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ADMINISTRIVIA

e Speed
e Reading

— Lecture slides available at front

— Chapter 2 and appendices at front

— On web, reading for lecture K contains material related to
lecture K; you should read this before hand!

e Homeworks

— Easy/ hard?
— Solutions to HW1 available

— Hand in your HW1, pick up someone else's and grade it by next
Monday (if enrolled for credit); put your name on it when you
grade it!

— HW?2 now available online



ADMINISTRIVIA

e Auditors

— Please sign the form (at front); | will give them to Joyce Poon
— Please do not turn in your homeworks!

e Matlab

— Everyone should have access; if not, see me.

— Homeworks will not require stats toolbox etc.

e Discussion section

— Useful?
— Second discussion section Wednesday 5-67



NAIVE BAYES CLASSIFIER

oelet C' € {l,..., K} represent the class of a document (e.g.,
C' =spam or C' =not spam).

e Let W, =1 if word 7 occurs in this document, otherwise W; = 0.

e A naive Bayes classifier assumes the words (features) are
conditionally independent given the class (written as W; L W,|C').

e This can be represented as a Bayes net (recall that a node is
conditionally independent of its non-descendants given its parents).

ED \@



NAIVE BAYES CLASSIFIER: INFERENCE

e Since W; L W;|C, the joint is

N
P(C,Wy.y) =P(C) ||| P(W;|C)
1=1

e Hence the posterior over class labels is given by
N
P(C = ¢) ] [i=1 P(wi:n]c)

P(C = clwy.n) =
( ) > u P(C =)L) Plwyyl)



NAIVE BAYES CLASSIFIER: LEARNING

e The root CPD P(C' = ¢) can be estimated by counting how many
times each class occurs

(e.g., P(C' = spam) = 0.05, P(C' = non-spam = 0.95)).
e Each leaf CPD P(wj;|c) can have a different kind of distribution,

e.g., bernoulli, Gaussian, etc.

e For document classification, P(W; = 0/1|C' = ¢) can be estimated
by counting how many times word ¢ occurs in documents of class c.

e For real-valued data, p(W;|C = ¢) can be estimated by fitting a
Gaussian to all data points that are labeled as class c.

e If the class labels are not observed during training, this model can
be used for clustering (see later).



PARAMETER LEARNING

e We said that the root CPD P(C = c¢) can be estimated by

counting how many times each class occurs. Why?

e We said P(W; = 0/1|C = ¢) can be estimated by counting how
many times word ¢ occurs in documents of class c. Why? And
what if the word never occurs?

e \We now discuss these issues, which are equivalent to estimating the
parameters of coins and dice.

e We will also discuss how to infer which words are useful for
classification (feature selection) by computing the mutual
information between two variables.

e You will implement this for homework 2.



BERNOULLI DISTRIBUTION

olLet X € {0,1} represent heads or tails.
e Suppose P(X = 1) = p. Then

P(x|p) = Be(X |u) = p"(1 — p)'=*
e It is easy to show that

ElX]=p, VarlX]|=p(l—p)



MLE FOR A BERNOULLI DISTRIBUTION

e Given D = (z1, ... ) the likelihood is

N
p(Dlp) = H planlp) =[] w1 = p)' ="
n=1

e [ he log-likelihood is
L(p) = logp(D|p) = " aplog i+ (1 — ap)log(1 — p)

n
= Njlogu + Nylog(1 — p)
where N1 = n = )y is the number of heads and Ny = m =
> (1 — azn) is the number of tails (sufficient statistics).

e Solving for & d = 0 yields
n

n—+m

HML =



PROBLEMS WITH THE MLE

e Suppose we have seen 3 heads out of 3 trials. Then we predict that
all future coins will land heads:
no 3

n+m 340

e This is an example of the sparse data problem: if we fail to see
something in the training set (e.g., an unknown word), we predict
that it can never happen in the future.

HML =

e We will now see how to solve this pathology using Bayesian estima-
tion.



