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ABSTRACT

Hidden Markov Model (HMM) based applications are
common in various areas, but the incorporation of
HMM's for anomaly detection is still in its infancy.
This paper aims at classifying the TCP network traffic
as an attack or normal using HMM. The paper's main
objective is to build an anomaly detection system, a
predictive model capable of discriminating between
normal and abnormal behavior of network traffic. In
the training phase, special attention is given to the
initialization and model selection issues, which makes
the training phase particularly effective. For training
HMM, 12.195% features out of the total features (5
features out of 41 features) present in the KDD Cup
1999 data set are used. Result of tests on the KDD
Cup 1999 data set shows that the proposed system is
able to classify network traffic in proportion to the
number of features used for training HMM. We are
extending our work on a larger data set for building an
anomaly detection system.
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1. INTRODUCTION

Intrusion detection systems (IDS) [11] have become
popular tools for identifying anomalous and malicious
activities in computer systems and networks [8].
Anomaly detection is a key element of intrusion
detection and other detection systems in which
perturbations from normal behavior suggest the
presence of attacks, defects etc. [14]. Anomaly
detection is performed by building a model that
contains metrics derived from system operation and
flagging any observation as intrusive that has a
significant deviation from the model [1]. The paper
aims at investigating the capabilities of Hidden
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Markov Models for building Anomaly Detection
system. For a proof-of-concept, the proposed approach
is tested using the KDD Cup 1999 data set in order to
assess the robustness of the method; we have selected
5 features of the data set instead of selecting all of the
features (41 features). We are extending the model to
more features and larger datasets.

The structure of the paper is as follows: Section 2
gives the brief introduction to the concepts of Hidden
Markov Model. Section 3 deals with the strategy we
have employed for making an Anomaly Detection
system that can classify network traffic as an attack or
normal. It covers the mathematical modeling of the
problem and describes the parameter estimation, and
training procedure of HMM model and recognition
phase of the system. Section 4 deals with the results
which we have received after applying an HMM
algorithm to develop an anomaly detection system.
Some concluding remarks are given in section 5.

2. HIDDEN MARKOV MODEL

Hidden Markov Model is an instance of a more
general class of models designed by stochastic finite
state networks [12]. It generates an internal sequence
of symbols and a sequence of external symbols, using
probabilistic rules [13] . An HMM is characterized by

A= {A, B, T }. HMMs are not exhaustively treated
in this paper; we refer the reader to read [12] for more
details. Various elements of HMM are briefly
described here as follows: (1) 'N' represents the
number of states in the model, (2) Individual states are
denoted as S = {S;, S,... Sy}, (3) State at time ‘t’ is
denoted as ‘q’, (4) ‘M’ represents the number of
distinct observation symbols per state; these
observation symbols correspond to the physical output
of the system being modeled, (5) Individual symbols
are denoted as V = {Vy, V,... Vv}, (6) ‘A’ represents
the state transition probability distribution where A =
{aj}, (7) ‘B’ represents the observation symbol
probability distribution where B = {by}, (8) * 7'
represents the initial state probability distribution
where 7T = { 7T ;}, and (9) A random sequence O = Oy,
0,... Or represents the indirect observations of the
underlying hidden sequence of states where ‘T’
represents the number of observations taken.
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3. THE STRATEGY

In this section, the proposed strategy is explained in
detail. This section starts with the description of the
features present in the KDD Cup 1999 data set (the
data set we have used to test our Anomaly Detection
system) and then gives the detailed descriptions of the
training and classification procedures, focusing on the
initialization and model selection issues.

3.1 KDD Cup 1999 data set

For our experiment, we have used the KDD Cup 1999

intrusion detection data set prepared by Lee et al. [9].

The data set contains 41 features representing selected

measurements of normal and intrusive TCP sessions.

Each labeled TCP session is either normal or a

member of one of the 22 attack classes in the dataset.

