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Abstract
In this paper we review classification algorithms used to design brain–computer interface
(BCI) systems based on electroencephalography (EEG). We briefly present the commonly
employed algorithms and describe their critical properties. Based on the literature, we
compare them in terms of performance and provide guidelines to choose the suitable
classification algorithm(s) for a specific BCI.

1. Introduction

A brain–computer interface (BCI) is a communication system
that does not require any peripheral muscular activity [1].
Indeed, BCI systems enable a subject to send commands
to an electronic device only by means of brain activity [2].
Such interfaces can be considered as being the only way of
communication for people affected by a number of motor
disabilities [3].

In order to control a BCI, the user must produce different
brain activity patterns that will be identified by the system
and translated into commands. In most existing BCI, this
identification relies on a classification algorithm [4], i.e., an
algorithm that aims at automatically estimating the class of
data as represented by a feature vector [5]. Due to the
rapidly growing interest in EEG-based BCI, a considerable
number of published results are related to the investigation
and evaluation of classification algorithms. To date, very
interesting reviews of BCI have been published [1, 6] but none
has been specifically dedicated to the review of classification
algorithms used for BCI, their properties and their evaluation.
This review aims at filling this lack. Therefore, one of
the main objectives of this review is to survey the different
classification algorithms used in EEG-based BCI research and
to identify their critical properties. Another objective is to

provide guidelines in order to help the reader with choosing
the most appropriate classification algorithm for a given BCI
experiment. This amounts to comparing the algorithms and
assessing their performances according to the context.

This review is organized as follows: section 2 depicts a
BCI as a pattern recognition system and emphasizes the role of
classification. Section 3 surveys the classification algorithms
used for BCI and, finally, section 4 assesses them and identifies
their usability depending on the context.

2. Brain–computer interfaces seen as pattern
recognition systems

The very aim of BCI is to translate brain activity into a
command for a computer. To achieve this goal, either
regression [7] or classification [8] algorithms can be used.
Using classification algorithms is the most popular approach.
These algorithms are used to identify ‘patterns’ of brain
activity [4]. In this review, we consider a BCI system as a
pattern recognition system [5, 9] and focus on the classification
algorithms used to design them. The performance of a pattern
recognition system depends on both the features and the
classification algorithm employed. These two components
are highlighted in this section.
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2.1. Feature extraction for BCI

In order to select the most appropriate classifier for a given
BCI system, it is essential to clearly understand what features
are used, what their properties are and how they are used. This
section aims at describing the common BCI features and more
particularly their properties as well as the way to use them in
order to consider time variations of EEG.

2.1.1. Feature properties. A great variety of features have
been attempted to design BCI such as amplitude values of
EEG signals [10], band powers (BP) [11], power spectral
density (PSD) values [12, 13], autoregressive (AR) and
adaptive autoregressive (AAR) parameters [8, 14], time-
frequency features [15] and inverse model-based features
[16–18]. Concerning the design of a BCI system, some critical
properties of these features must be considered:

• noise and outliers: BCI features are noisy or contain
outliers because EEG signals have a poor signal-to-noise
ratio;

• high dimensionality: in BCI systems, feature vectors are
often of high dimensionality, e.g., [19]. Indeed, several
features are generally extracted from several channels and
from several time segments before being concatenated
into a single feature vector (see the next section);

• time information: BCI features should contain time
information as brain activity patterns are generally related
to specific time variations of EEG (see the next section);

• non-stationarity: BCI features are non-stationary since
EEG signals may rapidly vary over time and more
especially over sessions;

• small training sets: the training sets are relatively
small, since the training process is time consuming and
demanding for the subjects.

These properties are verified for most features currently
used in BCI research. However, it should be noted that it
may no longer be true for BCI used in clinical practice. For
instance, the training sets obtained for a given patient would
no longer be small as a huge quantity of data would have been
acquired during sessions performed over days and months. As
the use of BCI in clinical practice is still very limited [3], this
review deals with classification methods used in BCI research.
However, the reader should be aware that problems may be
different for BCI used outside the laboratories.

2.1.2. Considering time variations of EEG. Most brain
activity patterns used to drive BCI are related to particular time
variations of EEG, possibly in specific frequency bands [1].
Therefore, the time course of EEG signals should be taken into
account during feature extraction [20]. To use this temporal
information, three main approaches have been proposed:

• concatenation of features from different time segments: it
consists in extracting features from several time segments
and concatenating them into a single feature vector
[11, 20];

• combination of classifications at different time segments:
it consists in performing the feature extraction and
classification steps on several time segments and then
combining the results of the different classifiers [21, 22];

• dynamic classification: it consists in extracting features
from several time segments to build a temporal sequence
of feature vectors. This sequence can be classified using
a dynamic classifier [20, 23] (see section 2.2.1).

The first approach is the most widely used, which explains
why feature vectors are often of high dimensionality.

