), and secondarily to warn of objects blocking
the path ahead. This task must be performed in real-
time on real-world sidewalks.

* This work was supported by NSF grant no. PFR-7906299
from the Science and Technology to Aid the Handicapped
Program.
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Most real-time vision systems to date have dealt
with very constrained image domains, due to the enor-
mous computational requirements inherent in visual pro-
cessing. These include industrial parts recognition [I],
blood cell counting, and automatic navigation. Faster
hardware and more efficient software techniques will
gradually allow more complex domains to be handled at
high speeds. Our approach has been to start with very
fast segmentation, and amortize semantic processing
over several frames, utilizing predictions from models of
previously recognized objects to guide the parse of the
current image. At the high end, our system is similar to
many semantically oriented systems, such as [2] and [3].
Finally our use of multi-frame data is similar to many
aspects of [4] [5][6].

Il Constraints

In order to achieve real-time processing, we have
had to impose several constraints upon the operations of
the system:

1. Input is restricted to clean, sun-lit. mostly shadow-
free sidewalks.

Certain initial starting conditions will be supplied to
the system from the outside (which way the camera
is pointing, where the sun is, etc )

False positives are allowed (it is OK to occasionally
warn about non-existent obstacles)

We must accept that within our resolution and pro-
cessing time <certain classes of objects are
undetectable. These include objects whose width
falls below the Nyquist sampling rate of the camera
(mainly skinny poles), and objects with very low con-
trast with respect to the background, or those
against a wildly changing background. At the same
time, we wished to construct the program modulely.

allowing knowledge about objects and scenes to be
separated from the control structure (but without
sacrificing efficiency.)

Il Overview of the Program

The input scenes are successive 64 by 64 by 6 bit
gray wide angle images taken from the vantage point of
the shoulder of a pedestrian, at a rate of one or two
frames per second. This relatively low resolution is the
highest possible under the hardware and timing con-

straints. The overall organization of the program is:
After video acquisition of the input scene, digitization
and noise-removal, the information processed in three

passes as follows:



1. segment the picture into linked chains of edges,

fit curves to these chains and put the mathematical
description of the curves into an associative data-
base, and

3. match these curves against several data bases (the
world model) which include curve predictions from
previous scenes.

The results of these matches identify semantically
the objects belonging to the curves. Knowing whether an
object is horizontal or vertical allow one to project the
curves out into three dimensional space to determine
their direction and range. Further heuristics are
employed that utilize location information from previous
frames to make an independent motion stereo based
estimate of the object ranges. At this stage the program
should know where the sidewalk and any close obstacles
are located, and can proceed to output this information.
(Obstacles are the common sorts of large physical
objects that one might encounter on a city sidewalk:
phone poles, lamp posts, Are hydrants, trash cans, sign
posts, automobiles (off to one side), parking meters,
trees, bushes, etc.)

IV Coordinate System

The coordinate system used for the three dimen-
sional outside world is centered on the focal point of the
camera as it moves through space. The Z-axis is
oriented in the direction that the camera is pointing, the
Y-axis points straight up, and the X-axis points to the
right of the camera. Thus the three dimensional location
of all objects is always determined relative to the pedes-
trian, and are re-computed each frame. Points in the
world are mapped to points in the image plane through
the usual projective geometrical equations.

One of the fundamental problems of computer vision
is that this projection of the three dimensional world
(X.Y.Z) to the image plane (x.y) cannot be reversed
without additional data of some kind. One of the main
goals of the semantic phase of our system is to provide
this additional data via semantic knowledge about the
probable locations, orientations, and relationships
between typical objects encountered within the sidewalk
environment. This additional information usually is in
the form of a hypothesis on the value of one of X.Y, or Z.
Given this value, along with the image plane feature loca-
tion (x,y), the remaining two three-dimensional coordi-
nates can be found by suitable manipulation of the pro-
jection equations.

The motion of the camera in the world between
frames will cause the projections of edges of three
dimensional objects onto the image plane to change.
The general case of the camera transformation involves
six parameters. (AX.AY,AZ,t),",p). For a camera mounted
upon the shoulder of a pedestrian it can be safely
assumed that AY and p are approximately zero, as there
is little torsional rotation, and the height of a particular
pedestrian remains roughly constant. (It should be
noted that the mechanics of the human visual system
goes to a great deal of effort to keep p near 0, a p rota-
tion of up to six degrees of the head is countered by an
opposite rotation of the eyeball in the socket. The shape
of the horoptor in many animals indicate that the height
of the animal is taken to be a constant for some visual
processing.) The equations to perform this transforma-
tion can be combined with the image plane projection
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equations to obtain the location within the current image
plane of a world point from a previous frame.