CONJUGATE PRIORS

e A Bayesian estimate of 1 requires a prior p(u).

e A prior is called conjugate if, when multiplied by the likelihood
p(D|u), the resulting posterior is in the same parametric family as
the prior. (Closed under Bayesian updating.)

e [ he Beta prior is conjugate to the Bernoulli likelihood
P(u|D) o< P(D|p)P(p)
oc (™M1 — )™ [ b
where n is the number of heads and m is the number of tails.

e a, b are hyperparameters (parameters of the prior) and correspond to
the number of “virtual” heads/tails (pseudo counts). No=a+ b is
called the effective sample size (strength) of the prior. a = b =1 is
a uniform prior (Laplace smoothing).



'THE BETA DISTRIBUTION

e To ensure the prior is normalized, we define
F<a + b> a—1 b—1
1 —

where the gamma function is defined as

0
F(w)—/ u e Uy
0

Note that I'(z + 1) = z['(x) and I'(1) = 1. Also, for integers,
[Nz+1)=2al

P(y|a,b) = Beta(u]a, b) =

e The normalization constant 1/Z(a,b) = FF(S;F?IE) ensures

1
/ Beta(u|a, b)du = 1
0



'THE BETA DISTRIBUTION

If 4 ~ Be(a,b), then

a=2
h=3

0.5 B

a=38
h=4




BAYESIAN UPDATING OF A BETA DISTRIBUTION

e If we start with a beta prior Be(u|a,b) and see n heads and m tails,
we end up with a beta posterior Be(u|a + n,b+ n):

1

P(u|D) = WP(DWP(N’%@
= ﬁ[u”(l — )" Z(; 3 ]

= Be(uln +a,m +b)

e The marginal likelihood is the ratio of the normalizing constants:
Z(a+b,n+m)

Z(a,b)
['(a+n)l'(b+m)l(a+0)
la+n+b+m)'(a)(b)

P(D) =




SEQUENTIAL BAYESIAN UPDATING

e Start with beta prior p(0|ay,, ar) = B(0; oy, ap).
e Observe N trials with /V;, heads and NV; tails. Posterior becomes
p(0lag, ar, Ny, Ni) = B(0; o + Ny, ap + Ny) = B(6; o, )

e Observe another N/ trials with N}/L heads and Nt/ tails. Posterior
becomes

p(0lag,, o, Ny, Ni) = B(0; g + Ny, o + NY)
= B(0;ay, + Nj, + Ny, o + N + Ny)
e So sequentially absorbing data in any order is equivalent to batch
update. (assuming iid data and exact Bayesian updating).

e This is useful for online learning and large datasets.



BAYESIAN UPDATING IN PICTURES

e Start with Be(ula = 2,b = 2) and observe x = 1, so the posterior
is Be(ula = 3,b=2).

thetas = 0:0.01:1;

alphaH = 2; alphaT = 2; Nh=1; Nt=0; N = Nh+Nt;
prior = betapdf (thetas, alphaH, alphaT);

1lik = choose(N,Nh) * thetas."Nh .* (1-thetas). Nt;
post = betapdf (thetas, alphaH+Nh, alphaT+Nt);

2 . ~

prior likelihood function posterior
| ! / ! /\
0 : 0 : 0 :

0 0.5 1 i 0.5 | 0 0.5 1
i I U




POSTERIOR PREDICTIVE DISTRIBUTION

e [ he posterior predictive distribution is

1
MX—MD—AMX—WWMMW

1
n—+a
| it D)y = Bl D) = —

e With a uniform prior a = b = 1, we get Laplace’s rule of succession
Nh + 1
Ny + N¢ 42

e Start with Be(u|a = 2,b = 2) and observe x = 1 to get Be(ula =
3,b = 2), so the mean shifts from E|u| = 2/4 to E|u|D]| = 3/5.

5 y . 5 .
~| prior “| likelihood function | posterior
| 1 | A
0 - 0 0 -

5 5

p(X — 1|NhaNt> —




EFFECT OF PRIOR STRENGTH

o Let N = Nj, + Ny be number of samples (observations).

o Let V' be the number of pseudo observations (strength of prior) and
define the prior means

ap = N’a}b, o = N’ozg, o/h+oz£ =1

e Then posterior mean is a convex combination of the prior mean and

the MLE (where A = N'/(N + N')):

Ozh—|—Nh
fmyszm%A%ND:C%+A%+%+AQ
:N’o/thNh
N + N/
N’ n N Ny
— C){
N+N""ON+ NN

N
= A} + (1 — N2
oy + (1= A)—



EFFECT OF PRIOR STRENGTH

e Suppose we have a uniform prior O‘;L = 042 = (.5, and we observe
Ny, =3, Ny =1T.