2.2. Classification algorithms

In order to choose the most appropriate classifier for a given
set of features, the properties of the available classifiers must
be known. This section provides a classifier taxonomy. It
also deals with two classification problems especially relevant
for BCI research, namely, the curse-of-dimensionality and the
bias–variance tradeoff.

2.2.1. Classifier taxonomy. Several definitions are
commonly used to describe the different kinds of available
classifiers:

Generative–discriminative. Generative (also known as
informative) classifiers, e.g., Bayes quadratic, learn the class
models. To classify a feature vector, generative classifiers
compute the likelihood of each class and choose the most
likely. Discriminative ones, e.g., support vector machines,
only learn the way of discriminating the classes or the class
membership in order to classify a feature vector directly
[24, 25];

Static–dynamic. Static classifiers, e.g., multilayer perceptrons,
cannot take into account temporal information during
classification as they classify a single feature vector. In
contrast, dynamic classifiers, e.g., the hidden Markov model,
can classify a sequence of feature vectors and thus catch
temporal dynamics [26].

Stable–unstable. Stable classifiers, e.g., linear discriminant
analysis, have a low complexity (or capacity [27]). They are
said to be stable as small variations in the training set do not
considerably affect their performance. In contrast, unstable
classifiers, e.g., multilayer perceptron, have a high complexity.
As for them, small variations of the training set may lead to
important changes in performance [28].

Regularized. Regularization consists in carefully controlling
the complexity of a classifier in order to prevent overtraining.
A regularized classifier has good generalization performances
and is more robust with respect to outliers [5, 9].

2.2.2. Main classification problems in BCI research. While
performing a pattern recognition task, classifiers may be facing
several problems related to the feature properties such as
outliers, overtraining, etc. In the field of BCI, two main
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problems need to be underlined: the curse-of-dimensionality
and the bias–variance tradeoff.

The curse-of-dimensionality. The amount of data needed to
properly describe the different classes increases exponentially
with the dimensionality of the feature vectors [9, 29]. Actually,
if the number of training data is small compared to the size
of the feature vectors, the classifier will most probably give
poor results. It is recommended to use, at least, five to ten
times as many training samples per class as the dimensionality
[30, 31]. Unfortunately this cannot be applied in all BCI
systems as generally the dimensionality is high and the training
set small (see section 2.1.1). Therefore this ‘curse’ is a major
concern in BCI design.

The bias–variance tradeoff. Formally, classification consists
in finding the true label y∗ of a feature vector x using a
mapping f . This mapping is learnt from a training set T.
The best mapping f ∗ that has generated the labels is, of
course, unknown. If we consider the mean square error (MSE),
classification errors can be decomposed into three terms
[28, 29]:

MSE = E[(y∗ − f (x))2]

= E[(y∗ − f ∗(x) + f ∗(x) − E[f (x)]

+ E[f (x)] − f (x))2]

= E[(y∗ − f ∗(x))2] + E[(f ∗(x) − E[f (x)]2)]

+ E[(E[f (x)] − f (x))2]

= Noise2 + Bias(f (x))2 + Var(f (x)). (1)

These three terms describe three possible sources of
classification error:

• noise: represents the noise within the system. This is an
irreducible error;

• bias: represents the divergence between the estimated
mapping and the best mapping. Therefore, it depends
on the method that has been chosen to obtain f (linear,
quadratic, . . . );

• variance: reflects the sensitivity to the training set T used.

To attain the lowest classification error, both the bias and the
variance must be low. Unfortunately, there is a ‘natural’ bias–
variance tradeoff. Actually, stable classifiers tend to have a
high bias and a low variance, whereas unstable classifiers have
a low bias and a high variance. This can explain why simple
classifiers sometimes outperform more complex ones. Several
techniques, known as stabilization techniques, can be used to
reduce the variance. Among them, we can quote combination
of classifiers [28] and regularization (see section 2.2.1).

EEG signals are known to be non-stationary. Training
sets coming from different sessions are likely to be relatively
different. Thus, a low variance can be a solution to cope with
the variability problem in BCI systems.

3. Survey of classifiers used in BCI research

This section surveys the classification algorithms used
to design BCI systems. They are divided into five
different categories: linear classifiers, neural networks,
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Figure 1. A hyperplane which separates two classes: the ‘circles’
and the ‘crosses’.

nonlinear Bayesian classifiers, nearest neighbor classifiers
and combinations of classifiers. The most popular are
briefly described and their most important properties for BCI
applications are highlighted.

3.1. Linear classifiers

Linear classifiers are discriminant algorithms that use linear
functions to distinguish classes. They are probably the most
popular algorithms for BCI applications. Two main kinds
of linear classifiers have been used for BCI design, namely,
linear discriminant analysis (LDA) and support vector machine
(SVM).

