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Abstract

A complete understanding of communication, language, intention-

ality and related mental phenomena will require a theory integrating

mechanistic explanations with ethological phenomena. For the foresee-

able future, the complexities of natural life in its natural environment

will preclude such an understanding. An approach more conducive to

carefully controlled experiments and to the discovery of deep laws of

great generality is to study synthetic life forms in a synthetic world

to which they have become coupled through evolution. This is the

approach of synthetic ethology. Some simple synthetic ethology ex-

periments are described in which we have observed the evolution of

communication in a population of simple machines. We show that

�Arti�cial Life II: The Second Workshop on the Synthesis and Simulation of Living

Systems, Santa Fe Institute Studies in the Sciences of Complexity, proceedings Vol. X,
edited by Christopher G. Langton, Charles Taylor, J. Doyne Farmer, and Steen Rasmussen.
Redwood City, CA: Addison-Wesley, 1992, pp. 631{658.
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even in these simple worlds we �nd some of the richness and complex-

ity found in natural communication.

I am an \old bird," : : :a Simorg, an \all-knowing Bird of Ages" : : :

| DeMorgan, Budget of Paradoxes, 1872, p. 329.

1 The Problem

Language, communication and other mental phenomena have been

studied for many centuries, yet some of the central issues remain un-

resolved. These include the mechanisms be which language and com-

munication emerge, the physical embodiment of mental states, and

the nature of intentionality. I will argue below that answering these

questions requires a deep theoretical understanding of communication

in terms of the relation between its mechanism and its role in the evo-

lution of the communicators. This is one of the goals of ethology, which

\is distinguished from other approaches to the study of behaviour in

seeking to combine functional and causal types of explanation."[23]

Our approach di�ers from traditional ethological methods in that it

seeks experimental simplicity and control by studying synthetic or-

ganisms in synthetic environments, rather than natural organisms in

natural environments; it is thus called synthetic ethology.

To explain why we expect synthetic ethology to succeed where

other methods have failed, it is necessary to brie
y review the previous

approaches. In doing this I will focus on a single issue: How can a

symbol come to mean something?

1.1 Philosophical Approaches

Although philosophical methods are quite di�erent from those pro-

posed here, the investigations of several philosophers lend support to

synthetic ethology. To see why, consider the denotational theory of

meaning, in which the meaning of a word is the thing that it denotes.

This theory, which is commonly taken for granted, works well for

proper names (`Bertrand Russell' denotes a particular person; `Santa
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Fe' denotes a particular city), but becomes less satisfactory with in-

creasingly abstract terms. Even for concrete general terms (`dog',

`mountain') it is already di�cult to say exactly what they denote, as

evidenced by 2500 years of debate over the nature of universals. Verbs

are even more problematic, and a denotational theory of terms such

as `of' and `the' seems hopeless.

In this century denotational theories of meaning came under attack

from Wittgenstein and other \ordinary language" philosophers.[33]

They pointed out that only a small number of linguistic forms can

be understood in terms of their denotation; a more generally appli-

cable theory must ground the meaning of language in its use in a

social context. For example, in a simple question such as `Is there

water in the refrigerator?', the term `water' cannot be taken to have

a simple denotational meaning (such as a certain minimum number

of H2O molecules). Rather, there is a common basis of understand-

ing, grounded in the speaker's and hearer's mutual interests and in

the context of the utterance, that governs the quantity, state, purity,

spatial con�guration, etc. that a substance in the refrigerator should

have to elicit a truthful \yes" response. To understand the meaning

of `water' we must know the function of the word in its contexts of

use. Even scienti�c terms (e.g., length, mass, energy) acquire their

meaning through measurement practices that form a common basis of

understanding among scientists.

Heidegger makes very similar points, although with a di�erent

purpose.[12, 14, 15] He shows how our everyday use of language is

part of a culturally constituted nexus of needs, concerns and skillful

behavior. In his terms this nexus is a \world," and thus our linguistic

behavior both is de�ned by and contributes to de�ning the various

\worlds" in which we dwell: consider common expressions such as

\the world of politics," \the academic world," and \the world of sci-

ence." Meaning emerges from a shared cultural background of beliefs,

practices, expectations and concerns. (Related ideas are discussed by

Preston.[25])

One consequence of these views of language is that the study of

language cannot be separated from the study of its cultural matrix.

Thus one might despair that we will ever have a scienti�c theory of

meaning. Fortunately, another philosopher, Popper, has shown a pos-

sible way out of this di�culty: \The main task of the theory of hu-

man knowledge is to understand it as continuous with animal knowl-
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edge; and to understand also its discontinuity | if any | from ani-

mal knowledge."[24] This is a very unconventional view of epistemol-

ogy; traditionally philosophers have limited their attention to human

knowledge, and in particular to its embodiment in human language.

Although Heidegger and others have helped to bring non-verbal knowl-

edge into the scope of philosophical investigation, Popper goes a step

further, by indicating the importance of animal knowledge.

The importance of Popper's observation for the study of language

and the mind is that it encourages us to study these phenomena in

the context of simple animals in simple environments. Science usually

progresses fastest when it is able to study phenomena in their simplest

contexts. We expect this will also be the case with communication and

other mental phenomena: we will learn more if we start by studying

their simplest manifestations, rather than their most complex (i.e. in

humans).

1.2 The Behaviorist Approach

The preceding observations might suggest a behaviorist approach, since

communication is a behavior and behaviorist experiments often in-

volve simple animals in simple environments. But the behaviorist

approach is inadequate for several reasons. First, it su�ers from eco-

logical invalidity. Animals behave in abnormal ways when put in alien

environments, but what could be more alien than a Skinner box? As

a result, the behavior of animals in laboratory situations may do little

to inform us of their behavior in their natural environments.

Second, behaviorism investigates little snippets of behavior, such

as pressing a lever to get some food, an approach that removes these

behaviors from the pragmatic context that gives them their meaning.