V  The World Model (the Sidewalk World)

Our world model is the typical sidewalk environment
as encountered by a pedestrian. Most modern sidewalks
are constructed of slabs of white concrete, and are three
to twelve feet wide. Many run in straight lines for an
entire block before ending in a corner, while others may
be curved. For simplicity it is assumed that all sidewalks
encountered by the vision system are straight for thirty
feet beyond the camera unless a corner is ahead. Side-
walks mainly differ in their width and the presence (or
absence) of a grass border on their street side. These
variations are modeled by a few simple parameters.

Within the 64 x 64 image the borders of the sidewalk
on either side will often appear as high contrast lines.
These lines will be in the lower half of the image, at a
highly inclined angle. Various objects bordering on the
sidewalk sometimes are of similar optical intensity,
reducing the contrast of the sidewalk edges. A large
variety of objects can border city and suburban side-
walks. These include: bushes, shrubs, trees, grass, dirt,
driveways, walkways, walls of all types, doors, and win-
dows. On the street side usually one finds pavement and
automobiles. These objects occur at fairly predictable
locations, and many times with good contrast compared
to the white sidewalk.

Most objects located upon the sidewalk proper have

three fortunate properties: they do not move, have
stereotypical locations with respect to the edge of the
sidewalk, and usually do not block the path. Objects in

this class include: phone poles, lamp posts, fire hydrants,
traffic signs, parking meters, trees, mail boxes, phone
booths, most trash cans, and bushes. Many of these
objects also have the property of being rectilinear, and
approximatable as cylinders or boxes (and thus produce
good, high contrast edges.)

Unfortunately other objects are more unpredict-
able. These include: paper boxes, bags, newspapers,
trash, garbage cans, parked bicycles, and badly parked
cars. Such obstacles can appear anywhere on the side-
walk, and are not always very rectilinear. However, they
do have some properties that facilitate their detection.
Many are short, so their borders are within the two edges
of the sidewalk. They also rest directly upon the ground,
enabling their distance to be accurately determined and
verified over several frames.

Finally there is the class of moving objects which
are the hardest to handle, as their shape and location
may change drastically from frame to frame. This class
includes: pedestrians, dogs, bicycles, occasionally a car
crossing the sidewalk, and wind-blown trash. For-
tunately, most mobile obstacles are alive or controlled
by humans, and will try not to collide with a pedestrian.

VI  Low Level Processing

Initial segmentation of digital images is now a fairly
well developed art. but no general technique is know to
be (close to) optimal for the large class of natural
images, and the speed of various algorithms can differ by
orders of magnitude. The necessity for real-time perfor-
mance is the most severe constraint imposed upon our
system. Many promising segmentation techniques had
to be rejected out of hand on efficiency grounds.



The speed of the initial segmentation algorithm
dominates the performance of the overall system, as the
semantic phase is usually many times faster [1]. Thus a
poor quality (but fast) segmentation algorithm may be
preferable to higher qualify (but slower) algorithm if one
can make the semantic phase work a little harder. This
is the case in our system. Our segmentation algorithm
only directly compares two pixels at a time, and thus is
sensitive to noise, but runs at a very high speed. In some
sense every module in the system after the pixel com-
parison has some component who's job is to help correct
for the defects introduced by the initial fast segmenta-
tion.

The segmentation algorithm used is an edge follow-
ing algorithm that differs from the wusual (such as
described in [7]). in that we follow several edges simul-
taneously. Most edge followers grow an edge line point
by point serially from one end of the line. We instead
grow many edge lines in parallel by adding to both ends
of many edge lines simultaneously. The advantages of
this method corresponds roughly to those gained by a
breadth first versus a depth first search, in that there is
more global information available when one is forced to
make local decisions. This allows edge thinning to take
place at the same time as edge following, and contri-
butes to the speed of the algorithm.

In more detail, edge points in the input are found
using a pseudo-random scan [8]. In the area around
each point a search is made for existing edge lines and
other isolated edge points. Based on complex decision
rules, an existing edge line may be extended to the new
point, a new edge line may be created between the new
point and another point, or two edge lines may be joined
through the new point. (These rules are similar to those
found in [9], but with less complex weightings.) The deci-
sion rules mentioned above help thin the edges, mainly
by forcing edge lines to be essentially continuous. The
final result of pass 1 is the collection of edge lines
obtained after all the edge points have been processed.