3.1.1. Linear discriminant analysis. The aim of LDA (also
known as Fisher’s LDA) is to use hyperplanes to separate the
data representing the different classes [5, 32]. For a two-class
problem, the class of a feature vector depends on which side
of the hyperplane the vector is (see figure 1).

LDA assumes normal distribution of the data, with equal
covariance matrix for both classes. The separating hyperplane
is obtained by seeking the projection that maximizes the
distance between the two classes’ means and minimizes the
interclass variance [32]. To solve an N-class problem (N > 2)

several hyperplanes are used. The strategy generally used for
multiclass BCI is the ‘one versus the rest’ (OVR) strategy
which consists in separating each class from all the others.

This technique has a very low computational requirement
which makes it suitable for the online BCI system. Moreover
this classifier is simple to use and generally provides good
results. Consequently, LDA has been used with success in a
great number of BCI systems such as motor imagery based
BCI [33], P300 speller [34], multiclass [35] or asynchronous
[36] BCI. The main drawback of LDA is its linearity that can
provide poor results on complex nonlinear EEG data [37].

A regularized Fisher’s LDA (RFLDA) has also been
used in the field of BCI [38, 39]. This classifier introduces
a regularization parameter C that can allow or penalize
classification errors on the training set. The resulting classifier
can accommodate outliers and obtain better generalization
capabilities. As outliers are common in EEG data, this
regularized version of LDA may give better results for BCI
than the non-regularized version [38, 39]. Surprisingly,
RFLDA is much less used than LDA for BCI applications.
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Figure 2. SVM find the optimal hyperplane for generalization.

3.1.2. Support vector machine. An SVM also uses a
discriminant hyperplane to identify classes [40, 41]. However,
concerning SVM, the selected hyperplane is the one that
maximizes the margins, i.e., the distance from the nearest
training points (see figure 2). Maximizing the margins is
known to increase the generalization capabilities [40, 41].
As RFLDA, an SVM uses a regularization parameter C that
enables accommodation to outliers and allows errors on the
training set.

Such an SVM enables classification using linear decision
boundaries and is known as linear SVM. This classifier has
been applied, always with success, to a relatively large number
of synchronous BCI problems [19, 35, 38]. However, it is
possible to create nonlinear decision boundaries, with only
a low increase of the classifier’s complexity, by using the
‘kernel trick’. It consists in implicitly mapping the data
to another space, generally of much higher dimensionality,
using a kernel function K(x, y). The kernel generally used in
BCI research is the Gaussian or radial basis function (RBF)
kernel:

K(x, y) = exp

(−‖x − y‖2

2σ 2

)
. (2)

The corresponding SVM is known as Gaussian SVM or
RBF SVM [40, 41]. RBF SVM have also given very good
results for BCI applications [10, 35]. As LDA, SVM has been
applied to multiclass BCI problems using the OVR strategy
[42].

SVM have several advantages. Actually, thanks to
the margin maximization and the regularization term, SVM
are known to have good generalization properties [9, 41],
to be insensitive to overtraining [9] and to the curse-
of-dimensionality [40, 41]. Finally, SVM have a few
hyperparameters that need to be defined by hand, namely,
the regularization parameter C and the RBF width σ if using
kernel (2). These advantages are gained at the expense of a
low speed of execution.

3.2. Neural networks

Neural networks (NN) are, together with linear classifiers,
the category of classifiers mostly used in BCI research (see,
e.g., [43, 44]). Let us recall that an NN is an assembly of
several artificial neurons which enables us to produce nonlinear
decision boundaries [45].

This section first describes the most widely used NN for
BCI, which is the multilayer perceptron (MLP). Then, it briefly
presents other architectures of neural network used for BCI
applications.

3.2.1. Multilayer perceptron. An MLP is composed of
several layers of neurons: an input layer, possibly one or
several hidden layers and an output layer [45]. Each neuron’s
input is connected with the output of the previous layer’s
neurons whereas the neurons of the output layer determine
the class of the input feature vector.

Neural networks and thus MLP are universal
approximators, i.e., when composed of enough neurons and
layers, they can approximate any continuous function. Added
to the fact that they can classify any number of classes, this
makes NN very flexible classifiers that can adapt to a great
variety of problems. Consequently, MLP, which are the
most popular NN used in classification, have been applied
to almost all BCI problems such as binary [46] or multiclass
[44], synchronous [20] or asynchronous [12] BCI. However,
the fact that MLP are universal approximators makes these
classifiers sensitive to overtraining, especially with such noisy
and non-stationary data as EEG, e.g., [47]. Therefore, careful
architecture selection and regularization is required [9].

A multilayer perceptron without hidden layers is known as
a perceptron. Interestingly enough, a perceptron is equivalent
to LDA and, as such, has been sometimes used for BCI
applications [18, 48].

