
"© BAE SYSTEMS 2003. All rights reserved."

"Unless BAE SYSTEMS (Operations) limited has accepted a contractual obligation in respect of the permitted use of the information and
data contained herein such information and data is provided without responsibility. BAE SYSTEMS (Operations) Limited disclaims all

liability arising from its use."

Controlling Data Flow Applications in Gedae:
Is a Finite State Machine the Answer?

Mr. Ian Alston & Dr. Bob Madahar
BAE SYSTEMS Advanced Technology Centre

West Hanningfield Road,
Gt. Baddow, Chelmsford CM2 8HN, U.K.

Tel: +44 1245 242195
Fax: +44 1245 242124

ian.alston@baesystems.com & bob.madahar@baesystems.com

ABSTRACT
Control is an integral part of many applications, in particular in embedded processing systems. The
complexity of these systems and applications, and therefore the level of control, has risen with
advanced high performance systems capable of sustaining ~1Tflops practical now compared to
~1Gflops in the 1980's. These systems are multi-functional and multi-mode by design and require
high performant control solutions to deliver the performance capabilities. This adds an extra
dimension of difficulty to the designer, particularly when errors in the control logic can cause
reduced performance or even failure of the application. The finite state machine (FSM) offers a
convenient method of specifying and simulating control functionality of a (sub-)system. Combining
the control capability of FSMs with the model based design flow available within Gedae allows the
control logic of complex applications to be implemented. Two implementations of FSMs will be
shown, one based on emulating the behaviour of conventional state transition diagrams and an
alternative based on a state transition table lookup method. Indeed it will be shown that an FSM
implementation greatly simplifies the Gedae flow graph compared to using the basic discrete
control primitives and/or dynamic data flow.

1. INTRODUCTION
The defence industry is aiming to field state-of-the-art products in
less time and with lower costs based predominantly on
commercial off the shelf (COTS) components. In order to achieve
this goal, model based design tools employing automatic code
generation are being used to seamlessly move from a functional
representation to implementation onto real-time COTS test beds.
Gedae [5] offers such a model based design tool for general data
flow applications, such as signal and image processing systems.

It is well known [8] that Moore’s law states that the capability of
these COTS components will double within 18 months. This is
demonstrated by the fact that over the past three decades the
functionality of embedded sensor based applications has moved
from single mode applications to extended multi-mode/multi-
function applications with complex dynamic control of the
switching between these modes/functions. Thus a designer needs
to be able to design, simulate and finally implement a variety of
application control algorithms as well as the application itself.

As an example, Figure 1 shows a typical radar system and the
interaction of the Radar Control functions with other elements of
the system. In particular the control functions play a major role in

configuring the multi-mode behaviour through the interaction
with the antenna, beamformer, waveform generation and the
processing performed. The interest in this paper is signal
processing and Gedae.

Signal
Processing

Data
Processing

Beam Control

Waveform
Generation

Beamforming

R
ad

ar
 C

on
tro

l

Display &
Monitor

Handling

Figure 1: Typical Radar System

Various languages and tools have been developed to model
control processing. Of particular note is the Finite State Machine
[7] (FSM) paradigm that offers a means to describe and analyse

sequential logic and control functions. There has already been
extensive research [6] into the combination of FSMs with various
models of computation including data flow. It would therefore
seem logical to investigate how FSMs could be implemented
within the Gedae data flow language thus allowing complex
applications, including their control logic, to be implemented in a
single tool environment.

The paper will provide a brief overview of control processing
languages and analyse the current capabilities of Gedae for control
processing. The paper will demonstrate that whilst Gedae is not
optimised for the definition and implementation of complex
control structures, FSMs can be implemented within Gedae and
enables the designer to include the necessary control parts for
their application. The paper will therefore provide an overview of
FSMs and describe two methods of implementing FSMs within
Gedae. The first is based on a state transition diagram model
whilst the second is based on a state transition table look-up
method. Whilst the implementations discussed are based on the
use of the discrete “trigger” primitives it will also be shown that
similar techniques can be applied to conventional data flow
primitives using both static and dynamic data flow properties. A
demonstration of the practical use of FSMs within Gedae to model
the control logic of a highly multi-mode radar will also be
reported.

