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ABSTRACT 

Hidden Markov Model (HMM) based applications are 
common in various areas, but the incorporation of 
HMM's for anomaly detection is still in its infancy. 
This paper aims at classifying the TCP network traffic 
as an attack or normal using HMM. The paper's main 
objective is to build an anomaly detection system, a 
predictive model capable of discriminating between 
normal and abnormal behavior of network traffic. In 
the training phase, special attention is given to the 
initialization and model selection issues, which makes 
the training phase particularly effective.  For training 
HMM, 12.195% features out of the total features (5 
features out of 41 features) present in the KDD Cup 
1999 data set are used. Result of tests on the KDD 
Cup 1999 data set shows that the proposed system is 
able to classify network traffic in proportion to the 
number of features used for training HMM. We are 
extending our work on a larger data set for building an 
anomaly detection system. 
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1. INTRODUCTION

Intrusion detection systems (IDS) [11] have become 
popular tools for identifying anomalous and malicious 
activities in computer systems and networks [8]. 
Anomaly detection is a key element of intrusion 
detection and other detection systems in which 
perturbations from normal behavior suggest the 
presence of attacks, defects etc. [14]. Anomaly 
detection is performed by building a model that 
contains metrics derived from system operation and 
flagging any observation as intrusive that has a 
significant deviation from the model [1]. The paper 
aims at investigating the capabilities of Hidden  

Markov Models for building Anomaly Detection 
system. For a proof-of-concept, the proposed approach 
is tested using the KDD Cup 1999 data set in order to 
assess the robustness of the method; we have selected 
5 features of the data set instead of selecting all of the 
features (41 features).  We are extending the model to 
more features and larger datasets. 

The structure of the paper is as follows: Section 2 
gives the brief introduction to the concepts of Hidden  
Markov Model. Section 3 deals with the strategy we 
have employed for making an Anomaly Detection 
system that can classify network traffic as an attack or 
normal. It covers the mathematical modeling of the 
problem and describes the parameter estimation, and 
training procedure of HMM model and recognition 
phase of the system. Section 4 deals with the results 
which we have received after applying an HMM 
algorithm to develop an anomaly detection system. 
Some concluding remarks are given in section 5. 

2. HIDDEN MARKOV MODEL 

Hidden Markov Model is an instance of a more 
general class of models designed by stochastic finite 
state networks [12]. It generates an internal sequence 
of symbols and a sequence of external symbols, using 
probabilistic rules [13] . An HMM is characterized by 

 = {A, B, }. HMMs are not exhaustively treated 

in this paper; we refer the reader to read [12] for more 
details. Various elements of HMM are briefly 
described here as follows: (1) 'N' represents the 
number of states in the model, (2) Individual states are 
denoted as S = {S1, S2... SN}, (3) State at time ‘t’ is 
denoted as ‘qt’, (4) ‘M’ represents the number of 
distinct observation symbols per state; these 
observation symbols correspond to the physical output 
of the system being modeled, (5) Individual symbols 
are denoted as V = {V1, V2... VM}, (6) ‘A’ represents 
the state transition probability distribution where A = 
{aij}, (7) ‘B’ represents the observation symbol 

probability distribution where B = {bjk}, (8) ‘ '

represents the initial state probability distribution 

where = { i}, and (9) A random sequence O = O1,

O2… OT represents the indirect observations of the 
underlying hidden sequence of states where ‘T’ 
represents the number of observations taken. 
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3. THE STRATEGY 

In this section, the proposed strategy is explained in 
detail. This section starts with the description of the 
features present in the KDD Cup 1999 data set (the 
data set we have used to test our Anomaly Detection 
system) and then gives the detailed descriptions of the 
training and classification procedures, focusing on the 
initialization and model selection issues.

3.1 KDD Cup 1999 data set 

For our experiment, we have used the KDD Cup 1999 
intrusion detection data set prepared by Lee et al. [9]. 
The data set contains 41 features representing selected 
measurements of normal and intrusive TCP sessions. 
Each labeled TCP session is either normal or a 
member of one of the 22 attack classes in the dataset. 
The first 5 features are selected, namely (1) Src_Bytes, 
(2) Dst_Bytes, (3) Duration, (4) Is_Host_Login, and (5) 
Is_Guest_Login,   based on the results of Gopi et al. [8] 
which are based on the Screen Test and Critical 
Eigenvalue test. The objective of selection of a subset 
out of all the features is to assess the robustness of our 
system.

