Chapter 6

Evolving Finite State Automata

(©2001 by Dan Ashlock

In this chapter, we will evolve finite state automata. (For the benefit of those trained in
computer science we note the finite state automata used here are, strictly speaking, finite
state transducers: they produce an output for each input.) Finite state automata (or FSAs)
are a staple of computer science. They are used to encode computations, recognize events,
or as a data structure for holding strategies for playing games. In Section 6.1, we start off
with a very simple task: learning to predict a periodic stream of zeros and ones. In Section
6.2, we apply the techniques of artificial life to perform some experiments on the Iterated
Prisoner’s Dilemma. In Section 6.3, we use the same technology to explore other games. We
need a bit of notation from computer science.

Definition 6.1 If A is an alphabet, e.g., A = {0,1} or A = {L, R, F'}, then we denote by
A™ the set of strings of length n over the alphabet A.

Definition 6.2 A sequence over an alphabet A is an infinite string of characters from A.
Definition 6.3 By A* we mean the set of all finite length strings over A.
Example 6.1

{0,1}* = {000, 001,010,011, 100, 101, 110, 111}

{a,b}* = {\, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, . . .}

Definition 6.4 The symbol \ denotes the empty string, a string with no characters in it.

Definition 6.5 For a string s we denote by |s| the length of s (i.e., the number of characters
ins).
137

138 CHAPTER 6. EVOLVING FINITE STATE AUTOMATA

Example 6.2
Al =0

|lheyHeyHEY | =9

6.1 Finite State Predictors

A finite state automaton requires an input alphabet, an output alphabet, a collection of
states (including a distinguished initial state), a transition function, and a response function
(possibly including an initial response used before the automaton has processed any input).
The states are internal markers used as memory - like the tumblers of a combination lock that
“remember” if the user is currently dialing in the second or third number in the combination.
The transition function encodes how the automaton moves from one state to another. The
response function encodes the outputs produced by the automaton, depending on the current
state and input.

An example may help make some of this clear. Consider a thermostat. The thermo-
stat makes a decision every little while and must not change abruptly from running the
furnace to running the air-conditioner and vice-versa. The input alphabet for the ther-
mostat is {hot, okay, cold}. The output alphabet of a thermostat is {air—conditioner, do—
nothing, furnace}. The states are {ready, heating, cooling, just—heated, just—cooled}. The
initial state, transition function and response function are shown in Figure 6.1.

The thermostat uses the “just-cooled” and “just-heated” states to avoid going from
running the air-conditioner to the furnace (or the reverse) abruptly. As an added benefit,
the furnace and air-conditioner don’t pop on and off; the “just” states slow the electronics
down to where they don’t hurt the poor machinery. If this delay were not needed we might
be able to confuse the states and actions. Formally, you let the states be the set of actions
and “do” whatever state you're in. A finite state automaton that does this is called a Moore
machine. The more usual type of finite state automaton, with an explicitly separate response
function, is termed a Mealey machine. In general, we will use the Mealey architecture.

Notice that the transition function ¢ (shown in the second column of Figure 6.1), is a func-
tion from the set of ordered pairs of states and inputs to the set of states, i.e., t(state, input)
is a member of the set of states. The response function r (in the third column), is a function
from the set of ordered pairs of states and inputs to the set of outputs, i.e., r(state, input)
is a member of the output alphabet.

Colloquially speaking, the automaton sits in a state until an input comes. When an input
comes, the automaton then generates an output (with its response function) and moves to
a new state (which is found by consulting the transition function). The initial response, not

6.1. FINITE STATE PREDICTORS 139

Initial State: ready
When current state | make a transition | and respond
and input are to state by
(hot,ready) cooling air-conditioner
(hot,heating) just-heated do-nothing
(hot,cooling) cooling air-conditioner
(hot,just-heated) ready do-nothing
(hot,just-cooled) ready do-nothing
(okay,ready) ready do-nothing
(okay,heating) just-heated do-nothing
(okay,cooling) just-cooled do-nothing
(okay,just-heated) ready do-nothing
(okay,just-cooled) ready do-nothing
(cold,ready) heating furnace
(cold,heating) heating furnace
(cold,cooling) just-cooled do-nothing
(cold,just-heated) ready do-nothing
(cold,just-cooled) ready do-nothing

Figure 6.1: A thermostat as a finite state automaton

present in the thermostat, is used if the automaton must have some output even before it
has an input to work with (a good initial response for the thermostat would be do-nothing).

For the remainder of this section, the input and output alphabets will both be {0, 1}
and the task will be to learn to predict the next bit of an input stream of bits.

0
1/0

A B
1/0

&~

Figure 6.2: A finite state automaton diagram

A finite state automaton of this type is shown in Figure 6.2. It has two states, state
“A” and state “B”. The transition function is specified by the arrows in the diagram and
the arrow labels are of the form input/output. The initial response is on an arrow that does
not start at a state and which points to the initial state. This sort of diagram is handy for

140 CHAPTER 6. EVOLVING FINITE STATE AUTOMATA

representing automata on paper. Formally: the finite state automaton’s response function is
r(A,0)=1,r(A,1)=0,r(B,0) =1, r(B,1) = 0 and the initial response is 0. Its transition
function is t(A,0) = A, t(A,1) = B, t(B,0) = B, t(B,1) = A. The initial state is A.

Initial response:0
Initial state:A
State | If O If1
A 1—-A | 0—B
B 1—-B | 0—A

Figure 6.3: A finite state automaton table

If we were to specify the finite state automaton shown in Figure 6.2 in a tabular format,
the result would be as shown in Figure 6.3. This is not identical to the tabular format used
in Figure 6.1. It is less explicit about the identity of the functions it is specifying and much
easier to read. The table starts by giving the initial response and initial state of the finite
state automaton. The rest of the table is a matrix with rows indexed by states and columns
indexed by inputs. The entries of this matrix are of the form response — state. This means
that when the automaton is in the state indexing the row and sees the action indexing the
column, it will make the response given at the tail of the arrow and then make a transition
to the state at the arrow’s head.