3.2.2. Other neural network architectures. Other types of
NN architecture are used in the field of BCI. Among them,
one deserves a specific attention as it has been specifically
created for BCI: the Gaussian classifier [49, 50]. Each unit
of this NN is a Gaussian discriminant function representing a
class prototype. According to its authors, this NN outperforms
MLP on BCI data and can perform efficient rejection of
uncertain samples [49]. As a consequence, this classifier has
been applied with success to motor imagery [51] and mental
task classification [49], particularly during asynchronous
experiments [49, 52].

Besides the Gaussian classifier, several other NN have
been applied to BCI purposes, in a more marginal way. They
are not described here, due to space limitations:

• learning vector quantization (LVQ) neural network
[53, 54];

• fuzzy ARTMAP neural network [55, 56];
• dynamic neural networks such as the finite impulse

response neural network (FIRNN) [20], time-delay neural
network (TDNN) or gamma dynamic neural network
(GDNN) [57];

• RBF neural network [5, 58];
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• Bayesian logistic regression neural network (BLRNN)
[8];

• adaptive logic network (ALN) [59];
• probability estimating guarded neural classifier (PeGNC)

[60].

3.3. Nonlinear Bayesian classifiers

This section introduces two Bayesian classifiers used for BCI:
Bayes quadratic and hidden Markov model (HMM). Although
Bayesian graphical network (BGN) has been employed for
BCI, it is not described here as it is not common and, currently,
not fast enough for real-time BCI [61, 62].

All these classifiers produce nonlinear decision
boundaries. Furthermore, they are generative, which enables
them to perform more efficient rejection of uncertain samples
than discriminative classifiers. However, these classifiers are
not as widespread as linear classifiers or neural networks in
BCI applications.

3.3.1. Bayes quadratic. Bayesian classification aims at
assigning to a feature vector the class it belongs to with the
highest probability [5, 32]. The Bayes rule is used to compute
the so-called a posteriori probability that a feature vector has of
belonging to a given class [32]. Using the MAP (maximum a
posteriori) rule and these probabilities, the class of this feature
vector can be estimated.

Bayes quadratic consists in assuming a different normal
distribution of data. This leads to quadratic decision
boundaries, which explains the name of the classifier. Even
though this classifier is not widely used for BCI, it has been
applied with success to motor imagery [22, 51] and mental
task classification [63, 64].

3.3.2. Hidden Markov model. Hidden Markov Models
(HMM) are popular dynamic classifiers in the field of speech
recognition [26]. An HMM is a kind of probabilistic
automaton that can provide the probability of observing a given
sequence of feature vectors [26]. Each state of the automaton
can modelize the probability of observing a given feature
vector. For BCI, these probabilities usually are Gaussian
mixture models (GMM), e.g., [23].

HMM are perfectly suitable algorithms for the
classification of time series [26]. As EEG components used to
drive BCI have specific time courses, HMM have been applied
to the classification of temporal sequences of BCI features
[23, 52, 65] and even to the classification of raw EEG [66].
HMM are not very widespread within the BCI community but
these studies revealed that they were promising classifiers for
BCI systems.

Another kind of HMM which has been used to design
BCI is the input–output HMM (IOHMM) [12]. IOHMM
is not a generative classifier but a discriminative one. The
main advantage of this classifier is that one IOHMM can
discriminate several classes, whereas one HMM per class is
needed to achieve the same operation.

3.4. Nearest neighbor classifiers

The classifiers presented in this section are relatively simple.
They consist in assigning a feature vector to a class according
to its nearest neighbor(s). This neighbor can be a feature vector
from the training set as in the case of k nearest neighbors
(kNN), or a class prototype as in Mahalanobis distance. They
are discriminative nonlinear classifiers.

3.4.1. k nearest neighbors. The aim of this technique is
to assign to an unseen point the dominant class among its k
nearest neighbors within the training set [5]. For BCI, these
nearest neighbors are usually obtained using a metric distance,
e.g., [38]. With a sufficiently high value of k and enough
training samples, kNN can approximate any function which
enables it to produce nonlinear decision boundaries.

KNN algorithms are not very popular in the BCI
community, probably because they are known to be very
sensitive to the curse-of-dimensionality [29], which made
them fail in several BCI experiments [38, 39, 42]. However,
when used in BCI systems with low dimensional feature
vectors, kNN may prove to be efficient [67].

3.4.2. Mahalanobis distance. Mahalanobis distance based
classifiers assume a Gaussian distribution N(µc,Mc) for each
prototype of the class c. Then, a feature vector x is assigned to
the class that corresponds to the nearest prototype, according
to the so-called Mahalanobis distance dc(x) [52]:

dc(x) =
√

(x − µc)M
−1
c (x − µc)T . (3)

This leads to a simple yet robust classifier, which even
proved to be suitable for multiclass [42] or asynchronous BCI
systems [52]. Despite its good performances, it is still scarcely
used in the BCI literature.