3.2 Mathematical Modeling 

While modeling the stated problem, we have used Urn 
and Ball model of [12] In Urn and Ball model, ‘N’ 
parameter of HMM represents the number of urns and 
‘M’ parameter of HMM represents the number of 
colored balls per urn.  Thus, in Urn and Ball model, 
each state corresponds to a specific urn, and the 
number of colored balls present in a particular urn 
corresponds to the number of observation symbols 
(value of ‘M’ parameter) per state. In our stated 
problem, we have selected 5 features of the KDD Cup 
1999 data set (as stated in subsection 3.1) which 
correspond to urns (in Urn and Ball model), and thus 
parameter ‘N’ has value 5 in our model.  

Each feature has some value for making each TCP 
session of the KDD Cup 1999 data set. These values 
correspond to the number of colored balls present per 
urn (i.e. per feature in our case). We have segregated 
the values of each feature in 6 sets (or otherwise it 
would become an infinitely large number of 
observation symbols per state), where each set 
corresponds to the particular color of the ball; which 
in turn formed the number of distinct observation 
symbols per feature or per state, and thus parameter 
‘M’ has value 6 in our model. 

Table 1 shows the actual values of the selected 
features of one of the TCP sessions of the KDD Cup 
1999 data set which is a normal means; it doesn’t 
contain any sort of anomaly and it also shows the 
discrete observation symbol of the corresponding 
values of a TCP session. 

Table 1. Actual Values and Discrete Observation 

Symbol values of the Features of one of the TCP 

sessions of KDD Cup 1999 data set 

Feature No. 1 2 3 4 5

Values from a 
TCP session 

22 181 5450 0 0

Observation
Symbol Value 

1 1 3 1 1

We have received values for observation symbol after 
segregating the values of each feature in 6 sets. 

For instance, here we have given the range of values 
of each Observation Symbol number of Duration 
feature: (1) Observation Symbol 1 is assigned to the 
value which is less than 1700, (2) Observation Symbol 
2 is assigned to the value which is in between 1701 
and 3500, (3) Observation Symbol 3 is assigned to the 
value which is in between 3501 and 6000, (4) 
Observation Symbol 4 is assigned to the value which 
is in between 6001 and 9500, (5) Observation Symbol 
5 is assigned to the value which is in between 9501 
and 165000, and (6) Observation Symbol 6 is assigned 
to the value which is more than 16500. 

The states in our model are interconnected in such a 
way that any state can be reached from any state. In 
the Urn and Ball model, it is possible to find which 
ball has been taken from which urn, but in our case the 
combined effect of values of all the features results in 
a TCP session that is normal or contains some 
anomaly. 

As values of all the features constitute TCP session 
and thus all these feature values make TCP session a 
normal or an attacked one. In our model, we have 
taken these values as observation sequence and 
classified them as their respective observation symbol 
number according to the guideline as explained above. 
This observation sequence represents the values that 
make the trend of normal or anomaly dependent upon 
the type of TCP session. The classification procedure 
is explained below by the following example. 

For example, let us suppose in Urn and Ball model 
there are 5 urns each containing a red, green, blue, and 
white ball. Table 2 lists the sample observation 
sequence after picking one ball from each urn. A 
character R, G, B, and W shown in Table 1 represents 
the Red, Green, Blue, and White ball respectively. 

Table 2. Sample Observation sequence created for 

Urn and Ball model which is analogous to our 

model

Urn 1 2 3 4 5 Type 

O1 R G B R G P1

O2 R G B G W P2

O3 R G B R W P3

The ‘Type’ field of Table 2 shows the type of 
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observation sequence it is. Our HMM model trains the 
observation sequence of O1, O2, and O3 and stores it as 
a trend followed by Type P1, P2, and P3 respectively. 
Training procedure in our case (for anomaly detection 
system) is explained in section 3.3. While recognizing 
the given unknown observation sequence, if it is of 
Type P1 then that sequence will follow the trend of P1

much closer than Types P2, and P3; as trained 
parameters of Type P1 will recognize the unknown 
observation with higher probability rather than that of 
Types P2, and P3. Thus, we could classify the given 
unknown sequence using trend analysis i.e. the one 
whose trained parameters recognizes the unknown 
observation sequence with higher probability. 
Classification procedure (recognition) in our case (for 
anomaly detection system) is explained in section 3.4.  