The first 5 features are selected, namely (1) Src_Bytes,

(2) Dst_Bytes, (3) Duration, (4) Is Host Login, and (5)
Is_Guest Login, based on the results of Gopi ef al. [8]
which are based on the Screen Test and Critical

Eigenvalue test. The objective of selection of a subset

out of all the features is to assess the robustness of our

system.

3.2 Mathematical Modeling

While modeling the stated problem, we have used Urn
and Ball model of [12] In Urn and Ball model, ‘N’
parameter of HMM represents the number of urns and
‘M’ parameter of HMM represents the number of
colored balls per urn. Thus, in Urn and Ball model,
each state corresponds to a specific urn, and the
number of colored balls present in a particular urn
corresponds to the number of observation symbols
(value of ‘M’ parameter) per state. In our stated
problem, we have selected 5 features of the KDD Cup
1999 data set (as stated in subsection 3.1) which
correspond to urns (in Urn and Ball model), and thus
parameter ‘N’ has value 5 in our model.

Each feature has some value for making each TCP
session of the KDD Cup 1999 data set. These values
correspond to the number of colored balls present per
urn (i.e. per feature in our case). We have segregated
the values of each feature in 6 sets (or otherwise it
would become an infinitely large number of
observation symbols per state), where each set
corresponds to the particular color of the ball; which
in turn formed the number of distinct observation
symbols per feature or per state, and thus parameter
‘M’ has value 6 in our model.

Table 1 shows the actual values of the selected
features of one of the TCP sessions of the KDD Cup
1999 data set which is a normal means; it doesn’t
contain any sort of anomaly and it also shows the
discrete observation symbol of the corresponding
values of a TCP session.

Table 1. Actual Values and Discrete Observation
Symbol values of the Features of one of the TCP
sessions of KDD Cup 1999 data set

Feature No. 1 2 3 4 5

Values from a

TCP session 22 | 181 | 5450 | © 0

Observation
Symbol Value

We have received values for observation symbol after
segregating the values of each feature in 6 sets.

For instance, here we have given the range of values
of each Observation Symbol number of Duration
feature: (1) Observation Symbol 1 is assigned to the
value which is less than 1700, (2) Observation Symbol
2 is assigned to the value which is in between 1701
and 3500, (3) Observation Symbol 3 is assigned to the
value which is in between 3501 and 6000, (4)
Observation Symbol 4 is assigned to the value which
is in between 6001 and 9500, (5) Observation Symbol
5 is assigned to the value which is in between 9501
and 165000, and (6) Observation Symbol 6 is assigned
to the value which is more than 16500.

The states in our model are interconnected in such a
way that any state can be reached from any state. In
the Urn and Ball model, it is possible to find which
ball has been taken from which urn, but in our case the
combined effect of values of all the features results in
a TCP session that is normal or contains some
anomaly.

As values of all the features constitute TCP session
and thus all these feature values make TCP session a
normal or an attacked one. In our model, we have
taken these values as observation sequence and
classified them as their respective observation symbol
number according to the guideline as explained above.
This observation sequence represents the values that
make the trend of normal or anomaly dependent upon
the type of TCP session. The classification procedure
is explained below by the following example.

For example, let us suppose in Urn and Ball model
there are 5 urns each containing a red, green, blue, and
white ball. Table 2 lists the sample observation
sequence after picking one ball from each urn. A
character R, G, B, and W shown in Table 1 represents
the Red, Green, Blue, and White ball respectively.

Table 2. Sample Observation sequence created for
Urn and Ball model which is analogous to our

model
Urn 1 2 3 4 5 Type
0O, R G B R G P,
0, R G B G W P,
05 R G B R w P;

The ‘Type’ field of Table 2 shows the type of
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observation sequence it is. Our HMM model trains the
observation sequence of Oy, O,, and O; and stores it as
a trend followed by Type P;, P,, and P; respectively.
Training procedure in our case (for anomaly detection
system) is explained in section 3.3. While recognizing
the given unknown observation sequence, if it is of
Type P, then that sequence will follow the trend of P,
much closer than Types P, and P;; as trained
parameters of Type P, will recognize the unknown
observation with higher probability rather than that of
Types P, and P;. Thus, we could classify the given
unknown sequence using trend analysis i.e. the one
whose trained parameters recognizes the unknown
observation sequence with higher probability.
Classification procedure (recognition) in our case (for
anomaly detection system) is explained in section 3.4.

