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Abstract

Learning background statistics is an essential task for several visual surveillance applications
such as incident detection and traffic management. In this paper, we propose a hew method for
modeling background statistics of dynamic scene. Each pixel is represented with layers of Gaus-
sian distributions. Using recursive Bayesian learning, we estimate the probability distribution of
mean and covariance of each Gaussian. The proposed algorithm preserves the multimodality of
the background and estimates the number of necessary layers for representing each pixel. We
compare our results with the Gaussian mixture background model. Experiments conducted on
synthetic and video data demonstrate the superior performance of the proposed approach.
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Abstract order in which observations are made and focuses on the
distribution of the pixel intensities. Usually each pixel is

Learning background statistics is an essential task for sev-modeled with a normal distributioN (z1, 2), varying over
eral visual surveillance applications such as incident de- time. Noise is assumed to be coming from a zero mean nor-
tection and traffic management. In this paper, we propose mal distributionN (0, o2). In [15], a single Gaussian model
a new method for modeling background statistics of a dy- is used per pixel and the parameters are updated by a simple
namic scene. Each pixel is represented with layers of Gaus-adaptive filter.
sian distributions. Using recursive Bayesian learning, we  The mentioned models perform fine if the scene back-
estimate the probability distribution of mean and covari- ground is unimodal but usually this is not the case. Mul-
ance of each Gaussian. The proposed algorithm preservesimodalities in the background is due to dynamic nature of
the multimodality of the background and estimates the num-the scenes. Fast lighting changes, moving regions and shad-
ber of necessary layers for representing each pixel. Weowed regions are some of the sources of multimodalities.
compare our results with the Gaussian mixture background To handle multimodalities the idea of using Gaussian dis-
model. Experiments conducted on synthetic and video dataribution per pixel is extended by using mixture of Gaus-
demonstrate the superior performance of the proposed ap-sian distributions. Mixture of three Gaussians correspond-

proach. ing to road, vehicle and shadow are defined in [3] for a traf-
fic surveillance application. Likewise, Stauffer and Grim-
1. Introduction son [12] uses mixture df normal distributions. The model

parameters are updated using an online Expectation Maxi-

Segmentation of foreground and background regions in im-mization (EM) algorithm. In these models feature vectors
age sequences is one of the most fundamental tasks in comeonsists of color information of the pixel. In [5], Harville et.
puter vision. The provided information is usually crucial al. extends the feature vector by depth information coming
for higher level operations such as visual surveillance. from stereo cameras. In [6] and [7] gradient information is

The obvious way to detect moving regions in image se- used to achieve a more accurate background subtraction.
guences is to select a reference frame while scene is station- Although mixture of Gaussian models can converge to
ary, and to subtract the observed frame from this image. Theany arbitrary distribution provided enough number of com-
resulting difference image is thresholded to extract the mov- ponents, this is not computationally possible for real time
ing regions. Although this task looks like fairly simple, in applications. Generally three-five components are used per
real world applications this approach rarely works. Usually pixel. Another way is to approach probability distribution
background is never static and varies by time due to severabf background model by nonparametric kernel density esti-
reasons. The most important factors are lighting changesmation [2]. The model keeps samples of intensity values
moving regions and camera noise. Moreover in many of theper pixel and uses these samples to estimate the density
applications, it is desirable to model the different possible function. Background subtraction is performed by thresh-
appearances of the background such as shadows. olding the probability of observed samples. As in the para-

To overcome these problems, adaptive background mod-metric methods, several variations of this method is pre-
els became more popular. Earlier adaptive methods use simsented. In [10], motion information is used to model dy-
ple adaptive filters to make a prediction of background pixel namic scenes. Although nonparametric models seems like
intensities. In [8, 9] Kalman filtering is used to model back- a reasonable choice for background modeling, it is usually
ground dynamics. Similarly Wiener filter is used in [14] to to costly to perform in real time. Memory and computation
make a linear prediction of the pixel intensity values, given requirements are linear in the size of temporal window.
the pixel histories. Other recent approaches include representing scene in

An alternative approach is to model the probability dis- discrete states corresponding to environmental conditions
tribution of the pixel intensity. This approach ignores the and switching among these states with the observations.