You may want to develop a computer data structure for representing finite state au-
tomata. You should definitely build a routine that can print an FSA in roughly the tabular
form given in Figure 6.3; it will be an invaluable aid in debugging experiments.

So that we can perform crossover with finite state automata, we will describe them as
a string of integers and then use the usual crossover operators for strings. We can either
group the integers describing the transition and response functions together, termed func-
tional grouping, or we can group the integers describing individual states together, termed
structural grouping. In Example 6.3, both these techniques are shown. Functional group-
ing places the integers describing the transition function and those describing the response
function in contiguous blocks, making it easy for crossover to preserve large parts of their
individual structure. Structural groupings place descriptions of individual states of an FSA
into contiguous blocks making their preservation easy. Which sort of grouping is better
depends entirely on the problem being studied.

Example 6.3 We will change the finite state automaton from Figure 6.3 into an array of
integers in the structural and functional manners. First we strip a finite state automaton
down to the integers that describe it (setting A =0, B =1) as follows:

6.1. FINITE STATE PREDICTORS 141

Initial response:0 0
Initial state:A 0
State | If 0 | If 1
A 1—A | 0—B 10|01
B 1—B| 0—A 11100

To get the structural grouping gene we simply read the stripped table from left to right,
assembling the the integers into the array:

0010011100 (6.1)

To get the functional gene we note the pairs of integers in the stripped version of the
table, above, are of the form:

‘ response transition ‘

We thus take the first integer (the response) in each pair from left to right, and then the
second integer (the transition) in each pair from left to right to obtain the gene:

0010100110. (6.2)

Note that in both the functional and structural genes the initial response and initial state
are the first two integers in the gene.

We also want a definition of point mutation for a finite state automaton. This turns out
to be much easier than crossover. Pick at random any one of: the initial action, the initial
state, any transition, or any response; replace it with a randomly chosen valid value.

Now we know how to do crossover and mutation, we can run an evolutionary algorithm
on a population of finite state automata. For our first such evolutionary algorithm, we will
use a task inspired by a Computer Recreations column in Scientific American. Somewhat
reminiscent of the string evolver, this task starts with a reference string. We will evolve a
population of finite state automata that can predict the next bit of the reference string as
that string is fed to them one bit at a time.

We need to define the alphabets for this task, and the fitness function. The reference
string is over the alphabet {0, 1} which is also the input alphabet and the output alphabet of
the automaton. The fitness function is called the String Prediction fitness function, computed
as follows. Pick a reference string in {0,1}* and a number of bits to feed the automaton.
Bits beyond the length of the string are obtained by cycling back though the string again.
Initialize fitness to zero. If the first bit of the string matches the initial response of the FSA,
fitness is +1. After this, we use the input bits as inputs to the FSA, checking the output of
the FSA against the next bit from the string; each time they match fitness is +1. The finite
state automaton is being scored on its ability to correctly guess the next bit of the input.

142 CHAPTER 6. EVOLVING FINITE STATE AUTOMATA

Example 6.4 Compute the String Prediction fitness of the finite state automaton in Figure
6.2 on the string 011 with 6 bits.

Step FSM String bit State after Fitness

guess guess
0 0 0 A +1
1 1 1 A +1
2 0 1 B -
3 0 0 A +1
4 1 1 A +1
5 0 1 B -

Total fitness: 4

The String Prediction fitness function gives us the last piece needed to run our first
evolutionary algorithm on finite state automata.

Experiment 6.1 Write or obtain software for randomly generating, printing, and handling
file input/output of finite state automata as well as the variation operators described above.
Create an evolutionary algorithm using size 4 tournament selection, two point crossover,
single point mutation, and String Prediction fitness. Use the structural grouping for your
crossover. Run 30 populations for up to 1000 generations, recording time-to-solution (or the
fact of failure), for populations of 100 finite state automata with,

(i) Reference string 001, 6 bits, 4 state F'SA,
(ii) Reference string 001111, 12 bits, 4 state FSA,
(iii) Reference string 001111, 12 bits, 8 state FSA.

Define “solution” to consist of having at least one creature whose fitness equals the number
of bits used. Graph the fraction of populations that have succeeded as a function of the number
of generations for all 3 sets of runs on the same set of azes.

Experiment 6.2 Redo Experiment 6.1 with functional grouping used to represent the au-
tomaton for crossover. Does this make a difference?

Let’s try another fitness function. The Self-Driving Length function is computed as
follows. Start with the finite state automaton in its initial state with its initial response.
Thereafter, use the last response as the current input; use the automaton’s output to drive
its input. Eventually the automaton must simultaneously repeat both a state and response.
The number of steps it takes to do this is its Self-Driving Length fitness.

6.1. FINITE STATE PREDICTORS 143

Example 6.5 For the following FSAs with input and output alphabet {0,1}, find the Self-
Driving Length fitness.

Initial response:1
Initial state:D

State | If 0 | If 1
A 1—-B| 0—B
B 1—A| 0—B
¢ | 1—-C|0—-D
D 0—A | 0—C

Time-step by time-step:

Step Response State

© % YD CrAs e~
S S N SN
e qQy

So in time-step 9 the automaton finally repeats the response/state pair “0”, “B”. We therefore
put its Self-Driving Length fitness at 8.

Notice that in our example we have all possible pairs of states and responses. We can
do no better. This implies that success in the Self-Driving Length fitness function is a score
of twice the number of states (at least over the alphabet {0,1}).

