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Daphne Koller’s talk

• Probablistic Models for Complex Domains: Cells, Bodies and Web-
pages

• Thursday 22nd, 4pm, Dempster 310
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Gaussian (Normal) density in 1D

• If X ∼ N (µ, σ2), the probability density function (pdf) of X is
defined as

pX(x) =
1√

2πσ2
e
− 1

2σ2(x−µ)2

We will often use the precision λ = 1/σ2 instead of the variance σ2.

• Note that a density evaluated at a point can be bigger than 1!

• Here is how we plot the pdf in matlab

xs=-3:0.01:3; plot(xs,normpdf(xs,mu,sigma))
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The Gaussian maximizes the differential entropy

• Recall that the entropy of a discrete random variable is defined as

H [X ] = −
∑
x

p(x) log p(x)

• The maximum entropy distribution is uniform (for discrete RVs).

• The differential entropy of a continuous random variable is defined
as

E[X ] = −
∫

p(x) log p(x)dx

• If we maximize this subject to the following constraints (using La-
grange multipliers)

∫∞
∞ p(x)dx = 1,

∫∞
∞ xp(x)dx = µ and∫∞

∞ (x− µ)2p(x)dx = σ2, we get (Bishop p69)

pX(x) =
1√

2πσ2
e
− 1

2σ2(x−µ)2
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Entropy of a 1D Gaussian

• The differential entropy of a 1D Gaussian is

H [X ] =
1

2

{
1 + log(2πσ2)

}
• Hence differential entropy can be negative (if σ2 < 1/(2πe)).
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White snow paradox
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A surprise theory of attention

• Laurent Itti (USC) and Pierre Baldi (UCI), CVPR 2005.

• Surprising events are ones that changes your beliefs the most

S(D|M )
def
= KL( P (M |D)||P (M ) ) =

∑
m

P (m|D) log
P (m|D)

P (m)

where P (M ) are your prior beliefs in model M .

• Entropy just refers to data, not models

I(D)
def
= −

∑
d

P (d) log P (d)

• Itti and Baldi show that the KL model is able to predict what visual
events humans pay attention to better than looking for events with
high “information” content or which are “salient” (local outliers) wrt
low-level visual cues.
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A surprise theory of attention
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Multivariate Gaussian

• If X ∈ IRd is a jointly gaussian random vector, then its pdf is

p(x) = N (x; µ, Σ) =
1

(2π)d/2

1

|Σ|1/2| exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}

• The quantity ∆2 = (x− µ)TΣ−1(x− µ) is called the Mahalanobis
distance between x and µ.

• The first and second moments are

E[X ] = µ, Cov[X ] = Σ

• Sometimes we will use the precision matrix Σ−1 instead of the co-
variance matrix Σ.
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Quick linear algebra review (Bishop sec B.4)

•We can compute the eigenvectors ui and eigenvalues λi of any square
matrix A:

Aui = λiui

•We can write this in matrix form as

A = UΛUT

where the columns of U are the ui and Λ = diag(λi). This is called
diagonalizing A.

• If A is real and symmetric, then the eigenvalues are real and the
eigenvectors are orthonormal, so that

uT
i uj = Iij

or
UTU = I

• The rank of A is the number of non-zero eigenvalues. If all λi ≥ 0,
then A is positive semi definite (psd), i.e., xTAx ≥ 0 for all x.
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Visualizing the covariance matrix

• By diagonalizing Σ = UΛUT , we get Σ−1 =
∑D

i=1
1
λi

uiu
T
i so the

Mahalanobis distance can be rewritten as ∆2 =
∑

i
y2
i

λi
, where yj =

uT
j (x− µ).

• The surfaces of constant probability satisfy yj = uT
j (x−µ) = const,

which are ellipsoids.
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Restricting the covariance matrix

• A full covariance matrix has d(d + 1)/2 parameters.

•We can restrict Σ to be diagonal; this has d parameters.

•Or we can use a spherical covariance, Σ = σ2I .