Hidden Markov Models (HMMs) are very suitable for this To perform recursive Bayesian estimation with the new ob-
purpose. In[11], a three state HMM is used whereas in [13] servations, joint prior densigy(u, 3) should have the same
topology is learned from the observations. form with the joint posterior density(u, 33|X). Condition-
In this paper, we describe a Bayesian approach to pering on the variance, joint prior density is written as:
pixel background modeling. We model each pixel as lay-
ered normal distributions. Recursive Bayesian estima- p(p, X) = p(p|X)p(X). 2
tion is performed to update the background parameters. o ) ) ] .
Proposed update algorithm preserves multimodality of the Above condition is realized if we assume inverse Wishart
background model and the embedded confidence score gedistribution for the covariance and, conditioned on the co-
termines the number of necessary layers for each pixel. ~ variance, multivariate normal distribution for the mean. In-
The paper is organized as follows. Background model V€rse Vylshartd|st_r|bu_t|or_1 is a multivariate g_ene_rall_zatlon of
and update mechanism is explained in Section 2. In Sec-Scaled inverses distribution. The parametrization is
tion 3, we compare our method with online EM algo- ) _
rithm [12]. Foreground segmentation is explained in Sec- >~ Inv-Wishart, _, (A;) ®)
tion 4. |2~ N(O:—1,%/K¢1). (4)
wherewv;_; andA,_; are the degrees of freedom and scale
2 Background Model matrix for inverse Wishart distributiorf;_; is the prior
mean ands;_; is the number of prior measurements. With

Our background model is most similar to adaptive mixture these assumptions joint prior density becomes

models [12] but instead of mixture of Gaussian distribu-

tions, we define each pixel as layers of 3D multivariate (,, 3) |35~ (vemr+3)/2+41) o (5)
Gaussians. Each layer corresponds to a different appear- A BN (6, TS (6, )
ance of the pixel. We perform our operations on (r,g,b) color (A T (H~Te )

space. _ _
Using Bayesian approach, we are not estimating thefor ~three dimensional ~ feature space. Let

mean and variance of the layer, but the probability distribu- this ~ density ~ be  labeled ~as  normal-inverse-

tions of mean and variance. We can extract statistical infor- Wishar{@;—1, A¢_1/k¢—15v1—1, A¢_1). Multiplying

mation regarding to these parameters from the distributionPrior density with the normal likelihood and arranging
functions. For now, we are using expectations of mean andthe terms, joint posterior density becomes normal-inverse-
variance for change detection, and variance of the mean foVishar(0y, A,/ k.; vy, A;) with the parameters updated:
confidence.

Prior knowledge can be integrated to the system easily Vi = U1t R = Rt ®)
with prior parameters. Due to computation of full covari- 0, = 0, -1 +X i 7
ance matrix, feature space can be modified to include other “f—1n+ no K1 tn
LnJg;Z]:tifFlgfurces, such as motion information, as dis A = At Z(Xi R =0T +

Our update algorithm maintains the multimodailty of the K1 521 B T
background model. At each update, at most one layer is o (X—0;-1)(X—0;-1) (8)

updated with the current observation. This assures the min-
imum overlap over layers. We also determine how many whereX is the mean of new samples ands the number of
layers are necessary for each pixel and use only those layersamples used to update the model. If update is performed
during foreground segmentation phase. This is performedat each time frame, becomes one. To speed up the sys-
with an embedded confidence score. Details are explainedem, update can be performed at regular time intervals by

in the following sections. storing the observed samples. During our tests, we update
one quarter of the background at each time frame, therefore
2.1 Layer Model n becomes four. The new parameters combine the prior in-

formation with the observed samples. Posterior m@&ais
Data is assumed to be normally distributed with mgan 3 weighted average of the prior mean and the sample mean.
and covarianc&. Mean and variance are assumed to be The posterior degrees of freedom is equal to prior degrees
unknown and modeled as random variables [4, p.87-88].of freedom plus the sample size. System is started with the
Using Bayes theorem joint posterior density can be written following initial parameters:
as:
p(p; X[X) o< p(X|p, Z)p(p, ). @ ko =10, vo =10, B9 =Xo, Ag= (vo—4)16°l (9)



wherel is the three dimensional identity matrix. each pixel we update the parameters for our background
Integrating joint posterior density with respect¥bwe model. We start our update mechanism from the most confi-
get the marginal posterior density for the mean: dent layer in our model. If the observed sample is inside the
99% confidence interval of the current model, parameters
p(plX) o< ty,—2(p[0r, Ar/(re(ve —2)))  (10)  of the model are updated as explained in equations (6), (7)
wheret,,, _o is a multivariatet-distribution withv; — 2 de- and (8). Lower confldence_ moqQIs are not updated.
¢ For background modeling, it is useful to have a forget-
grees of freedom. . ; . .
ting mechanism so that the earlier observations have less ef-

We use the expectation of marginal posterior distribution L .
pec g P . fect on the model. Forgetting is performed by reducing the
for mean and covariance as our model parameters at time

. ; . : number of prior observations parameter of unmatched mod-
t. Expectation for marginal posterior mean (expectation of ) B ) )
S o ) els. If current sample is not inside the confidence interval
multivariatet-distribution) becomes: . )
we update the number of prior measurements parameter:

pe = E(ulX) = 0, (11) o 15
whereas expectation of marginal posterior covariance (ex-
pectation of inverse Wishart distribution) becomes: and proceed with the update of next confident layer. We do
not letx, become less than initial valud. If none of the
3 = E(ZX) = (v, — 4) Ay (12) models are updated, we delete the least confident layer and

initialize a new model having current sample as the mean
and an initial variance (9). The update algorithm for a single
pixel can be summarized as follows.