Experiment 6.3 Rewrite the software for Experiment 6.1 to use the Self-Driving Length
fitness function. Run 30 populations of 100 finite state automata, recording time to success
and cutting the automata off after 2000 generations. Graph the fraction of populations that
succeeded after k generations, showing the fraction of failures on the left side of the graph as
the distance below one. Do this experiment for automata with 4, 6, and 8 states. Also report
the successful string, in those automata that do succeed.

It is easy to write a finite state automaton description that does not use some of its
states. The Self-Driving Length fitness function encourages the finite state automaton to

144 CHAPTER 6. EVOLVING FINITE STATE AUTOMATA

use as many transitions as possible. In Experiment 6.1, the string 001111, while possible
for a 4-state automaton to predict, was difficult. The string 111110 would prove entirely
impossible for a 4-state automaton (why?) and very difficult for a 6-state automaton.

There is a very large local optimum in Experiment 6.1 for an automaton that predicts the
string 111110; automata that just churn out 1s get relatively high fitness in this environment.
If we look at all automata that churn out only 1s, we see that they are likely to use few
states. The more transitions involved, the easier to have one that is associated with a
response of 0, either initially or by a mutation. A moment’s thought shows, in fact, that
1-making automata that do use a large number of transitions are more likely to have children
that don’t, and so there is substantial evolutionary pressure to stay in the local optimum
associated with a population of FSAs generating 1s, and using a small number of states to
do so. This leaves only extremely low probability evolutionary paths to an automaton that
predicts 111110.

Where possible, when handed lemons, make lemonade. In Chapter 5, we introduced the
lexical product of fitness functions. When attempting to optimize for the String Prediction
fitness function in difficult cases like 111110, the Self-Driving Length fitness function is a
natural candidate for a lexical product; it lends much greater weight to the paths out of the
local optimum described above. Let us test this intuition experimentally.

Experiment 6.4 Modify the software from FEzxperiment 6.1 to optionally use either the
String Prediction fitness function or the lezical product of String Prediction with Self-Driving
Length, with String Prediction dominant. Report the same data as in Experiment 6.1, but
running 6- and 8-state automata with both the plain and lexical fitness functions on the refer-
ence string 111110 using 12 bits. In your write up, document the differences in performance
and give all reasons you can imagine for the differences, not just the one suggested in the
text.

Experiment 6.4 is an example of an evolutionary algorithm in which lexical products
yield a substantial gain in performance. Would having more states cause more of a gain?
To work out the exact interaction between additional states and the solutions present in
a randomly generated population, you would need a couple of stiff courses in finite state
automata or combinatorics. In the next section, we will leave aside optimization of finite
state automata and proceed with co-evolving finite state automata.

Problems

Problem 6.1 Suppose that A is an alphabet of size n. Compute the size of the set {s € A*:
|s| < k} for any non-negative integer k.

Problem 6.2 How many strings are there in {0, 1}*™ with exactly m ones?

6.1. FINITE STATE PREDICTORS 145

Problem 6.3 Notice that in Ezperiment 6.1 the number of bits used is twice the string
length. What difference would it make if the number of bits were equal to the string length?

Problem 6.4 If we adopt the definition of success given in Experiment 6.1 for a finite state
automaton on a string, is there any limit to the length of a string on which a finite state
automaton with n states can succeed?

Problem 6.5 Give the structural and functional grouping genes for the following FSAs with
input and output alphabet {0,1}.

Initial response:1 Initial response:1
Initial state:B Initial state:A
Q) State | If O If1 (i) State | If O If1
A 1—-A | 1-C A 1—-A | 0—B
B 1—-B | 0—A B 1—-C | 1—A
C 0—C | 0—A C 1-B | 0—C
Initial response:0 Initial response:0
Initial state:D Initial state:D
State | If O If1 State | If O If1
(iii) A 1—-B | 1-D (iv)| A 0—B | 0—D
B 1—-C | 0—A B 0—C | 1—-A
C 0—D | 1—B C 1—-D | 0—B
D 0—A | 0—=C D 1—-A | 1-C

Problem 6.6 For each of the finite state automata in Problem 6.5, give the set of all strings
the automaton in question would count as a success, if the string were used in Experiment
6.1 with a number of bits equaling twice its length.

Problem 6.7 Prove that the maximum possible value for the Self-Driving Length fitness
function of an FSA with input and output alphabet {0, 1} is twice the number of states in
the automaton.

Problem 6.8 Given an example that shows that Problem 6.7 does not imply that the longest
string a finite state automaton can succeed on in the String Prediction fitness function is of
length 2n for an n state finite state automaton.

Problem 6.9 In the text it was stated that a 4-state automaton cannot succeed, in the sense
of Experiment 6.1, on the string 111110. Ezxplain irrefutably why this is so.

146 CHAPTER 6. EVOLVING FINITE STATE AUTOMATA

Problem 6.10 Problems 6.7, 6.8, and 6.9 all dance around an issue. How do you tell if a
string is too “complex” for an n state finite state automaton to completely predict? Do your
level best to answer this question, over the input and output alphabet {0, 1}.

Problem 6.11 Work Problem 6.7 over assuming the finite state automaton uses the input
and output alphabets {0,1,...,n — 1}. You will have to conjecture what to prove and then
prove 1t.

6.2 The Prisoner’s Dilemma I

The work in this section is based on a famous experiment of Robert Axelrod’s concerning
the Prisoner’s Dilemma. The original Prisoner’s Dilemma was a dilemma experienced by
two accomplices, accused of a burglary. The local minions of the law are sure of the guilt of
the two suspects they have in custody, but have only sufficient evidence to convict them of
criminal trespass, a much less serious crime than burglary. In an attempt to get better evi-
dence, the minions of the law separate the accomplices and make the same offer to both. The
state will drop the criminal trespass charges and give immunity from any self-incriminating
statements made, if the suspect will implicate his accomplice. There are 4 possible outcomes
to this situation.

