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Administrivia

• Speed

• Reading

– Lecture slides available at front

– Chapter 2 and appendices at front

– On web, reading for lecture K contains material related to
lecture K; you should read this before hand!

• Homeworks

– Easy/ hard?

– Solutions to HW1 available

– Hand in your HW1, pick up someone else’s and grade it by next
Monday (if enrolled for credit); put your name on it when you
grade it!

– HW2 now available online



Administrivia

• Auditors

– Please sign the form (at front); I will give them to Joyce Poon

– Please do not turn in your homeworks!

•Matlab

– Everyone should have access; if not, see me.

– Homeworks will not require stats toolbox etc.

•Discussion section

– Useful?

– Second discussion section Wednesday 5-6?



Naive Bayes classifier

• Let C ∈ {1, . . . ,K} represent the class of a document (e.g.,
C =spam or C =not spam).

• Let Wi = 1 if word i occurs in this document, otherwise Wi = 0.

• A naive Bayes classifier assumes the words (features) are
conditionally independent given the class (written as Wi ⊥ Wj|C).

• This can be represented as a Bayes net (recall that a node is
conditionally independent of its non-descendants given its parents).
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Naive Bayes classifier: inference

• Since Wi ⊥ Wj|C, the joint is

P (C,W1:N ) = P (C)

⎡
⎣ N∏

i=1

P (Wi|C)

⎤
⎦

• Hence the posterior over class labels is given by

P (C = c|w1:N ) =
P (C = c)

∏N
i=1 P (w1:N |c)∑

c′ P (C = c′)
∏N

i=1 P (w1:N |c′)



Naive Bayes classifier: learning

• The root CPD P (C = c) can be estimated by counting how many
times each class occurs
(e.g., P (C = spam) = 0.05, P (C = non-spam = 0.95)).

• Each leaf CPD P (wi|c) can have a different kind of distribution,
e.g., bernoulli, Gaussian, etc.

• For document classification, P (Wi = 0/1|C = c) can be estimated
by counting how many times word i occurs in documents of class c.

• For real-valued data, p(Wi|C = c) can be estimated by fitting a
Gaussian to all data points that are labeled as class c.

• If the class labels are not observed during training, this model can
be used for clustering (see later).



Parameter learning

•We said that the root CPD P (C = c) can be estimated by
counting how many times each class occurs. Why?

•We said P (Wi = 0/1|C = c) can be estimated by counting how
many times word i occurs in documents of class c. Why? And
what if the word never occurs?

•We now discuss these issues, which are equivalent to estimating the
parameters of coins and dice.

•We will also discuss how to infer which words are useful for
classification (feature selection) by computing the mutual
information between two variables.

• You will implement this for homework 2.



Bernoulli distribution

• Let X ∈ {0, 1} represent heads or tails.

• Suppose P (X = 1) = µ. Then

P (x|µ) = Be(X|µ) = µx(1 − µ)1−x

• It is easy to show that

E[X ] = µ, Var[X ] = µ(1 − µ)



MLE for a Bernoulli distribution

• Given D = (x1, . . . , xN ), the likelihood is

p(D|µ) =

N∏
n=1

p(xn|µ) =

N∏
n=1

µxn(1 − µ)1−xn

• The log-likelihood is

L(µ) = log p(D|µ) =
∑
n

xn log µ + (1 − xn) log(1 − µ)

= N1 log µ + N0 log(1 − µ)

where N1 = n =
∑

n xn is the number of heads and N0 = m =∑
n(1 − xn) is the number of tails (sufficient statistics).

• Solving for dL
dµ = 0 yields

µML =
n

n + m



Problems with the MLE

• Suppose we have seen 3 heads out of 3 trials. Then we predict that
all future coins will land heads:

µML =
n

n + m
=

3

3 + 0

• This is an example of the sparse data problem: if we fail to see
something in the training set (e.g., an unknown word), we predict
that it can never happen in the future.

•We will now see how to solve this pathology using Bayesian estima-
tion.



Conjugate priors

• A Bayesian estimate of µ requires a prior p(µ).

• A prior is called conjugate if, when multiplied by the likelihood
p(D|µ), the resulting posterior is in the same parametric family as
the prior. (Closed under Bayesian updating.)