Our confidence measure for the layer is equal to one over.
determinant of covariance of|X:

1 K3 (v —2)% an-
C = = . (13) Given:New sample X, background layers
|2MX| (vr — 4)|A¢] {01, Av—1iy Ke—1,65 Ve—1,8) Fim1..k
. . . Sort layers according to confidence measure defined
If our marginal posterior mean has larger variance, our in (13).7 — 1
model becomes less confident. Note that variance of mul- while Z.'< i |

tivariate t-distribution with scale matrix and degrees of
freedomu is equal to;*5 3 for v > 2.

System can be further speed up by making independence
assumption on color channels. Update of full covariance
matrix requires computation of nine parameters. Moreover,
during distance computation we need to invert the full co-
variance matrix. To speed up the system, we separate (r,
g, b) color channels. Instead of multivariate Gaussian for a
single layer, we use three univariate Gaussians correspond-
ing to each color channel. After updating each color chan-
nel independently we join the variances and create a diago-

Measure Mahalanobis distance [1, p.36]:
di — (x— l"’thi)th_—ll,i(x — 1)
if samplex is in 99% confidence interval
then update model parameters according to
equations (6), (7), (8) anstop.
else update model parameters according to
equation (15).
1—1+1
Delete layet, initialize a new layer having parameters
defined in equation (9).

nal covariance matrix: With this mechanism, we do not deform our models with
o2 0 0 noisg or foregrou_nd pixe]s, but easily adapt to smoqth in-

», = 0 o? 0 ) (14) tensity changgs like lighting effects. Embedded confidence

0 O’g o2, score determines the number of layers to be used and pre-

vents unnecessary layers. During our tests usually sec-
In this case, for each univariate Gaussian we assume scale@indary layers corresponds to shadowed form of the back-
inversexy? distribution for the variance and conditioned on ground pixel or different colors of the moving regions of
the variance univariate normal distribution for the mean. the scene. If the scene is unimodal, confidence scores of
The Bayesian update equations for the parameters can béayers other than first layer becomes very low.
found in [4, p.78-80].

2.2 Background Update 3 Comparison with online EM
We initialize our system witlt layers for each pixel. Usu-  Although our model looks similar to [12], there are major

ally we select three-five layers. In more dynamic scenesdifferences. In [12], each pixel is represented as a mixture
more layers are required. As we observe new samples forof Gaussian distribution and parameters of Gaussians and



Model | Mode2 | Mode3 | Mode4 | Mode5
Num. | 10000 2000
Mean | 0.4000 | 0.6000
Real Std. 0.0700 | 0.0500
Mean | 0.3923 | 0.3919 | 0.3919 | 0.3919 | 0.4545
Std. 0.0093 | 0.0093 | 0.0093 | 0.0093 | 0.0631
EM Conf. | 0.2538 | 0.2482 | 0.2481 | 0.2481 | 0.0016
Mean | 0.4021 | 0.5906 | 0.8488 | 0.2561 | 0.1133
Std. 0.0572 | 0.0440 | 0.0820 | 0.0268 | 0.0670
Bayes | Conf. | 0.7047| 0.2519| 0.0214 | 0.0208 | 0.0009

Table 1: Mixture of two Gaussians.

Model | Mode2 | Mode3 | Mode4 | Mode5
Num. | 10000 8000 3000 2000
Mean | 0.2000 | 0.6000 | 0.3000 | 0.8000
Real Std. 0.0150 | 0.0300| 0.0500 | 0.0500
Mean | 0.2033 | 0.2033 | 0.5993 | 0.5993 | 0.9382
Std. 0.0085| 0.0085| 0.0113| 0.0113 | 0.0633
EM Conf. | 0.3772| 0.3772| 0.1221 | 0.1221 | 0.0111
Mean | 0.2002 | 0.5998 | 0.3026 | 0.8004 | 0.9387
Std. 0.0146 | 0.0277 | 0.0451 | 0.0620 | 0.0632
Bayes | Conf. | 0.3996 | 0.3820 | 0.1088 | 0.1087 [ 0.0007