1 Both suspects remain mum, serve their short sentence for criminal trespass, and divide
the loot.

2,3 One suspect testifies against the other, going off scot-free and keeping all the loot for
himself. The other serves a long sentence as an unrepentant burglar.

4 Both suspects offer to testify against the other and receive moderate sentences because
they are repentant and cooperative burglars. Each also keeps some chance at getting
the loot.

In order to analyze the Prisoner’s Dilemma, it is convenient to arithmetize these outcomes
as numerical payoffs. We characterize the action of maintaining silence as cooperation and
the action of testifying against one’s accomplice as defection. Abbreviating these actions as C'
and D we obtain the payoff matrix for the Prisoner’s Dilemma shown in Figure 6.4. Mutual
cooperation yields a payoff of 3, mutual defection a payoff of 1, and stabbing the other player
in the back yields a payoff of 5 for the stabber and 0 for the stabbee. These represent only
one possible set of values in a payoff matrix for the Prisoner’s Dilemma. Discussion of this
and other related issues are saved for Section 6.3.

The Prisoner’s Dilemma is an example of a game of the sort treated by the field of game
theory. Game theory was invented by John von Neumann and Oskar Morgenstern. Their

6.2. THE PRISONER’S DILEMMA I 147

Player 2

C D
C (3,3) (0,5)
D

Paverd o 50) (1)

Figure 6.4: Payoff matrix for the Prisoner’s Dilemma

foundational text, The Theory of Games and Economic Behavior, appeared in 1953. Game
theory has been widely applied to economics, politics, and even evolutionary biology. One of
the earliest conclusions drawn from the paradigm of the Prisoner’s Dilemma was somewhat
shocking. To appreciate the conclusion von Neumann drew from the Prisoner’s Dilemma,
we must first perform the standard analysis of the game.

Imagine you are a suspect in the story we used to introduce the Prisoner’s Dilemma.
Sitting in the small, hot interrogation room you reflect on your options. If the other suspect
has already stabbed you in the back, you get the lightest sentence for stabbing him in the
back as well. If, on the other hand, he is maintaining honor among thieves and refusing to
testify against you, then you get the lightest sentence (and all the loot) by stabbing him in
the back. It seems that your highest payoff comes, in all cases, from stabbing your accomplice
in the back. Unless you are altruistic, that is what you’ll do.

At the time he and Morgenstern were developing game theory, von Neumann was advising
the U.S. government on national security issues. A central European refugee from the Second
World War, Von Neumann was a bit hawkish and concluded that the game theoretic analysis
of the Prisoner’s Dilemma indicated a nuclear first strike against the Soviet Union was the
only rational course of action. It is, perhaps, a good thing that politicians are not especially
respectful of reason. In any case, there is a flaw in von Neumann’s reasoning. This flaw
comes from viewing the “game” the U.S. and U.S.S.R. were playing as being exactly like
the one the two convicts were playing. Consider a similar situation, again presented as a
story, with an important difference. It was inspired by observing a parking lot across from
the apartment the author lived in during graduate school.

Once upon a time in California, the police could not search a suspected drug dealer
standing in a parking lot where drugs were frequently sold. The law required that they
see the suspected drug dealer exchange something, presumably money and drugs, with a
suspected customer. The drug dealers and their customers found a way to prevent the police
from interfering in their business. The dealer would drop a plastic bag of white powder in
the ornamental ivy beside the parking lot in a usual spot. The customer would, at the same
time, hide an envelope full of money in a drain pipe on the other side of the lot. These
actions were performed when the police were not looking. Both then walked with their best

148 CHAPTER 6. EVOLVING FINITE STATE AUTOMATA

“I’'m not up to anything” stride, exchanged positions, and picked up their respective goods.
This is quite a clever system as long as the drug dealer and the customer are both able to
trust each other.

In order to cast this system into a Prisoner’s Dilemma format, we must decide what
constitutes a defection and a cooperation by each player. For the drug dealer, cooperation
consists of dropping a bag containing drugs into the ivy, while defection consists of dropping
a bag of cornstarch or baking soda. The customer cooperates by leaving an envelope of
Federal Reserve Notes in the drain pipe and defects by supplying phony money or, perhaps,
insufficiently many real bills. The arithmetization of the payoffs given in Figure 6.4 is still
sensible for this situation. In spite of that, this is a new and different situation from the one
faced by the two suspects accused of burglary.

Suppose the dealer and customer both think through the situation. Will they conclude
that ripping off the other party is the only rational choice? No, in all probability, they will
not. The reason for this is obvious. The dealer wants the customer to come back and buy
again, tomorrow, and the customer would likewise like to have a dealer willing to supply
him with drugs. The two players play the game many times. A situation in which two
players play a game over and over is said to be iterated. The one-shot Prisoner’s Dilemma
is entirely unlike the Iterated Prisoner’s Dilemma, as we will see in the experiments done in
this section.

The Iterated Prisoner’s Dilemma is the core of the excellent book The FEwvolution of
Cooperation by Robert Axelrod. The book goes through many real life examples that are
explained by the iterated game and gives an accessible mathematical treatment.

Before we dive into coding and experimentation, a word about altruism is in order. The
game theory of the Prisoner’s Dilemma, iterated or not, assumes that the players are not
altruistic - that they are acting for their own self-interest. This is done for a number of
reasons, foremost of which is the mathematical intractability of altruism. One of the major
results of research on the Iterated Prisoner’s Dilemma is that cooperation can arise in the
absence of altruism. None of this is meant to denigrate altruism or imply it is irrelevant to
the social or biological sciences. It is simply beyond the scope of this text.