2. CONTROL PROCESSING LANGUAGES
The complex multi-mode/multi-function systems described above
are essentially a mixture of transformation and reactive systems. A
transformational system is characterised be being data driven,
where input data is transformed into output data. A purely reactive
system is one which is event driven continuously having to react
to its environment or some event stimulus. In practice systems
will be a combination of both (c.f. machine vision). Therefore
while the data-flow portions of a Gedae design belong in general
to the general class of transformational systems, the complex,
highly dynamic control elements belong to the general class of
reactive systems. Therefore in order to understand the most
appropriate way in which to implement these control elements an
understanding of the languages and techniques for the modelling
of reactive systems is important.

Reactive systems have at their heart some form of state machine
i.e. an event causes the internal state of the reactive system to
change. Therefore many of the design languages appropriate for
designing reactive systems are also based on state machines. The
following sub-sections first give an overview of finite state
machines followed by a brief description of a number of general
languages for designing reactive systems which use FSMs in
different ways.

2.1 FSM
The finite state machine is a technique that allows the simple and
accurate design of sequential logic and control functions. They
have a wide application domain and can be applied to the design
of computer programs, control systems for machinery, electronic
equipment and digital applications, or telecommunications
protocols. The basic premise is that a system can only have a
limited (finite) number of states which represent the internal
"memory" of the system by implicitly storing information about
what has happened before. Transitions (which represent the

"response" of the system to its environment) between states
depend upon the current state of the machine and the current
input.

The FSM M can be represented mathematically as a tuple of the
form:

M ::= < I, O, S, S0, T >

where I is a set of input events,

O is a set of output events,

S is a finite set of states,

S0 ε S is the initial state,

and T is a set of transitions.

In a single reaction of the FSM, a subset of the input events
present in the current state causes a transition to the destination
state while also creating any output events associated with the
transition. Therefore a transition has associated with it the
following:

• SS ε S is the source state,

• t ε T is a named transition defining a "guard/action" pair
where:

• a guard is a logical combination of a subset of the
occurring input events I,

• action lists a subset of the output events O, including
the empty set, that will be generated for this transition,

• Sd ε S is the destination state.

In most cases the strict mathematical definition presented above
is replaced by a state transition diagram. A typical example is
shown in Figure 2. Each node represents a state and each arc
represents a transition. The arc without a source state points to the
initial state i.e. S0. The arcs are labelled with the "guard/action"
pair defined for the transition linking the source and destination
states and the output events to be generated respectively. In cases
where the action is empty it is often absent from the transition
label as shown in Figure 2, guard e2.

S1

S0

e1/a01

e2 e3/a11

Figure 2 A simple FSM defined as a state transition diagram

2.2 Statecharts
The state transition diagram is one of the most popular graphical
means of describing FSMs. However, such a simple "flat" manner
of specifying the complexity of reactive systems having ever
increasing number of states leads to unstructured and illegible

state transition diagrams. For such diagrams to be useful a
modular, hierarchical and well structured approach must be
adopted. In order to cater for such an approach Harel [7]
developed a visual formalism for describing states and transitions
known as Statecharts. Statecharts extend the simple graphical
representation of FSMs to include three important attributes
namely hierarchy, concurrency and communications as described
below.

Statecharts overcome the growing number of states to describe
even simple systems by the introduction of depth and
concurrency. Depth allows a state transition diagram to be viewed
at different levels of abstraction. Systems specified in a
hierarchical manner are usually easier to understand as each level
of abstraction focuses on the details that are important at that level
of the hierarchy. The notion of depth can also be used to cluster
groups of states in order to reduce the transition arrows.