3.5. Combinations of classifiers

In most papers related to BCI, the classification is achieved
using a single classifier. A recent trend, however, is to
use several classifiers, aggregated in different ways. The
classifier combination strategies used in BCI applications are
the following:

Boosting. Boosting consists in using several classifiers in
cascade, each classifier focusing on the errors committed by
the previous ones [5]. It can build up a powerful classifier
out of several weak ones, and it is unlikely to overtrain.
Unfortunately, it is sensitive to mislabels [9] which may
explain why it was not successful in one BCI study [68]. To
date, in the field of BCI, boosting has been experimented with
MLP [68] and ordinary least square (OLS) [69].

Voting. While using voting, several classifiers are being used,
each of them assigning the input feature vector to a class. The
final class will be that of the majority [9]. Voting is the most
popular way of combining classifiers in BCI research, probably
because it is simple and efficient. For instance, voting with
LVQ NN [54], MLP [70] or SVM [19] has been attempted.

Stacking. Stacking consists in using several classifiers, each of
them classifying the input feature vector. These classifiers are
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Table 1. Properties of classifiers used in BCI research.

High
dimension

Linear Nonlinear Generative Discriminant Dynamic Static Regularized Stable Unstable robust

FLDA X X X X
RFLDA X X X X X
Linear-SVM X X X X X X
RBF-SVM X X X X X X
MLP X X X X
BLR NN X X X X
ALN NN X X X X
TDNN X X X X
FIRNN X X X X
GDNN X X X X
Gaussian NN X X X X
LVQ NN X X X X
Perceptron X X X X
RBF-NN X X X X
PeGNC X X X X X
Fuzzy X X X X
ARTMAP
NN
HMM X X X X
IOHMM X X X X
Bayes X X X X
quadratic
Bayes X X X X
graphical
network
kNN X X X X
Mahalanobis X X X X
distance

called level-0 classifiers. The output of each of these classifiers
is then given as input to a so-called meta-classifier (or level-1
classifier) which makes the final decision [71]. Stacking has
been used in BCI research using HMM as level-0 classifiers,
and an SVM as meta classifier [72].

The main advantage of such techniques is that a
combination of similar classifiers is very likely to outperform
one of the classifiers on its own. Actually, combining
classifiers is known to reduce the variance (see section 2.2.2)
and thus the classification error [28, 29].

3.6. Conclusion

A great variety of classifiers have been tried in BCI research.
Their properties are summarized in table 1. It should
be stressed that some famous kinds of classifiers have not
been attempted in BCI research. The two most relevant
ones are decision trees [9] and the whole category of fuzzy
classifiers [73]. Furthermore, different combination schemes
of classifiers have been used, but several other efficient and
famous ones can be found in the literature such as Bagging or
Arcing [9, 28]. Such algorithms could prove useful as they
all succeeded in several other pattern recognition problems.
As an example, preliminary results using a fuzzy classifier for
BCI purposes are promising [74].

4. Guidelines to choose a classifier

This section assesses the use of the algorithms presented in
section 3. It aims at providing the readers with guidelines to

help them choose a classifier adapted to a given context. The
performances of the BCI using the classifiers described above
are gathered in tables, in the appendix. Several measures of
performance have been proposed in BCI, such as accuracy
of classification, Kappa coefficient [42], mutual information
[75], sensitivity and specificity [76]. The most common one is
the accuracy of classification, i.e., the percentage of correctly
classified feature vectors. Consequently, this review only
considers this particular measure.

Two different points of view are proposed. The first
identifies the best classifier(s) for a given kind of BCI whereas
the second identifies the best classifier(s) for given kinds of
features.

4.1. Which classifier goes with which BCI?

Different classifiers were shown to be efficient according to
the kind of BCI they were used in. More specifically, different
results were observed between synchronous and asynchronous
BCI.

4.1.1. The synchronous BCI. The synchronous case is
the most widely spread. Three kinds of classification
algorithms proved to be particularly efficient in this context,
namely, support vector machines, dynamic classifiers and
combinations of classifiers. Unfortunately they have not been
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Table A1. Accuracy of classifiers in movement intention based BCI.

Protocol Preprocessing Features Classification Accuracy (%) References

Finger: on BCI CSSD ERD and
competition Bereitschaftspotential Perceptron 84 [48]
2003 data set IV based features

14–26 Hz Activity in
band pass two brain regions Perceptron 83 [18]
+ CSP with sLORETA

bandpass PCA+CSP+OLS SVM 90 [77]

Speech muscles 0.5–15 Hz Raw EEG MLP 100 [43]
band pass

TDNN <90

Finger/toe Raw EEG GDNN �90 [57]

0–5 Hz band pass Amplitude kNN 78.4
values of

Linear SVM 96.8 [38]smoothed EEG
RFLDA 96.7

LDA 96.3

Finger: on Amplitude Gaussian SVM 93.3
different data sets values of

Linear SVM 92.6smoothed EEG
RFLDA 93.7 [39]

LDA 90.7

kNN 78

BP Voting with LVQ NN �85 [54]

Finger: in asynchronous mode 1–4 Hz band pass Bi-scale
wavelet up to 81 [76]
features 1-NN

1–4 Hz band pass + PCA Normalized
bi-scale wavelet 97 [67]
features

compared with each other yet. Justifications and possible
reasons for such an efficiency are given hereafter.