In the following experiment we will explore the effect of iteration on play. A population
of finite state automata will play Prisoner’s Dilemma once, a small number of times, and a
large number of times. A round robin tournament is a tournament in which each possible
pair of contestants meet.

Experiment 6.5 This experiment is similar to one done by John Miller. Write or obtain
software for an evolutionary algorithm that operates on 4-state finite state automata with
an initial response. Use {C, D} for the input and output alphabets. The algorithm should
use the same variation operators as in Fxperiment 6.1. Generate your initial populations by
filling the tables of the finite state automata with uniformly distributed valid values.

Fitness will be computed by playing a Prisoner’s Dilemma round robin tournament. To

6.2. THE PRISONER’S DILEMMA I 149

play, a finite state automata uses its current response as the current play, and the last
response of the opposing automaton as its input. Its first play is thus its initial response.
Each pair of distinct automata should play n rounds of Prisoner’s Dilemma. The fitness of
an automaton is its total score in the tournament. Start the automata over in their initial
states with each new partner. Do not save state information between generations.

On a population of 36 automata, use roulette selection and absolute fitness replacement,
replacing 12 automata in each generation for 100 generations. This is a strongly elitist
algorithm with % of the automata surviving in each generation. Save the average fitness of
each population divided by 35n (the number of games played) in each generation of each of
30 runs.

Plot the average of the averages in each generation versus the generations. Optionally,
plot the individual population averages. Do this for n =1, n = 20, and n = 150. For which
of the runs does the average plot most closely approach cooperativeness (a score of 8)? Also,
save the finite state automata in the final generations of the runs with n = 1 and n = 150
for later use.

There are a number of strategies for playing the Prisoner’s Dilemma that are important
in analyzing the game and aid in discussion. Figure 6.5 lists several such strategies, and
Figure 6.6 describes 5 as finite state automata. The strategies, Random, Always Cooperate,
and Always Defect, represent extreme behaviors, useful in analysis. Pavlov is special for
reasons we will see later.

The strategy, Tit-for-Tat, has a special place in the folklore of the Prisoner’s Dilemma.
In two computer tournaments, Robert Axelrod solicited computer strategies for playing
the Prisoner’s Dilemma from game theorists in a number of academic disciplines. In both
tournaments, Tit-for-Tat, submitted by Professor Anatole Rapoport, won the tournament.
The details of this tournament are reported in the second chapter of Axelrod’s book, The
Evolution of Cooperation.

The success of Tit-for-Tat is, in Axelrod’s view, the result of four qualities. Tit-for-Tat
is nice; it never defects first. Tit-for-Tat is vengeful; it responds to defection with defection.
Tit-for-Tat is forgiving; given an attempt at cooperation by the other player it reciprocates.
Finally, Tit-for-Tat is simple; its behavior is predicated only on the last move its opponent
made and hence other strategies can adapt to it easily. Note that not all these qualities are
advantageous in and of themselves, but rather they form a good group. Always Cooperate
has three of these four qualities, and yet it is a miserable strategy. Tit-for-Two-Tats is like
Tit-for-Tat, but nicer.

Before we do the next experiment, we need a definition that will help cut down the work
involved. The self-play string of a finite state automaton with initial response is the string
of responses the automaton makes playing against itself. This string is very much like the
string of responses used for computing the Self-Driving Length fitness, but the string is not
cut off at the first repetition of a state and input. The self-play string is infinite.

150 CHAPTER 6. EVOLVING FINITE STATE AUTOMATA

Random The Random strategy simply flips a coin
to decide how to play.
Always Cooperate The Always Cooperate strategy always
cooperates.
Always Defect The Always Defect strategy always de-
fects.

Tit-for-Tat The strategy Tit-for-Tat cooperates as
its initial response and then repeats its
opponent’s last action.

Tit-for-Two-Tats The strategy Tit-for-Two-Tats cooper-
ates for its initial response and then co-
operates on any action in which its op-
ponent’s last two actions have not been
cooperation.

Pavlov The strategy Pavlov cooperates on its
first action and then cooperates if its ac-
tion and its opponent’s actions matched
last time.

Figure 6.5: Some common strategies for the Prisoner’s Dilemma

Thinking about how finite state automata work, we see that the automaton might never
repeat its first few responses and states. For any finite state automaton, the self-play string
will be a (possibly empty) string of responses associated with state/input pairs that never
happen again followed by a string of actions associated with a repeating sequence of states
and responses. For notational simplicity, we write the self-play string in the form stringl :
string2 where stringl contains the actions associated with unrepeated state/response pairs
and string2 contains the actions associated with repeated state/action pairs. Examine
Example 6.6 to increase your understanding.

Example 6.6 Examine the automaton:

Initial response:C
Inatial state:/
State | If D | If C

1 D—2| C—2
2 C—1|D—2
3 D—3| D—4
4

C—1]| C—3

6.2. THE PRISONER’S DILEMMA I 151

Always Cooperate Always Defect Tit-for-Tat
Initial response:C Initial response:D Initial response:C
Initial state:1 Initial state:1 Initial state:1
State | If D | If C State | If D | If C State | If D | If C
1 C—1]| C—1 1 D—1 | D—1 1 D—1| C—1

Tit-for-Two-Tats Pavlov
Initial response:C Initial response:C
Initial state:1 Initial state:1
State | If D | If C State | If D | If C
1 C—2 | C—1 1 D—2 | C—1
2 D—2 | C—1 2 C—1 | D—2

Figure 6.6: Finite state automaton tables for common Prisoner’s Dilemma strategies

The sequence of plays of this automaton against itself is:

Step | Response State
4

L D A Lo~
QAaQabaaq

3
4
1
2
2
1

The self-play string of this finite state automaton is:
CCD:CCD.