• The Beta prior is conjugate to the Bernoulli likelihood

P (µ|D) ∝ P (D|µ)P (µ)

∝ [µn(1 − µ)m][µa−1µb−1]

= µn+a−1(1 − µ)m+b−1

where n is the number of heads and m is the number of tails.

• a, b are hyperparameters (parameters of the prior) and correspond to
the number of “virtual” heads/tails (pseudo counts). N0 = a + b is
called the effective sample size (strength) of the prior. a = b = 1 is
a uniform prior (Laplace smoothing).



The beta distribution

• To ensure the prior is normalized, we define

P (µ|a, b) = Beta(µ|a, b) =
Γ(a + b)

Γ(a)Γ(b)
µa−1(1 − µ)b−1

where the gamma function is defined as

Γ(x) =

∫ ∞

0
ux−1e−udu

Note that Γ(x + 1) = xΓ(x) and Γ(1) = 1. Also, for integers,
Γ(x + 1) = x!.

• The normalization constant 1/Z(a, b) =
Γ(a+b)
Γ(a)Γ(b)

ensures

∫ 1

0
Beta(µ|a, b)dµ = 1



The beta distribution

If µ ∼ Be(a, b), then

Eµ =
a

a + b

mode µ =
a − 1

a + b − 2



Bayesian updating of a beta distribution

• If we start with a beta prior Be(µ|a, b) and see n heads and m tails,
we end up with a beta posterior Be(µ|a + n, b + n):

P (µ|D) =
1

P (D)
P (D|µ)P (µ|a, b)

=
1

P (D)
[µn(1 − µ)m]

1

Z(a, b)
[µa−1µb−1]

= Be(µ|n + a,m + b)

• The marginal likelihood is the ratio of the normalizing constants:

P (D) =
Z(a + b, n + m)

Z(a, b)

=
Γ(a + n)Γ(b + m)

Γ(a + n + b + m)

Γ(a + b)

Γ(a)Γ(b)



Sequential Bayesian updating

• Start with beta prior p(θ|αh, αt) = B(θ; αh, αt).

•Observe N trials with Nh heads and Nt tails. Posterior becomes

p(θ|αh, αt,Nh,Nt) = B(θ; αh + Nh, αt + Nt) = B(θ; α′
h, α′

t)

•Observe another N ′ trials with N ′
h heads and N ′

t tails. Posterior
becomes

p(θ|α′
h, α′

t, N
′
h,N ′

t) = B(θ; α′
h + N ′

h, α′
t + N ′

t)

= B(θ; αh + Nh + N ′
h, αt + Nt + N ′

t)

• So sequentially absorbing data in any order is equivalent to batch
update. (assuming iid data and exact Bayesian updating).

• This is useful for online learning and large datasets.



Bayesian updating in pictures

• Start with Be(µ|a = 2, b = 2) and observe x = 1, so the posterior
is Be(µ|a = 3, b = 2).

thetas = 0:0.01:1;

alphaH = 2; alphaT = 2; Nh=1; Nt=0; N = Nh+Nt;

prior = betapdf(thetas, alphaH, alphaT);

lik = choose(N,Nh) * thetas.^Nh .* (1-thetas).^Nt;

post = betapdf(thetas, alphaH+Nh, alphaT+Nt);



Posterior predictive distribution

• The posterior predictive distribution is

p(X = 1|D) =

∫ 1

0
p(X = 1|µ)p(µ|D)dµ

=

∫ 1

0
µp(µ|D)dµ = E[µ|D] =

n + a

n + m + a + b

•With a uniform prior a = b = 1, we get Laplace’s rule of succession

p(X = 1|Nh,Nt) =
Nh + 1

Nh + Nt + 2

• Start with Be(µ|a = 2, b = 2) and observe x = 1 to get Be(µ|a =
3, b = 2), so the mean shifts from E[µ] = 2/4 to E[µ|D] = 3/5.



Effect of prior strength

• Let N = Nh + Nt be number of samples (observations).