e Weak prior N’ = 2. Posterior prediction:

341
P(X =hlay =1, ar=1,N) =3, Ny =T) = — >~ _

1
— =~ 0.33
3+1+7+1 3

e Strong prior N’ = 20. Posterior prediction:
3+ 10 13

— — =~ 0.43
3+10+7+10 30

e However, if we have enough data, it washes away the prior. e.g.,
_ _ ; 300+1 300410
N;, = 300, Ny = 700. Estimates are 100053 and 1000520 both of
which are close to 0.3

e As N — oo, P(0|D) — 8(6,0,1), so E[0|D] — 01




PARAMETER POSTERIOR - SMALL SAMPLE, UNIFORM PRIOR

prior,1.0, 1.0 likelihood, 1 heads, 0 tails posterior
2 1 2
1 0.5 1
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,1.0, 1.0 likelihood, 1 heads, 1 tails posterior
2 0.4 2
1 0.2 1
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,1.0, 1.0 likelihood, 10 heads, 1 tails posterior
2 0.04 5
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,1.0, 1.0 likglgéod, 10 heads, 5 tails posterior
2 1 4
1 0.5 2
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,1.0, 1.0 likeligdod, 10 heads, 10 tails posterior
2 1 4
0 0 0

0 0.5 1 0 0.5 1 0 0.5 1



PARAMETER POSTERIOR - SMALL SAMPLE, STRONG PRIOR

prior,10.0, 10.0 likelihood, 1 heads, 0 tails posterior
4 1 4
WAE . /\_
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,10.0, 10.0 likelihood, 1 heads, 1 tails posterior
4 0.4 4
2 /\ 02 2 /\
0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,10.0, 10.0 likelihood, 10 heads, 1 tails posterior
4 0.04 5
2 /\ 0.02 ﬂ /\
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,10.0, 10.0 likeljhqpd, 10 heads, 5 tails posterior
4 1 5
2 /\ 00 N\ /\
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1
prior,10.0, 10.0 likelipggck, 10 heads, 10 tails posterior
4 1 10
2 /\ 0.5 /\ 5
0 0.5 1 0 0.5 1 0 0.5 1



PRIOR SMOOTHS PARAMETER ESTIMATES

e The MLE can change dramatically with small sample sizes.

e The Bayesian estimate changes much more smoothly (depending on
the strength of the prior).

e Lower blue=MLE, red = beta(1,1), pink = beta(5,5), upper blue =
beta(10,10)

P(X = HID)

5 10 15 20 25 30 35 40 45 50




MAXIMUM A POSTERIORI (MAP) ESTIMATION

e MAP estimation picks the mode of the posterior
Oriap = arg max p(D]0)p(6)
o If 6 ~ Be(a,b), this is just
Orrap = (a—1)/(a+b—2)

e MAP is equivalent to maximizing the penalized maximum
log-likelihood
Oafap = arg max log p(D|0) — Ac(0)

where ¢(0) = —logp(0) is called a regularization term. X is related
to the strength of the prior.



INTEGRATE OUT OR OPTIMIZE?

e 037 4p is not Bayesian (even though it uses a prior) since it is a
point estimate.

e Consider predicting the future. A Bayesian will integrate out all
uncertainty:

0
p@new’X) = /p<5’3new,‘9|X)d(9
—/p<xnew|‘9>X)p<‘9|X>d‘9
X /p(xnew\ﬁ)p(XW)p(@)dH ’
X Xnew

e A frequentist will use a “plug-in" estimator eg ML/MAP:
P(Tnew| X) = p<5’3new|é)a f = arg m@axp(X’@)



FROM COINS TO DICE

e Suppose we observe N iid die rolls (K-sided): D=3,1,K,2,...

o Let [z] € {0, 1} be a one-of-K encoding of = eg. if = 3 and
K = 6, then [z] = (0,0,1,0,0,0)".

e Multinomial distribution: p(X =k) =60, > .0, =1
o Likelihood

0(0; D) =logp(D|0) = ZlogH@x Bl
—ZZ log@k—ZNklogﬁk

e We need to maximize this subject to the constraint ) ;. 0. = 1, so
we use a Lagrange multiplier.