• Later we will see how to use graphical models to represent other
kinds of sparse parameterizations.
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Manipulating Gaussians (Bishop sec 2.3.1-2.3.2)

• Suppose x = (xa, xb) is jointly Gaussian with parameters

µ =

(
µa

µb

)
, Σ =

(
Σaa Σab
Σba Σbb

)
, Λ = Σ−1 =

(
Λaa Λab
Λba Λbb

)
,

• It can be shown that P (Xa|xb) = N (Xa; µa|b, Σa|b) where

µa|b = µa + ΣabΣ
−1
bb (xb − µb)

Σa|b = Σaa − ΣabΣ
−1
bb Σba

• Note that the new mean is a linear function of xa, and the new
covariance is independent of xa.

• Similarly, the marginal P (Xa) = N (Xa; µa, Σaa).

• You should memorize these equations!
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Marginals and conditionals of a 2D Gaussian
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MLE for a Gaussian mean

• Given N iid datapoints xn stored in rows of X, the log-likelihood is

log p(X|µ, Σ) = −ND

2
log(2π)− N

2
log |Σ|

−1

2

N∑
n=1

(xn − µ)TΣ−1(xn − µ)

• Using the following two results (Sam Roweis 5a, 5b)

∂(aTx)

∂x
= a,

∂(xTAx)

∂x
= (A + AT )x

we can show (homework!)

∂

∂µ
log p(X|µ, Σ) =

N∑
n=1

Σ−1(xn − µ)

so

µML =
1

N

∑
n

xn
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MLE for a Gaussian covariance

• It can be shown that the MLE for Σ is

ΣML =
1

N

N∑
n=1

(xn − µML)(xn − µML)T =
1

N
S

where the scatter matrix is

S =
∑
n

(xn − x̄)(xn − x̄)T = (
∑
n

xnxT
n )−Nx̄x̄T

• The sufficient statistics are
∑

n xn and
∑

n xnxT
n .

• Note that XTX may not be full rank (eg. if N < D), in which
case ΣML is not invertible.
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Bayesian parameter estimation for a Gaussian

• There are various reasons to pursue a Bayesian approach

– The MLE for Σ may not be full rank if we don’t have enough
data.

– We would like to update our estimates sequentially over time.

– We may have prior knowledge about the expected magnitude of
the parameters.

•We will restrict our attention to conjugate priors.

•We will consider various cases, in order of increasing complexity:

– Known σ, unknown µ

– Known µ, unknown σ

– Unknown µ and σ
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Unknown µ, known σ

• The likelihood is
∏

n N (xn|µ, σ).

• The conjugate prior is p(µ|µ0, σ
2
0).

• By completing the square, it can be shown that the posterior is

p(µ|D) = N (µ|µN, σ2
N )

µN =
σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

µML

1

σ2
N

=
N

σ2
+

1

σ2
0

• The posterior mean is a convex combination of the prior and the
MLE, with weights proportional to the relative noise levels.

• The precision of the posterior 1/σ2
N is the precision of the prior

1/σ2
0 plus one contribution of data precision 1/σ2 for each observed

data point.
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Sequentially updating the mean

µ∗ = 0.8 (unknown), (σ2)∗ = 0.1 (known)
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Effect of single data point

• The posterior mean is a convex combination of the prior and the
observation x, with weights proportional to the relative noise levels.

µ1 =
σ2

σ2 + σ2
0

µ0 +
σ2

0

σ2 + σ2
0

x

• The posterior mean is the prior mean adjusted towards x:

µ1 = µ0 + (x− µ0)
σ2

0

σ2 + σ2
0

• The posterior mean is the data ’shrunk’ towards the prior mean:

µ1 = x− (x− µ0)
σ2

σ2 + σ2
0

20



Uninformative (reference) prior for µ

• The posterior is

p(µ|D) = N (µ|µN, σ2
N )

µN =
σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

µML

1

σ2
N

=
N

σ2
+

1

σ2
0

• Hence when σ2
0 →∞ (vague/ flat prior), then E[µ|D]→ µML.
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Known µ, unknown λ = 1/σ2

