Tutorial

Stochastic Modeling Techniques:
Understanding and using hidden Markov models

Leslie Grate

leslie@cse.ucsc.edu

Richard Hughey

rph@cse.ucsc.edu

Kevin Karplus
karplus@cse.ucsc.edu

Kimmen Sjolander
kimmen@cse.ucsc.edu

Contents

Introduction

Mathematical Foundations of Stochastic Models

2.1 Whatisamodel?
2.2 Bayesian statistics—when does a model fit a sequence?
2.3 Information theory—what is a bit?
2.4 Computable models—simplifying assumptions

Overview of HMM Architecture

3.1 State machine visualization of Markov models
3.2 Linear HMMs for Biological Sequences
3.3 Multiple Alignments, Profiles, and HMMs

Basic Uses of Hidden Markov Models

4.1 Building HMMs from existing alignments
4.2 Aligning Sequences to HMMs
4.3 Scoring and Database Discrimination using HMMs . .

Building an HMM from training data
5.1 Regularizer methods
5.2 Weighting schemes 0.

Advanced Uses of Hidden Markov Models
6.1 Building multiple alignments from unaligned sequences
6.2 Reestimating existing alignments using HMMs

Validating a model

Local HMM installation

8.1 Obtaining SAM and HMMer
8.2 SAM runtime
8.3 SAM parameter settings L.

Appendices

NoBEN IS SN

11
11
13

14
14
14
15

17
18
19

24
24
27

30

31
31
31
32

35

1 Introduction

This tutorial is organized conceptually to provide, first, a theoretical framework for stochastic modeling, and
second, to enable readers to use stochastic models to their advantage. The tutorial includes a wide variety
of examples, mostly drawn from the Sequence Alignment and Modeling System (SAM) [20, 16], which will
be the focus of the hands-on session in the second half of the tutorial. Many of the tasks we discuss can also
be performed (sometimes better!) with HMMer, about which Sean Eddy will talk in the second half of the
tutorial [10, 9]. The appendix includes both the SAM and the HMMer documentation.

If you have any questions about this material, feel free to direct them to any of the authors. If you have
specific questions relating to only one section, you may wish to ask the primary author of that section, as
listed at the top of the section. The SAM hidden Markov model implementation is constantly undergoing
revisions and additions. If you have any questions, comments, or suggestions about current or future features,
please contact Richard Hughey (rph@cse.ucsc.edu, sam-info@cse.ucsc.edu). If you would like to try out the
SAM WWW server, or obtain a copy of SAM, please read our WWW page

http://www.cse.ucsc.edu/research/compbio/sam.html

for instructions. If you have comments or questions about HMMer, contact Sean Eddy (email address:
eddy@genome.wustl.edu) or visit the HMMer WWW page

http://genome.wustl.edu/eddy/hmm.html

2 Mathematical Foundations of Stochastic Models

Kevin Karplus (karplus@cse.ucsc.edu)

This section will present a mathematical foundation for the stochastic approach to modeling biological
sequences. The basic idea behind stochastic modelingis to construct a model that describes a set of sequences,
then to use the model for finding related sequences, or examine the model to determine properties of the
sequences.

This section is almost entirely mathematical foundations—the interesting applications to biology don’t
really start until Section 3, where we describe a particular type of stochastic model: the hidden Markov
model.

The mathematical foundations are necessary for answering questions like “Which sequences in a database
fit a model?” or “How well do they fit?” or “Which of a set of models best describes a set of sequences?”
The first two questions arise naturally when searching a database for examples of a motif or protein family,
or when trying to find introns, exons, and splice sites in a stretch of DNA. The last question comes up in
the fold-recognition problem, when the models represent different possible protein folds or domains, and we
want to find the most likely fold for a new protein.

The approach used in stochastic modeling to answer these questions mathematically employs Bayesian
statistics and information theory as the foundation. This section attempts to give a very brief overview of
these fields as they apply to biosequence analysis. The approach is very general and can be applied to many
different sorts of models: alignment to single sequences, profiles, hidden Markov models, simple Markov
chains, stochastic context-free grammars, threading models,

After this general introduction, we’ll focus more closely on hidden Markov models, which we have found
to be particularly useful for modeling protein motifs and families. (For RNA, we’ve had some success with
stochastic context-free grammars, and for DNA parsing we’ve used mainly profiles, simple Markov models,
and neural nets.)

2.1 What is a model?

This tutorial is about stochastic models in general, and hidden Markov models in particular. Before we get
into details about how the models work, it would be good to make sure we all have the same understanding
of what a model is.

There are two rather different views of models in the scientific community. One view is a mechanistic one,
in which models elucidate the mechanism by which something happens. These models are very powerful,
but they are also very difficult to create, often requiring years of experimental work and difficult intellectual
insights. A different view of models treats them as “black boxes,” and makes no claims that the mechanism
of the model matches anything in the real world. In this approach, a model’s value i1s determined solely by
the accuracy of 1ts predictions, not by the mechanism used to make those predictions.

Making numerically accurate and fully mechanistic models is rarely possible in the realm of biosequences—
there is far too much that is still unknown about how large, complex molecules work. Most of the stochastic
modeling techniques are black-box techniques; they examine the data and try to fit some class of models to
it, without making any claim that the models explain the data.

The scientific test for a mechanistic model is a combination of its predictive power, its elegance, and its
consistency with other accepted models. The scientific test for a black-box model is mainly its predictive
power.

In the arena of sequence analysis and modeling, the sorts of predictions a black-box model can make are
somewhat limited. These models are mainly designed for recognition, discrimination, and database search
tasks, answering questions like “Is this protein a globin?” or “Does this look more like a hemoglobin or a
myoglobin?” or “What are all the examples of sequences that look like these known calcium-binding sites?”