MLE FOR MULTINOMIAL

e Constrained cost function:

[ =) Nplog+A 1= 6
k k

e Take derivatives wrt 0;.:

ol Ny

Ry —

00, 0,

N, = A\,
Y Np=N=X> 6=
k k
R Nk
Hk,ML:W

) ék,ML is the fraction of times k occurs.



DIRICHLET PRIORS

elet X € {1,..., K} have a multinomial distribution
P(X|0) = of K=Vl X=2) L gl Y=
e For a set of data X1, . .. ,XN, the sufficient statistics are the counts

N; = Zn]<Xn = 1).

e Consider a Dirichlet prior with hyperparameters «

1 a—1  an—1 ap—1
p(@’@)zp(e‘@):mgll '922 QK
where Z(«) is the normalizing constant
/ /@11. 00K a0, - dog
Hz IF az

(Zz[il O‘z)



DIRICHLET PRIORS

Hz oy

i1

H3




PROPERTIES OF THE DIRICHLET DISTRIBUTION

olf 0 ~ Dir(f|lay,...,ay), then

af;
El0, = —
Ok = 2
. — 1
mode|0;.| =
O] e
where o A Zé(:l a. is the total strenght of the prior.



LIKELIHOOD, PRIOR, POSTERIOR, EVIDENCE

e Likelihood, prior, posterior'

P(N|) = He

1 —1 —1 —1
p(fla) = D(0)a) = Z(0) O 057 0K
s 1 N ot N
IIN. &) = gL g AK T
PO @) = ) K

= D(ay+ Ny, ...,ax + Ng)
e Marginal likelihood (evidence):

—»_,_Z(]\_/i—k@))_ Zk@k FNk+Ozk
PN == T e LT



MARGINAL LIKELIHOOD =~ NEGATIVE ENTROPY

e Marginal likelihood (evidence):
— 'O . a) ['(Ny. + ayp.)
PO = i+ e Ll Taw

o If ;. =1, this becomes

e Using the fact that I'(1) = 1 and Stirling’s approximation
logl'(x + 1) =~ zlogx — x, we get
P(Nl@=1) & —=NlogN + N + ) (Njlog N — Ny)
k
= ) Nplog(N/N) = —=NH({Ny/N})
k
where H(pp) = — > ;. p. log pj. is the entropy of a distribution.



ENTROPY

e Suprising (unlikely) events convey more information, so we define the
information content of an observation (in bits) to be

h(z) =logy 1/p(x)

e T he average information content of a random variable X is

ZP ) logy p()

H=1.77 H=23.00

probabalitie
o

probabilitie
o




DATA COMPRESSION

e There is a close link between density estimation and data comrpes-
sion.

e The noiseless coding theorem (Shannon 1948) says that the entropy
is a lower bound on the number of bits needed to transmit the state

of X.

e More likely states can be given shorter code words.

e There is also a close link between data compression and model se-
lection/ hypothesis testing.



HYPOTHESIS TESTING

e Consider this example from Mackay chapter 37 (on class web page).

e When spun on edge N = 250 times, a Belgian one-euro coin came
up heads Y = 141 times and tails 109.

e "It looks very suspicious to me. We can reject the null hypothesis
(that the coin is unbiased) with a signifcance level of 5%". — Barry

Blight, LSE (modified from quote in The Guardian, 2002)

e Does this mean P(Hy|D) < 0.057 Let us compare classical hypoth-
esis testing with a Bayesian approach (using marginal likelihood).



CLASSICAL HYPOTHESIS TESTING

e \We would like to distinguish two models, or hypotheses: Hy means
the coin is unbiased (so p = 0.5); H| means the coin is biased (has

probability of heads p # 0.5).
e We need a decision rule that maps data to accept/reject.

e We will do this by computing a scalar quantity of our data called
the deviance, d(D), and comparing its observed value with what we
would expect if H( were true.

e We declare “H{" if d(D) > t for some threshold ¢ (to be deter-
mined).

e In our case, we will use d(D) = Ny, the number of heads.



