A Nearest Neighbor Approach to Letter Recognition

Aiyuan Ji

Department of Computer information Science
Clark Atlanta University
Atlanta, GA 30314, USA

aji@cau.edu

ABSTRACT

The nearest neighbor classifier (NNC) is a non-parametric
classification technique that classifies a test pattern to the class
of its nearest neighbor in the training data. In this research, we
applied the NNC to a standard letter recognition data and
obtained a superior classification rate in comparison to extant
approaches. A prime drawback to the NNC technique has been
the relative inefficiency of the model. A modified NNC was
implemented and applied to the same recognition problem. It is
found that if we choose a suitable threshold minimum difference
for classification, we can reduce the CPU time by half without
lowering the performance of the classifier.

1. INTRODUCTION

The nearest neighbor classifier (NNC) is used to classify a test
pattern to the class of its nearest neighbor in the training data.
NNC is a simple and common-used non-parametric classifier. It
has been widely used in pattern recognition and machine
learning, e.g., handwritten character recognition™?, fingerprint
recognition 3, face recognition®, and image classification®.

The UCI letter recognition database has been widely used for
testing machine learning algorithms®. In this study, we applied
the NNC to the UCI letter recognition data set. To improve the
efficiency of the NNC, we also proposed a modified NNC. The
results of the application of the basic and modified NNC
algorithms are presented and the improvements in efficiency and
CPU time are discussed.

2. DATA

The dataset used in this study is called the “Letter Recognition
Database” from the Machine Learning Repository at the
University of California, Irvine. The dataset consists of 20000
total exemplars of the 26 letters of the English alphabet in the
upper case. The letters are derived from 20 fonts that are
randomly distorted to form black-and-white images. Each image
is analyzed to produce an exemplar of 16 numerical attributes.
Detailed information of these attributes can be found in UCI ML
website’.

3. METHOD
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31 Data separation

In this study, we randomly picked 80% (i.e., 16000) data points
from the original data to form a training dataset, and the left
20% (i.e., 4000) data points to form the test dataset. Cross
validation on the technique was performed using the 10-fold
test.

3.2 Nearest Neighbor Classifier (NNC)

The Nearest Neighbor Classifier (NNC) searches all training
data points to find a training point with the minimum difference
between the training point and the test point, and assign the class
of the training point to the test point. X[Ntrn][M] is the
training data, where Ntrn is the total number of the training data
points, and M is the number of attributes. Y[Ntest][M] is the
test data, where Ntest is the total number of the test data points.
The difference between a test point X[i][M], and a training

point Y[j]J[M] is computed as: dif, =ﬁ i(X[i][k]-Y[j][k])z .

The Basic NNC Algorithm:

for (each test point)

{Initiate min-diff to be a maximum possible number}

for (‘each training point) compute diff based on equation (1)
if (diff<min_diff) then

min_diff=diff

min_diff_index = index of training point

end for

class of the test point =
(min_diff_index)

end for

class of the training point

3.3 A Modified NNC Algorithm

According to the NNC algorithm discussed in 3.2, we
understand that totally NtrnxNtest loops are needed to
complete classification of Ntest test points using Ntrn training
points, which are 4000x16000 loops for this study. To improve
the classification efficiency, user can choose a threshold
minimum difference (TMD) for classification. If min_diff is
equal to TMD, we stop the loop of searching each training point
and assign the class of the training point with the difference
equal to TMD to the test point. If TMD is set to be zero, the
modified NNC is reduced to the NNC. On the other hand, if
TMD is greater than zero, the number of loops and computation
time will be reduced. This modification can also influence the
classification rate of the classification.



The Modified NNC Algorithm:

for (each test point)

{Initiate min-diff to be a maximum possible number}

for (‘each training point ) compute diff based on equation (1)
if (diff<min_diff) then

min_diff=diff

min_diff_index = index of training point

if (min_diff==TMD} break

end for

class of the test point = class of the training point
(min_diff_index)

end for

4. RESULTS AND DISCUSSIONS

We applied the NNC to each pairs of training-test dataset. To
investigate the efficiency of the NNC, we also tracked the CPU
time used for each classification. The classification rate and
CPU time used for each dataset are listed in Table 1. According
to Table 1, we can find that the performance and efficiency of
the NNC are good, because the classification rates are all above
95.1% and the CPU time is less than 451 seconds.

Table 1. Classification rate and CPU time

No.1 No.2 No.3 No.4 No.5

Rate 96.2% | 96.1% | 95.9% | 95.8% | 96.0%
CPU (s) 493 450 450 438 439
No.6 No.7 No.8 No.9 No.10

Rate 95.7% | 95.6% | 95.1% | 96.0% | 95.7%

CPU(s) | 493 450 450 438 439

To investigate the performance and efficiency of our modified
NNC, we utilized the modified NNC to classifier training-test
dataset No.1. We chose 10 different TMD values between 0 and
1.0. The results are shown in Figure 1.
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Figure.1 Plots of threshold minimum difference versus
classification rate (top) and the threshold minimum
difference versus CPU time (bottom)

Figure 1 indicates that as the TMD increases, the classification
rate and CPU time all decrease. Figure 1 also shows that as the
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TMD is 0.5, although the classification rate decreases less than
1%, the CPU time is almost reduced to 50% of CPU time used
from TMD=0 (i.e., the original NNC). Therefore, we can
improve the efficiency of classification without worsen the
performance by using our modified NNC and choosing a
suitable TMD value, because the TMD determines the trade off
between the correct classification rate and the classification
efficiency., i.e., smaller TMD value, higher classification rate
and lower efficiency, and verse versa.

5. SUMMARY

Through applying the nearest neighbor classifier (NNC) to the
10-fold CV datasets, we have demonstrated that the NNC
provides a good classification rate on the letter recognition
database. To improve the classification efficiency further, we
proposed a modified NNC and applied the modified NNC
algorithm to the same database. It is found that if we choose a
suitable threshold minimum difference for classification, we can
reduce the CPU time significantly without lowering the
performance of the classifier.

In this study, the upper case data was used. Future work will
apply the NNC and the modified algorithm to lower case data
and upper and lower mixed case data. We will investigate the
relationships along all attributes and apply these relationships to
assist the classification and hence to improve the classification
rate and efficiency.
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