• Let N ′ be the number of pseudo observations (strength of prior) and
define the prior means

αh = N ′α′
h, αt = N ′α′

t, α′
h + α′

t = 1

• Then posterior mean is a convex combination of the prior mean and
the MLE (where λ = N ′/(N + N ′)):

P (X = h|αh, αt,Nh,Nt) =
αh + Nh

αh + Nh + αt + Nt

=
N ′α′

h + Nh

N + N ′

=
N ′

N + N ′α
′
h +

N

N + N ′
Nh

N

= λα′
h + (1 − λ)

Nh

N



Effect of prior strength

• Suppose we have a uniform prior α′
h = α′

t = 0.5, and we observe
Nh = 3, Nt = 7.

•Weak prior N ′ = 2. Posterior prediction:

P (X = h|αh = 1, αt = 1, Nh = 3, Nt = 7) =
3 + 1

3 + 1 + 7 + 1
=

1

3
≈ 0.33

• Strong prior N ′ = 20. Posterior prediction:

3 + 10

3 + 10 + 7 + 10
=

13

30
≈ 0.43

• However, if we have enough data, it washes away the prior. e.g.,
Nh = 300, Nt = 700. Estimates are 300+1

1000+2 and 300+10
1000+20, both of

which are close to 0.3

• As N → ∞, P (θ|D) → δ(θ, θ̂ML), so E[θ|D] → θ̂ML.



Parameter posterior - small sample, uniform prior
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Parameter posterior - small sample, strong prior
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Prior smooths parameter estimates

• The MLE can change dramatically with small sample sizes.

• The Bayesian estimate changes much more smoothly (depending on
the strength of the prior).

• Lower blue=MLE, red = beta(1,1), pink = beta(5,5), upper blue =
beta(10,10)
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Maximum a posteriori (MAP) estimation

•MAP estimation picks the mode of the posterior

θ̂MAP = arg max
θ

p(D|θ)p(θ)

• If θ ∼ Be(a, b), this is just

θ̂MAP = (a − 1)/(a + b − 2)

•MAP is equivalent to maximizing the penalized maximum
log-likelihood

θ̂MAP = arg max
θ

log p(D|θ) − λc(θ)

where c(θ) = − log p(θ) is called a regularization term. λ is related
to the strength of the prior.



Integrate out or Optimize?

• θ̂MAP is not Bayesian (even though it uses a prior) since it is a
point estimate.

• Consider predicting the future. A Bayesian will integrate out all
uncertainty:

p(xnew|X) =

∫
p(xnew, θ|X)dθ

=

∫
p(xnew|θ,X)p(θ|X)dθ

∝
∫

p(xnew|θ)p(X|θ)p(θ)dθ
X

θ

Xnew

• A frequentist will use a “plug-in” estimator eg ML/MAP:

p(xnew|X) = p(xnew|θ̂), θ̂ = arg max
θ

p(X|θ)



From coins to dice

• Suppose we observe N iid die rolls (K-sided): D=3,1,K,2,. . .

• Let [x] ∈ {0, 1}K be a one-of-K encoding of x eg. if x = 3 and
K = 6, then [x] = (0, 0, 1, 0, 0, 0)T .

•Multinomial distribution: p(X = k) = θk
∑

k θk = 1

• Likelihood

�(θ; D) = log p(D|θ) =
∑
m

log
∏
k

θ
[xm=k]
k

=
∑
m

∑
k

[xm = k] log θk =
∑
k

Nk log θk

•We need to maximize this subject to the constraint
∑

k θk = 1, so
we use a Lagrange multiplier.



MLE for multinomial

• Constrained cost function:

l̃ =
∑
k

Nk log θk + λ

⎛
⎝1 −

∑
k

θk

⎞
⎠

• Take derivatives wrt θk:

∂l̃

∂θk
=

Nk

θk
− λ = 0

Nk = λθk∑
k

Nk = N = λ
∑
k

θk = λ

θ̂k,ML =
Nk

N

• θ̂k,ML is the fraction of times k occurs.



Dirichlet priors

• Let X ∈ {1, . . . ,K} have a multinomial distribution

P (X|θ) = θ
I(X=1)
1 θ

I(X=2)
2 · · · θI(X=k)

K

• For a set of data X1, . . . , XN , the sufficient statistics are the counts
Ni =

∑
n I(Xn = i).

