Tutorial 2 — the outline

¢ Example-1 from linear algebra

+ Conditional probability

+ Example 2: Bernoulli Distribution
+ Bayes' Rule

+ Example 3

+ Example 4 The game of three doors
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Example — 1: Linear Algebra

¢ A line can be written as ax+by=1. You are given a number

of example points: XY,
P=|:
Xn yn
Let M :{a} } }
b

* (A) Write a single matrix equation that expresses the
constraint that each of these points lies on a single line

« (B) Is it always the case that some M exists?
e (C) Write an expression for M assuming it does exist.
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Example — 1: Linear Algebra

+ (A) For all the points to lie on the line, a and b must satisfy the following
set of simultaneous equations:

ax,+by,=1

axy+by=1
This can be written much more compactly in the matrix form (linear
regression equation):
PM=1 where 1 is an Nx1 column vector of 1’s.

¢+ (B) An M satisfying the matrix equation in part (A) will not exist unless al
the points are collinear (i.e. fall on the same line). In general, three or more
points may not be collinear.

+ (C) If M exists, then we can find it by finding the left inverse of P, but
since P is in general not a square matrix P -1 may not exist, so we need the
pseudo-inverse (P TP) 1P T. ThusM=(P TP) 1P T1.
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Conditional probability

¢ When 2 variables are statistically dependent, knowing the
value of one of them lets us get a better estimate of the value
of the other one. This Is expressed by the conditional
probability of x giveny:

Prix=v;|y=w}= Pr{x=vi,y:wj}’ or P(x|y)=1Y)

Pr{y = w;} P, (Y)

¢ |f x and y are statistically independent, then  P(x|y) =P, (X).
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Bayes' Rule

« The law of total probability. If event A can occur inm

different ways A, A,,...,A, and If they are mutually
exclusive,then the probability of A occurring is the sum of
the probabilities A, A,,....A, .

P(y)=>_P(x.Y).

Xey

From definition of condition probability

P Y)=RX| )RY) =Ry X)RAX)
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or

Bayes' Rule

Py X)P, ()

P(x]y)= P(y)

P(y[x)P(x) _ P(Y[X)P(X)

P — —
U= 5500y TSP IOPX)

likelihood x prior
evidence

posterior =
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Bayes' rule — continuous case

e For continuous random variable we refer to densities rather
than probabilities; in particular,

p(X,y)

p(x]y) = oY)

« The Bayes’ rule for densities becomes:

o(x| y) = P X)IPO)
| p(y 1) p()dx

—Q0
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Bayes' formula - importance

= Call x a “‘cause’, y an effect. Assuming x is present, we know
the likelihood of y to be observed

= The Bayes’ rule allows to determine the likelihood of a cause
X glven an observation y.

(Note that there may be many causes producing v ).

= The Bayes’ rule shows how probability for x changes from
prior p(x) before we observe anything, to posterior p(x| y)
once we have observed y.

236607 Visual Recognition Tutorial 8



Example — 2: Bernoulli Distribution

+ A random variable X has a Bernoulli distribution with
parameter @if it can assume a value of 1 with a probability of
@ and the value of 0 with a probability of (1-&). The random
variable X is also known as a Bernoulli variable with
parameter #and has the following probability mass function:

(x.6) = 6 X=1
PET=119  x=o0

¢ The mean of a random variable X that has a Bernoulli
distribution with parameter p Is

EX)=1(6) +0(1- & =6
The variance of X Is
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Example — 2: Bernoulli Distribution

Var(X) = E(X2)—[E(X)2 =12(8) + 0°(1— ) — 6% = 6 — 6* = H(1— )

A random variable whose value represents the outcome of a coin
toss (1 for heads, O for tails, or vice-versa) iIs a Bernoulli variable
with parameter &, where @is the probability that the outcome
corresponding to the value 1 occurs. For an unbiased coin, where
heads or tails are equally likely to occur, 6= 0.5.
For Bernoulli rand. variable x, the probability mass function is:

P(x |0)=P,(x)=0"(1-6)"", x =0,1
For N independent Bernoulli trials we have random sample

X = (Xo’ Xpyeees XN—l)
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Example — 2: Bernoulli Distribution

The distribution of the random sample is:
N -1
P)=]]0"@-0)y ™ =6"1-6)""
n=0

-1
k=) X, number of ones e X = (X,, X, Xy_1)-

The distribution 012:
Bernoulli trials 1s:

P

o

he number of ones in N independent

N
P (K) = ( ) jeka—e)“k
The joint probability to observe the sample x and the number k
P,(X), k=number of ones e x
Pe (X, k) _ 0( ) -E
0, otherwise
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Example — 2: Bernoulli Distribution

The conditional probability of x given the number k of ones:
kK1 Nk
I:)6)()(“():P9(x,k)_ 0" (1-0) 1

P,(k) (N v [N
e (3]

P,(x) = P, (x [K)P, (K) = — P, (K)

)
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Example - 3

¢ Assume that X is distributed according to the Gaussian
density with mean =0 and variance o?=1.

e (A) What is the probability that x =0 ?