The edge follower tends to be conservative, as it
knows that pass 3 will connect broken lines. This is pos-
sible as pass 3 has access to more global information
about the objects within the scene, and thus may have
reason to believe that three roughly collinear line seg-
ments may in fact be the edge of one object. Pass 1 does
not have enough information to decide if a gap between
two line segments is due to noise breaking up a single
edge, or is really an occluding object or a gap between
two objects.

In our system, noise in a single pixel many times
can lead to the break-up of a potential edge line into two
pieces. The defects in this edge segmentation can be
modeled as higher level noise. That is. as broken edges,
missing edges, and misoriented edges. Semantic rules
about line segments can take these defects into account,
and sometimes even make use of certain properties of
the "noise". For example, the breakup of a edge line
corresponding to the edge of an object in the scene may
be caused by a surface discoloration near the object
edge. If this is the case, then the "noise" will be serially
correlated from frame to frame. Thus the broken edge
will be broken in the same way in several frames, and the
relative location of the break can be (and is) used as a
feature of that edge (which can help to re-identify it in
successive frames.)
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VIl The Fitting of Edges to Curves

Pass 2 gathers information about each edge line,
summarizes its attributes, and sorts it to permit quick
searches. Pass 1 sorts the edge lines by x-y location and
computes their length. Pass 2 computes their "curva-
ture" and angle of inclination from the horizontal, and
sorts them by angle. Edge lines that are too convoluted
are broken up into smaller (and simpler) segments. This
covers the few cases in which the conservative edge fol-
lower described above is not sufficiently conservative.
This can occur when two straight line segments intersect
at a shallow angle. Pass 1 cannot distinguish this case
from a single shallowly curved line segment. Pass 2's
curvature statistics are needed to resolve this case.

We devised a fast algorithm to fit lines to arcs cir-
cles. The main point for our application was to within a
milli-second classify a given line segment as a roughly
straight line, a gently curving line, or noise. It is possi-
ble that in the future we may make use of finer details of
the curves, but in an environment of rotating three
dimensional objects absolute curvature is of little use.
and more general information on object surface orienta
tion and distance is needed (such as discussed in [ 10].)

VIl  Representation of Objects

Our three dimensional representation necessariy
emphasis the edges of objects, given the nature of our
initial segmentation. The representation roughly resem-
bles a collection of three dimensional edges of the
object, but the locations of the edge lines relative to
each other is not fixed as in 3D wire frame models in
computer graphics, but rather are allowed to vary as
needed. As most objects in the sidewalk world are some-
what rectilinear, many are represented by planes paral-
lel to the X.Y or Z axis (a similar representation was used
in [4].) For example, a phone pole can be fairly well
approximated by a rectangle facing the observer. The
sidewalk proper is approximated by a rectangular slab
who's position and width is updated every frame with new
data.

To achieve high processing speeds, some of our
representation is procedural rather than semantic But.
as we have built up the number of objects that we nan
dle, a number of common subroutines have emerged,
allowing new objects to be added and represented fairly
easily. High processing speeds verses separation of con-
trol structures and knowledge are not necessarily incom-
patible, but to obtain both one must have intervening
software step that transforms high level abstractions
into a form combinable with control structures. It also
helps to have a very flexible control structure. Our sys-
tem puts both edge data and object building procedures
into associative data-bases, thus allowing the flow of con-
trol to be determined by the data. In retrospect, most
of the object handling procedures could have been gen-
erated by machine from static descriptors rather than
by hand, and we may go to such a system in the future.

DC Representation of Visual Knowledge

With the knowledge of how to recognize and
represent objects handled by the object representation,
the remaining visual knowledge of interest is that that
tells you where an object is (it's distance and direction.)
A number of hueristics of varying degrees of generality



exist to do this job. with varying degrees of accuracy and
constraints. These are:

1. If the object is know to be resting on (or very near)
the ground plane, then Y is known to be -UserHigth,
and X and Z can be obtained by back projection.

If the object has a known distance from the edge of
the sidewalk (for example, phone poles are usually
one foot in), and all one has is a piece of an edge of
the object (usually not the ground plane intersec-
tion), then one can obtain the objects (X.Y.Z) loca-
tion as follows: take the image plane (x.y) location
of the edge piece, project it as a line through the
origin (the focal point of the camera) into (X.Y.Z)
space, and intersect this line with the plane which is
the constant distance in from the sidewalk. This
intersection X and Z will be the object's location on
the ground plane. (The equation of the plane paral-
lel to the sidewalk is obtainable because the equa-
tion of the sidewalk edge is assumed to be known.)
Even if the constant distance in from the sidewalk
edge is incorrectly guessed, which can lead to dis-
tance error on the order of 50% or more, at least
some distance information has been provided, and
one can make simple decisions like "will 1 run into it
in two seconds or twenty seconds". In future
frames, motion stereo can tighten up this distance
estimate (and correct the constant distance term).
By the time an object initially sighted twenty or
more feet away comes to within five feet of the
pedestrian the location of the object will have
appeared in thirty frames of solid data, hopefully
pinpointing it's location to within a foot.