In a conventional state machine model states are an or-state (i.e.
they are either in one state or another) but never in two states
concurrently. Concurrency in Statecharts uses the notion of the
and-state. The and-state allows multiple sub-states of a higher
level state to be active at the same time. The resulting sub-states
are said to be orthogonal. In addition, communication between the
sub-states occurs in a defined manner:

• all orthogonal sub-states of a state accept events sent to that
state,

• one sub-state may create an event as a result of a transition
that is consumed by one of its orthogonal sub-states.

An example of the use of the and-state is shown below in Figure 3
using the notation in [7].

C

D

B

F

G

H

E

A

α

α

µ

δ
γ

β
(in G)

Figure 3: AND-states in Statecharts

The diagram shows a state A consisting of two orthogonal sub-
states B and E with the property that being in A requires being in
some combination of C or D with F, G or H. Entering A from the
outside into the default states (i.e. those identified by the
transition from a small black circle) would result in the combined
state (C,G). If a subsequent α event occurs, a simultaneous
transition to the new combined state (D,H) occurs.

Many of the recent tools developed to model and implement
FSMs use a variation of the Statechart formalism. Statemate
MAGNUM [9] from I-Logix is a particular example.

2.3 Specification and Description Language
As an alternative representation to Statecharts, the
telecommunications industry adopted the Specification and
Description Language (SDL) [3] which was developed and
standardised by the International Telecommunications Union -
Telecommunications Standardization Sector (ITU-T) (formally
the CCITT). SDL, though aimed at the telecommunications
industry, can also be used for other event-driven or reactive
systems.

The theoretical model of an SDL system consists of a set of
extended FSMs running in parallel, each FSM being independent
of each other and communicating via discrete signals. As the
language is designed for the specification of a complete system
there are 3 basic levels of abstraction within the SDL in order to
specify structure, communications and behaviour of a system:

• System

The system description consists of the top level of detail - an
abstract machine communicating with its environment. It
contains everything that is to be specified including: block
descriptions (see below) and channel descriptions for
connecting blocks to each other and to he environment.

• Block

A block is a sub-item within the system that can be treated as
being a self contained object. It is hierarchical in nature and
is composed of lower level blocks and process definitions
(see below). In addition the block description contains
specifications of the connections within the block (to
processes and blocks) and to the environment of the block
(i.e. external).

• Process

The dynamic behaviour of the system is described by a
process description. A process is a communicating FSM,
with possibly many instances of the same process, being
driven by and producing signals conveyed between the
blocks and processes by means of the channels.

The most common method of describing the process description is
using a process diagram. Basic constructs have been defined for
the specification of a process which include:

• State control - identifying idle, current and next states and
terminating conditions. Also includes the ability to create
sub-states via "procedures".

• Signal control - acting on received and producing new
signals.

• Task/data control - provides a means to manipulate its own
local variables.

• Decision control - controlling the flow through the process
diagram based on the values of local variables.

• Process control - setting timers and producing new
instantiations of processes.

The corresponding process diagram for the state transition
diagram of Figure 2 is shown in Figure 4.

A simple and effective way of implementing a process diagram is
achieved by defining the processing to be performed for each
event/state pair as a separate "function" which must include
internal state modification, the generation of output events and if
appropriate a change to a new state. Pointers to these "functions"
are placed in a matrix lookup table, the state transition table
(STT), which references the processing to be performed when an
event occurs in any particular state. Transition through the FSM is
simply a means of a dispatch handler identifying the processing in
the STT for each event/state pair and calling the associated
"function". While the state transition diagram and the SDL
process diagram convey similar meanings it could be argued that
the latter is more expressive in that there is the ability to show the
manipulation of internal state variables, set internal timers,
perform internal decisions within a process definition and
dynamic process creation.