Support vector machines. SVM reached the best results in
several synchronous experiments, should it be in its linear
[38, 42] or nonlinear form [10, 35], in binary [37, 38, 77]
or multiclass [35, 42] BCI (see tables A1, A3, A4 and A5).
RFLDA shares several properties with SVM such as being a
linear and regularized classifier. Its training algorithm is even
very close to the SVM one. Consequently, it also reached very
interesting results in some experiments [38, 39].

The first reason for this success may be regularization.
Actually, BCI features are often noisy and likely to contain
outliers [39]. Regularization may overcome this problem and
increase the generalization capabilities of the classifier. As
a consequence, regularized classifiers, and more particularly
linear SVM, have outperformed unregularized ones of the
same kind, i.e., LDA, during several BCI studies [38, 39, 42].
Similarly a nonlinear SVM has outperformed an unregularized
nonlinear classifier, namely, an MLP, in another BCI study
[35].

The second reason may be the simplicity of SVM. Indeed,
the decision rule of SVM is a simple linear function in the
kernel space which makes SVM stable and therefore have a
low variance. Since BCI features are very unstable over time,

having a low variance may also be a key for low classification
error in BCI.

The last reason probably is the robustness of SVM with
respect to the curse-of-dimensionality (see section 2.1.1). This
has enabled SVM to obtain very good results even with very
high dimensional feature vectors and a small training set
[19, 42]. However, SVM are not drawback free for BCI as
they generally are slower than other classifiers. Luckily, they
are fast enough for real-time BCI, e.g., [78].

Dynamic classifiers. Dynamic classifiers almost always
outperformed static ones during synchronous BCI experiments
[20, 23, 57] (see table A1). Reference [79] is an exception,
but the authors admitted that the chosen HMM architecture
may not have been suitable. Dynamic classifiers probably are
successful in BCI because they can catch the relevant temporal
variations present in the extracted features. Furthermore,
classifying a sequence of low dimensional feature vectors,
instead of a very high dimensional one, in a way, solves the
curse-of-dimensionality. Finally, using dynamic classifiers
in synchronous BCI also solves the problem of finding the
optimal instant for classification as the whole time sequence
is classified and not just a particular time window [23].

Combination of classifiers. Combining classifiers was shown
efficient [19, 69, 72] and almost always outperformed a
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Table A2. Accuracy of classifiers in mental task imagination based BCI. These tasks are (t1) visual stimulus driven letter imagination, (t2)
auditory stimulus driven letter imagination, (t3) left motor imagery, (t4) right motor imagery, (t5) relax (baseline), (t6) mental mathematics,
(t7) mental letter composing, (t8) visual counting, (t9) geometric figure rotation, (t10) mental word generation.

Protocol Preprocessing Features Classification Accuracy (%) References

t1+t2 PCA + ICA LPC spectra RBF NN 77.8 [58]

(t3 or t4)+t6 Lagged AR BLRNN 80 ± 12 [8, 21]

t5+t6 Multivariate AR MLP 91.4 [83]

t5 + best of {t6,t7,t8,t9} BP MLP 95 [46]

All couples between AR BGN 90.63 [61]
{t5,t6,t7,t8,t9} on
Keirn and Aunon EEG data

MLP 88.97

AR Bayes 84.6 [63]
quadraticPSD 81.0

Bayes 90.51 ± 3.2
quadratic

AR BGN 88.57 ± 3.0 [79]

MLP 87.38 ± 3.4

LDA 86.63 ± 3.3

HMM 65.33 ± 8.5

Best triplet between WK-Parzen Fuzzy 94.43 [56]
{t5,t6,t7,t8,t9} PSD ARTMAP NN

t3+t4+t5 Cross Mahalanobis �71 [84]
ambiguity distance +
functions MLP

t5+t6+t7+t8+t9 on Keirn PSD with MLP 90.6–98.6 [64]
and Aunon EEG data Welch’s Bayes 89.2–98.6

periodogram quadratic

AR MLP up to 71 [44]

LDA 66

0.1–100 Hz AR MLP 69.4 [35]
band pass Gaussian SVM 72

t3+t4+t5 in SL + PSD with Gaussian 84 [49]
asynchronous mode 4–45 Hz Welch’s classifier

band pass periodogram

t3+t4+t10 in HMM 77.35
asynchronous GMM 76.5 [12]
mode

SL PSD IOHMM 81.6

MLP 79.4

single one [19, 70, 72] (see table A3). Similarly, on data
set IIb of BCI competition 2003, the best results, i.e., best
accuracy and smallest number of repetitions, were obtained
with combinations of classifiers, namely, boosting of OLS
[69] and voting of SVM [19] (see table A5). The study in
[68] is an exception as a boosting of MLP was outperformed
by a single LDA. This may be explained by the sensitivity
of boosting to mislabels [9] and the fact that these mislabels
are likely to occur in such noisy and uncertain data as EEG
signals. Therefore, combinations such as voting or stacking
may be preferred for BCI applications.