The same analogy can be applied to our case, where 
each urn represents features and each ball represents 
the set of values of each observation symbol number. 
Therefore, if a TCP session is given of Type ‘normal’ 
then trained parameters of ‘normal’ TCP session 
recognize the unknown sequence with higher 
probability rather than that of the ‘anomaly’ typed 
TCP session. 

The complete parameter set of the model can be 

described as  = {A, B, }. Number of Hidden 

states of the model (‘N’) is 5 represented as S1, S2, S3,
S4, and S5 where each state represents the feature 
Duration, Src_Bytes, Dst_Bytes, Is_Host_Login, and 
Is_Guest_Login respectively as explained above. 
Number of Observable symbols (‘M’) is 6 for states S1,
S2, and S3 and for S4, and S5 its value is 2.  

The initial state distribution = { i}.             

  where i = P [Sj ],   

                     1 j 5

The State transition probability distribution A = {aij}
  where   aij = P [qt+1 = Sj | qt = Si ],    

       1 j 5  and 
      1 i 5

The Observation symbol probability distribution in 
state j,  B = {bj(k)}
where       bj(k) = P [Vk at t | qt  = Si ],    
                1 j 5 and 
  1 k 6 if j = 1, 2, or 3 else 1 k 2

The following figure, Figure 1, shows the Finite State 
Automata of the transition of states from one state to 
another. S1, S2, S3, S4, and S5 as shown in figure 1 
represent the states of our HMM model which 
corresponds to Duration, Src_Bytes, Dst_Bytes, 
Is_Host_login, and Is_Guest_login feature of the KDD 
Cup 1999 data set respectively. The connecting link in 
the figure indicates the state transition probability for 
each state. 

S1

S2

S3

S5

S4

Figure 1.  Finite State Automata of the State 

Transition from one state to another state for 5 

features of KDD Cup 1999 data set 

3.3 Parameter Estimation and 

Training

This sub-section of the paper deals with the parameter 
estimation and training of each TCP session of the 
KDD Cup 1999 data set. Section 3.3.1 exhaustively 
explains the initial estimation of HMM parameters and 
Section 3.3.2 covers the training phase of the 
algorithm.

3.3.1 Parameter Estimation  

Baum – Welch method [7] is used to estimate the 
HMM parameters. Baum – Welch method starts with 
an initial estimate, converges to the nearest local 
maximum of the likelihood function. Thus, the 
initialization process heavily affects the resulting 
estimate, as the likelihood function is highly 
multimodal.  

Initial values of A, B, and are taken to be 

uniformly distributed. Table 3 and Table 4; indicate 

the corresponding initial values of and A 

parameter of our HMM model which correspond to 
the initial state probability distribution and state 
transition probability distribution respectively. 

Table 3.  Initial State distribution (Parameter ‘ ’

of HMM) for one of the TCP sessions of KDD Cup 

1999 data set

States
Initial State Distribution 

Value ( i)

1 0.000581

2 0.261902

3 0.089830

4 0.375828

5 0.271858
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 Table 4.  State transition probability distribution 

(Parameter ‘A’ of HMM) for one of the TCP 

sessions of KDD Cup 1999 data set

 3.3.2 Training Session 

A practical, but fundamental issue to be solved when 
using an HMM is the determination of its structure, 
namely, the topology and the number of states i.e. 
finding a method to adjust the model parameters (A, 

B, ) to maximize the probability of the observation 

sequence given the model. According to [12] there is 
no optimal way of finding a method that analytically 
solves the problem. Though there are methods like 
Baum – Welch method i.e. EM (expectation – 
modification) method [7] or gradient techniques [10] 

which can choose  = (A, B, ) such that P (O | )

is locally maximized. Some special purpose 
approaches (e.g. [15], [6]], [4], [5]) have been 
proposed for the model selection issue of HMM.  