The result is an investigation of meaningless behavior resulting from

a lack of pragmatic context. An example will illustrate the pitfalls of

this approach. On the basis of behavioristic tests it had been thought

that honey-bees were color-blind. However, von Frisch showed that in

a feeding context they were able to distinguish colors. In the captive,

laboratory context the color of lights was not relevant to the bees.[23]

In principle, of course, we could design experimental situations

that mimic the natural environment in just the relevant ways and

simplify it in ways that don't distort the phenomena. Unfortunately,

we don't yet adequately understand the pragmatics of real life, and
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so we don't know how to design laboratory environments that match

the natural environments in just the relevant ways. Therefore, the

behaviorist approach is, at very least, premature.

1.3 The Ethological Approach

An alternative approach to the study of communication is found in

ethology, which is in part a reaction against behaviorism. Ethology

recognizes that the behavior of an organism is intimately coupled

(through natural selection) with its environment. Therefore, since

removing an organism from its environment destroys the context for

its behavior, ethology advocates studying animals in their own worlds

(or in laboratory situations which closely approximate the natural en-

vironment). Unfortunately there are di�culties with this approach.

First, the real world, especially out in the �eld, is very messy; there

are too many variables for clean experimental design. Consider some

of the factors that could plausibly a�ect the behavior of a group of

animals: the distribution of other animals and their behavior, the dis-

tribution of plants and their growth, the terrain, the weather, ambient

sounds and odors, disease agents, etc. etc.[28] Animals are much too

sensitive to their environments to permit a cavalier disregard for any

of these factors.

Second, there are practical and ethical limits to the experiments

we can perform. The ethical limits are most apparent where human

behavior is the subject, but the situation di�ers only in degree where

other animals are concerned. Even in the absence of ethical con-

straints, control of many variables is di�cult.[28] Some of the exper-

iments we would most like to perform are completely beyond our ca-

pabilities, such as restarting evolution and watching or manipulating

its progress.

These two problems | the large number of variables and our in-

ability to control them | make it unlikely that deep ethological laws

will be discovered in the �eld. The history of the other sciences shows

that deep, universal laws are most likely to be found when the relevant

variables are known and under experimental control. When this is not

the case, the best we can hope for is statistical correlation; causal un-

derstanding will elude us. Of course, I'm not claiming that empirical

ethology is futile, only that it is very hard. Rather I anticipate that

synthetic and empirical ethology are complementary approaches to the
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study of behavior, and that there will be a fruitful exchange between

them.

1.4 The Neuropsychological Approach

Behaviorist and ethological investigations of communication are lim-

ited in an additional way: they tell us nothing of the mechanism by

which animals communicate. They are both based on black-box de-

scriptions of behavior. On the other hand, deep scienti�c laws are

generally based on a causal understanding of the phenomena. Thus

it is important to understand the mechanism underlying meaning and

other mental phenomena.[20] Several disciplines investigate the mech-

anisms of cognition. One is neuropsychology. Unfortunately, the com-

plexity of biological nervous systems is so great that the discovery of

deep laws seems unlikely, at least at the current stage of the science.

Furthermore, as we've seen, true understanding of communication and

other mental phenomena requires them to be understood in their eco-

logical context. Thus a complete theory of communication must unite

the neuropsychological and ethological levels. This is far beyond the

reach of contemporary science.

1.5 The Arti�cial Intelligence Approach

Another discipline that investigates cognitive mechanisms is arti�cial

intelligence, but with the goal of creating them, rather than studying

their naturally occurring forms. Since AI creates its subject matter,

all the variables are in its control, and so it might seem that AI is an

ideal vehicle for studying communication, meaning and the mind. Un-

fortunately, as is well known, there's much argument about whether

AI systems can | even in principle | exhibit genuine understanding.

In other words, it is claimed that since AI systems perform meaning-

less (syntactic) symbol manipulation, they lack just the properties we

want to study: meaningful (semantic and pragmatic) symbol use and

genuine intentionality. I will brie
y review the key points.

The issue can be put this way: Are AI programs really intelligent

or do they merely simulate real intelligence. Several well-known ex-

amples make the di�erence clear. It has been pointed out that no one

gets wet when a meteorologist simulates a hurricane in a computer;

there is an obvious di�erence between a real hurricane and a simu-

6



lated hurricane.[26, 27] Similarly, it is been observed that thinking,

like digestion, is tied to its biological context. The same chemical

reactions will not be digestion if they take place in a 
ask, that is,

out of the context of a stomach serving its functional role in the life

of an organism. By analogy it is claimed that there cannot be any

real thinking outside of its biological context: just as the 
ask is not

digesting, so the computer is not thinking. It has also been claimed

that computers may be able to simulate meaningful symbolic activity,

but that symbols cannot really mean anything to a computer. In par-

ticular, any meaning born by machine-processed language is meaning

that is derived from our use of the language. The rules we put into

the machine re
ect the meaning of the symbols to us; they have no

meaning to the machine. That is, our linguistic behavior has original

intentionality; whereas machines' linguistic behavior has only derived

intentionality.[10, 11]

1.6 Summary

Here is the problem in a nutshell. If we want to understand what

makes symbols meaningful (and related phenomena such as intention-

ality), then AI | at least as currently pursued | will not do. If we

want genuine meaning and original intentionality, then communica-

tion must have real relevance to the communicators. Furthermore,

if we are to understand the pragmatic context of the communication

and preserve ecological validity, then it must occur in the communi-

cators' natural environment, that to which they have become coupled

through natural selection. Unfortunately, the natural environments

of biological organisms are too complicated for carefully controlled

experiments.

2 Synthetic Ethology as a Solution

2.1 De�nition of Synthetic Ethology

The goal of synthetic ethology is to integrate mechanistic and etho-

logical accounts of behavior by combining the simplicity and control

of behaviorist methods with the ecological and pragmatic validity of

empirical ethology. The idea of synthetic ethology is simple: Instead

of studying animals in the messy natural world, and instead of ripping
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animals out of their worlds altogether, we create arti�cial worlds and

simulated organisms (simorgs1) whose behavior is coupled to those

worlds. Since the simulated organisms are simple, we can study men-

tal phenomena in situations in which the mechanism is transparent.