• The likelihood is

p(D|λ) =

N∏
n=1

p(xn|λ) ∝ λN/2 exp

⎧⎨
⎩−λ

2

N∑
n=1

(xn − µ)2

⎫⎬
⎭

• The conjugate prior is a Gamma with shape a0 and rate (inverse
scale) b0

p(λ|a, b) =
1

Γ(a)
baλa−1 exp(−bλ)

• The posterior is

p(λ|D) = Ga(λ|aN, bN )

aN = a0 +
N

2

bN = b0 +
1

2

N∑
n=1

(xn − µ)2 = b0 +
N

2
σ2

ML
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Gamma distribution

• Gamma with shape a > 0 and rate (inverse scale) b > 0

p(λ|a, b) =
1

Γ(a)
ba λa−1 exp(−bλ)

23



Uninformative (reference) prior for λ

• If λ ∼ Ga(a, b), then E[λ] = a/b.

• The posterior is

p(λ|D) = Ga(λ|aN, bN )

aN = a0 +
N

2

bN = b0 +
1

2

N∑
n=1

(xn − µ)2 = b0 +
N

2
σ2

ML

• Hence the posterior mean is

E[λ|D] =
a0 + N/2

b0 + N
2 σ2

ML

• Hence an uninformative prior is a0, b0→ 0.
Then E[λ|D]→ 1/σ2

ML.
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Gamma or inverse gamma?

•We can either put a prior on the variance σ2 or on the precision
λ = 1/σ2.

• The conjugate prior for λ is λ ∼ Ga(a, b),
a > 0 is shape, b > 0 is inverse scale

Ga(λ|a, b) =
1

Γ(a)
baλa−1 exp(−bλ)

Eλ = a/b

• The conjugate prior for σ2 is σ2 ∼ IG(a, b),
a > 0 is shape, b > 0 is scale

IG(σ2|a, b) =
1

Γ(a)
ba(σ2)−(a+1) exp(−b/(σ2))

Eσ2 = b/(a− 1)
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Unknown µ and unknown σ2

• The conjugate prior is Normal-Inverse-Gamma

P (µ, σ2) = P (µ|σ2)P (σ2)

= N (µ|m,σ2V ) IG(σ2|a, b)
def
= NIG(µ, σ2|m,V, a, b)

=
1

Z(m,V, a, b)
(σ2)−(a+(k/2)+1)

× exp[−
{

(µ−m)TV −1(µ−m) + 2b
}

/(2σ2)]

where

1/Z(m,V, a, b) =
ba

(2π)k/2|V |1/2Γ(a)
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Semi conjugate prior

• If we use a factorized prior,

P (µ, σ2) = P (µ)P (σ2)

= N (µ|µ0, V )IG(σ2|a, b)

then the posterior P (µ, σ2|D) is still coupled because of
explaining-away (µ→ X ← σ2). Such a factored prior is called
semi-conjugate.
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Multivariate case
2
: likelihood

• Likelihood

p(x1:N |µ, Σ) = |Σ|−N/2 exp

⎛
⎝−1

2

N∑
i=1

(yi − µ)TΣ−1(yi − µ)

⎞
⎠

= |Σ|−N/2 exp

(
−1

2
Tr(Σ−1S0)

)
where S0 is the “sum of squares” relative to µ:

S0 =

N∑
i=1

(xi − µ)(xi − µ)T

2Here I follow Gelman et al p85–87
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Multivariate case: prior

• The conjugate prior is Normal-Inverse-Wishart

P (µ, Σ) = P (µ|Σ)P (Σ)

= N (µ|µ0,
1

κ0
Σ) IW(Σ|Λ−1

0 , ν0)

where

IW(Σ|Λ−1
0 , ν) =

1

Z
|Σ|−(ν+d+1)/2 exp

(
−1

2
Tr(Λ0Σ

−1)

)
and

1/Z(Λ0, ν) =

⎛
⎝2νd/2πd(d−1)/4

d∏
i=1

Γ(
ν + 1− i

2
)