Notice that the state/action pairs (4,C), (3,C), and (4, D) happen exactly once while the
state/action pairs (2,C), (2,C), and (1, D) repeat over and over as we drive the automaton’s
input with its output. It is possible for two automata with different self-play strings to produce
the same output stream when self-driven.

In Experiment 6.6, the self-play string can be used as a way to distinguish strategies.
Before doing Experiment 6.6, do Problems 6.19 and 6.20.

Experiment 6.6 Take the final populations you saved in Experiment 6.5 and look through
them for strategies like those described in in Figures 6.5 and 6.6. Keep in mind that states
that are not used or that cannot be used are unimportant in this experiment. Do the following:

152 CHAPTER 6. EVOLVING FINITE STATE AUTOMATA

(i) For each of the strategies in Figure 6.5, classify the strategy (or one very like it) as
occurring often, occasionally, or never.

(ii) Call a self-play string dominant if at least % of the population in a single run has that
self-play string. Find which fraction of the populations have a dominant strategy.

(iii) Plot the histogram giving the number of self-play strings of each length, across all 30
populations evolved with n = 150.

(iv) Plot the histogram as in part (iii) for 1080 randomly generated automata.

In your write up, explain what happened. Document exactly which software tools you
used to do the analyses above (don't, for goodness sake, do them by hand).

Experiment 6.6 is very different from the other experiments so far in Chapter 6. Instead of
creating or modifying an evolutionary algorithm, we are sorting through the debris left after
an evolutionary algorithm has been run. It is usually much harder to analyze an evolutionary
algorithm’s output than it is to write the thing in the first place. You should carefully
document and save any tools you write for sorting through the output of an evolutionary
algorithm so you can use them again.

We now want to look at the effect of models of evolution on the emergence of cooperation
in the Iterated Prisoner’s Dilemma.

Experiment 6.7 Take the software from FExperiment 6.5 and modify it so the the model of
evolution is tournament selection with tournament size 4. Rerun the experiment for n = 150
and give the average of averages plot. Now do this all over again for tournament size 6.
Ezplain any differences and also compare the two data sets with the data set from Fxperiment
6.5. Which of the two tournament selection runs is most like the run from Experiment 6.5¢

A strategy for playing a game is said to be evolutionarily stable if a large population
playing that strategy cannot be invaded by a single new strategy mixed into the population.
The notion of invasion is relative to the exact mechanics of play. If the population is playing
round robin, for example, the new strategy would invade by getting a higher score in the
round robin tournament.

The notion of evolutionarily stable strategies is very important in game theory research.
The location of such strategies for various games is a topic of many research papers. The
intuition is that the stable strategies represent attracting states of the evolutionary process.
This means you would expect an evolving system to become evolutionarily stable with high
probability once it had been going for a sufficient amount of time. In the next experiment,
we will investigate this notion.

Both Tit-for-Tat and Always Defect are evolutionarily stable strategies for the Iterated
Prisoner’s Dilemma in many different situations. Certainly, it is intuitive that a group

6.2. THE PRISONER’S DILEMMA I 153

playing one or the other of these strategies would be very difficult for a single invader to
beat. It turns out that neither of these strategies is in fact stable under the type of evolution
that takes place in an evolutionary algorithm.

Define the mean failure time of a strategy to be the average amount of time (in genera-
tions) it takes a population composed entirely of that strategy, undergoing evolution by an
evolutionary algorithm, to be invaded. This number exists relative to the type of evolution
taking place and is not ordinarily something you can compute. In the next experiment, we
will instead approximate it.

Experiment 6.8 Take the software from Experiment 6.7, for size 4 tournaments, and mod-
ify it as follows. Have the evolutionary algorithm take a single automaton and initialize the
entire population to be copies of that automaton. Compute the average score per play that
automaton gets when playing itself, calling the result the baseline score. Run the evolutionary
algorithm until the average score in a generation differs from the baseline by 0.3 or more
(our test for successful invasion) or until 500 generations have passed. Report the time-to-
invasion and fraction of populations that resisted invasion for at least 500 generations for 30
runs for each of the following strategies:

(i) Tit-for-Two-Tats,
(i) Tit-for-Tat,
(#ii) Always Defect.

Are any of these strategies stable under evolution? Keeping in mind that Tit-for-Two-
Tats is not evolutionarily stable in the formal sense, also comment on the comparative decay
rates of those strategies that are not stable.

One quite implausible feature of the Prisoner’s Dilemma as presented in this chapter so
far is the perfect understanding the finite state automata have of one another. In interna-
tional relations or a drug deal there is plenty of room to mistake cooperation for defection
or the reverse. We will conclude this section with an experiment that explores the effect of
error on the Iterated Prisoner’s Dilemma. We will also finally discover why Pavlov, not a
classic strategy, is included in our list of interesting strategies. Pavlov is an example of an
error correcting strategy. We say a strategy is error correcting if it avoids taking too much
revenge for defections caused by error. Do Problem 6.15 by way of preparation.

Experiment 6.9 Modify the software for Experiment 6.5 with n = 150 so that actions are
transformed into their opposite with probability a.. Run 30 populations for a = 0.05 and
a = 0.01. Compare the cooperation in these populations with the n = 150 population from
Ezperiment 6.5. Save the finite state automata from the final generation of the evolutionary
algorithm and answer the following questions. Are there error correcting strategies in any

154 CHAPTER 6. EVOLVING FINITE STATE AUTOMATA

of the populations? Did Pavlov arise in any of the populations? Did Tit-for-Tat? Detail
carefully the method you used to identify these strategies.

We have barely scratched the surface of the ways we could explore the Iterated Prisoner’s
Dilemma with artificial life. You are encouraged to think up your own experiments. As we
learn more techniques in later chapters, we will revisit the Prisoner’s Dilemma and do more
experiments.