The same analogy can be applied to our case, where
each urn represents features and each ball represents
the set of values of each observation symbol number.
Therefore, if a TCP session is given of Type ‘normal’
then trained parameters of ‘normal’ TCP session
recognize the unknown sequence with higher
probability rather than that of the ‘anomaly’ typed
TCP session.

The complete parameter set of the model can be

described as ﬂ. = {A, B, 7T }. Number of Hidden
states of the model (‘N”) is 5 represented as S, S,, S;,
S4;, and S5 where each state represents the feature
Duration, Src_Bytes, Dst Bytes, Is Host Login, and
Is_Guest Login respectively as explained above.
Number of Observable symbols (‘M’) is 6 for states S,
S,, and S; and for S, and Ss its value is 2.

The initial state distribution 77 = { 7T ;}.
where 7T ;= P [S;],
1<j<s

The State transition probability distribution A = {a;;}
where a;=P [qu1 = Sj] ¢:= S; ],

1<j<5 and

1<i1<5

The Observation symbol probability distribution in
statej, B = {bjk)}
where  by(k) =P [Viatt|q =S; ],

1 <j< 5and

1 <k<6ifj=1,2,or3elsel <k <2

The following figure, Figure 1, shows the Finite State
Automata of the transition of states from one state to
another. S;, S,, S3, Sy, and S5 as shown in figure 1
represent the states of our HMM model which
corresponds to Duration, Src Bytes, Dst Bytes,
Is Host_login, and Is_Guest login feature of the KDD
Cup 1999 data set respectively. The connecting link in
the figure indicates the state transition probability for
each state.

Figure 1. Finite State Automata of the State
Transition from one state to another state for 5
features of KDD Cup 1999 data set

3.3 Parameter Estimation and

Training

This sub-section of the paper deals with the parameter
estimation and training of each TCP session of the
KDD Cup 1999 data set. Section 3.3.1 exhaustively
explains the initial estimation of HMM parameters and
Section 3.3.2 covers the training phase of the
algorithm.

3.3.1 Parameter Estimation

Baum — Welch method [7] is used to estimate the
HMM parameters. Baum — Welch method starts with
an initial estimate, converges to the nearest local
maximum of the likelihood function. Thus, the
initialization process heavily affects the resulting
estimate, as the likelihood function is highly
multimodal.

Initial values of A, B, and 7T are taken to be
uniformly distributed. Table 3 and Table 4; indicate
the corresponding initial values of 7 and A
parameter of our HMM model which correspond to
the initial state probability distribution and state
transition probability distribution respectively.

Table 3. Initial State distribution (Parameter ¢ 77 °
of HMM) for one of the TCP sessions of KDD Cup
1999 data set

Initial State Distribution

States Value (7))

0.000581

0.261902

0.089830

0.375828

DB |W|N |

0.271858
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Table 4. State transition probability distribution
(Parameter ‘A’ of HMM) for one of the TCP
sessions of KDD Cup 1999 data set

States 1 2 3 4 5

1 0.1456 | 0.1062 | 0.2718 | 0.2496 | 0.2265

0.0679 | 0.3353 | 0.2774 | 0.2005 | 0.1186

0.0191 | 0.1165 | 0.4648 | 0.1878 | 0.2115

2
3
4 0.6308 | 0.2844 | 0.0760 | 0.0029 | 0.0056
5 0.1404 | 0.1976 | 0.2123 | 0.2237 | 0.2257

3.3.2 Training Session

A practical, but fundamental issue to be solved when
using an HMM is the determination of its structure,
namely, the topology and the number of states i.e.
finding a method to adjust the model parameters (A,
B, 77 ) to maximize the probability of the observation
sequence given the model. According to [12] there is
no optimal way of finding a method that analytically
solves the problem. Though there are methods like
Baum — Welch method ie. EM (expectation —
modification) method [7] or gradient techniques [10]
which can choose 4 = (A, B, 77 ) such that P (O | 1)
is locally maximized. Some special purpose
approaches (e.g. [15], [6]], [4], [5]) have been
proposed for the model selection issue of HMM.