• Consider a Dirichlet prior with hyperparameters α

p(θ|α) = D(θ|α) =
1

Z(α)
· θα1−1

1 · θα2−1
2 · · · θαK−1

K

where Z(α) is the normalizing constant

Z(α) =

∫
· · ·

∫
θ
α1−1
1 · · · θαK−1

K dθ1 · · · dθK

=

∏K
i=1 Γ(αi)

Γ(
∑K

i=1 αi)



Dirichlet priors



Properties of the Dirichlet distribution

• If θ ∼ Dir(θ|α1, . . . , αK), then

E[θk] =
αk

α0

mode[θk] =
αk − 1

α0 − K

where α0
def
=

∑K
k=1 αk is the total strenght of the prior.



Likelihood, prior, posterior, evidence

• Likelihood, prior, posterior:

P ( �N |�θ) =

K∏
i=1

θ
Ni
i

p(θ|α) = D(θ|α) =
1

Z(α)
· θα1−1

1 · θα2−1
2 · · · θαK−1

K

p(θ| �N, �α) =
1

Z(α)p( �N |α)
θ
α1+N1
1 · · · θαK+Nk

K

= D(α1 + N1, . . . , αK + NK)

•Marginal likelihood (evidence):

P ( �N |�α) =
Z( �N + �α)

Z(�α)
=

Γ(
∑

k αk)

Γ(N +
∑

k αk)

∏
k

Γ(Nk + αk)

Γ(αk)



Marginal likelihood ≈ negative entropy

•Marginal likelihood (evidence):

P ( �N |�α) =
Γ(

∑
k αk)

Γ(N +
∑

k αk)

∏
k

Γ(Nk + αk)

Γ(αk)

• If αk = 1, this becomes

P ( �N |�α = 1) =
Γ(K)

Γ(N + K)

∏
k

Γ(Nk + 1)

Γ(1)

• Using the fact that Γ(1) = 1 and Stirling’s approximation
log Γ(x + 1) ≈ x log x − x, we get

P ( �N |�α = 1) ≈ −N log N + N +
∑
k

(Nk log Nk − Nk)

=
∑
k

Nk log(Nk/N ) = −NH({Nk/N})

where H(pk) = −∑
k pk log pk is the entropy of a distribution.



Entropy

• Suprising (unlikely) events convey more information, so we define the
information content of an observation (in bits) to be

h(x) = log2 1/p(x)

• The average information content of a random variable X is

H(X) = −
∑
x

p(x) log2 p(x)



Data compression

• There is a close link between density estimation and data comrpes-
sion.

• The noiseless coding theorem (Shannon 1948) says that the entropy
is a lower bound on the number of bits needed to transmit the state
of X.

•More likely states can be given shorter code words.

• There is also a close link between data compression and model se-
lection/ hypothesis testing.



Hypothesis testing

• Consider this example from Mackay chapter 37 (on class web page).

•When spun on edge N = 250 times, a Belgian one-euro coin came
up heads Y = 141 times and tails 109.

• “It looks very suspicious to me. We can reject the null hypothesis
(that the coin is unbiased) with a signifcance level of 5%”. — Barry
Blight, LSE (modified from quote in The Guardian, 2002)

•Does this mean P (H0|D) < 0.05? Let us compare classical hypoth-
esis testing with a Bayesian approach (using marginal likelihood).



Classical hypothesis testing

•We would like to distinguish two models, or hypotheses: H0 means
the coin is unbiased (so p = 0.5); H1 means the coin is biased (has
probability of heads p 	= 0.5).

•We need a decision rule that maps data to accept/reject.

•We will do this by computing a scalar quantity of our data called
the deviance, d(D), and comparing its observed value with what we
would expect if H0 were true.

•We declare “H1” if d(D) > t for some threshold t (to be deter-
mined).

• In our case, we will use d(D) = Nh, the number of heads.



P-values

• The p-value of a threshold t is the probability of falsely rejecting the
null hypothesis:

p(t) = P ({D′ : d(D′) > t}|H0, N )

• Intuitively, the p-value is the probability of getting data at least that
extreme given H0.

• Since computing the p-value requires summing over all possible datasets
of size N , a standard approximation is consider the expected distri-
bution of d(D′), assuming D′ ∼ P (·|H0) , as N → ∞.