Problems

Problem 6.12 FExplain why the average score over some set of pairs of automata that play
Iterated Prisoner’s Dilemma with one another is in the range 1 < p < 3.

Problem 6.13 Essay. Fxamine the following finite state automaton. We have named the
strategqy encoded by this finite state automaton Ripoff. It is functionally equivalent to an
automaton that appeared in a population containing immortal Tit-for-Two-Tat automata.
Describe its behavior colloquially and explain how it interacts with Tit-for-Two-Tats. Does
this strategy say anything about Tit-for-Two-Tats as an evolutionarilly stable strategy?

Initial response:D
Initial state:1
State | If D | If C
1 C—3| C—=2
2 C—3| D—1
3 | D—=38| (=3

Problem 6.14 Give the expected (when the random player is involved) or exact score for
1000 rounds of play for each pair of players drawn from the set:
{Always Cooperate, Always Defect, Tit-for-Tat, Tit-for-Two-Tats, Random, Ripoff}.
Ripoff is described in Problem 6.13. Include the pair of a player with itself.

Problem 6.15 Assume we have a population of strategies for playing Prisoner’s Dilemma
consisting of Tit-for-Tats and Pavlovs. For all possible pairs of strategies in the population,
gie the sequence of the first 10 plays, assuming the first player’s action on round 3 is
accidentally reversed. This requires investigating 4 pairs since it matters which type of player
is first.

Problem 6.16 Find an error correcting strategy other than Pavlov.

6.3. OTHER GAMES 155

Problem 6.17 Assume there is a 0.01 chance of an action being the opposite of what was
intended. Give the expected score for 1000 rounds of play for each pair of players drawn from
the set { Always Cooperate, Always Defect, Tit-for-Tat, Tit-for-Two-Tats, Pavlov, Ripoff}.
Ripoff is described in Problem 6.13. Include the pair of a player with itself.

Problem 6.18 Give a finite state automaton with each of the following self-play strings.
(i
(ii

(i

) :C,

) D:C,
) C:C
(iv) CDC:DDCCDC.

Problem 6.19 Show that if two finite state automata have the same self-play string then
the self-play string contains the moves they will use when playing one another.

Problem 6.20 Give an ezample of 3 automata such that the first 2 automata have the same
self-play string, but the sequences of play of each of the first 2 automata against the 3rd differ.

Problem 6.21 In Problem 6.13, we describe a strateqy called Ripoff. Suppose we have
a group of 6 players playing round robin with 100 plays per pair. If players do not play
themselves, compute the scores of the players for each possible mix of Ripoff, Tit-for-Tat, and
Tit-for-Two-Tats containing at least one of all 3 player types. There are 10 such groupings.

Problem 6.22 Essay. Outline an evolutionary algorithm that evolves Prisoner’s Dilemma
strategies that does not involve finite state automata. You may wish to use a string based
gene, a neural net, or some exotic structure.

Problem 6.23 For each of the finite state automata given in Figure 6.6 together with the
automaton Ripoff given in Problem 6.13, state which of the following properties the strategy
encoded by the automaton has: niceness, vengefulness, forgiveness, simplicity. These are the
properties to which Axelrod attributes the success of the strategy Tit-for-Tat (see page 149).

6.3 Other Games

In this section, we will touch briefly on several other games that are easily programmable as
artificial life systems. Two are standard modifications of the Prisoner’s Dilemma, the third
is a very different game called Divide the Dollar.

The payoff matrix we used in Section 6.2 is the classic matrix appearing on page 8 of
The Evolution of Cooperation. It is not the only one that game theorists allow. Any payoff

156 CHAPTER 6. EVOLVING FINITE STATE AUTOMATA

matrix of the form given in Figure 6.7 for which S <Y < X < R and S+ R < 2X is said
to be a payoff matrix for the Prisoner’s Dilemma. The ordering of the 4 payoffs is intuitive.
The second condition is required to make alternation of cooperation and defection worth less
than sustained cooperation. We will begin this section by exploring the violation of that
second constraint.

The Graduate School game is one like Prisoner’s Dilemma, save that alternating coop-
eration and defection scores higher, on average, than sustained cooperation. The name is
intended to suggest a married couple, both of whom wish to go to graduate school. The
payoff for going to school is higher then the payoff for not going, but attending at the same
time causes hardship. For the iterated version of this game, think of two preschoolers with a
tricycle. It is more fun to take turns than it is to share the tricycle, and both those options
are better than fighting over who gets to ride. We will use the payoff matrix given in Figure
6.8.

For the Graduate School game, we must redefine out terms. Complete cooperation
consists of two players alternating cooperation and defection. Partial cooperation is exhib-
ited when players both make the cooperate play together. Defection describes two players
defecting.

Experiment 6.10 Take the software from Experiment 6.7 and change the payoff matrix to
play the Graduate School game. As in Experiment 6.5, save the final ecologies. Also, count
the number of generations in which an ecology has a score above 3; these are generations in
which it is clear there is complete cooperation taking place. Answer the following questions.

(i) Is complete cooperation rare, occasional, or common?
(ii) Is the self-play string histogram materially different from that in Experiment 6.67
(iii) What is the fraction of the populations which have a dominant strategy?

A game is said to be optional if the players may decide if they will or will not play. Let
us construct an optional game built upon the Iterated Prisoner’s Dilemma by adding a third

Player 2

C D
C (X,X) (S,R)
D

Player 1 RS) (YY)

Figure 6.7: General payoff matrix for Prisoner’s Dilemma (Prisoner’s Dilemma requires that
S<Y<X<Rand S+ R <2X.)

6.3. OTHER GAMES 157

Player 2
C D
(3:3) (0,7)

C
Player 1 D (70) (11)

Figure 6.8: Payoff Matrix for the Graduate School game

move called “Pass.” If either player makes the play “Pass,” both score 0, and we count that
round of the game as not played. Call this game the Optional Prisoner’s Dilemma. The
option of refusing to play has a profound effect on the Prisoner’s Dilemma as we will see in
the next experiment.