The training algorithm has the following steps (1) 
Initialization of Parameters of HMM, (2) Forward 
Procedure, (3) Backward Procedure, and (4) Re-
estimation of Parameters of HMM. The first step of 
the training algorithm (i.e. Initialization of HMM 
Parameters) has been explained in subsection 3.3.1. 
Subsections 3.3.2.1, 3.3.2.2, and 3.3.2.3 describe the 
rest of the steps of the training session.

3.3.2.1 Forward Procedure for Training 

After parameter estimation step, Forward Procedure [2] 
is  applied for training HMM. The forward variable: 

t (i) = P (O1,O2,O3,O4,O5, qt = Si | )  …………  (1) 

The forward variable ‘ ’ indicates the probability of 

the partial observation sequence, O1, O2, O3, O4, and 

O5, and the state Si at time t, given the model .

Observation sequences O1, O2, O3, O4, and O5

represent the discrete observation symbol number of 
the states S1, S2, S3, S4, and S5 respectively. Thus, in 
our case values of O1, O2, O3 ranges from 1 to 6 and 
for O4 and O5 it is either 1 or 2. 

Steps involved in the Forward Procedure are described 
using equations (2), (3), and (4):   

Initialization of the forward variable value 

t(i) = i  bi (O1)  ......................... (2) 

 where  1   i  5

Induction step of the Forward Procedure 

        (t+1)(j) = [

5

1i

t (i)  aij ]  bj (Ot+1) .. (3) 

 where  1  t  T -1  and    

1  j  5 

Termination step of the Forward Procedure 

P (O | ) = 
5

1i

t (i)...........................  (4) 

Thus, P (O | ) is the sum of all the t (i) values. 

3.3.2.2 Backward Procedure for Training 

After Forward Procedure, Backward Procedure [3] is 

applied for training. Backward variable t (i) is the 

probability of the partial observation sequence from 
(t+1) to the end, given state Si at time t and the 

model . Steps involved in Backward Procedure are 

described using equations (5) and (6).

Initialization of the Backward Variable 

      t (i) = 1    ………………………………….(5) 

  where  1  i  5 
Induction step of the Backward Procedure  

          t(i) =

5

1j

aij bj(Ot+1) t+1(j)  …………(6)

 where  t = T-1, T-2, T- 3… 1 

  1  i   5

3.3.2.3 Calculation of and values

For training, one possible optimality criterion could be 
to choose the state qt, which is individually mostly 
likely. This optimality criterion maximizes the 
expected number of correct individual states. For 

implementing this solution we have taken variable .

For updating and re-estimating the HMM parameters 
once they are initialized, we have defined the variable 

(i, j) i.e. the probability of being in state Si at time t, 

and state Sj at time (t + 1), given the model and the 
observation sequence. The value of this variable can 
be described using the forward and backward 
variables shown in equation (8).

t(i) =[ t (i) t (i)] / (

5

i 1

t (i) t

(i) )..(7) 

t (i,j) = (  t(i)  aij  bj (Ot+1)  t+1(j) ) /

(
5

i 1

5

j1

 t(i)  aij  bj(Ot+1)  t+1(j))  .......... (8)  

3.3.2.4 Re - Estimation of HMM parameters 

This is the most important step of Training algorithm. 

States 1 2 3 4 5

1 0.1456 0.1062 0.2718 0.2496 0.2265

2 0.0679 0.3353 0.2774 0.2005 0.1186

3 0.0191 0.1165 0.4648 0.1878 0.2115

4 0.6308 0.2844 0.0760 0.0029 0.0056

5 0.1404 0.1976 0.2123 0.2237 0.2257
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Steps involved in this phase are described as follows:

Re – estimating initial state distribution 
values

i = 1(i) ……………………….… (9)           

  where 1  i  5 

Re – estimating state transition probability 
 distribution  

                 aij =

1

1

T

t

t (i ,j)  /

1

1

T

t

t(i)   …………...(10)           

Re – estimating observation symbol 
probability distribution  

bj(k) = [ (s.t.) Ot = Vk ] 

5

t 1

t(j) /

5

t 1

 t(j) ……(11)

The process of re-estimation of HMM parameters 
continue till the desired limiting point isn’t reached. 
At the end of the training phase, we have one model 
for TCP Session of the dataset. Table 5 shows the 
trained values of the HMM parameters ‘A’ i.e. for 
state transition probability distribution for one of the 
TCP sessions of the KDD Cup 1999 data set which 
will be useful in the recognition phase of the algorithm. 