3. Once the effects of camera tilt and pan have been
subtracted, the differences in locations of a feature
in successive frames can be used to determine its
range and distance by working backwards from the
projection and camera transformation equations.
"We employ motion stereo as a secondary distance
cue that is used to check up on our primary cues 1
and 2 above.

4. There are some distance heuristics that are only of
use for determining the equation of the sidewalk's
borders. These include making use of the known
constant width of the sidewalk.

5. Finially, the location of an image feature relative to

the current, interpretation of scene can be used to
obtain a probable distance estimate. For example,
edges near the vanishing point of the sidewalk are
probably (but not necessarily) far away. Edges way
off to one side and in the sky most likely belong to
upper stories of buildings or the background, and
may be safely ignored. (One misses overhangs this
way, but overhangs in general are very hard to
recognize,.as many are of very low contrast to begin
with.)

X Semantic Analysis

The semantic phase endeavors to build a three
dimensional model of the outside world that it is moving

through, such that edges in the image frames
correspond to edges of objects in three dimensional
model. The various distance hueristics listed above are

employed both to initially place objects as well as to ver-
ify their location/identity over several frames. (An
object whose distance varies wildly from frame to frame
may be mis-identified.) Further constraints exist that
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simplify the semantic analysis task. These are:

1. Most objects in the sidewalk world rest on the
ground plane (though we do not assume that their
point of contact is visible.)

Most objects can be roughly approximated by planes
parallel to the x, y. or z axis (as in [4].)

3. Location accuracy need only be enough to avoid
objects most of the time. For example, distances to
objects need only be computed with an accuracy of
+20% when objects are closer than 8 feet, and +40%
when objects are further away.

4. The camera transformation will be correctly sup-
plied most of the time (by hardware) to within 1%
angular accuracy and 10% translation accuracy.

In order to speed the identification of edges in a new
frame, predictions of edge locations from previous

frames are used. Much of the speed of the semantic pass
is due to the essentially hardware solution of the succes-
sive frame registration problem. Most re-occurring
edges can have their location in successive frames deter-
mineed to with a few pixels be using the camera
transformation. The overall effect is a sort of "boot-
strapping"” re-identification of scene features, similar to
that described in [II]. (It may be possible that in the
future we can dispense with the special camera motion
tracking hardware and recover this information incre-
mentally from optical flow.)

In more detail, the semantic phase is broken up into
several subparts. These are:

1. Edge lines from the previous frame are first
transformed by the camera transformation and
then matched against edge lines in the current
frame, current lines that appear to be direct des-
cendents of previous lines are removed from the
current data base as "explained". The order in
which old object's edges are searched for is deter-
mined by their relative semantic importance and
data quality. Thus the edges of the sidewalk are
usually searched for first, followed by the other
objects roughly ranked by their number of (visible)
edges.

The matches made in 1 induce new information that
can be used to construct an updated three dimen-
sional model of the objects that the edges belong to.
These models can then make claims for gaps in
their edge outlines.

The claims made in 2,
claims for new objects are matched against
remaining data base of edge lines. Residual
will be claimed as background noise.

along with various generic
the
lines

New object edges obtained in 3 allow for further
updating of the three dimensional models, which at
this point can be used by the blind navigation sys-
tem. Predictions and search scheduling for the
next frame are made at this point. Objects who's
existence is no longer supported by the edge line
evidence are deleted in favor of more consistent
interpretations.

Thus at any one point in time the world model data
base of the system contains models of several objects
(phone poles, bushes, automobiles, etc.) that are moving
by. as well as a model of the sidewalk proper.



Xl Experimental Results

Figure 1 is a sample image taken from an Bmm
movie of a sidewalk. One of our test sequences consists
of 30 digitized images from this movie. The forward
motion between each frame was one and a half feet. On
our half speed XL68.000, passes 1 and 2 can process this
movie at the rate of one second per frame. The seman-
tic processing of pass three takes an additional half
second per frame. When applied to this movie, the sys-
tem correctly discovered and tracked the sidewalk
edges, as well as edges of several objects off to the right
of the sidewalk. No objects were found to be blocking
the sidewalk. Figure 2 displays a digitized image from
the middle of this sequence with the wire-frame model of
pass 3 superimposed. (A similar fit is made for each
frame of the movie.) A computer animated reconstruc-
tion of the outside environment given the world model
produced by pass 3 is seen in figure 3. (The detail on the
parked car is simulated.) We expect to be running field
trials of the entire system in a portable cart trailing
behind a blind subject shortly.

