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ABSTRACT 

The nearest neighbor classifier (NNC) is a non-parametric 

classification technique that classifies a test pattern to the class 

of its nearest neighbor in the training data. In this research, we 

applied the NNC to a standard letter recognition data and 

obtained a superior classification rate in comparison to extant 

approaches.  A prime drawback to the NNC technique has been 

the relative inefficiency of the model.  A modified NNC was 

implemented and applied to the same recognition problem.  It is 

found that if we choose a suitable threshold minimum difference 

for classification, we can reduce the CPU time by half without 
lowering the performance of the classifier. 

1. INTRODUCTION 
The nearest neighbor classifier (NNC) is used to classify a test 

pattern to the class of its nearest neighbor in the training data. 

NNC is a simple and common-used non-parametric classifier. It 

has been widely used in pattern recognition and machine 

learning, e.g., handwritten character recognition
1,2

, fingerprint 

recognition
 3

, face recognition
4
, and image classification

5
. 

The UCI letter recognition database has been widely used for 

testing machine learning algorithms
6
. In this study, we applied 

the NNC to the UCI letter recognition data set. To improve the 

efficiency of the NNC, we also proposed a modified NNC. The 

results of the application of the basic and modified NNC 

algorithms are presented and the improvements in efficiency and 

CPU time are discussed.  

2. DATA 
The dataset used in this study is called the “Letter Recognition 

Database” from the Machine Learning Repository at the 

University of California, Irvine. The dataset consists of 20000 

total exemplars of the 26 letters of the English alphabet in the 

upper case. The letters are derived from 20 fonts that are 

randomly distorted to form black-and-white images. Each image 

is analyzed to produce an exemplar of 16 numerical attributes. 

Detailed information of these attributes can be found in UCI ML 

website
7
. 

3. METHOD 

3.1 Data separation  
In this study, we randomly picked 80% (i.e., 16000) data points 

from the original data to form a training dataset, and the left 

20% (i.e., 4000) data points to form the test dataset. Cross 

validation on the technique was performed using the 10-fold 

test. 

3.2 Nearest Neighbor Classifier (NNC) 
The Nearest Neighbor Classifier (NNC) searches all training 

data points to find a training point with the minimum difference 

between the training point and the test point, and assign the class 

of the training point to the test point.  X[Ntrn][M] is the 

training data, where Ntrn is the total number of the training data 

points, and M is the number of attributes.  Y[Ntest][M] is the 

test data,  where Ntest is the total number of the test data points.  

The difference between a test point X[i][M], and a training 

point Y[j][M] is computed as: 
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 The Basic NNC Algorithm: 

for (each test point) 

{Initiate min-diff  to be a maximum possible number}  

for ( each training point )  compute diff  based on equation (1) 

if (diff<min_diff) then 

min_diff=diff 

min_diff_index = index of training point 

end for 
class of the test point = class of the training point 
(min_diff_index) 

end for 

3.3 A Modified NNC Algorithm 
According to the NNC algorithm discussed in 3.2, we 

understand that totally Ntrn×Ntest loops are needed to 

complete classification of Ntest test points using Ntrn training 

points, which are 4000×16000 loops for this study. To improve 

the classification efficiency, user can choose a threshold 

minimum difference (TMD) for classification. If min_diff is 

equal to TMD, we stop the loop of searching each training point 

and assign the class of the training point with the difference 

equal to TMD to the test point. If TMD is set to be zero, the 

modified NNC is reduced to the NNC. On the other hand, if 

TMD is greater than zero, the number of loops and computation 

time will be reduced.  This modification can also influence the 
classification rate of the classification.  
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The Modified NNC Algorithm:   
 for (each test point) 

{Initiate min-diff  to be a maximum possible number}  

for ( each training point ) compute diff  based on equation (1) 

if (diff<min_diff) then 

min_diff=diff 

 min_diff_index = index of training point 

if (min_diff==TMD} break 
end for 
class of the test point = class of the training point 
(min_diff_index) 

end for 

4. RESULTS  AND DISCUSSIONS 

We applied the NNC to each pairs of training-test dataset. To 

investigate the efficiency of the NNC, we also tracked the CPU 

time used for each classification. The classification rate and 

CPU time used for each dataset are listed in Table 1. According 

to Table 1, we can find that the performance and efficiency of 

the NNC are good, because the classification rates are all above 
95.1% and the CPU time is less than 451 seconds. 

Table 1. Classification rate and CPU time 

 No.1 No.2 No.3 No.4 No.5 

Rate 96.2% 96.1% 95.9% 95.8% 96.0% 

CPU (s) 493 450 450 438 439 

 No.6 No.7 No.8 No.9 No.10 

Rate 95.7% 95.6% 95.1% 96.0% 95.7% 

CPU (s) 493 450 450 438 439 

To investigate the performance and efficiency of our modified 

NNC, we utilized the modified NNC to classifier training-test 

dataset No.1.  We chose 10 different TMD values between 0 and 
1.0. The results are shown in Figure 1. 

 

Figure.1 Plots of threshold minimum difference versus 
classification rate (top) and the threshold minimum 

difference versus CPU time (bottom) 
Figure 1 indicates that as the TMD increases, the classification 

rate and CPU time all decrease. Figure 1 also shows that as the 

TMD is 0.5, although the classification rate decreases less than 

1%, the CPU time is almost reduced to 50% of CPU time used 

from TMD=0 (i.e., the original NNC).  Therefore, we can 

improve the efficiency of classification without worsen the 

performance by using our modified NNC and choosing a 

suitable TMD value, because the TMD determines the trade off 

between the correct classification rate and the classification 

efficiency., i.e., smaller TMD value, higher classification rate 
and lower efficiency, and verse versa.  

5. SUMMARY 

Through applying the nearest neighbor classifier (NNC) to the 

10-fold CV datasets, we have demonstrated that the NNC 

provides a good classification rate on the letter recognition 

database. To improve the classification efficiency further, we 

proposed a modified NNC and applied the modified NNC 

algorithm to the same database.  It is found that if we choose a 

suitable threshold minimum difference for classification, we can 

reduce the CPU time significantly without lowering the 
performance of the classifier. 

In this study, the upper case data was used. Future work will 

apply the NNC and the modified algorithm to lower case data 

and upper and lower mixed case data.  We will investigate the 

relationships along all attributes and apply these relationships to 

assist the classification and hence to improve the classification 
rate and efficiency.    
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