S1

S0

e1

S0

S1

e2

S1

e3

a01 a11

Figure 4: Description of the FSM of Figure 2 by an SDL process
diagram

2.4 Synchronous Languages
There is a class of languages for modelling reactive systems,
termed synchronous languages, in which it is assumed that the
system reacts in zero time, i.e. the computation of the reaction
takes no time and thus the output actions are synchronous with the
input actions. A reactive system can thus be viewed as a set of
subsystems that evolve simultaneously and communicate with
each other to achieve the required behaviour. The Statechart
formalism described in Section 2.2 also falls into this broad
category of languages. Another language is Esterel [1][2] which
provides a high level language to describe parallelism for
deterministic systems.

Esterel was designed in order to obtain a better understanding of
the semantics of parallelism. It is a textual language enabling the
compact specification of complex systems. The underlying model
behind Esterel can be summarised by:

• Reactivity

The reactive model forms the basis of all Esterel models i.e.
communicating systems continuously interacting with their
environment. Within Esterel, the life of a reactive system is
divided into instants when it reacts to the events and the

Esterel language reactive statements are ones which are
defined by reference to instants.

• Atomicity of reactions

Esterel assumes the synchrony hypothesis which indicates
that reactions are instantaneous so that activations and
production of outputs are synchronous. Another way of
looking at this is to say that reactions are atomic. Any
reaction does not interfere with other reactions.

• Instantaneous broadcast

The Esterel language contains a specific parallelism operator
enabling the user to directly program parallel entities. In
order to communicate with these parallel entities provides its
own unique mechanism called broadcast. That mechanism
relies on signals for both internal and external
communications. Broadcast is limited to instants i.e. the
creation of a signal lasts for the current instant and this signal
can be seen by all receptors during this instant. As the
generation of a signal does not terminate a particular instant,
multiple signals can be created and received in the same
instant. This leads to the characteristic of "instantaneous
decisions" which are specific to the Esterel language.

• Determinism

The parallelism introduced by Esterel ensures determinism
thus simplifying programming and ensuring that behaviour is
reproducible.

Of course for such a language to be useful some form of
processing capability must be included i.e. not all real world
applications have processing that fits the reaction takes no time
assumption. Esterel caters for this with the introduction of
asynchronous tasks - a piece of sequential code that is not
instantaneous in its execution. Tasks have the following basic
properties:

• They can be started and killed during an instant.

• A task is allowed to synchronise only when it terminates its
execution.

• Tasks are not allowed to communicate.

One of the major benefits of the Esterel language is that the
compilation process, i.e. converting the Esterel language
statements into executable statements (C or pseudo output code
format), produces sequential code with any parallelism and local
communications being compiled away resulting in efficient
implementation. Esterel is also based on rigorous mathematical
semantics and thus formal verification methods may be applied to
Esterel programs [1].

Although Esterel has its own environment for verification,
validation, simulation and development it is now finding its way
into commercial toolsets such as Esterel Studio [4].

3. FSM IMPLEMENTATION IN GEDAE
From the brief overview provided in previous sections, it is
evident that a number of approaches to the utilisation and
implementation of FSMs is possible. Gedae being a graphical
environment lends itself particularly towards the FSM providing

we can define an appropriate representation for them. In particular
the graphical representations offered by the state transition
diagram (and associated Statecharts) and SDL are particularly
suited to implementation within Gedae. These will be discussed in
this section as a basis for future comparison of alternative
methods such as an Esterel approach.

For the moment we need to consider the basic building blocks
required to implement FSMs. Figure 5 shows the key elements of
a state and its associated transitions:

• A state S,

• A transition labelled "guard/action" causing transition to a
new state with associated actions being performed,

• An entry into the state.

S

guard/action

Figure 5: Elements of a single state

If we analyse the behaviour of the above elements in a different
(i.e. more dataflow oriented) way we arrive at the following
requirements for a basic FSM building block for Gedae to model
the elements of a single state:

• The state has no internal memory except to know whether it
is in the state or not.

• The guard is a true or false signal indicating that the state
will be left.

• During the transition to a new state the action specified must
be completed.

• The new state to enter must be specified.

• An entry signal is provided.