In brief, instead of analyzing the natural world, we synthesize an ar-

ti�cial world more amenable to scienti�c investigation. This is really

just the standard method of experimental science.

Synthetic ethology can be considered an extension of Braiten-

berg's synthetic psychology[4] that preserves ecological validity and

pragmatic context by requiring that behavior be coupled to the en-

vironment. We ensure this coupling by having the simorgs evolve in

their arti�cial world. Synthetic ethology is also related to computa-

tional neuroethology,[1, 2, 8] the principal distinction being that that

discipline typically studies the interaction of an individual organism

with its environment, whereas our investigations require the study of

groups of organisms.

2.2 Requirements of a Solution

In the following I argue that synthetic ethology does in fact solve the

problems discussed above. First observe that, rather than starting

with nature in all its glory, as does empirical ethology, or with de-

natured nature, as does behaviorism, synthetic ethology deals with

complete, but simple worlds. Complexity is added only as necessary

to produce the phenomena of interest, yet the worlds are complete, for

they provide the complete environment in which the simorgs \live" or

\die" (persist or cease to exist as structures).

Second, observe that because synthetic ethology creates the worlds

it studies, every variable is under the control of the investigator. Fur-

ther, the speed of the computer allows evolution to be observed across

thousands of generations; we may create worlds, observe their evolu-

tion, and destroy them at will. Also, such use of simorgs is unlikely

to be an ethical issue, at least so long as they are structurally simple.

Finally I claim that synthetic ethology investigates real, not sim-

ulated, communication. But how can we ensure that linguistic struc-

tures really \mean" something, that communication is taking place,

1The simorg (simurg, simurgh), a monstrous bird of Persian legend, was believed to be
of great age and capable of rational thought and speech.
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and not merely the generation and recognition of meaningless sym-

bols? Wittgenstein has shown that we are unlikely to �nd necessary

and su�cient conditions governing our everyday use of words such as

`communication', and he has warned us of the pitfalls of removing

words from their everyday contexts. Nevertheless, in the very non-

everyday context of synthetic ethology, we need a de�nition that can

be applied to novel situations.

As a �rst approximation, we might say that something is meaning-

ful if it has relevance to the life of the individual. Perhaps we could go

so far as to say it must be relevant to its survival | even if only indi-

rectly or potentially. Relevance to the individual cannot be the whole

story, however, since there are many examples of communication that

do not bene�t the communicator (e.g., the prairie dog's warning call,

a mother bird's feigning injury). Thus, as a second approximation we

can say that something is meaningful if it is relevant to the survival

of the language community.

Additional support for this criterion comes from ethology, which

has had to grapple with the problem of de�ning communication.[5, 9,

28, 30] The means that animals use to communicate, both within and

between species, are so varied that identifying an act as communica-

tion becomes problematic. One animal scratches the bark of a tree;

later another animal notes the scratches and goes a di�erent way. Was

it a communication act? The �rst animal might have been marking its

territory, which is a form of communication, or it might simply have

been sharpening its claws, which is not.

On the one hand we might say that a communication act has oc-

curred whenever the behavior of one animal in
uences the behavior

of another, but this de�nition is useless, since it views almost every

behavior as communication. On the other hand we might say that it

is not a communication act unless the �rst animal intended to in
u-

ence the other's behavior, but this criterion requires us to be able to

determine the intent of behaviors, which is very problematic. If it is

questionable to attribute intent to a 
y, it is reckless to attribute it to

a simorg: we need a de�nition of communication that does not appeal

to problematic ideas like \intent."

A de�nition of communication that is very consistent with our

approach has been proposed by Burghardt:[5, 6]

Communication is the phenomenon of one organism pro-

ducing a signal that, when responded to by another organ-
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ism, confers some advantage (or the statistical probability

of it) to the signaler or his group.

This says that communication must be relevant | in an evolutionary

sense | to the signaler. In addition it gives us an operational way

of determining if a communication act has taken place: we can com-

pare the �tness of a population in the two situations di�ering only in

whether communication is permitted or suppressed. This is the sort

of experiment that can be undertaken in synthetic ethology, but that

is infeasible for empirical ethology.

2.3 Making RealWorlds Inside the Computer

The objection may still be made that any communication that might

take place is at best simulated. After all, nothing that takes place in

the computer is real, the argument goes; no one gets wet from a hurri-

cane in a computer. To counter this objection I would like to suggest a

di�erent way of looking at computers. We are accustomed to thinking

of computers as abstract symbol-manipulating machines, realizations

of universal Turing machines. I want to suggest that we think of com-

puters as programmable mass-energy manipulators. The point is that

the state of the computer is embodied in the distribution of real mat-

ter and energy, and that this matter and energy is redistributed under

the control of the program. In e�ect, the program de�nes the laws

of nature that hold within the computer. Suppose a program de�nes

laws that permit (real!) mass-energy structures to form, stabilize, re-

produce and evolve in the computer. If these structures satisfy the

formal conditions of life, then they are real life, not simulated life,

since they are composed of real matter and energy. Thus the com-

puter may be a real niche for real arti�cial life | not carbon-based,

but electron-based.2 Similarly, if through signaling processes these

structures promote their own and their group's persistence, then it is

real, not simulated, communication that is occurring.

