

A Nearest Neighbor Approach to Letter Recognition
Aiyuan Ji

Department of Computer information Science

 Clark Atlanta University

Atlanta, GA 30314, USA

aji@cau.edu

Roy George

 Department of Computer information Science

 Clark Atlanta University

 Atlanta, GA 30314, USA

 rgeorge@cau.edu

ABSTRACT

The nearest neighbor classifier (NNC) is a non-parametric

classification technique that classifies a test pattern to the class

of its nearest neighbor in the training data. In this research, we

applied the NNC to a standard letter recognition data and

obtained a superior classification rate in comparison to extant

approaches. A prime drawback to the NNC technique has been

the relative inefficiency of the model. A modified NNC was

implemented and applied to the same recognition problem. It is

found that if we choose a suitable threshold minimum difference

for classification, we can reduce the CPU time by half without
lowering the performance of the classifier.

1. INTRODUCTION
The nearest neighbor classifier (NNC) is used to classify a test

pattern to the class of its nearest neighbor in the training data.

NNC is a simple and common-used non-parametric classifier. It

has been widely used in pattern recognition and machine

learning, e.g., handwritten character recognition
1,2

, fingerprint

recognition
 3

, face recognition
4
, and image classification

5
.

The UCI letter recognition database has been widely used for

testing machine learning algorithms
6
. In this study, we applied

the NNC to the UCI letter recognition data set. To improve the

efficiency of the NNC, we also proposed a modified NNC. The

results of the application of the basic and modified NNC

algorithms are presented and the improvements in efficiency and

CPU time are discussed.

2. DATA
The dataset used in this study is called the “Letter Recognition

Database” from the Machine Learning Repository at the

University of California, Irvine. The dataset consists of 20000

total exemplars of the 26 letters of the English alphabet in the

upper case. The letters are derived from 20 fonts that are

randomly distorted to form black-and-white images. Each image

is analyzed to produce an exemplar of 16 numerical attributes.

Detailed information of these attributes can be found in UCI ML

website
7
.

3. METHOD

3.1 Data separation
In this study, we randomly picked 80% (i.e., 16000) data points

from the original data to form a training dataset, and the left

20% (i.e., 4000) data points to form the test dataset. Cross

validation on the technique was performed using the 10-fold

test.

3.2 Nearest Neighbor Classifier (NNC)
The Nearest Neighbor Classifier (NNC) searches all training

data points to find a training point with the minimum difference

between the training point and the test point, and assign the class

of the training point to the test point. X[Ntrn][M] is the

training data, where Ntrn is the total number of the training data

points, and M is the number of attributes. Y[Ntest][M] is the

test data, where Ntest is the total number of the test data points.

The difference between a test point X[i][M], and a training

point Y[j][M] is computed as:
!
=

"=
M

k

ji kjYkiX
M

diff
1

2

,])][[]][[(
1 .

 The Basic NNC Algorithm:

for (each test point)

{Initiate min-diff to be a maximum possible number}

for (each training point) compute diff based on equation (1)

if (diff<min_diff) then

min_diff=diff

min_diff_index = index of training point

end for
class of the test point = class of the training point
(min_diff_index)

end for

3.3 A Modified NNC Algorithm
According to the NNC algorithm discussed in 3.2, we

understand that totally Ntrn×Ntest loops are needed to

complete classification of Ntest test points using Ntrn training

points, which are 4000×16000 loops for this study. To improve

the classification efficiency, user can choose a threshold

minimum difference (TMD) for classification. If min_diff is

equal to TMD, we stop the loop of searching each training point

and assign the class of the training point with the difference

equal to TMD to the test point. If TMD is set to be zero, the

modified NNC is reduced to the NNC. On the other hand, if

TMD is greater than zero, the number of loops and computation

time will be reduced. This modification can also influence the
classification rate of the classification.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ACM SE’06, March, 10-12, 2006, Melbourne, Florida, USA

Copyright 2006 1-59593-315-8/06/0004…$5.00.