Experiment 6.11 Modify the software from Ezxperiment 6.5 with n = 150 to work on finite
state automata with initial response and input and output alphabets {C, D, P}. Scoring is
as in the Prisoner’s Dilemma, save that if either player makes the P move, then both score
zero. In addition to a player’s score, save the number of times he actually played instead of
passing or being passed by the other player. First, run the evolutionary algorithm as before,
with fitness equal to total score. Next, change the fitness function to be score divided by
number of plays. Comment on the total level of cooperation as compared to the non-optional
game and also comment on the differences between the two types of runs in this experiment.

At this point, we will depart radically from the Iterated Prisoner’s Dilemma to games
with a continuous set of moves. The game Divide the Dollaris played as follows. An infinitely
wealthy referee asks two players to write down what fraction of a dollar they would like to
have for their very own. Each player writes a bid down on a piece of paper and hands the
paper to the referee. If the bids total at most one dollar, the referee pays both players the
amount they bid. If the bids total more than a dollar, both players receive nothing.

For now, we will keep the data structure for playing Divide the Dollar simple. A player
will have a gene containing 6 real numbers (yes, we will allow fractional cents). The first is
the initial bid. The next 5 are the amount to bid if the last pay out p (in cents) from the
referee was 0, 0 < p < 25, 25 < p <50, 50 < p < 75, or p > 75, respectively.

Experiment 6.12 Build an evolutionary algorithm by modifying the software from Exper-
iment 3.1 to work on the 6 number genome for Divide the Dollar given above. Set the
maximum mutation size to be 3.0. Take the population size to be 36. Replace the fitness
function with the total cash a player gets in a round robin tournament with each pair playing
50 times. Run 50 populations, saving the average fitness and the low and high bid accepted

158 CHAPTER 6. EVOLVING FINITE STATE AUTOMATA

in each generation of each population, for 60 generations. Graph the average, over the pop-
ulations, of the per generation fitness and the high and low bids.

One could argue that high bids in Divide the Dollar are a form of defection and that
bids of 50 (or not far below) are a form of cooperation. Low bids, however, are a form of
capitulation and somewhat akin to cooperating with a defector. From this discussion, it
seems that single moves of divide the dollar do not map well onto single moves of Prisoner’s
Dilemma. If we define cooperation to be making bids that result in a referee payout we can
draw one parallel, however.

Experiment 6.13 Following Fxperiment 6.7, modify the software from Experiment 6.12 so
that it also saves the fraction of bids with payouts in each generation. Run 30 populations
as before and graph the average fraction of acceptance of bids per generation over all the
populations. Modify the software to use tournament selection with tournament size 6 and
do the experiment again. What were the effects of changing the tournament size? Did they
parallel Experiment 6.77

There are an infinite number of games we could explore, but we have done enough for
now. We will return to game theory in future chapters once we have developed more artificial
life machinery. If you have already studied game theory, you will notice that the treatment
of the subject in this chapter differers violently from the presentation in a traditional game
theory course. The approach is experimental (an avenue only recently opened to students by
large, cheap digital computers) and avoids lengthy and difficult mathematical analyses. If
you found this chapter interesting or entertaining, you should consider taking a mathematical
course in game theory. Such a course is sometimes found in a math department, occasionally
in a biology department, but most often in an economics department.

Problems

Problem 6.24 In the Graduate School game, is it possible for a finite state automaton to
completely cooperate with a copy of itself ¢ Prove your answer. Write a paragraph about the
effect this might have on population diversity as compared to the Prisoner’s Dilemmoa.

Problem 6.25 Suppose we have a pair of finite state automata of the sort we used to play
Prisoner’s Dilemma or the Graduate School game. If the automata have n states, what is
the longest they can continue to play before they repeat a set of states and actions they were
both in before. If we were to view the pair of automata as a single finite state device engaged
in self play, how many states would it have and what would be its input and output alphabet?

Problem 6.26 Tuke all of the one-state finite state automata with initial response and input
and output alphabets {C, D}, and discuss their quality as strategies for playing the Graduate
School game. Which pairs work well together? Hint: there are 8 such automata.

6.3. OTHER GAMES 159

Problem 6.27 Essay. Ezplain why it is silly to speak of a single finite state automaton as
coding a good strateqy for the Graduate School game.

Problem 6.28 Find an error correcting strateqy for the Graduate School game.

Problem 6.29 Essay. Find a real life situation to which the Optional Prisoner’s Dilemma
would apply and write up the situation in a fashion like the story of the drug dealer and his
customer in Section 6.2.

Problem 6.30 Are the data structures used in Ezperiments 6.12 and 6.13 finite state au-
tomata? If so, how many states do they have and what are their input and output alphabets.

Problem 6.31 Is a pair of the data structures used in FExperiments 6.12 and 6.13 a finite
state automaton? Justify your answer carefully.

Problem 6.32 Essay. Describe a method of using finite state automata to play Divide the
Dollar. Do not change the set of moves in the game to a discrete set, e.q., the integers
1-100, and then use that as the automaton’s input and output alphabet. Such a finite state
automaton would be quite cumbersome, and more elegant methods are available. It is just
fine to have the real numbers in the range 0-100 as your output alphabet, you just cannot use
them directly as input.

Problem 6.33 To do this problem you must first do Problem 6.32. Assume that misunder-
standing a bid in Divide the Dollar consists of replacing the bid b with (100 — b). Using the
finite state system you developed in Problem 6.32 explain what an error correcting strateqy
1s and give an example of one.

160 CHAPTER 6. EVOLVING FINITE STATE AUTOMATA