As seen in section 3.5, the combination of classifiers
helps reduce the variance component of the classification
error which generally makes combinations of classifiers more
efficient than their single counterparts [28]. Furthermore, this

variance reflects the sensitivity toward the training set used.
In BCI experiments, variance can be due to time variability
[21, 54], session-to-session variability [19] or subject-to-
subject variability. Therefore, variance probably is an
important source of error. Combining classifiers may be a
way of solving this variability/non-stationarity problem [19],
which may explain its success.

4.1.2. The asynchronous BCI. Few asynchronous BCI
experiments have been carried out yet, therefore, no optimal
classifier can be identified for sure. In this context, it
seems that dynamic classifiers do not perform better than
static ones [12, 52]. Actually, it is very difficult to
identify the beginning of each mental task in asynchronous
experiments. Therefore dynamic classifiers cannot use their
temporal skills efficiently [12, 52]. Surprisingly, SVM or
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Table A3. Accuracy of classifiers in pure motor imagery based BCI: two-class and synchronous. The two classes are left and right imagined
hand movements.

Protocol Preprocessing Features Classification Accuracy (%) References

On different Correlative Gaussian SVM 86 [37]
EEG data time-frequency LDA 61

representation

LDA 83.6

BP Boosting 76.4 [68]
with MLPs

Fractal LDA 80.6
dimension Boosting 80.4

with MLPs

Hjorth HMM 81.4 ± 12.8 [23]
parameters

AAR LDA 72.4 ± 8.6

AAR MLP 85.97 [20]
parameters FIR NN 87.4

PCA HMM 75.70 [72]

HMM+SVM 78.15

On BCI Morlet Bayes quadratic 89.3 [22]
competition wavelet integrated
2003 data set III over time

BGN 83.57

AAR MLP 84.29 [79]

Bayes 82.86
quadratic

Raw EEG HMM up to 77.5 [66]

SL + 4–45 Hz Gaussian 65.4
band pass classifier

LDA 65.6 [51]

PSD Bayes 63.4
quadratic

Mahalanobis 63.1
distance

combinations of classifiers have not been used in asynchronous
BCI yet.

4.1.3. Partial conclusion. Concerning synchronous BCI,
SVM seem to be very efficient regardless of the number of
classes. This success may be explained by its good properties,
namely, regularization, simplicity and immunity to the curse-
of-dimensionality. Besides SVM, combination of classifiers
and dynamic classifiers also seem to be very efficient and
promising for synchronous BCI. Concerning the asynchronous
experiments, due to the current lack of published results, no
classifier seems better than the other. The only information
that can be deduced is that dynamic classifiers seem to lose
their superiority in such experiments.

4.2. Which classifier goes with which kinds of features?

To propose another point of view, this section compares
classifiers considering their ability to cope with specific
problems of BCI features (see section 2.1.1):

• noise and outliers: regularized classifiers, such as SVM,
seem appropriate to deal with outliers. Muller et al even
recommended to systematically regularize the classifiers
used in BCI systems in order to cope with outliers [39]. It
is also argued that discriminative classifiers perform better
than generative ones in the presence of noise or outliers
[12];

• high dimensionality: SVM probably are the most
appropriate classifiers to deal with feature vectors of high
dimensionality. If the high dimensionality is due to the use
of a large number of time segments, dynamic classifiers
can also solve the problem by considering sequences of
feature vectors instead of a single vector of very high
dimensionality. For instance, SVM [10, 19] and dynamic
classifiers such as HMM [66] or TDNN [57] are perfectly
able to classify raw EEG. The kNN should not be used
in such a case as they are very sensitive to the curse-
of-dimensionality. Nevertheless, it is always preferable
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Table A4. Accuracy of classifiers in pure motor imagery based BCI: multiclass and/or asynchronous case. The classes are (c1) left
imagined hand movements, (c2) right imagined hand movements, (c3) imagined foot movements, (c4) imagined tongue movements,
(c5) relax (baseline).