Table 2: Mixture of four Gaussians.

ated. First data set consists1#000 points corrupted with
3000 uniform noise samples and second data set consists
of 23000 points corrupted witl 0000 uniform noise sam-
(b) ples. We assume that we observe the data in random order.
We treat the samples as observations coming from a single
Figure 1: Mixture of 1D Gaussian data corrupted with uni- pixel and estimate the model parameters with our approach
form noise. Lines show one standard deviation interval and online EM algorithm. One standard deviation interval
around the mean. Parameters are estimated with recursivaround the mean for actual and estimated parameters are
Bayesian learning and online EM [12] with five Gaussians. plot on the histogram, in Figure 1. Results show that, in
Bottom line is the real parameters. Middle line shows es- online EM, usually multimodality is lost and models con-
timation with recursive Bayesian learning. Topmost line verge to the most significant modes. With our method, mul-
shows estimation with online EM. (a) Mixture of two Gaus- timodality of the distribution is maintained. Another im-
sians. Most confident two layers estimated by two methodsportant observation is, estimated variance with online EM
are shown. (b) Mixture of four Gaussians. Most confident algorithm is always much smaller than the actual variance.
four layers estimated by two methods are shown. ThereThis is not surprising because the update is proportional to
are multiple Gaussians at the same place in online EM andthe likelihood of the sample, so samples closer to the mean
some modes are not detected. become more important.
Normalized confidence scores are shown in the bottom
rows of each method in Table 1 and 2. Our confidence
mixing coefficients are updated with an online K-means ap- score is very effective in determining the number of neces-
proximation of EM. The approach is very sensitive to initial  sary layers for each pixel. Although we estimate the model
observations. If the Gaussian components are improperlyparameters with five layers, it is clear from our confidence
initialized, every component eventually converges to the scores that how many layers are effective. There is a big
most significant mode of the distribution. Smaller modes gap between significant and insignificant layers.
nearby larger modes are never detected. \We model each Rea| data results are presented in Figure 2 and 3 where
pixel with multiple layers and perform recursive Bayesian the first sequence is a traffic sequence with heavy shadows
learning to estimate the probability distribution of model anq the second sequence is a dynamic outdoor scene. In the
parameters. We interpret each layer as independent of othefirst sequence, first and second layers of our background
layers, giving us more flexibility. corresponds to the original and shadowed version of the
To demonstrate the performance of the algorithm, mix- background. The locations where most of the cars move
ture of 1D Gaussian data with uniform noise is gener- have higher variances, so usually they are less confident.




(b) (c)

Figure 2: Traffic video with heavy shadows. (a) Origi-

nal sequence. (b) Most confident two layers with recursive
Bayesian learning. (c) Most confident two layers with on-
line EM. With recursive Bayesian learning, we are able to
model the shadows as the second layer of the scene whereas

in EM first and second layers converge to most significant Figure 3: Outdoor video. (a) Samples from original se-
mode. quence. (b) First three layers of recursive Bayesian learn-

ing. Different appearances of the background is captured
with first three layers. Red pixels are unconfident layers.
Those pixels are shown in red. First and second layers con{c) First three layers of online EM. Second and third layers
verged to the most significant mode in online EM algorithm. are almost same with first layer.
In the second sequence, most significant three layers esti-
mated by two algorithms are shown. As seen in original im-

ages, the sky and the trees are changing appearance by timgse |ayers according to confidence score (13) and select the
Our background model successfully modeled the different |ayers having confidence value greater than the layer thresh-
appearances of these regions. The appearance of grass doggy 7., We refer to these layers as confident layers. Note
not change much with time. As expected, confidence scoreihat 7, is dependent on the covariance of mean of the pixel
of second and third layers of our background are very low ¢4 it is dependent on color range of the pixel. We perform

(b)

for this region. our operations ir)-255 color range and sele@.=1.0. For
different color ranged’,. should be modified.
4 Foregrou nd Segmentation We measure the Mahalanobis distance of observed color

from the confident layers. Pixels that are outside&9@f;

Learned background statistics is used to detect the change§onfidence interval of all confident layers of the background
regions of the scene. Number of layers required to represenfire considered as foreground pixels.

a pixel is not known beforehand so background is initial-  In Figure 4, we present foreground segmentation results
ized with more layers than needed. As seen in Table 1, weof a dynamic scene. As seen in Figure 4a, appearance of
learn background with five layers, whereas there are actu-background is changing with time. After some time period,
ally two modes. Using the confidence scores we determineour background algorithm learns the difference appearances
how many layers are significant for each pixel. We order of the background. Although the method is very sensitive
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