3 Preliminary Experiments

To illustrate the method of synthetic ethology, I will describe several

experiments that have been completed. The goal of these experiments

2There is no claim here, however, that the simorgs used in these experiments are alive.
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was to demonstrate that genuine communication could evolve in an

arti�cial world. A secondary goal was to accomplish this with the

simplest procedure possible, so that the phenomena would be most

exposed for observation.3

3.1 Setup

3.1.1 Environment

What are the minimum requirements on a world that will lead to the

emergence of communication? First, it must permit some simorgs

to \see" things that others cannot, otherwise there would be no ad-

vantage in communicating. For example, in the natural world the

signaler may perceive something which is out of the range of the re-

ceiver's senses, or the signaler may be communicating its own internal

state, which is not directly accessible to the receiver. Second, the

environment must provide a physical basis for communication: some-

thing which the signaler can alter and the alteration of which the

receiver can detect. Finally, we want the environment to be as simple

as possible, so that the phenomena are manifest.

The solution adopted in these experiments is to give each simorg

a local environment that only it can \see." The states of the local

environments, which we call situations, are determined by a random

process; therefore there is no way they can be predicted. This means

that the only way one simorg can reliably predict another's situation

is if the second simorg communicates that information to the �rst. To

provide a medium for potential communication there is also a shared

global environment in which any simorg can make or sense a symbol.

Any such symbol replaces the previous contents of the global environ-

ment; there can be only one symbol in the \air" at a time. See Figure

1 for the topology of the environment.

In these experiments the situations and symbols (local and global

environment states) are just natural numbers representing uninter-

preted elements of a �nite discrete set. Since we are creating an arti-

�cial world, there is no need to equip it with familiar environmental

3Our experiment may be contrasted with that of Werner and Dyer, who also observed
the evolution of communication, but in a more complicated synthetic world.[31] That such
di�erent experimental designs resulted in qualitatively similar observations is evidence
that synthetic ethology can reveal general properties of communication.
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Figure 1: Topology of the Environment

features such as temperature, water supply, food supply, etc. We can

de�ne the laws of this universe so that the simorgs will survive only if

they interact correctly with the uninterpreted states of this arti�cial

environment. Although these states have no interpretable \meaning,"

they are not simply syntactic, since they are directly relevant to the

continued persistence (\survival") of the simorgs.

3.1.2 Simorgs

Next consider the simorgs; they should be as simple as possible, yet

be capable of evolving or learning complex behaviors. Two simple

machine models have the required characteristics, although there are

certainly others; they are �nite state machines (FSMs) and arti�cial

neural networks (ANNs). Although ANNs are better models for a

variety of reasons,[19] we used FSMs in the experiments described

here. (See our progress report for some ANN-based experiments.[22])

Finite state machines get their name from their internal memory,

which at any given time is in one of a �nite number of states. In

addition, an FSM may have a �nite number of sensors and e�ectors,

the states of which are also �nite in number. The behavior of an FSM

is de�ned by its transition table, which comprises a �nite number of
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discrete rules. For each sensor state s and each internal state i, the

table de�nes an e�ector state e and a new internal state i
0. The

machines used in these experiment have only one internal (memory)

state. In other words, they have no ability to remember; therefore

their response is completely determined by the current stimulus (i.e.,

their own situation and the shared symbol). In e�ect, each machine

is de�ned by a table mapping symbol/situation pairs into responses.

There are two kinds of responses, emissions and actions. The e�ect

of an emission is to change the symbol in the global environment,

hence a response that is an emission must specify the symbol to be

emitted. Actions are what must be accomplished e�ectively for the

simorg to survive. Since we are selecting for cooperation we consider

a simorg's action e�ective only if it matches the situation of another

simorg. Thus a response that is an action must specify a situation

that it is trying to match.

In these experiments we placed an additional requirement on ef-

fective action, namely that the action match the situation of the last

emitter. This increases the selective pressure in favor of communica-

tion. Although one may �nd analogs of this in the natural world (e.g.,

a predator signaling for appropriate aid in bringing down some prey),

the essential point is that we are making an arti�cial world and so we

can de�ne the laws to suit the needs of our experiment.

3.1.3 Fitness

The principal goal of the selective criteria is that they lead to the

emergence of communication | without being overly \rigged." In

these experiments the environment selects for cooperative activity that

requires knowledge of something that cannot be directly perceived,

namely another simorg's local environment. Speci�cally, whenever

a simorg acts, its action is compared to the situation of the simorg

that most recently emitted. If the two match, then we consider an

e�ective action to have taken place, and both the emitter and actor are

given a point of credit. Since several simorgs may respond to a given

emitter, a successful emitter can in principle accumulate considerable

credit. Each simorg is given an opportunity to respond ten times

before all the local environments are changed randomly.4 This interval

4In these experiments the simorgs were serviced in a regular, cyclic fashion. This means
that communications with one's nearest neighbors in one direction (say clockwise) are least
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is called a minor cycle. Credit is accumulated over a major cycle,

which comprises �ve minor cycles. The resulting total is considered the

simorg's \�tness" for that major cycle, since it measures the number

of times the simorg cooperated successfully; it is the criterion by which

simorgs are selected to breed or die.

3.1.4 The Birth and Death Cycle

At the end of each major cycle, one simorg is selected to die and two

simorgs are selected to breed. This keeps the size of the population

constant, which simpli�es the simulation and the analysis. Of course,

we want the most �t to be most likely to breed and the least �t to be

most likely to die.

For reasons discussed later (Section 3.2.3), we use the �tness to

determine the probability of breeding or dying. In these experiments

we made the probability of breeding proportional to the �tness (credit

accumulated over one major cycle):

pk =
�k

P�

where pk is simorg k's probability of breeding, �k is its �tness, P is

the population size, and � = P
�1
P

P

k=1 �k is the average �tness of

the population. (If � = 0 we set pk = 1=P .) The probability of dying

cannot in general be inversely proportional to �tness. However, we can

make it a monotonically decreasing �rst-degree polynomial of �tness:

qk =
� � �k

P (� � �)

where qk is the probability of dying and � is the �tness of the most

�t simorg. (If � = � we set qk = 1=P .)