Protocol Preprocessing Features Classification Accuracy (%) References

c1+c2+c3 on BP LVQ NN �60 [85]
different data BP HMM �77.5 [65]

c1+c2+c3+c4 on Linear SVM 63
different data LDA 54.46

AAR kNN 41.74 [42]

Mahalanobis 53.5
distance

BP HMM �63 [65]

c1+c2+c3+c4+c5 BP HMM �52.6 [65]

c1+c2 in Welch Mahalanobis 90
asynchronous mode power distance

spectrum Gaussian 80 [52]
classifier

HMM 65

c1+c2+c3 in BP LDA 95 [36]
asynchronous mode

Table A5. Accuracy of classifiers in P300 speller BCI.

Protocol Preprocessing Features Classification Accuracy (%) References

BCI 0.1–20 Hz Raw EEG Voting 100 [19]
competition band pass with linear Four repetitions
data set IIb SVMs

Linear 100
SVM Ten repetitions

0–9 Hz Raw EEG Boosting 100 [69]
band pass with OLS Four repetitions

0.5–30 Hz Raw EEG Gaussian 100 [10]
band SVM Five repetitions

t-Continuous LDA 100 [34]
Wavelet Transform Six repetitions

Other data Low pass + PCA Raw EEG + EEG Gaussian �95 [78]
time derivatives SVM Ten repetitions

Table A6. Accuracy of classifiers in µ and β rhythm based cursor control BCI.

Protocol Preprocessing Features Classification Accuracy (%) References

Four-targets ICA, BP + Voting with 65.18 [70]
on BCI CAR CSP MLP
competition µ band pass features MLP 60.08
data set IIa

µ and β Fourier power RFLDA 74.7 [86]
band pass + CSP coefficient

to have a small number of features [31]. Therefore, it
is highly recommended to use dimensionality reduction
techniques and/or features selection [39];

• time information: for synchronous experiments, dynamic
classifiers seem to be the most efficient method to exploit
the temporal information contained in features. Similarly,
integrating classifiers over time can efficiently utilize the

time information [22]. For asynchronous experiments,
no clear superiority could be observed (see the previous
section);

• non-stationarity: a combination of classifiers may solve
this problem as it reduces the variance. Stable classifiers
such as LDA or SVM can also be used but would probably
be outperformed by combinations of LDA or SVM;
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Table A7. Accuracy of classifiers in other BCI.

Protocol Preprocessing Features Classification Accuracy (%) References

Open or close eyes FFT PeGNC 87 [60]
components but one
for 5–15 Hz error

SCP modulation t-Continuous LDA 54.4 [34]
on different data Wavelet

Transform

SCP mean + LDA 88.7 [87]
multitaper γ BP

• small training sets: if the training set is small, simple
techniques with few parameters should be used, such as
LDA [30].

5. Conclusion

This review has surveyed classification algorithms used to
design brain–computer interfaces (BCI). These algorithms
were divided into five categories: linear classifiers, neural
networks, nonlinear Bayesian classifiers, nearest neighbor
classifiers and combinations of classifiers. The results they
obtained, in a BCI context, have been analyzed and compared
in order to provide the readers with guidelines to choose
or design a classifier for a BCI system. In a nutshell, it
seems that SVM are particularly efficient for synchronous
BCI. This probably is due to their regularization property and
their immunity to the curse-of-dimensionality. Furthermore,
combinations of classifiers and dynamic classifiers also seem
very efficient in synchronous experiments.

This paper focused on reviewing classifiers used in BCI
research, i.e., related to published online or offline studies.
However, other existing classification techniques, not currently
used for BCI purposes, could be explored and may prove to
be rewarding. Furthermore, it should be noted that once BCI
are more widely used in clinical practice, new properties will
have to be taken into consideration, such as the availability of
large data sets or long term variability of EEG signals.

One difficulty encountered in such a study concerns the
lack of published objective comparisons between classifiers.
Ideally, classifiers should be tested within the same context,
i.e., with the same users, using the same feature extraction
method and the same protocol. Currently, this is a crucial
problem for BCI research. For this reason some researchers
have proposed general purpose BCI systems such as the
BCI2000 toolkit [80]. This toolkit is a modular framework
which makes it possible to easily change the classification,
preprocessing or feature extraction modules. With such a
system it becomes possible to test several classifiers with the
same features and preprocessings. With similar objectives
of modularity, the Open-ViBE platform [81] proposes a
framework to experiment BCI on various protocols using, for
instance, neuro-feedback and virtual reality. An extensive
use of such platforms could lead to interesting findings in the
future.
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Appendix. Classifier performances

Numerous BCI studies using the classifiers described so
far have been carried out. The classifier performances are
summarized in tables A1–A7. Each table corresponds to
a particular protocol and displays the preprocessing and
the feature extraction techniques employed. Two kinds of
studies have been chosen to appear in these tables. The
first one corresponds to studies for which it is possible to
objectively compare the algorithms since the EEG data used
are benchmark data, such as data from the BCI competition
2003 [82] or personal data on which several classifiers are
compared. The second corresponds to studies that assess the
usability and/or the efficiency of a classifier for a BCI problem,
e.g., [56, 60].
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