The training algorithm has the following steps (1)
Initialization of Parameters of HMM, (2) Forward
Procedure, (3) Backward Procedure, and (4) Re-
estimation of Parameters of HMM. The first step of
the training algorithm (i.e. Initialization of HMM
Parameters) has been explained in subsection 3.3.1.
Subsections 3.3.2.1, 3.3.2.2, and 3.3.2.3 describe the
rest of the steps of the training session.

3.3.2.1 Forward Procedure for Training

After parameter estimation step, Forward Procedure [2]
is applied for training HMM. The forward variable:

a () =P (0,,05,03,04,05, G =Si| A ) voovvvrre... 1)
The forward variable ¢ ’ indicates the probability of
the partial observation sequence, O;, O,, O3, O4, and
Os, and the state S; at time t, given the model A.
Observation sequences O;, O,, O3, O4, and Os
represent the discrete observation symbol number of
the states S;, S,, S;, S4, and Ss respectively. Thus, in

our case values of Oy, O,, O; ranges from 1 to 6 and
for O4 and Oy it is either 1 or 2.

Steps involved in the Forward Procedure are described
using equations (2), (3), and (4):

+ Initialization of the forward variable value
A ()=7T; X b;(0)) e 2)
where 1<i<5

# Induction step of the Forward Procedure

5
& =12, @) % a3 ] X b0 . ()
i=
where 1 <t<T-1 and
1<i<5

& Termination step of the Forward Procedure
5

P(O\/1)=Z Lo 6 W 4)

i=l
Thus, P (O | A ) is the sum of all the . (i) values.

3.3.2.2 Backward Procedure for Training

After Forward Procedure, Backward Procedure [3] is
applied for training. Backward variable ﬁ ¢ (1) is the

probability of the partial observation sequence from
(t+1) to the end, given state S; at time t and the

model A . Steps involved in Backward Procedure are
described using equations (5) and (6).

4 Initialization of the Backward Variable

Lii=1 i (5)

where 1 <i<5
4 Induction step of the Backward Procedure

5
L) =zaij Xbi(Oe) X Bt v (6)
J4
where t=T-1,T-2,T-3... 1
1<i <5

3.3.2.3 Calculation of Y and € values

For training, one possible optimality criterion could be
to choose the state q,, which is individually mostly
likely. This optimality criterion maximizes the
expected number of correct individual states. For

implementing this solution we have taken variable }/ .

For updating and re-estimating the HMM parameters
once they are initialized, we have defined the variable
& (i, ) i.e. the probability of being in state S; at time t,
and state S;at time (t + 1), given the model and the
observation sequence. The value of this variable can
be described using the forward and backward
variables shown in equation (8).

5
Yo =lamx Bl ), amxp
i=1

)N

E 1) =(a ()X ay X b (Ou) X B (i) /
5

5
(Z Za ()% ;X BODX B () oo 8)
H

i=1
3.3.2.4 Re - Estimation of HMM parameters

This is the most important step of Training algorithm.
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Steps involved in this phase are described as follows:

+ Re — estimating initial state distribution
values
T i= 7/ 1(1) ............................... (9)
where 1 <i <5

+ Re — estimating state transition probability
distribution

7-1

-1
aiﬁZSt(i 3/ E YD) oo (10)
t=1

t=1

+ Re — estimating observation symbol
probability distribution

t=1 t=1
The process of re-estimation of HMM parameters
continue till the desired limiting point isn’t reached.
At the end of the training phase, we have one model
for TCP Session of the dataset. Table 5 shows the
trained values of the HMM parameters ‘A’ i.e. for
state transition probability distribution for one of the
TCP sessions of the KDD Cup 1999 data set which
will be useful in the recognition phase of the algorithm.