This last requirement permits a certain level of consistency
checking within the implementation by setting the only internal
memory element of the state i.e. in the state or not. An example of
where this will be useful is when the guard is true even though we
aren't in the state - executing the action is then a mistake.

From a reuse point of view, the programming of the action
element into the basic building block would be a disadvantage.
Therefore in the proposed implementation below the design uses
the concept that the block will produce a signal to inform
downstream processing that the action should be performed. This
has the advantage that all action programming is then external to
the state modelling blocks which because of our assumption of no
internal memory is valid.

Therefore a pseudo-code representation of the basic single state
building block is:

On signal entry:
If already in this state - do nothing
Else set internal state to true

On signal guard:

If not in this state - do nothing
Else

set internal state to false
perform actions (using signal)
enter new state (using signal)

It should be noted that in order to maintain the integrity of the
FSM, the two elements in the last Else branch of the "On signal
guard" should occur in sequence and complete before continuing
with processing of further events.

As we are trying to model reactive systems, the most appropriate
domain for implementing this Gedae building block is in the
discrete "trigger" domain. An implementation following the
pseudo code above is shown in Figure 6 and 7 below.

Figure 6: Gedae implementation of basic single state block

Name: State
Type: trigger
Comment: ""
Input: {

trigger int entry;
trigger int guard;

}
Local: {

int inState;
}
Output: {

int actions;
int newState;

}
Reset: {

inState = 0;
}
Trigger: {

int en = dirty(entry);
int ex = dirty(guard);
if (en && ex) {

printf("cannot enter and exit at the same time\n");
OStaticFailed("cannot enter and exit at same time");

} else if (en && ! inState) {
/* entering this state */
inState = 1;

} else if (ex && inState) {
/* exiting this state */
inState = 0;
actions = guard;
push(actions);
newState = guard;
push(newState);

}
}

Figure 7: Primitive implementation code for single state

In order to model multi-state FSMs we can connect this simple
single state building block to form a state transition diagram. This
is demonstrated in Figure 8 and 9.

S1

S0

e1/a01

e2

Figure 8: Example state transition diagram

Figure 9: Gedae implementation of Figure 8

As can be seen from the figures, the Gedae implementation using
the basic single state building block mirrors the original state
transition diagram. Also note that the Gedae implementation
contains an I_ResetK primitive to ensure that the correct initial
state is entered when the data flow graph is executed.

The above realisation is somewhat limited and just as the work of
Harel extended the standard state transition diagram concept to
Statecharts, it requires extending for practical use within complex
control structures. With minor modifications of the basic state
building block and the inclusion of additional wrapper code the
following functionality can be easily achieved:

• Depth - as Gedae DFGs are already hierarchical in nature,
the concept of depth is automatically included. However the
inclusion of an addition "sub" output when the state is
entered adds to the functionality and permits improved sub-
state modelling. In addition, this output can be used to
execute actions when entering a state.

• Multiple entry and exit conditions - this is achieved using
the notion of Gedae families converting the multiple entry
and exit conditions into single events for use with the basic
state machine primitive.

Figures 10, 11 and 12 show the new basic building blocks for
FSM modelling in Gedae. Their practical use is given in Section
4. Note that the implementation of such building blocks could be

greatly simplified if trigger primitives could employ families of
inputs for their trigger inputs.

Figure 10: State machine primitive

Figure 11: Multi-event state machine primitive

Figure 12: Hierarchical implementation of the multi-event state
machine primitive

3.1 Alternative Implementation
The state transition diagram approach to modelling FSMs was
originally chosen as it provides an intuitive representation for
engineers who are familiar with FSMs. One of the drawbacks of
this approach is that Gedae imposes fairly rigid constraints on the
way primitives are connected and thus it is possible, if hierarchy
isn't used sensibly to end up with a "spiders web" of connecting
arcs. Fortunately, it isn't the only representation and an alternative
approach is that based on an implementation approach commonly
adopted when using SDL process diagrams for modelling FSMs.
In Section 2.3 it was noted that a common implementation method
is based on a dispatch handler identifying the processing in a STT
for each event/state pair. This can be modelled in Gedae quite
simply using the 3 basic primitives:

• Event handler - converts each independent event into a
unique event number.