The o�spring is derived from its parents by a simpli�ed genetic

process. Each simorg has two transition tables, its genotype and its

phenotype. The genotypes of the parents are used to determine the

genotype of their o�spring by a process described below. In general the

genotype de�nes a developmental process leading to the phenotype,

and the phenotype determines the simorg's behavior. In these exper-

iments this process is trivial: the initial phenotype is the genotype.

likely to be disrupted by other emitters. This may be important in forming \communities"
using the same \language" (code).
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Further, if learning is disabled (see Section 3.1.5), then the phenotype

remains identical to the genotype.

The genotype of a simorg is a transition table, which de�nes a re-

sponse for every symbol/situation pair. Each response is represented,

in these experiments, by a pair of numbers, the �rst of which is 0 or

1, indicating act or emit, and the second of which is the situation or

symbol that goes with the action or emission. The genome itself is

just a string containing all these pairs; thus each \gene" de�nes the

response to a given stimulus.

The (unmutated) genotype of the o�spring is derived from its

parents' genotypes by a process called crossover. For purposes of

crossover we interpret the genetic string as a closed loop. Two crossover

points � and �0 are selected randomly, and a new genetic string is gener-

ated from those of the parents. That is, between � and �
0 the genes will

be copied from one parent, and between �
0 and � from the other. Note

that our crossover operation never \splits its genes;" it cannot break

up a transition table entry. We have found that this leads to faster

evolution since the genetic operations respect the structural units of

the genetic string. With low probability (0.01 in these experiments)

the genetic string may be mutated after crossover. This means that

a randomly selected gene is completely replaced by a random allele

(i.e., a pair of random numbers in the appropriate ranges).

3.1.5 Learning

In order to experiment with the e�ects of learning on the evolution of

communication, we have implemented the simplest kind of \single case

learning." Speci�cally, whenever a simorg acts ine�ectively we change

its phenotype so that it would have acted e�ectively. That is, suppose

that the global environment state is 
 and the local environment state

is �, and that under this stimulus a simorg responds with action �
0,

but that the situation of the last emitter is �00 6= �
0. Then we replace

the (
; �) entry of the phenotypic transition table with the action �
00.

(Of course, learning alters the phenotype, not the genotype.) This is

a very simple model of learning, and could easily lead to instability;

nevertheless it produces interesting results (see Section 3.2).
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3.1.6 Importance of Overlapping Generations

Because we are interested in the in
uence of learning on the evolution

of communication, we have done some things di�erently from typi-

cal genetic algorithms.[13, 17] GAs typically replace the entire pop-

ulation each generation, with the �tness of the parents determining

the frequency with which their o�spring are represented in the new

generation. In contrast, we replace one individual at a time, with

�tness determining the probability of breeding and dying. The dif-

ference is signi�cant, because the GA approach prevents the passage

of \cultural" information from one generation to the next (through

learning). In the current experiment this happens indirectly, since

symbol/situation associations are learned through ine�ective action.

Future experiments may model more direct transmission by having the

less successful simorgs imitate the behavior of the more successful. We

expect that \cultural" phenomena will be central to understanding the

interaction of learning and communication. (See also Belew[3].)

3.1.7 Measurements

How can we tell if communication is taking place? As noted previously

(Section 2.2), Burghardt's de�nition of communication suggests an

operational approach to identifying communication: detect situations

in which one simorg produces a signal, another responds to it, and the

result is a likely increase in the �tness of the signaler or its group.

In our case, �tness is a direct measure of the number of times that

an e�ective action resulted from a simorg's response to the last emitter.

Therefore, the average �tness of the population measures the advan-

tage resulting from actions coincident with apparent communication.

But how do we know that the advantage results from communication,

and not other adaptations (as it may; see Section 3.2.3)?

I have claimed that synthetic ethology permits a degree of con-

trol not possible in natural ethology, and here is a perfect example.

We may start two evolutionary simulations with the same population

of random simorgs. In one we suppress communication by writing

a random symbol into the global environment at every opportunity;

in e�ect this raises the \noise level" to the point where communica-

tion is impossible. In the other simulation we do nothing to prevent

communication. If true communication | as manifested in selective

advantage | is taking place, then the �tness achieved by the two pop-
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ulations should di�er. In particular, the rate of �tness increase should

be signi�cantly greater when communication is not suppressed. This

is the e�ect for which we must watch.

In these experiments we record several �tness parameters. The

most important is �, the average �tness of the population (smoothed

by a rectangular window of width 50). The second most important

is �, the �tness of the most �t simorg at the end of each major cycle

(similarly smoothed). The �gures in this chapter show the evolution

of �; the evolution of � is qualitatively similar.[21]

I am proposing synthetic ethology as a new way to study com-

munication. Therefore, if by the process just described we �nd that

communication is taking place, then we must see what the simulation

can tell us about it. At this stage in the research program we have

addressed only the most basic questions: What are the meanings of

symbols, and how do they acquire them?

To answer these questions we construct during the simulation a

data structure called a denotation matrix. This has an entry for each

symbol/situation pair, which is incremented whenever there is an ap-

parent communication act involving that pair. If symbols are being

used in a haphazard fashion, then all the pairs should occur with ap-

proximately the same frequency; the matrix should be quite uniform.

On the other hand, if the symbols are being used in a very system-

atic way, then we should expect there to be one situation for each

symbol, and vice versa.5 Each row and each column of the denota-

tion matrix should have a single nonzero entry, and these should all

be about equal; this is a very nonuniform matrix, which we will call

the ideal denotation matrix. Thus systematic use of symbols can be

detected (and quanti�ed) by measuring the variation (or dispersion)

of the denotation matrix.

One of the simplest measures of variation is the standard devia-

tion, which is zero for a uniform distribution, and increases as the

distribution spreads around the mean. However the standard devi-

ation is not convenient for comparing the uniformity of denotation

matrices between simulations, since the mean may vary from run to

run. Instead, we use the coe�cient of variation (V ), which measures

5This is assuming that the number of local environment states equals the number of
global environment states, as it does in these experiments. We discuss later (Section 4)
the consequences of having unequal numbers of states.
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the standard deviation (�) in units of the mean (�):

V = �=�:

The coe�cient of variation is 0 for a uniform denotation matrix, and

for the ideal matrix is
p
N � 1 (where N is the number of global or

local environment states, which are assumed equal).