776

The Modified NNC Algorithm:
 for (each test point)

{Initiate min-diff to be a maximum possible number}

for (each training point) compute diff based on equation (1)

if (diff<min_diff) then

min_diff=diff

 min_diff_index = index of training point

if (min_diff==TMD} break
end for
class of the test point = class of the training point
(min_diff_index)

end for

4. RESULTS AND DISCUSSIONS

We applied the NNC to each pairs of training-test dataset. To

investigate the efficiency of the NNC, we also tracked the CPU

time used for each classification. The classification rate and

CPU time used for each dataset are listed in Table 1. According

to Table 1, we can find that the performance and efficiency of

the NNC are good, because the classification rates are all above
95.1% and the CPU time is less than 451 seconds.

Table 1. Classification rate and CPU time

 No.1 No.2 No.3 No.4 No.5

Rate 96.2% 96.1% 95.9% 95.8% 96.0%

CPU (s) 493 450 450 438 439

 No.6 No.7 No.8 No.9 No.10

Rate 95.7% 95.6% 95.1% 96.0% 95.7%

CPU (s) 493 450 450 438 439

To investigate the performance and efficiency of our modified

NNC, we utilized the modified NNC to classifier training-test

dataset No.1. We chose 10 different TMD values between 0 and
1.0. The results are shown in Figure 1.

Figure.1 Plots of threshold minimum difference versus
classification rate (top) and the threshold minimum

difference versus CPU time (bottom)
Figure 1 indicates that as the TMD increases, the classification

rate and CPU time all decrease. Figure 1 also shows that as the

TMD is 0.5, although the classification rate decreases less than

1%, the CPU time is almost reduced to 50% of CPU time used

from TMD=0 (i.e., the original NNC). Therefore, we can

improve the efficiency of classification without worsen the

performance by using our modified NNC and choosing a

suitable TMD value, because the TMD determines the trade off

between the correct classification rate and the classification

efficiency., i.e., smaller TMD value, higher classification rate
and lower efficiency, and verse versa.

5. SUMMARY

Through applying the nearest neighbor classifier (NNC) to the

10-fold CV datasets, we have demonstrated that the NNC

provides a good classification rate on the letter recognition

database. To improve the classification efficiency further, we

proposed a modified NNC and applied the modified NNC

algorithm to the same database. It is found that if we choose a

suitable threshold minimum difference for classification, we can

reduce the CPU time significantly without lowering the
performance of the classifier.

In this study, the upper case data was used. Future work will

apply the NNC and the modified algorithm to lower case data

and upper and lower mixed case data. We will investigate the

relationships along all attributes and apply these relationships to

assist the classification and hence to improve the classification
rate and efficiency.

Acknowledgements
This work is partially supported by NSF Grants DUE-0417079

and HRD-0401679, US Army Contract No: W911NF-04-2-

0036, and DOD Grant No: DAAD19-01-2-0014. The content of

this work does not reflect the position or policy of the sponsors
and no official endorsement should be inferred.

6. REFERENCES
[1] Viswanath P., Murty M.N., and Bhatnagar S., Overlap

pattern synthesis with an efficient nearest neighbor

classifier, Pattern Recognition, 38, 1187-1195, 2005.

[2] Liu C.-L., and Nakagawa, Evaluation of prototype learning

algorithms for nearest-neighbor classifier in application to

handwritten character recognition. Pattern Recognition, 34,
601-615, 2001.

[3] Blue J., et al., Evaluation of pattern classifiers for

fingerprint and OCR applications. Pattern Recognition, 27,
485-501, 1994.

[4] Wiskott L., Fellous J., Kruger N., and von der Malsburg C.,

Face recognition by elastic bunch graph matching.

Transactions on Pattern Analysis and Machine

Intelligence, 19, 775-779, 1997.

 [5] Hastie T. and Tibshirani R., Discriminant adaptive nearest

neighbor classification. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 18, 607-615, 1996.

 [6] P. W. Frey and D. J. Slate: Letter recognition using

Holland-style adaptive classifiers. Machine Learning, 6(2),

161-182, 1991.

 [7] P.M. Murphy, UCI repository of machine learning

databases. Department of Information and Computer

Science, UCI, 1994.

 http://www.ics.uci.edu/mlearn/MLRepository.html.

777