Table S. Trained values of State transition
probability distribution (Parameter ‘A’ of HMM)
for one of the TCP sessions of KDD Cup 1999 data

set

S= 1 2 3 4 5

S5E-78 | 0.1249 | 0.34706 | 1.55716 | 0.52794

3E-12 | 0.0066 | 0.01015 | 0.98161 | 0.00158

1E-13 | 0.0951 | 0.57270 | 0.12032 | 0.21178

1 1.5080 | 1.43776 | 4.61048 | 2.62517

DN B[N | —

1E-20 | 5.4928 | 7.40352 | 0.99982 | 4.80135

3.4 Recognition Phase

For checking whether the particular network traffic is
normal or it contains some sort of anomaly, we give
our anomaly detection system discrete observation
symbol values of the following features: (1) duration,
(2) Src_Bytes, (3) Dst_Bytes, (4) Is_Host Login, and
(5) Is_Guest _login that correspond to the unknown
observations sequence of O;, O,, Oz, O4, and Os.
Given an unknown observation sequence O = Oy, O,,
03, Oy, Os; the standard maximum likelihood principle

computes the value of P (O Mv i) (wWhere i represents
the number of models present in the trained dataset).
The session is assigned to the model A ;, whose
model shows the highest likelihood.

Thus, i =argmax (P O[ A }) ...c.ccoorriinnnn, (12)

Given observation sequence represents the TCP

session, and this recognition algorithm classifies the
TCP session as normal or anomaly by assigning the

nature (normal or anomaly) of the winning model A ;.
This recognition procedure has been partly explained
in section 32.

4. RESULTS

We present the performance of Anomaly Detection
system in terms of detection accuracy. The detection
accuracy of Anomaly Detection system is the
percentage of attack samples detected as attacks. The
false positive rate of Anomaly Detection system
accounts for the detection of normal sample as an
attack. We analyzed the working of our Anomaly
Detection system on the KDD Cup 1999 data set.

We took 5 features (1) Src_Bytes, (2) Dst Bytes, (3)
duration, (4) Is_Host login, and (5) Is_Guest_login of
the KDD Cup 1999 data set for analyzing the
capability of our Anomaly Detection system. The best
results was 79 % accurate i.e. given unknown
sequence of TCP sessions this Anomaly Detection
system could accurately verify that it is a normal or
having anomaly with 79% accuracy. The remaining
21% is accounted for false positive rate (i.e.
classifying anomaly as a normal TCP session) and
false negative rate (i.e. classifying normal as an attack
type TCP session). One of the reasons for false
positive rate and false negative rate is the amount of
features (12.195% of the total features) we have
selected for training session of the algorithm (instead
of the full 41 features). Thus, we think we can
improve the efficiency of this algorithm by proper
tuning of HMM parameters and also by taking into
account the significant percentage of the TCP session
features or by using a larger data set.

5. CONCLUSIONS AND
DISCUSSIONS

This paper investigated the capabilities of Hidden
Markov Model in Anomaly Detection System. As
described above, one HMM has been trained for each
TCP session of the KDD Cup 1999 data set. While
training the model, special attention is given to the
initialization of A, B, and 77 parameters and model
selection issue. Training is performed using standard
Baum- Welch procedure. Network traffic to be tested
is fed to all of the models then using standard
maximum likelihood principle that traffic is rated as
either normal or attack using the recognition phase of
our algorithm. Tests on the KDD Cup 1999 data set
indicate that HMM can be applied for Anomaly
Detection wherein we have just taken only 12.195 %
of the total features of the data set. Thus, this
indicates that Hidden Markov Methodology, with
particular care to the parameter estimation and the
training phase, represents a powerful approach for
creating Anomaly Detection System which can find
whether the traffic is normal or containing some sort
of anomaly at runtime that might solve the major
concern of the Computer Security. We are extending
our work on a more rigorous data set for building a
highly reliable anomaly detection system.
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