P-VALUES

e The p-value of a threshold ¢ is the probability of falsely rejecting the
null hypothesis:

p(t) = P({D": d(D") > t}|Hy, N)

e Intuitively, the p-value is the probability of getting data at least that
extreme given HO.

e Since computing the p-value requires summing over all possible datasets
of size NV, a standard approximation is consider the expected distri-

bution of d(D’), assuming D’ ~ P(-|Hy) , as N — oo.



SIGNIFICANCE LEVELS

e The p-value of a threshold ¢ is the probability of falsely rejecting the
null hypothesis:

pval(t) = P{D':d(D") > t}|Hy, N)

e We usually choose a threshold ¢ so that the probability of a false
rejection is below some significance level o = 0.05 (i.e., choose t
s.t., pval(t) < a).

e This means that on average we will “only” be wrong 1/20 times (!).



CLASSICAL ANALYSIS OF THE EURO-COIN DATA

e Blight used a two-sided test and found a p-value of 0.0497, so he
said “we can reject the null hypothesis at significance level 0.05".

pval = P(Y > 141|Hy) + P(Y < 109|H)
= (1 - P(Y < 141|Hy)) + P(Y < 109|H))
— (1 — P(Y < 140|Hy)) + P(Y < 109]Hy)
= 0.0497

n=250; p = 0.5;

pl = 1-binocdf (140,n,p);
p2 = binocdf (109,n,p);
pval = pl + p2



CLASSICAL ANALYSIS VIOLATES THE LIKELIHOOD PRINCIPLE

e Why do we care about tail probabilities, such as
P(Y > 141|Hy) = P(Y = 141|Hy) + P(Y = 142|Hy) + - - -
when the number of heads we observed was 141, not 142 or larger?

e P-values (and therefore all classical hypothesis tests) violate the like-
lihood principle, which says

In order to choose between hypotheses HO and H1 given ob-
served data D), one should ask how likely the observed data are
under each hypothesis; do not ask questions about data that we
might have observed but did not.

e For more examples, see “What is Bayesian statistics and why every-
thing else is wrong”, Michael Lavine (2000), on web page.



BAYESIAN APPROACH

e \We want to compute the posterior ratio of the 2 hypotheses:
P(H\|D) _ P(D[H)P(H,)

P(Ho|D)  P(D|Hy)P(Hy)
e Let us assume a uniform prior P(Hy) = P(Hp) = 0.5.

e Then we just focus on the ratio of the marginal likelihoods:
1
P(DIHy) = [ do P(DI6. H:)P(O|)
0

e For Hy, there is no free parameter, so
P(D|Hp) = 0.5

where N is the number of coin tosses in D.



RATIO OF EVIDENCES (BAYES FACTOR)

e \We compute the ratio of marginal likelihoods (evidence):

BF(l O) _ P(D’Hﬁ _ Z(Ozh—l—Nh,Ozt—l—Nt> 1
’ P(D|Hy) ACTT) 0.5&

['(140 + )1'(110 + «) 9 ['(2a) 9230
['(250 4 2a) "))

e We compute BF'(1,0) for a range of prior strengths oy = o, = «.
Must work in log domain to avoid underflow!

alphas = [0.37 1 2.7 7.4 20 55 148 403 1096];

Nh = 140; Nt = 110; N = Nh+Nt;

numer = gammaln(Nh+alphas) + gammaln(Nt+alphas) + ...
gammaln(2*alphas) + 250%log(2);

denom = gammaln(N+2*alphas) + 2*gammaln(alphas);

r = exp(numer ./ denom);




SO, IS THE COIN BIASED OR NOT?

e We plot the likelihood ratio vs hyperparameter a:

200 400 600 800 1000 1200

. _ P(H|D) . o
e For a uniform prior, PUHD) = 0.48, (weakly) favoring the fair coin

hypothesis H!

e At best, for @« = 50, we can make the biased hypothesis twice as
likely.

e Not as dramatic as saying “we reject the null hypothesis (fair coin)
with significance 5%".



SUMMARY: BAYESIAN VS CLASSICAL HYPOTHESIS TESTING

e The Bayesian approach is simpler and more natural (no need for
“p-values”, “significance tests”, etc.)

e [ he Bayesian approach does not violate the likelihood principle.

e The Bayesian approach allows the use of prior knowledge to prevent
us from jumping to conclusions too hastily.

e See the excellent tutorials on P-values and Bayes factors by Steven
Goodman on the web page.