Significance levels

• The p-value of a threshold t is the probability of falsely rejecting the
null hypothesis:

pval(t) = P ({D′ : d(D′) > t}|H0, N )

•We usually choose a threshold t so that the probability of a false
rejection is below some significance level α = 0.05 (i.e., choose t
s.t., pval(t) ≤ α).

• This means that on average we will “only” be wrong 1/20 times (!).



Classical analysis of the euro-coin data

• Blight used a two-sided test and found a p-value of 0.0497, so he
said “we can reject the null hypothesis at significance level 0.05”.

pval = P (Y ≥ 141|H0) + P (Y ≤ 109|H0)

= (1 − P (Y < 141|H0)) + P (Y ≤ 109|H0)

= (1 − P (Y ≤ 140|H0)) + P (Y ≤ 109|H0)

= 0.0497

n=250; p = 0.5;

p1 = 1-binocdf(140,n,p);

p2 = binocdf(109,n,p);

pval = p1 + p2



Classical analysis violates the likelihood principle

•Why do we care about tail probabilities, such as

P (Y ≥ 141|H0) = P (Y = 141|H0) + P (Y = 142|H0) + · · ·
when the number of heads we observed was 141, not 142 or larger?

• P-values (and therefore all classical hypothesis tests) violate the like-
lihood principle, which says

In order to choose between hypotheses H0 and H1 given ob-
served data D, one should ask how likely the observed data are
under each hypothesis; do not ask questions about data that we
might have observed but did not.

• For more examples, see “What is Bayesian statistics and why every-
thing else is wrong”, Michael Lavine (2000), on web page.



Bayesian approach

•We want to compute the posterior ratio of the 2 hypotheses:

P (H1|D)

P (H0|D)
=

P (D|H1)P (H1)

P (D|H0)P (H0)

• Let us assume a uniform prior P (H0) = P (H1) = 0.5.

• Then we just focus on the ratio of the marginal likelihoods:

P (D|H1) =

∫ 1

0
dθ P (D|θ,H1)P (θ|H1)

• For H0, there is no free parameter, so

P (D|H0) = 0.5N

where N is the number of coin tosses in D.



Ratio of evidences (Bayes factor)

•We compute the ratio of marginal likelihoods (evidence):

BF (1, 0) =
P (D|H1)

P (D|H0)
=

Z(αh + Nh, αt + Nt)

Z(αh, αt)

1

0.5N

=
Γ(140 + α)Γ(110 + α)

Γ(250 + 2α)
× Γ(2α)

Γ(α)Γ(α)
× 2250

•We compute BF (1, 0) for a range of prior strengths αt = αh = α.
Must work in log domain to avoid underflow!

alphas = [0.37 1 2.7 7.4 20 55 148 403 1096];

Nh = 140; Nt = 110; N = Nh+Nt;

numer = gammaln(Nh+alphas) + gammaln(Nt+alphas) + ...

gammaln(2*alphas) + 250*log(2);

denom = gammaln(N+2*alphas) + 2*gammaln(alphas);

r = exp(numer ./ denom);



So, is the coin biased or not?

•We plot the likelihood ratio vs hyperparameter α:
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• For a uniform prior,
P (H1|D)
P (H0|D)

= 0.48, (weakly) favoring the fair coin

hypothesis H0!

• At best, for α = 50, we can make the biased hypothesis twice as
likely.

• Not as dramatic as saying “we reject the null hypothesis (fair coin)
with significance 5%”.



Summary: Bayesian vs classical hypothesis testing

• The Bayesian approach is simpler and more natural (no need for
“p-values”, “significance tests”, etc.)

• The Bayesian approach does not violate the likelihood principle.

• The Bayesian approach allows the use of prior knowledge to prevent
us from jumping to conclusions too hastily.

• See the excellent tutorials on P-values and Bayes factors by Steven
Goodman on the web page.



Another example: testing for independence

• Suppose we are given N (x, y) pairs, where X has J possible values
and Y has K. We want to know if X and Y are independent.