Another measure of uniformity is the entropy of a distribution,

which is de�ned:6

H = �
X

k

pk log pk :

This is maximized by the uniform distribution; since there are N
2

equally likely states, its entropy is 2 logN . The minimum entropy

H = 0 is achieved by the \delta distribution" (which makes all the

probabilities zero except one). This is not so interesting, however, as

the entropy of the ideal matrix, which is easily calculated to be logN .

To allow comparisons between simulation runs, we also use a \disorder

measure":

� =
H

logN
� 1:

This is a scaled and translated entropy, which has the value 1 for a

uniform matrix, 0 for the ideal matrix, and�1 for the \overstructured"
delta matrix.

There are a variety of other statistical measures that may be used

to quantify the structure of the denotation matrix. For example, �2

will be 0 for the uniform matrix and maximum for the ideal matrix.

Fortunately the results we have observed so far are robust in that they

are qualitatively the same no matter what statistics are used.

3.2 Results

Unless otherwise speci�ed, the experiments described here used a pop-

ulation size P = 100 of �nite state machines with 1 internal state.

Since the number of local and global environment states were the

same, N = 8, each machine was de�ned by a transition table contain-

ing 64 stimulus/response rules. Simulations were generally run for

5000 major cycles (one birth per major cycle).

6We use logarithms to the base 2, so that our entropy measure is more easily interpreted.
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Figure 2: Average Fitness, Communication Suppressed and Learning Dis-

abled

3.2.1 E�ect of Communication on Fitness

Figure 2 shows the evolution of the (smoothed) average �tness (�)

of a typical random initial population when communication has been

suppressed and learning has been disabled. It can be observed to have

wandered around the �tness expected for machines that are guessing,

� = 6:25. (The analysis may be found in an earlier report.[21]) Linear

regression detects a slight upward trend ( _� = 1:55� 10�5). This is a

stable phenomenon across simulations, and is explained later (Section

3.2.3).

Figure 3 shows the evolution of the average �tness for the same

initial population as Figure 2, but with communication permitted
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Figure 3: Average Fitness, Communication Permitted and Learning Disabled
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Figure 4: Average Fitness, Communication Permitted and Learning Enabled

(learning still disabled). Within 5000 major cycles the average �t-

ness reaches � = 11:5, which is signi�cantly above the guessing level

(� = 6:25). Furthermore, linear regression shows that the average

�tness is increasing over 50 times as fast as when communication was

suppressed ( _� = 8:25�10�4 vs. _� = 1:55�10�5). We conclude that in

this experiment communication has a remarkable selective advantage.

Figure 4 shows the evolution of � for the same initial population,

but with communication permitted and learning enabled. First ob-

serve that the average �tness begins at a much higher level (� � 45)

than in the previous two experiments. This is because each simorg

gets ten opportunities to respond to a given con�guration of local en-

vironment states. Since learning changes the behavior of a simorg so

21



Table 1: Average Measurements over Several Random Populations

Measurement Comm/Learning

N/N Y/N Y/Y

� 6.31 11.63 59.65

_�� 104 0.36 11.0 28.77

V 0.47 2.58 2.65

H 5.81 3.79 3.87

� 0.94 0.26 0.29

that its response would have been correct, an incorrect response could

be followed by up to nine correct responses (provided no intervening

emissions change the global environment). The combination of com-

munication and learning allowed the average �tness to reach 55, which

is nearly �ve times the level reached without learning and nearly nine

times that achieved without communication. The rate of �tness in-

crease was _� = 2:31 � 10�3, which is almost three times as large as

that without learning, and nearly 150 times as large as that without

communication.

We have observed quantitatively similar results in many experi-

ments. Table 1 (adapted from an earlier report[21]) shows average

measurements from several experiments that di�er only in initial pop-

ulation.

To better understand the asymptotic behavior of the evolutionary

process, we have run several simulations for ten times as long as those

previously described. Figure 5 shows the evolution with communica-

tion permitted but learning disabled, and Figure 6 shows the evolution

of the same initial population, but with communication permitted and

learning enabled. In the �rst case average �tness reached a level of ap-

proximately 20.7 In the second (learning permitted) � seems to have

reached an equilibrium value (�� = 56:6 in fact); we can also observe

an apparent \genetic catastrophe" at about t = 45000.

The greatly increased �tness that results from not suppressing the

signaling process supports the claim that we are observing genuine

communication. The communication acts have real relevance to the

7Under reasonable assumptions the maximum � achievable without learning by a ho-
mogeneous population can be calculated to be 87.5; details are presented elsewhere.[21]
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Figure 5: Average Fitness, Communication Permitted and Learning Disabled
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Figure 6: Average Fitness, Communication Permitted and Learning Enabled
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Table 2: Denotation Matrix, Communication Suppressed and Learning Dis-

abled

situation

symbol 0 1 2 3 4 5 6 7

0 320 138 189 360 266 354 224 89

1 364 130 189 359 261 342 266 75

2 332 126 184 385 252 365 257 82

3 350 125 193 366 257 351 255 98

4 340 119 190 354 254 356 225 78

5 328 145 170 343 244 348 217 86

6 345 119 194 374 214 361 237 78

7 346 149 159 343 242 383 226 83

V = 0:409451

H = 5:868233

� = 0:9560777

simorgs because they signi�cantly a�ect the survival of the signaler

and its group (cf. Burghardt's de�nition, Section 2.2).

3.2.2 Analysis of Denotation Matrices

If genuine communication is taking place, then we ought to be able to

observe it in more structured use of symbols; therefore we consider the

structure of the resulting denotation matrices. First consider Table

2; this is the denotation matrix from the same simulation shown in

Figure 2. In the absence of communication and learning we see a very

uniform matrix, as measured by its coe�cient of variation V = 0:41

and entropy H = 5:87, which is nearly the maximum possible, 6.

