Dialog Trajectory Analysis

J.H. Wright, A. Abella and A.L. Gorin

AT&T Labs — Research

{jwright, abella, algor} @research.att.com

Abstract

Spoken dialog systems are becoming increasingly
common in deployed services. These systems are not
perfect, and are often deployed “open-loop” — lacking
in systematic procedures for diagnosing problems and
for making improvements. In order to target
improvements where they will have the biggest impact
two things are needed: first, methods and tools for
detailed analysis of a data feed of call logs and customer
audio; second, an interactive tool for presenting an
intuitive view of the results to those responsible for the
application. In this paper we discuss the paradigm and
an implementation through which we are able to close
the loop between system execution and system
evolution by providing an empirical dialog trajectory
analysis represented via a stochastic finite state
machine. Novel graph analysis algorithms are
introduced for change detection, compression and
pruning for display, based on user-interface objectives.

1. Introduction

Dialog systems exist in a variety of instantiations, each
allowing the user a different interaction medium. There
exist the touch-tone dialog systems that accept only
keypad input, requiring a user to select from a
predefined set of options that may or may not reflect the
user’s problem. There also exist directed dialog
systems that allow speech input but greatly constrain
what the user can say. Quite often these systems do not
differ greatly from traditional touch-tone systems. The
most flexible of dialog systems enable user initiative,
allowing the user to describe their problem in
unconstrained fluent speech, shifting the burden from
the user to the system [1,2]. A method for monitoring
the user-system interaction is required regardless of the
type of dialog system.

There are two traditional ways to monitor deployed
spoken dialog systems. First, call monitoring enables
operations personnel to dial in and listen to a series of
calls made to the system. This has the advantage that
the listeners can hear the customers’ speech and assess
the experience from the customers’ viewpoint.
However, the sample of calls is bound to be very small,
it may be unrepresentative because of the timing of dial-

in sessions, and the listeners’ assessments will be
subjective. Second, summary reports are normally
available on a daily or weekly basis. Typically these
give a breakdown of the overall outcomes of all the
calls into the system, including the numbers of service
completions, transfers to agents, and hang-ups. But
they are usually too coarse-grained to be of diagnostic
value when some parts of the system are not performing
well. The same is true of the usability measures widely
used for spoken dialog systems [3,4].

In this paper we describe new technology for
automatically “listening” to all calls, providing fine-
grained analysis and diagnosis, real-time system
evaluation and business intelligence. At the core of this
technology is an algorithm for creating an empirical
call- flow that enables the analysis and evaluation of the
system with respect to the call-flow specification.

The call-flow specifies the actions the application
should perform based on the user input and possibly
pertinent external information about the user that is
retrieved from a database. The call flow is organized
into sub-dialogs, each of which may involve a series of
turns with the user.

The empirical call-flow lays out the actual user’s
path through the call flow. It is generated for many
users over many interactions thus creating a
representation of the system behavior.

2. Visualization of dialogs

2.1 Data feed

In order to close the loop between a deployed system
and its analysis, a regular data feed is required, with
provision for the operations personnel (who are
responsible for the system) to view the results. This is
illustrated in Figure 1. Dialog systems are equipped
with the ability to record key pieces of information to a
call-log. What information is recorded varies greatly
from application to application. Section 2.3 describes
the challenges associated with key pieces of information
missing from the call-log. Currently the call-logs
generated by the production system are sent via ftp to a
database that organizes the call-logs and the customer
audio. The analysis and visualization tools mine the
database and generate results that are viewable on a web
server through an interactive web tool that the

operations personnel use to determine recommendations
for changes to the system.

#’ Database of call-logs
| and customer audio
Spoken dialog \@_/

|

|

|

1

|

system I
Mining and 1
|

|

1

|

|

|

|

Release

visualization tools

¥ Web server
Browser I

Figure I: Closing the loop between system and
analysis.

2.2 Hot-Spot Detection

Figure 2: Finding sub-dialog hot-spots.

Some systems require long dialogs with customers,
extending over many turns, especially where the dialog
is tightly directed. These are best partitioned into sub-
dialogs using the call-flow as a guide. Each sub-dialog
must end in exactly one of four possible ways: proceed
to next (P), transfer to agent or to another system (T),
end-call by system (E), hang-up by caller (H), see
Figure 2. Not all of these may be implemented for all
systems or sub-dialogs. The first three are determined
by the call-flow, the last by the caller.