• STT lookup - based on the input state and the unique event
number, lookup the action to be performed in the STT matrix
and emit this action (as a unique action reference number).

• Action Handler - converts the action reference to specific
actions. Note that this must also update the state ready for the
next invocation of the STT lookup.

Figure 13 shows a particular implementation of these primitives.

Figure 13: STT implementation of FSMs within Gedae

The STT lookup primitive is the key element of the three blocks
but is in itself very simply coded having a trigger method
containing lines of code similar to:

a = STT[event][State];
if (a > 0) {

action = a;
push(action);

}

This coding assumes that an entry of zero or below in the STT
matrix implies perform no action. The event handler primitive
must thus convert independent events, specified through the
family of inputs, into a unique event number to act as the trigger
of the STTlookup primitive and also to as a reference into the STT
matrix. Similarly the action handler converts a unique action
number into a "pushed" event notification contained within one
element of the family of action outputs. Note that as with the
method based on state transition diagrams, the coding of the
actions is independent of the event handler, STT lookup and
action handler, although they may of course generate new events.
The STT matrix corresponding to the state transition diagram of
Figure 2 or the SDL process diagram of Figure 4 is then simply:

StateEvent
S0 S1

e1 1 0
e2 0 0
e3 0 2

where action 1 and 2 correspond to actions a01 and a11
respectively. Note that the action handler updates the state input
parameter of the STTlookup primitive for the next execution.

There are a couple of immediate advantages of this approach over
the state transition diagram based method described earlier.
Firstly, additional events or states can be added simply by adding
extra entries to the STT matrix. Secondly, it is possible to
dynamically change the behaviour of the FSM by changing the
value of the STT matrix input parameter. This latter case assumes
that the actions used within the STT are already catered for within
the action handler.

3.2 Data Flow Implementation
The implementation of the FSM primitives described in this
section so far have been based on using the discrete "trigger"
domain as these are most suited for modelling reactive systems.
However, a current limitation of these types of primitives is that
they can only be executed on the Gedae host and can't be
embedded onto target platforms. As there may be scenarios when
the control logic must be embedded, alternative implementations
must be sought.

Luckily, both the implementations described above can also be
implemented in the conventional data flow domain if additional
assumptions are made. These additional assumptions tend to be
concerned with how to handle granularity issues. While there are
numerous ways in which a data flow implementation might be
constructed, the essential problem to solve is how to mirror the
triggered inputs within the data flow domain.

For the state transition diagram approach, the trigger inputs enter
and exit must be converted into non-deterministic inputs. It would

then be possible to check the number of available tokens on each
input with a number greater than zero indicating that a "trigger"
has occurred. One condition that would need an additional
assumption is the case when the number of available tokens on
one of the inputs is greater than 1 - would this result in multiple
outputs or a single output? As the actions performed due to this
non-deterministic input could result in a change of state then it
can be assumed that multiple available input tokens are converted
to a single output token. In some respects this mirrors the code in
the discrete trigger primitive which tests whether we are already in
or out of the state. As outputs will not be generated on every
firing of the primitive the outputs would need to be dynamic or
non-deterministic.

For the STT lookup method, it would be possible to have a purely
static data flow implementation as a single input token to the
STTlookup primitive always results in a single output token. To
keep the primitive as simple as possible, the state and STT matrix
inputs would remain an input parameter with the event a stream
input. The only consideration then is to ensure that any change in
state is synchronised to the arriving input events. One possible
solution to this is the use of runlength encoded parameters for the
State input.

In both the above cases, there would have to extensive use
dynamic data flow primitives within the event generation/handling
and action handling segments of the implementation. This would
lead to inefficient implementations. An alternative approach
would be to ensure that the embedded scheduler was capable of
handling the discrete "trigger" primitives.