• eg. consider this contingency table
y = 1 y = 2 y = 3

x = 1 15 29 14
x = 2 46 83 56

• Traditional approach: compare H0 = X ⊥ Y vs H1 = X 	⊥ Y .
Compute p-value using χ2 statistic

dχ2(D) =
∑
x,y

(Ox,y − Ex,y)
2

Ex,y
=

∑
x,y

(N (x, y) − NP (x)P (y))2

NP (x)P (y)

• Let us consider a Bayesian approach.



Bayesian test for independence

• If independent,

P (D|H0) = p(X|αj·)p(Y |α·k)

where αj· and α·k are different prior vectors.

• If dependent,
P (D|H1) = p(X,Y |αjk)

•We want to compute

p(H0|D) =
p(D|H0)p(H0)

p(D|H0)p(H0) + p(D|H1)p(H1)

=
1

1 +
p(D|H1)
p(D|H0)

p(H1)
p(H0)

• If we assume p(H0) = p(H1), we can focus on the Bayes factor

B =
p(D|H0)
p(D|H1)

.



Bayesian test for independence

• It is simple to show (homework!) that

B =
p(D|H0)

p(D|H1)
=

p(X|αj·)p(X|α·k)
p(X, Y |αjk)

=
Γ(

∑
jk αjk)

Γ(N +
∑

jk αjk)

J∏
j=1

Γ(Nj· + αj·)
Γ(αj·)

K∏
k=1

Γ(N·k + α·k)
Γ(α·k)

∏
j,k=1

Γ(αjk)

Γ(Njk + αjk)

• Using the entropy approximation, we get

log
p(D|H0)

p(D|H1)
≈ −NH(

Nj·
N

) − NH(
N·k
N

) + NH(
Njk

N
)

= −ND
(

Njk

N
||Nj·

N
× N·k

N

)

= −NI(X,Y )

where

D(p||q)
def
=

∑
k

pk log
pk

qk

is the Kullback-Leibler divergence between distributions p, q, and

I(X,Y )
def
= D(P (X,Y )||P (X)P (Y ))

is the mutual information between X and Y .



KL divergence (relative entropy)

•KL(p||q) is a “distance” measure of q from p

D(p||q)
def
=

∑
k

pk log
pk

qk

• It is not strictly a distance, since it is asymmetric.

• The KL can be rewritten as

D(p||q) =
∑
k

pk log pk −
∑
k

pk log qk = −
∑
k

pk log qk − H(pk)

This makes it clear that the KL measures the extra number of bits
we would need to use to encode X if we thought the distribution
was qk but it was actually qk.

• KL satisfies D(p||q) ≥ 0 with equality iff p = q.



Minimizing KL divergence is maximiming likelihood

•We would like to find q(x|θ) s.t. D(p||q) is minimized, where p(x)
is the “true” distribution.

•Of course p(x) is unknown but we can approximate by the empirical
distribution given samples. Then

KL(p||q) ≈ 1

N

∑
n

log p(xn) − log q(xn|θ)

• Since p(x) is independent of θ, we find that

arg min
q

KL(p||q) = arg max
q

1

N

∑
n

log q(xn|θ)



Mutual information

• The mutual information measures how close the joint and indepen-
dent distributions are:

I(X,Y )
def
= D(P (X,Y )||P (X)P (Y ))

• It is easy to show that the mutual information between X and Y is
how much our uncertainty about Y decreases when we observe X
(or vice versa):

I(X,Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X)

• I(X,Y ) ≥ 0 with equality iff X ⊥ Y .



χ2
is an approximation to the mutual information

•We showed

log
p(D|H0)

p(D|H1)
≈ −ND

(
Njk

N
||Nj·

N
× N·k

N

)

= −NI(X,Y )

• If we make the additional approximation

D(p||q) ≈
∑
k

(pk − qk)2

2qk

then we recover the χ2 statistic.



Are two histograms from the same distribution?

• To see if two samples X and Y come from the same multinomial
distribution, create an indicator variable C ∈ {1, 2} which specifies
which data set each sample comes from.

z = 1 z = 2 · · · z = K
c = 1 N1 N2 · · · NK
c = 2 M1 M2 · · · MK

• If the two histograms are from the same distribution, then C is
independent of Z. So just compute P (C ⊥ Z|D). As before, we get

log
P (D|same)
P (D|diff)

≈ −NI(X,Y ), which can be further approximated

using χ2.