ANOTHER EXAMPLE: TESTING FOR INDEPENDENCE

e Suppose we are given N (x,y) pairs, where X has J possible values
and Y has K. We want to know if X and Y are independent.

e eg. consider this contingency table
y=ly=2y=3
r=1| 15 29 14
r=2 46 83 56

e Traditional approach: compare Hy = X 1L Yvs HH =X LY.
Compute p-value using X2 statistic

= (Ony— Ery)? <= (N(zy) — NP(2)P(y))?
halD) =) = ) T NP

e Let us consider a Bayesian approach.



BAYESIAN TEST FOR INDEPENDENCE

e If independent,
P(D|Hy) = p(X|oj )p(Y|evg)
where ;. and o are different prior vectors.

e If dependent,
P(D|H;) = p(X, Y |ag)

e \We want to compute

p(D|Hy)p(Hy)
p(D!H())lp(H()) + p(D|Hy)p(Hy)

p(D|H1)p(H,)
p(D|Hy) p(Hy)

o If we assume p(H;) = p(H;), we can focus on the Bayes factor

_ p(D]|Hy)
B = oy

p(Hy|D) =

1+




BAYESIAN TEST FOR INDEPENDENCE

e It is simple to show (homework!) that

B:

p(D|Hy) _ p( X )p(X|oug) _ F(ij Qi) N + 047 ﬁ r Nk + a.k) ')
p(D|H) p(X, Ylajy) DN+ >4 Oéjk) ;

e Using the entropy approximation, we get

p(D|Hy) Nj. N Nk
| ~ —N — N NH(——
N N; N
= —ND | =L =L x =&
( NIV N)
— —NI(X,Y)
where o »
Dpllg) = Y pplog="
- qr,

is the Kullback-Leibler divergence between distributions p, ¢, and
I(X,Y) € D(P(X,Y)|| P(X)P(Y))

is the mutual information between X and Y.



KL DIVERGENCE (RELATIVE ENTROPY)

e K L(p||q) is a “distance” measure of ¢ from p
def Pk
Dipllg) = ) pplog="
) dk
e It is not strictly a distance, since it is asymmetric.

e [he KL can be rewritten as

D(pllq) = Zpklogpk—zpklog%— Zpklog%— H (pg)

This makes it clear that the KL measures the extra number of bits
we would need to use to encode X if we thought the distribution
was ¢z but it was actually q;..

e KL satisfies D(pl||q) > 0 with equality iff p = q.



MINIMIZING KLL DIVERGENCE IS MAXIMIMING LIKELIHOOD

e We would like to find q(z|0) s.t. D(pl|q) is minimized, where p(x)
is the “true” distribution.

e Of course p(x) is unknown but we can approximate by the empirical
distribution given samples Then

L(pllq) = Zlogp Tn) — log q(n|0)

e Since p(x) is independent of #, we find that

1
are min K L = arg max — log q(xp, |60
gmin K L(pllq) = arg quzn: g q(,|0)



MUTUAL INFORMATION

e The mutual information measures how close the joint and indepen-

dent distributions are:

7(X,Y) ¥ D(P(X,Y)||P(X)P(Y))

e It is easy to show that the mutual information between X and Y is
how much our uncertainty about Y decreases when we observe X
(or vice versa):

I(X,)Y)=H(X)—-HX|Y)=H(Y)—-HY|X)
o /(X,Y) > 0 with equality iff X 1L Y.



X2 IS AN APPROXIMATION TO THE MUTUAL INFORMATION

e \We showed
p(D|Hy) Njp N;. N
] ~ —ND
8 (D|Hy) NIV N
= —NI(X,Y)

e If we make the additional approximation

. 2

2
) dk

then we recover the y? statistic.



ARE TWO HISTOGRAMS FROM THE SAME DISTRIBUTION?

e To see if two samples X and Y come from the same multinomial
distribution, create an indicator variable C' € {1,2} which specifies
which data set each sample comes from.

z=12=2. - z2=K

c=1 Ny No --- Npg
c=2 My My --- Mg
o If the two histograms are from the same distribution, then C' is

independent of Z. So just compute P(C' L Z|D). As before, we get
log P;Z‘)T?“Tf? ~ —NZ(X,Y), which can be further approximated

using XQ.