4. A PRACTICAL EXAMPLE
The above FSM implementations have been used within the
development of the signal processing sub-system of a multi-
function radar. The operation of the radar is defined by a
hierarchy of search patterns, each of which consists of one or
more dwell patterns that in turn call up one or more radar burst
definitions. The basic operation of the radar will be governed by a
series of default search patterns that will be used until a dynamic
data driven series of "tasks" have been generated on-line by the
data processing functions of the radar. These dynamic tasks will
consist of a number of radar burst definitions. This approach to
controlling the radar operation has been adopted for two main
reasons:

• To provide the flexibility to operate the radar under a wide
range of pulse regimes.

• To allow feed back from the data processing functions to
optimise the radar to the current environment and operational
needs.

Therefore the control logic of the radar must cater for the
following elements:

1. Reading a default search pattern from a repository of such
search patterns.

2. Allowing the user to view and edit the default search pattern.

3. Generate radar bursts according to the specification within
the search pattern.

4. Update the radar bursts being generated as a result of the data
processing.

It is clear that the above logic is well suited to an FSM
implementation as the processing consists of a number of states
with transitions between the states being controlled by both
operator and radar interaction. The first implementation of the
FSM for the control logic concentrated on elements 1 to 3. A state
transition diagram for the control logic is shown in Figure 14.

The diagrams show the transitions between the states and why the
transitions occur. The specific actions to be performed during
these transitions are not shown for clarity. Also note that the
elements to allow the user to view and edit the search pattern have
been specified within the control logic but haven't as yet been
implemented within the Gedae implementation.

IDLE

SEARCH
PATTERN

AVAILABLE

GENERATE
BURSTS

READ FILE

Reset
Read File
Requested

Complete
Search Pattern
Read

Start Burst
Generation

Burst Generation
Complete

Read File
Requested

Error Reading
Search Pattern

Figure 14(a): Radar control - Top level state transition diagram

OPEN
FILE

READ
BURST

READ BURST - complete

READ BURST - okay

READ BURST - error

OPEN FILE - okayOPEN FILE - error

Read File
Requested

Error
Reading
Search
Pattern

Complete Search Pattern Read

Figure 14(b): Read File hierarchical state

S.P.
AVAIL

EDIT

VIEW

Read File Requested

Burst Generation
Complete

View

Edit

View Complete

Edit Complete

Start Burst
Generation

Complete Search
Pattern Read

Not Implemented Yet

Figure 14(c): Search Pattern Available hierarchical state

The top-level Gedae implementation of these state transition
diagrams is shown in Figure 15. As can be seen the model mirrors
the state transition diagram of Figure 14(a). For clarity within the
model the transition names have been shortened and as discussed
in Section 3, the actions to be performed are external to the main
FSM structure. As in the state transition diagram the Gedae model
contains two hierarchical states, SPread and SPavail.

Figure 15: Radar Control - Gedae Implementation

It will be noticed that a SmachineCL primitive has replaced the
basic Smachine primitive described in Figure 10. This modified
Smachine primitive is shown in Figure 16 and is required to
overcome the way the Gedae pushing of parameters operates
together with the fact that, in the case of this particular FSM, a
“closed loop” or circular action/event structure is present. The act

of pushing a parameter using the push() function in a Gedae
primitive causes all downstream parameters to be evaluated until
no further evaluation can take place. At this point Gedae re-winds
to the originating push() function to carry on execution of that
primitive code. The push() function is essentially recursive. For
most applications this functionality is quite acceptable but in the
case of an FSM implementation, this functionality may cause
downstream actions to create additional input events prior to any
required change in state. In addition, the triggered inputs are not
made “clean” (i.e. dirty() returns false) until the execution of the
primitive has completed. This results in many FSM errors due to
the state being entered and exited during the single firing of the
primitive (see sample code in Figure 7).