We are especially concerned with sub-dialogs that
have a relatively low rate of proceeding to the next sub-
dialog. If there is a large number of transfers from a
particular sub-dialog we want to be able to zoom in and
discover the precise reasons for this. Such hot-spots are
good candidates for system improvements via changes
to call-flow and models, implemented through system
releases.

2.3 Hidden variables
Consider the question of how to represent distributions
of dialogs. The structure of a dialog (in general) is a

sequence of sub-dialogs, each a sequence of turns, each
a set of attributes with values. By projecting a sub-
dialog onto a sequence of one of these attributes to form
a dialog trajectory we are then able to sort, count, and
view as a stochastic finite state machine (FSM). If we
project onto two attributes we obtain two interleaved
sequences, which can be represented on the nodes and
arcs of the FSM.

Ideally a node of the FSM would correspond with a
unique state within the call-flow. If the logging is
sufficiently comprehensive then this can be achieved
with little or no manual intervention. In practice, call-
logs are often incomplete, correspondence between call-
flow and call-log is often implicit, and the outcome of
the call (transfer to agent or another IVR, system end-
call, wuser hang-up without completion, service
completion) is not explicitly logged. The call-flow state
and call-outcome must then be treated as hidden
variables, and algorithms developed to infer these from
observations.

3. Methods and tools

3.1 From call-logs to FSM

The four essential steps in visualizing the dialogs are as

follows:

1. Either extract directly from each call-log (if
possible) or infer (if needed) interleaved sequences
of two chosen attributes that characterize the
system state and user response.

2. Append the call outcome (transfer to agent or
another IVR, system end-call, user hang-up without
completion, service completion). This completes
the dialog trajectories.

3. Sort, count, and convert the dialog trajectories into
a minimized stochastic FSM [5], with the system
state represented on the nodes and the user
response on the arcs. The call outcomes are
encoded in the terminal nodes.

4. Plot the FSM using a visualization package. For
this we used the Graphviz package [6].

This can be done daily, weekly, monthly, or depending

on need. Examples are shown in section 4.

3.2 Change detection

The behavior of a system is likely to change over time,
as a result of system releases, user behavior and traffic
routing into the system. Detecting and highlighting
these changes requires two refinements. The first step
is to detect the changes, but we want to focus on the
independent sources of any change — consequent
changes are distracting. Here we consider only changes
relative to a chosen reference period, rather than trends
or cycles.

Figure 3: Change detection within a sub-dialog.

Because we are most interested in call outcomes, we
first test each sub-dialog terminal node F' (see Figure 3)
to find out whether P(F) has significantly increased or
decreased. If so, we search among the arcs for
contributory influences. Arc a (from state S) is
significant for terminal node F if
e P(alS) has significantly changed in the same
direction as F (increased or decreased), and
e P(F]S,a) is significantly greater than P(F|S,a)
All of these tests are done using 2x2 contingency tables,
using exact methods for small counts and the standard
chi-square approximation for large counts.
These conditions ensure that an arc is significant
for a terminal node because of a local change at state S,
and not just because more trajectories are entering state
S as a result of other changes upstream. For display on
the Web, significant changes (arcs and nodes) are
represented in color.

3.3 Sub-graph compression

The sub-dialog trajectory FSMs can be quite large and it
is useful to be able to compress them to make the
significant changes more prominent. This is not the
same as pruning, where we delete arcs and nodes
according to some criterion. Instead, sub-graphs
containing no significant changes are compressed into a
single arc represented by a dashed line.

Figure 4(a) shows part of a sub-dialog FSM,
containing two significant arcs (bold arrows). The first
step is to label certain nodes as visible as follows:

e Start and all terminal nodes

e Nodes connected by significant arcs

All significant arcs are retained, and dashed arcs are
created wherever there are two or more arcs between
visible nodes. The result is shown in Figure 4(b). The
trajectory count associated with a dashed arc is
accumulated over the trajectories that pass through its
source and destination, excluding trajectories also
passing through source nodes of other arcs (including
dashed arcs) that terminate at the same destination.

3.4 Web Interface
An interactive web tool was created to enable the
operations personnel to view the results of the analysis.

-

-~
T, —--

Figure 4: Part of FSM, (a) uncompressed, (b)
compressed.

The web tool allows a user to view weekly dialog
trajectories. There are multiple views of the
trajectories. When a user selects a week they see an
overview of the empirical call-flow for the entire
application, as shown in Figure 5. Each node on this
graph represents a sub-dialog. The web tool enables the
user to click on the node and see the graph representing
the sub-dialogs as shown in Figure 6. The nodes on
each sub-dialog graph represent the grammars that were
active. Clicking on the grammar nodes reveals statistics
about the grammar, including the numbers of rejections,
recognitions, and silences. It also displays the top 6
recognition results.