This is also re
ected in the disorder parameter � = 0:96; recall that a

uniform matrix has � = 1 and an \ideal" matrix has � = 0.

Table 3 shows the denotation matrix that results when commu-

nication is permitted; even to the eye it is much more structured

than Table 2. This is con�rmed by our measurements: V = 2:27 (cf.

V = 2:65 for the ideal matrix), H = 3:92, � = 0:31.

Finally, Table 4 is the denotation matrix resulting from both com-

munication and learning. Qualitatively and quantitatively it is very
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Table 3: Denotation Matrix, Communication Permitted and Learning Dis-

abled

situation

symbol 0 1 2 3 4 5 6 7

0 695 5749 0 1157 0 2054 101 0

1 4242 11 1702 0 0 0 1 0

2 855 0 0 0 0 603 862 20

3 0 0 0 0 1003 430 0 1091

4 0 0 0 0 0 0 2756 464

5 0 0 40 0 548 0 817 0

6 1089 90 1 281 346 268 0 62

7 0 201 0 288 0 0 2 0

V = 2:272352

H = 3:915812

� = 0:3052707

Table 4: Denotation Matrix, Communication Permitted and Learning En-

abled

situation

symbol 0 1 2 3 4 5 6 7

0 0 0 2946 0 0 635 4239 3233

1 2084 0 672 1457 0 6701 8517 1284

2 0 0 646 433 0 230 63 879

3 0 1074 446 46 2315 1623 0 1265

4 27850 5504 0 2326 11651 243 3428 20076

5 1301 0 0 854 858 368 0 0

6 13519 2676 0 2223 2391 874 0 644

7 356 226 365 107 1357 27 100 1

V = 2:165397

H = 4:208782

� = 0:4029273
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similar to Table 3, but slightly less structured. This phenomenon is

even more apparent in longer simulations, such as the t = 50000 sim-

ulations shown in Figures 5 and 6. In these, evolution in the absence

of learning produced a denotation matrix having � = �0:2, indicating
an overstructured language, whereas evolution with learning produced

a less structured language (� = +0:2) but higher �tness.8 This phe-

nomenon seems to be consistent with research indicating that there

is an optimal degree of structure[18] and that that optimum is more

easily achieved with learning.[16]

The \ideal" denotation matrix has one symbol for one situation

and vice versa; this is a structure that we might expect to see emerging.

For example, in the denotation matrix in Table 3 there is at least one

symbol that predominantly denotes a single situation: in 86% of its

recent uses, symbol 4 denoted situation 6, in the remainder situation

7. Since these are the only two uses of symbol 4, it seems likely that

the denotation matrix re
ects two subpopulations (of unequal size)

using the same symbol for di�erent situations. More nearly equal

subpopulations may be indicated by symbols such as 7, which is used

for situations 1 and 3 with nearly equal frequency.

Symbols being used to denote several situations may also result

from their being used equivocally by a single population; they could

re
ect an intermediate stage in the evolution to univocal symbol use.

It is di�cult to discriminate between these two possibilities on the

basis of just the denotation matrix. Doing so requires more detailed

analysis of the simorgs in the �nal population, a process which is

straight-forward in synthetic ethology, since we have complete access

to the structure of the simorgs. (Simple examples of this kind of

analysis are presented in our report.[21])

The natural way to interpret the denotation matrix is by rows,

which re
ects the signi�cance of a symbol to a recipient; ethologists

sometimes call this the meaning of a signal.[7, 28, 29, 30] We can also

look at the denotation matrix by columns, which shows the situation a

signaler was expressing by a symbol; ethologists call this the symbol's

message.[7, 28, 29, 30] Sometimes the two are symmetric. For example,

in Table 3 the meaning of symbol 4 is usually (86%) situation 6, and

the message `situation 6' is usually (61%) represented by symbol 4.

8See Tables 17 and 18 in our earlier report[21] for the denotation matrices resulting
from these experiments.
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On the other hand, asymmetries may occur. Symbol 6 usually (51%)

means situation 0, but situation 0 is usually (62%) represented by

symbol 1. Conversely, situation 2 is usually (98%) represented by

symbol 1, but symbol 1 usually (71%) means situation 0.

Even in a synthetic ethology experiment as simple as this, we may

begin to observe some of the richness and complexity of real com-

munication. For example, in the actual \language" or code re
ected

in the evolved denotation matrix | as opposed to the ideal matrix

given by theory | we �nd that there is rarely a one-to-one (univocal)

correspondence between symbols and situations. Indeed, it is quite

possible that a simorg will attach di�erent signi�cance to a symbol

when it is received or when it is emitted; that is, a simorg need not

associate the same meaning and message to a given symbol. If this

is the case for simorgs, then it would seem foolish to assume that in

human languages an utterance has the same pragmatic signi�cance

when it is spoken as when it is heard.

The denotation matrix captures the actual use of the code by the

entire population over the last 50 major cycles of the simulation. In

this sense it is an irreducible description of the message and meaning

associated with every symbol. It is irreducible because any attempt

to ignore the lesser entries and specify a unique denotational meaning

for a symbol will misrepresent the facts of communication. In fact

symbol 4 means situation 7 some (16%) of the time; this is part of the

overall meaning of symbol 4 in that population at that time. To say

that symbol 4 really means situation 6, and that the rest is noise, is a

misrepresentation of the \language."

Given that the denotation matrix is the irreducible description of

the code, we see that the evolution of the code is mirrored in the evo-

lution of the denotation matrix. Indeed, in the denotation matrix we

may see the code as an emergent nonequilibrium system, which orga-

nizes itself by promoting the �tness of simorgs that behave in accord

with its emerging structure.[20] This emerging structure is measured

by the decreasing entropy of the denotation matrix.