Fortunately, this behaviour can be overcome by ensuring that the
Smachine primitive completes execution prior to the traversal of
the parameter evaluation following the push() function. This is
achieved in the modified Smachine primitive using the breakPush
and breakPush2 primitives which use an I_GateK primitive and a
number of I_Seq2 and I_Pulse primitives to essentially break the
“closed loop” nature. These primitives ensure that the Smachine
primitive completes execution prior to the sub and actions/next
outputs are pushed.

Figure 16: Modified Smachine primitive

The most interesting of the hierarchical states within the top-level
Gedae model of Figure 15 is the SPavail state as it contains
multiple entry and exit events and also two internal sub-states.
The Gedae implementation of this state is shown in Figure 17.

Figure 17: SPavail hierarchical state

This model uses route boxes to convert the input events and
output parameters to/from the family input/output members of the
SmachineM_CL primitive respectively. This state demonstrates

the ease of adding additional transitional events to the FSM. The
transition to the two unimplemented internal sub-states is shown
by the dangling output members of the route_1 primitive. The
inclusion of these sub-states at a later date will be quite
straightforward.

5. CONCLUSIONS
It has been shown that FSMs provide the basic elements for the
modelling of the complex, highly dynamic control elements found
within reactive systems. While the most widely used notation for
describing FSMs is the StateChart, the SDL process diagram is
commonly used within the telecommunications industry. It has
also been shown that these two notations can be effectively
implemented within Gedae for the control of data-flow
applications.

While Gedae isn’t the most appropriate tool for modelling and
implementing complex control logic, the FSM approach described
in this paper does provide a means of simplifying the control
logic. To demonstrate this, a practical realisation of the state
transition diagram version has been presented for a multi-function
radar. Achieving the same control algorithms using standard
discrete logic primitives would be far more complex and much
more difficult to modify to include future enhancements.

While the discrete “trigger” primitives are the most appropriate
method of implementing FSMs within Gedae, there are some
limitations to their use. The two most important limitations are:

• they can only be executed on the host,

• families of inputs/outputs aren’t permitted.

It has been shown that the second of these can be overcome, for
the discrete “trigger” primitives, by including additional control
logic to interface families of inputs/outputs with the basic
Smachine primitive. However, at present the first limitation can
only be overcome by using standard data-flow primitives and
methods for achieving this have been suggested. The removal of
these two limitations would greatly enhance the capabilities of
Gedae for modelling and implementing FSMs as described in this
paper.

6. ACKNOWLEDGEMENTS
Elements of the FSM implementation within Gedae and the
practical example of FSM use were developed while the authors
were members of an integrated project team (IPT) funded by
Alenia Marconi Systems Limited (Chelmsford, UK). The authors
would like to acknowledge the support from and contributions of
all the IPT team members.

7. REFERENCES
[1] G. Berry, "The Foundations of Esterel", in "Proof, Language

and Interaction: Essays in Honour of Robin Milner", MIT
Press, 1998

[2] F. Boussinot and R. De Simone, "The Esterel Language",
Proc IEEE, Vol 79, No. 9, Sep 1991, pp. 1293-1304.

[3] CCITT Recommendations Z.100 - Z.104, "Functional
Specification and Description Language (SDL)", Red
Book,Vol.VI.11, 1985.

[4] ESTEREL Studio, ESTEREL TECHNOLOGIES,
http://www.simulog.fr/esterelstudio/

[5] Gedae, Blue Horizon Development Software, USA,
http://www.gedae.com/.

[6] A. Girault, B. Lee and E.A. Lee, “Hierarchical Finite State
Machines with Multiple Concurrency Models”, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems,
vol. 18, no. 6, pp. 742-760, June 1999.

[7] D. Harel, "Statecharts: A Visual Formalism for Complex
Systems", Science of Computer Programming, vol. 8, pp.
231-274, 1987.

[8] G. E. Moore, "Cramming more components onto integrated
circuits", Electronics, Volume 38, Number 8, April 19, 1965.

[9] Statemate MAGNUM, I-Logix, http://www.ilogix.com/.