¢+ Assume that Y is distributed according to the Gaussian
density with mean =1 and variance o°=1.

e (B) wWhat is the probability that y =0 ?
¢ Given a distribution: Pr(Z=z2)=1/2Pr(X=2)+1/2Pr(Y=2)
known as a mixture (i.e. ¥z of the time points are generated by
the X process and %2 of the time points by the Y process ).

e (C) If Z =0, what is the probability that the X process generated this
data point ?
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Example — 3 solutions

* (A) Since p(x) is a continuous density, the probability that x=0
- 0
1S Pr(0 < x<0) = [ p(x)dx =0.

0
¢ (B) Asin part (A), the probability that y=0 is
Pr(0 <y <0) =j p(y)dy = 0.
0
¢ (C) Let w, (w),) be the state where the X (Y) process generates
a data point. We want Pr(w, |Z=0). Using Bayes’ rule and

working with the probability densities to get the total
probability:
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Example - 3

Pl’(a)o 1Z=0)= p(Z =0| wo) PI’((OO) _ P(Z = Ola)o) Pr(a)o)
p(Z =0) P(Z =0|w,) Pr(w,) + p(Z =0 @,) Pr(w,)
_ 0.5p, (X =0) B p, (X =0)
- 0.5p, (X =0)+0.5p, (Y =0) p,(X=0)+p,(Y=0)
0.3989

= = O.
0.3989+0.2420

¢ Wwhere

2 (y-1)?

2

2

1 1
Px (X):ﬁe ) pY(y):ﬁe
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Example 4 The game of three doors

¢+ A game: 3 doors, there is a prize behind one of them. You
have to select one door.

¢+ Then one of the other two doors is opened (not revealing the
prize).

¢ At this point you may either stick with your door, or switch
to the other (still closed) door.

¢ Should one stick with his initial choice, or switch, and does
your choice make any difference at all?
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The game of three doors

¢ | et H. denote the hypothesis “the prize is behind the door 1 ”.
¢ Assumption: Pr(H,) = Pr(H,) = Pr(Hs):%

¢ Suppose w.l.0.g.: initial choice of door 1,then door 3 Is
opened. We can stick with 1 or switch to 2.

¢ |_et D denote the door which is opened by the host. We

assume: Pr(D=2|H,) :%,Pr(D =2|H,)=0,Pr(D=2|H,) =1,

Pr(D = 3| H1)=%,Pr(D:3| H,)=1Pr(D=3[H,)=0

¢ By Bayes’ formula:
Pr(D=3|H,)Pr(H,)

Pr(H,|D=3)=—— 2

Pr(H1|D:3):%,Pr(H2|D:3): Pr:iyés),Pr(HdD:S):O
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The game of three doors-the solutiion

¢ The denominator pr(D=3) :% IS a normalizing factor.

+ S0 we get Pr(HllD:S):%,

Pr(H2|D:3):§,

Pr(H, | D=3)=0,
which means that we are more likely to win the prize if we
switch to the door 2.
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Further complication

A violent earthquake occurs just before the host has opened
one of the doors; door 3 is opened accidentally, and there is
no prize behind it. The host says “it is valid door, let’s let it
stay open and go on with the game”.

¢+ \What should we do now?
¢ First, any number of doors might have been opened by the

earthquake. There are 8 possible outcomes, which we assume
to be equiprobable: d=(0,0,0),...,d=(1,1,1).

A value of D now consists of the outcome of the quake, and
the visibility of the prize; e.g., <(0,0,1),NO>

We have to compare Pr(H,|D) vs. Pr(H,|D) .
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The earthquake-continued

¢ Pr(D|H;) hard to estimate, but we know that Pr(D|H;)=0 .
¢ Also from Pr(H;, D)= Pr(H; | D)Pr(D)= Pr(D|H,) Pr(H,) and
from Pr(D) =0 we have Pr(H;|D)=0.

¢ Further, we have to assume that Pr(D|H,)= Pr(D|H,) (we

don’t know the values, but we assume they are equal).

+ Now we have
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The earthquake-continued

r(H. | D)< PR IHPI(H) _ 1

Pr(D) 2
Pr(H, | D) = Pr(D|H,)Pr(H,) 1
Pr(D) 2
(why they are %27?)

(Because Pr(H,)=Pr(H,)and Pr(D|H,)=Pr(D|H,) We get
Pr(H,|D)=Pr(H,|D)  Also Pr(H |D)+Pr(H,|D)+Pr(H,|D)=1 )
¢+ S0, we might just as well stick with our choice.

¢ \\Ve have different outcome because the data here is of
different nature (although looks the same).
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