Each sub-dialog page reveals two options to the
user. If there has been a significant change from the
reference to the current period then a button appears
that enables the user to view only the portion of the
graph that has changed significantly from the reference
period. Also associated with each page is an option for
an expanded view of the graph that displays the user
utterances on the arcs.

4. Trouble ticket application

4.1 Description of the application

This is a dialog system for creating a trouble ticket that
details a problem with a telephone or data circuit.
Coarse-grained statistics are available that describe
overall numbers of transfers and hang-ups, but with no
indication of where or why. A daily data feed is
received that contains the recognizer call-logs. These
call-logs contain turn information including a time
stamp, grammar name, recognizer status and result.
Missing from the call-logs are the prompts that were
played, the results of any touch-tone input, and the call
outcome. The state within the call-flow at each turn,
and the call-outcome, are hidden variables that have to
be inferred from the sequence of grammars and user
responses.

B0 _ - >
J—— mogper st 40 _
o G unsure 60) __¢Callediy ~ ~

2340
_____ Called# 10digits 2280 (+)

,‘225” AT
950 o
i o WA N

Problem1?

call-flow change.
Second, in eliciting a
Called# a greater
proportion of users are
providing a valid 10-
digit number, with a
smaller proportion
unsure. Together these
explain the significant
changes in the end-call
and Where? terminal
nodes.

5. Conclusions

We have described a
new procedure for
visualization of dialog
trajectories, with the
ability to zoom in to
pinpoint hot spots.
Machine and customer

Figure 6: Problem? sub-dialog, compressed.

channels are represented
on the nodes and arcs of
an FSM. Novel graph

4.2 Results
Figure 5 shows a sub-dialog overview plot, similar to
Figure 2. This and detailed plots for all the sub-dialogs
are generated automatically from the call-logs received
each day. The six sub-dialogs are as follows:
e Phone or Circuit?: Determine whether problem is
with a phone or a data circuit.
e Phone#: Get and confirm the trouble phone number.
e Circuit: Get and confirm the trouble circuit
number.
e Who?: Get contact information.
e Problem?: Get details of the problem.
e Where?: Get location information.
The numbers on the arcs are ficticious, but they
illustrate the approach. The proportion of calls reaching
the Where? sub-dialog has significantly increased
compared with a reference period (indicated by the + on
the arc and in the node), and the proportion of end-calls
for this sub-dialog has decreased (indicated by the —).
To understand this in greater detail we turn to the
trajectory plot for this sub-dialog, Figure 6. The
Where? sub-dialog is treated as a terminal node for this
sub-dialog. The full plot actually contains more than
17,000 arcs, so we use the compression procedure
(section 3.3) to highlight the arcs that significantly
influence the terminal nodes (section 3.2). Hang-ups
are not displayed because they have not significantly
changed. We see two changes that explain the observed
shift. First at the start node, fewer calls are routed
through the Problem1? question, with a greater number
being routed through two alternatives. This reflects a

algorithms are introduced for inferring hidden variables,
change detection, and subgraph compression.

6. Acknowledgements

The authors would like to thank David Lerner, Tina
Grobe and Raymond Murry for their support and
enthusiasm. Also David Kapilow for help with data
extraction, and John Ellson for help with the Graphviz
package.

7. References

[1] A.L.Gorin, G.Riccardi and J.H.Wright, “How May I
Help You?”, Speech Communication, 23: 113-127,
1997.

[2] A.L.Gorin, A.Abella, T.Alonso, G.Riccardi and
J.H.Wright, “Automated natural spoken dialog”, IEEE
Computer Magazine, 35(4):51-56, 2002.

[3] L.B.Larsen, “Assessment of spoken dialogue
system usability — what are we really measuring?”,
Proc. Eurospeech-03, Geneva, pp. 1945-1948, 2003.

[4] M.Walker, D.Litman, C.Kamm and A.Abella,
“PARADISE: A framework for evaluating spoken
dialog systems”, Proc. 35" Annual Meeting of ACL,
pp-271-280, 1997.

[5] M.Mohri, F.C.Pereira and M.Riley, “Weighted
finite-state transducers in speech recognition”,
Computer Speech and Language, 16(1):69-88, 2002.

[6] ER.Gansner and S.C.North, “An open graph
visualization system and its applications to software
engineering”, Software — Practice and Experience,
30(1):1203-1233, 2000.