Table 5. Trained values of State transition 

probability distribution (Parameter ‘A’ of HMM) 

for one of the TCP sessions of KDD Cup 1999 data 

set

S= 1 2 3 4 5

1 5E-78 0.1249 0.34706 1.55716 0.52794

2 3E-12 0.0066 0.01015 0.98161 0.00158

3 1E-13 0.0951 0.57270 0.12032 0.21178

4 1 1.5080 1.43776 4.61048 2.62517

5 1E-20 5.4928 7.40352 0.99982 4.80135

3.4 Recognition Phase 

For checking whether the particular network traffic is 
normal or it contains some sort of anomaly, we give 
our anomaly detection system discrete observation 
symbol values of the following features: (1) duration, 
(2) Src_Bytes, (3) Dst_Bytes, (4) Is_Host_Login, and 
(5) Is_Guest_login that correspond to the unknown 
observations sequence of O1, O2, O3, O4, and O5.
Given an unknown observation sequence O = O1, O2,
O3, O4, O5; the standard maximum likelihood principle 

computes the value of P (O | i) (where i represents 

the number of models present in the trained dataset). 

The session is assigned to the model i, whose 

model shows the highest likelihood. 

Thus, i = arg max (P O| i) ……………………. (12) 

Given observation sequence represents the TCP 
session, and this recognition algorithm classifies the 
TCP session as normal or anomaly by assigning the 

nature (normal or anomaly) of the winning model  i.

This recognition procedure has been partly explained 
in section 32.

4. RESULTS

We present the performance of Anomaly Detection 
system in terms of detection accuracy. The detection 
accuracy of Anomaly Detection system is the 
percentage of attack samples detected as attacks. The 
false positive rate of Anomaly Detection system 
accounts for the detection of normal sample as an 
attack. We analyzed the working of our Anomaly 
Detection system on the KDD Cup 1999 data set.  

We took 5 features (1) Src_Bytes, (2) Dst_Bytes, (3) 
duration, (4) Is_Host_login, and (5) Is_Guest_login of 
the KDD Cup 1999 data set for analyzing the 
capability of our Anomaly Detection system. The best 
results was  79 % accurate i.e. given unknown 
sequence of TCP sessions this Anomaly Detection 
system could accurately verify that it is a normal or 
having anomaly with 79% accuracy. The remaining 
21% is accounted for false positive rate (i.e. 
classifying anomaly as a normal TCP session) and 
false negative rate (i.e. classifying normal as an attack 
type TCP session). One of the reasons for false 
positive rate and false negative rate is the amount of 
features (12.195% of the total features) we have 
selected for training session of the algorithm (instead 
of the full 41 features). Thus, we think we can 
improve the efficiency of this algorithm by proper 
tuning of HMM parameters and also by taking into 
account the significant percentage of the TCP session 
features or by using a larger data set. 

5. CONCLUSIONS AND 

DISCUSSIONS 

This paper investigated the capabilities of Hidden 
Markov Model in Anomaly Detection System. As 
described above, one HMM has been trained for each 
TCP session of the KDD Cup 1999 data set. While 
training the model, special attention is given to the 

initialization of A, B, and  parameters and model 

selection issue. Training is performed using standard 
Baum- Welch procedure.  Network traffic to be tested 
is fed to all of the models then using standard 
maximum likelihood principle that traffic is rated as 
either normal or attack using the recognition phase of 
our algorithm. Tests on the KDD Cup 1999 data set 
indicate that HMM can be applied for Anomaly 
Detection wherein we have just taken only 12.195 % 
of the total features of the data set.  Thus, this 
indicates that Hidden Markov Methodology, with 
particular care to the parameter estimation and the 
training phase, represents a powerful approach for 
creating Anomaly Detection System which can find 
whether the traffic is normal or containing some sort 
of anomaly at runtime that might solve the major 
concern of the Computer Security. We are extending 
our work on a more rigorous data set for building a 
highly reliable anomaly detection system.  
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