⎞
⎠
−1

|Λ0|ν/2

•E(Σ) = Λ0
ν−d−1
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Multivariate case: posterior

• The posterior is Normal-Inverse-Wishart with parameters

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
x̄

κn = κ0 + n

νn = ν0 + n

Λn = Λ0 + S +
κ0n

κ0 + n
(x̄− µ0)(x̄− µ0)

T

where S is the “sum of squares” relative to the sample mean

S =

N∑
i=1

(xi − x̄)(xi − x̄)T
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Multivariate case: uninformative prior

• The Jeffrey’s prior is the limit of the conjugate case as κ0→ 0,
ν0→ −1, |Λ0| → 0:

p(µ, Σ) ∝ |Σ|−(d+1)/2
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Bayesian linear regression

• So far, we have been considering unconditional density estimation.

• In many cases, we want to condition on known inputs X ∈ IRp. In
linear regression, we assume E[Y |x] is a linear function

µ(x) = β0 + β1x1 + · · · + βpxp

• The linear assumption is fairly limiting, but is easy to overcome by
defining a set of fixed basis functions B1(x), . . . , Bk(x).

• The basis functions can be polynomials, splines, etc.
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Denison book

33



Bayesian linear regression

• The model is

yi =

k∑
j=1

βjBj(�xi) + εi

or, in matrix notation
Y = Bβ + ε

where Y = (y1, . . . , yn), ε = (ε1, . . . , εn), and

B =

⎛
⎝B1(x1) · · · Bk(x1)

... . . . ...
B1(xn) · · · Bk(xn)

⎞
⎠

• Standard linear regression can be modelled using
Bp(�x) = xp and Bp+1 = 1.

• An unconditional 1D Gaussian can be modelled using
B1 = 1, �β = µ and σ2 = V .
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Prior, likelihood, posterior, evidence

• Prior
p(β, σ2) = NIG(β, σ2|m,V, a, b)

• Likelihood
p(D|β, σ2) = N (Bβ, σ2I)

• Posterior

p(β, σ2|D) = NIG(β, σ2|m∗, V ∗, a∗, b∗)
m∗ = (V −1 + B′B)−1(V −1m + B′Y )

V ∗ = (V −1 + B′B)−1

a∗ = a + N/2

b∗ = b +
1

2
(mTV −1m + Y TY − (m∗)T (V ∗)−1m∗)

•Marginal likelihood

p(D) =
|V ∗|1/2baΓ(a∗)

|V |1/2(b∗)a∗Γ(a)πn/2
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Posterior predictive distribution

• If P (β) = NIG(β|m,V, a, b), then the posterior predictive density
is a Student or t-distribution

p(y|x,D) =

∫
p(y|x, β, σ2)p(β, σ2|D)dβdσ2

= StD(y|uTm∗, b∗(I + uTV ∗u), a∗)
where u = (B1(x), . . . , Bk(x)) and

StD(y|µ, v, c) =
Γ(c/2 + 1/2)

Γ(c/2)
√

πv

[
1 +

(x− µ)2

v

]−(c+1)/2

where EY = µ and Var Y = v/(c− 2).

• I follow the parameterization of Denison p29. This is different from
Bishop p115!
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Student distribution is a mixture of Gaussians

• The Student distribution is an infinite mixture of Gaussians with
different variances

StB(y|µ, λ, ν) =

∫
N (y|µ, τ )Ga(τ |a, b)dτ

where ν = 2a and λ = a/b and StB is Bishop’s parameterization

StB(y|µ, λ, ν) =
Γ(ν/2 + 1/2)

Γ(ν/2)

(
λ

πν

)1/2
[
1 +

λ(x− µ)2

ν

]−(ν+1)/2

where EY = µ and VarY = 1
λ

ν
ν−2.

• Hence a student distribution has wider tails than a Gaussian.