Over time we may observe a changing constellation of meanings

associated with a given symbol, and of the symbols representing a

given message. We have already seen that these experiments indi-

cate both synonymous and equivocal symbols. The experiments also

exhibit both context-sensitive emission and context-sensitive interpre-

tation of symbols. This is because the emission of a symbol by a
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simorg may depend on the global environment (providing a context)

as well as its local environment. Similarly, the response of a simorg to

a symbol depends on its situation, which supplies a context. Finally,

we observe that the di�ering use of symbols in various contexts makes

it quite possible for every simorg to be using a di�erent dialect of the

\language" manifest in the denotation matrix. Even in these simple

experiments we can begin to appreciate the complexity of the relation

between symbols and their signi�cance.

3.2.3 Other Observations

In the course of these experiments we have made several observations

that provide some insight into the evolution of communication.

All of our experiments in which communication (and learning) is

suppressed show a slight upward trend in �tness (see Figure 2 and

Table 1). This is surprising, since in the absence of communication

it would seem that there is no way to improve on guessing. However,

that is not the case, and the way that it can occur is an interesting

demonstration of the force of the evolutionary process. To see this,

observe that our de�nition of e�ective action (Section 3.1.3) permits

a kind of \pseudo-cooperation through coadaptation." Speci�cally, a

simorg is credited whenever its action matches the situation of the last

emitter, which is also credited. Therefore, if the population contains

a group of simorgs that emit only when they are in a �xed subset

E of situations, then the possible states of the last emitter will not

be equally likely; speci�cally states in E will be more likely than the

other states. Under these conditions a simorg can \beat the odds" by

always guessing a situation in E. The coadaptation of such \pseudo-

cooperating" groups of simorgs seems to account for the increase of

�tness even when communication is suppressed.

We checked this hypothesis in several ways. First, we compared

simulations with the usual scoring algorithms to those in which �t-

ness was credited by a match to any other simorg (vice just the last

emitter); this eliminated the possibility of pseudo-cooperation. As ex-

pected, there was no trend in the average �tness. Second, we inspected

the denotation matrices; doing so showed that emissions occurred in

only a subset of the situations. Third, we calculated the expected

average �tness for homogeneous populations and subsets E of the ob-

served size. With the parameters we used, and the observed size 3
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for E, we calculated the expected �tness to be � = 20:83; in four

simulations we observed � = 20; 29; 21; 23. Together these are strong

evidence in favor of the hypothesis.

Pseudo-cooperation can be eliminated by not favoring a match to

the most recent emitter. Unfortunately, this removes much of the se-

lective pressure toward communication (since it makes guessing almost

as good a strategy as communicating) and therefore slows the simu-

lations. For this reason we have retained the original scoring rule; in

most cases pseudo-cooperation is a low level e�ect that is unintrusive

and can be ignored.

Another observation arose from earlier, unsuccessful experiments.

Recall that �tness determines the probability of breeding or dying;

there is always a chance that the least �t will breed and that the most

�t will die. In earlier experiments we used a simpler approach: breed

the two most �t simorgs and replace the least �t. Thus the current

algorithm is stochastic, whereas the older one was deterministic (ex-

cept in the case of �tness ties). The change was made because we

never observed the evolution of communication in the deterministic

situation.

The reason seems to be as follows. Since only the two most �t

simorgs breed, other good, but not great, simorgs are forever excluded

from contributing to the gene pool. Since language is hard to get

started, it is to be expected that nascent communicators will not be

as �t as guessers. Language communities will never evolve, unless they

have some chance of breeding, and this seems to be prevented by the

brittleness of the deterministic algorithm.

4 Conclusions

I have argued that a complete understanding of language, communica-

tion and the representational capabilities of mental states will require

a theory that relates the mechanisms underlying cognition to the evo-

lutionary process. I also argued that the complexity of natural organ-

isms makes it unlikely that such an integrated theory can be found by

empirical ethology. Therefore synthetic ethology has been proposed

as a complementary research paradigm, since carefully controlled ex-

periments and deep theoretical laws are more likely to be achievable

in the comparative simplicity of synthetic worlds.
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As an example of synthetic ethology I have described experiments

in which we have observed the evolution of communication in a pop-

ulation of simple machines. This was accomplished by constructing

a world in which there is selection for cooperation and in which ef-

fective cooperation requires communication. The control granted by

synthetic ethology permitted us to observe the evolution of the same

population in two worlds (one in which communication was suppressed,

the other permitted), and thus to measure the evolutionary e�ect of

communication. Further, synthetic ethology a�ords complete access

to the structure of the simorgs, thus exposing the mechanisms under-

lying their communication.

We are hopeful that synthetic ethology will prove a fruitful method

for investigating the relation between linguistic and mental structures

and the world. The experiments described here are just a beginning,

and there are many directions in which to proceed. For example,

if the number of situations exceeds the number of symbols, then we

would expect the simorgs to string symbols together into \sentences";

this has already been observed, but more experiments are needed to

discover the syntax that will emerge and the factors a�ecting it.

It also seems likely that the complexity of language re
ects the

complexity of the world. Our experiments to date have used environ-

ments that are in one of a �nite number of discrete, atomic situations,

and the resulting \languages" have been similarly simple. This sug-

gests that we equip our synthetic worlds with environments containing

objects in various relationships; we expect this to lead to categories of

symbols analogous to the parts of speech (nouns, adjectives, etc.).

To date our experiments have been based on �nite, discrete sets of

symbols and situations, but much of the natural world is characterized

by continuous variation, and both human and animal communication

make signi�cant use of continuously variable parameters (loudness,

pitch, rate etc.). Ethological studies[32] suggest that discreteness |

so called \typical intensity" | will emerge to the extent that commu-

nication is noisy, an easy variable to control in synthetic ethology. We

hope to address this issue in future experiments and thus identify the

principles underlying the emergence of discrete symbolic processes.
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