Xl Incorporation into a Blind Aid

The overall functioning of this system as a blind aid
is part of the lineage of a large number of previous tac-
tile blind aids devices designed over the last twenty
years [12][ 13][l4). The computer vision component and
the blind interface component have been separated out
from each other via the following reasoning:

1. Assuming a perfect computer vision system that
knows where every object of interest is located, how
could one best communicate this information to a
blind pedestrian? What sort of user interfaces and
interactions will allow the user to make rapid, accu-
rate use of the information provided?

How does one build a portable (wearable!) computer
vision system that will locate at least the majority of
the objects of interest?

Our solution to 1 has been presented in the previous
portions of this paper. Our solution to 2 is to use two
output channels - stereo synthetic speech for cognitive
(high level) information, and a linear array of 18 tactile
elements as a pointing device. The stereo speech unit is
a combination of a normal speech synthesis system with
a audio processing unit that can "throw" the computer's
speech, allowing it to appear to come from a particular
direction and distance. (For example, a phone pole

Figure 1. Origiona! image.

Figure 2. Digitized image with

wire-frame model.
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might seem to announce "phone pole".) The tactile
array is a skin tapping device worn as a head-band, each
element corresponds to a particular angular direction,
and the frequency of taps of an element corresponds
inversely to the distance of the feature being pointed to.

Currently we intention to have the speech unit make
major announcements (the blind don't want it babbling
all the time, they listen to sound shadows and street
sounds.) The tactile output will be used for communicat-
ing more mundane information, such as "you're veering
off to the left of the sidewalk, veer a bit to the right", by
"flashing" the edge of the sidewalk on the appropriate
side of the tactile display, should the user veer toward it
In any case, one of the main reasons for putting the
whole system on a micro processor, rather than simulat-
ing it on a mainframe, was to have the capability of
expermenting in the real world with various blind inter-
face systems. Also, despite years of experience in test-
ing blind aids, it is very hard to tell how the blind will
react to a particular device without letting them make
extensive use of it under real world conditions

X1l Perspectives on Future Directions

Within the hardware and timing constraints
imposed, we feel that the current system performs well.
and cannot be much improved upon. However, for use in
a robust blind aid. the system has several limitations
which must be overcome. These include the low sensi-
tivity to low contrast edges in shadowed or complex
scenes, and the low resolution (™1 degree/pixel ) More
important is the limitation to processing of edge data
only, at the exclusion of surface data. It would be nice to
have more information about the sidewalk than just
where it's edges are. such as how flat it is, are there any
broken sidewalk slabs or holes® Also, the current system
must treat any high contrast edge on the sidewalk as a
potential object edge, even though most are only flat
shadows or stains.

Various surface processing techniques proposed in
the literature can solve many of these limitations Tex-
ture gradients [15] should provide a fairly robust broad
classification of the scene into flat and upright surfaces
Optical flow can provide approximate distance estimates.
Luminance gradients could indicate surface curvature,
which could be used in identifying (and segmenting)
phone poles, walls, automobiles, etc. [10). Finally,
stereo gradients can not only determine general dis-
tance estimates, but for the special case of the almost
flat sidewalk, they can be tunned to spot vertical devia-

Figure 3.
reconstruction from model

Computer animated



tions as small as half an inch (such as un-even sidewalk
tiles that one might trip upon). More importantly, stereo
can determine that a dark patch is flat, and can be
safely ignored. This would be similar to the system
described in [16]. However, for this specialized stereo
algorithm to work, it must have a very good estimate as
to where the flat sidewalk is in the first place. This is
where the other surface processing techniques enter the
loop. Such a system could provide very robust perfor-
mance under even extreme conditions (such as wet (and
reflet live!) sidewalks in the rain), but at the expense of
special purpose hardware.

Currently we are in the initial stages of designing a
surface processing oriented version of our system sys-
tem along the lines described above, which is to be
implemented in VLSI. This system will be characterize
by higher resolution (with separate foveal and peripheral
resolution), higher frame rates (approaching 30 frames a
second), stereo processing, and extensive use of surface
processing techniques. It will differ from other vision
systems in that it will be optimized for the sidewalk
environment. For example, the stereo section will not
have to deal with the stereo frame registration problem
in its general form, but for the much simpher case of
extracting the (mostly flat) ground plane. Evidence indi-
cates that the vision system of many animals (including
man's) has a built in special case solution for extracting
the ground plane, which is similar to our proposed tech-
nique.
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