• As ν →∞, St(y|µ, λ, ν)→ N (y|µ, precision = λ).
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Student has wider tails than Gaussian
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Robustness of student distribution to outliers
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Model selection

• Let model Mk be polynomial regression of order k:

Ey = β0 +

k∑
i=1

βix
i

•Which model should we choose?
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Generalization error

• A complex model will always fit the training data better, but may
not generalize to test data. This is called overfitting.
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Cross validation

• A simple approach to picking the right model is to compare perfor-
mance of the different models on a holdout/ validation set.

• If data is scarce, we can use K-fold cross validation, which uses
K/(K − 1) of the data for training and the rest for testing.

• If K = N , this is called leave-one-out cross validation.

• Unfortunately, this is slow, especially if there are many parameters.
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Bayesian model comparison

• If we wish to compare two models, Mi and Mj, we can compute
their posterior odds

p(Mi|D)

p(Mj|D)
=

p(D|Mi)

p(D|Mj)
× p(Mi)

p(Mj)

•We can cancel out any prior preference of model i to j by computing
the Bayes factor

BF (Mi,Mj) =
p(Mi|D)

p(Mj|D)
/
p(Mi)

p(Mj)
=

p(D|Mi)

p(D|Mj)

• If the prior on models is uniform, so p(Mi) = p(Mj), and if each

model has prior p(β, σ2|Mi) = NIG(mi, Vi, a, b), then

BF (Mi,Mj) =
|Vj|1/2|V ∗i |1/2(b∗j)a∗

|Vi|1/2|V ∗j |1/2(b∗i )a∗

where a∗ = a∗i = a∗j = a + n/2.
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Bayesian Occam’s razor

• Amazingly, even if we have no explicit penalty on complex models (so
P (Mi) is uniform), merely by integrating over all possible parameter
values (i.e., by using P (D|Mi) =

∫
P (D, θ|Mi)dθ), we automati-

cally prefer models that are not too complex (provided they fit the
data well).

• This is called the Bayesian Occam’s razor. (Occam’s razor says:
“if two models are equally good at predicting, pick the simpler one”.)
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Using the marginal likelihood to select K
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Bayesian Occam’s razor

• Let us evaluate the quality of a model with one parameter w using
the evidence (marginal likelihood) p(D) =

∫
p(D|w)p(w)dw.

• Suppose the posterior P (w|D) ∝ P (D|w)P (w) is sharply peaked
around wMAP and has width ∆wpost. Then we may approximate
the integral by the peak times the width.

• Also, suppose the prior is flat with width ∆wprior, so p(w) =
1/∆wprior. Then

p(D) =

∫
p(D|w)p(w)dw ≈ p(D|wMAP )

∆wpost

∆wprior
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Occam factors

• The ratio
∆wpost
∆wprior

of posterior accessible volume of the parameter

space compared to the prior is called the Occam factor.

• This measures the degree to which the hypothesis space shrinks on
arrival of data.

• If in the posterior the parameters have to be finely tuned, then the
penalty is large (since ∆wpost/∆wprior � 1).

• If there are M parameters, we may approximate

log p(D) = log p(D|wMAP ) + M log
∆wpost

∆wprior
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Too simple, too complex, just right

• An overly simple model M1 has low P (D|M1) since it has poor fit
to the data.

• An overly complex model M3 has lower P (D) than a medium model
M2, since a complex model spreads its probability mass over more
possible datasets.

•We trust an expert who predicts a few specific (and correct!) things
more than an expert who predicts many things.
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Minimum description length (MDL)

• Another way of thinking about Bayesian Occam’s razor is in terms
of information theory.

• To losslessly send a message about an event x with probability P (x)
takes L(x) = − log2 P (x) bits.

• Suppose instead of sending the raw data, you send a model and then
the residual errors (the parts of the data not predicted by the model).

• This takes L(D,H) bits:

L(D,H) = − log P (H)− log(P (D|H))

• The best model is the one with the overall shortest message.
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Minimum description length (MDL)
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Bayesian image interpretation

• How many boxes behind the tree?

• The intrepretation that the tree is in front of one box is much more
probable than there being 2 boxes which happen to have the same
height and color (suspicious coincidence).

• This can be formalized by assuming (uniform) priors on the box
parameters, and computing the Occam factors.
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