The models of most interest to us today, hidden Markov models, fall somewhere between the extremes
of mechanistic models and pure black-box models. They don’t provide mechanistic explanations, but they

have some internal structure that can be examined for biological insights. Using hidden Markov models, we
can sometimes answer more detailed questions, such as “What amino acids in this sequence correspond to
the ones that bind calcium in this other sequence?” In Section 4.2, when we look in more detail at hidden
Markov models, we’ll see how these models help answer these more probing questions. First, let’s start with
the more general questions that don’t require any knowledge of the inside of the black box.

The basic idea of a stochastic black-box model M is to assign a number Pys(s) to every possible sequence
s. For ease in interpreting and manipulating the numbers, we add the constraint that the infinite sum of the

numbers is one,
> Pu(s)=1,

so that the numbers can be interpreted as probabilities. Note that Pys(s) is not the probability that the
sequence belongs to the interesting class—rather it is the probability that if you select a sequence randomly
from the interesting set, you will get this particular sequence. In the next section we’ll look at how to
manipulate these probabilities to answer the recognition and discrimination questions.

For example, let’s say we want to recognize the following sequences {AAACA, ATA, ATACA, TACA} and
no others. We could create a model that assigns P(AAACA) = 0.25, P(ATA) = 0.25, P(ATACA) = 0.25,
P(TACA) = 0.25, and zero to all other sequences. Of course, biologically interesting models are more
complex than this, since we want to recognize not just a small set of already known sequences, but a large
class of closely related sequences.

Furthermore, we won’t usually have such a sharp cutoff between sequences that fit the model and ones
that don’t—there will be a fuzzy area where sequences are somewhat similar to ones we want to recognize.
That is, we are not dealing with precisely defined sets of sequences, but with probability distributions over
all possible sequences.

In this small example, we might want to assign small probabilities to sequences similar to the ones in the
set, such as AAAGA or AACA. To keep the sum over all sequences equal to one, we would have to “steal
probability” from the other sequences in the set. Much of the work in stochastic modeling involves coming
up with disciplined ways to assign these probabilities so that they reflect the real distributions of sequences.

2.2 Bayesian statistics—when does a model fit a sequence?

The stochastic model introduced in the first section is not directly usable, because it answers the wrong
question. It is designed to answer the question: if a sequence is drawn from the distribution of sequences
modeled by a particular model, what is the probability of getting this particular sequence? The recognition
question we want to answer is: given this particular sequence, what is the probability that it came from the
distribution described by this model?

If we use the notation of conditional probability, we can express Pys(s) as

P(x:s

z 1s drawn from the model M) .

This is typically abbreviated as P (5 ‘ M), which 1s read, “the probability of s given M.” Answering the

recognition question is then a matter of computing the conditional probability

P (x is drawn from the model M ‘ x = 5) ,

which 1s typically abbreviated as P (M ‘ 5).

Bayes’ rule gives us a way to do this computation:

All we need to know are two prior probabilities: the probability P(M) that z is drawn from model M and
the the probability P(s)that © = s. These prior probabilities are in some very real sense unknowable, and
so the simplest form of the recognition question is unanswerable.

Although the situation for pure recognition looks hopeless, there is a standard solution—we turn all such
questions into discrimination questions. Instead of asking “What it is the probability that the sequence came
from model M7?” we instead ask “What are the the odds that the sequence came from model M rather than
model N7?” That is we compute

P (M 5) P (5 M) P(M) P(s)
p (N 5) - P(s) p (5
P(s] M) pan)

P(s N) P(N)

Now, in addition to the numbers provided by the models (P (5

M) = Pu(s) and P (5

N) = Px(s)
we need only one number, the prior expectation of the relative probability of the two models %(%)l. Since
we no longer need the absolute probabilities of the models or the sequences,; this is a much more manageable
problem.

To answer the recognition question using this technique, we need to make up a null model N. The null
model is a model that attempts to match all the sequences in the universe of possible sequences. This may be
a model that tries to fit all the sequences in the database we are searching, or one that fits some theoretical
universe of possible protein sequences. Note that it may do a good job of fitting the database or a poor one.
A poorly fitting null model may cause the model M to fit more sequences than we had intended, since our
recognition test is a competition between the models. Some people view the null model as the model that
fits the null hypothesis; more correctly, the null model defines what the null hypothesis 1s.

5) >

5) /P (N ‘ 5) expresses our confidence in the assertion that the

Once we have defined a null model, we then can say that the sequence fits model M if P (M
P (N 5). Furthermore, the ratio P (M

sequence 1s more similar to those represented by the model M than a sequence drawn at random from the
distribution represented by the null model. This is not equivalent to saying a sequence drawn at random from
the database, since we can’t usually have null models good enough to represent the unknown distribution
the database is drawn from.

The probabilities P (M 5) and P (N

very large number of sequences that we want to give non-zero probabilities to. The ratios of the probabilities,
on the other hand, can get very large, since the null model has to model an even larger set of sequences.
To avoid having to write out or compute with these very large and very small numbers, we take logarithms.

M) and our test that P (M 5) > P (N

5) described above are typically very small, since there are a

The log-likelthood of a sequence is log P (5
log P (M 5) —logP (N

5) translates to

5) > 0. Let’s use Bayes’ Rule to rewrite this test:

log P (M

5) —logP (N

P
5) = logW

P(M)
P(N) -

= log Py(s) —log Pn(s) + log

The value log Pyr(s) — log Py (s) is often referred to as the score of the model (though more properly it
should be called the score relative to the null model N). Our test for something fitting the model can then
be translated as requiring score > log P(N) — log P(M). Furthermore, as described above, the amount by
which the score exceeds the threshold expresses our confidence in the result.

This form of test, that a score be larger than some threshold, should be a familiar one, since almost all the
recognition models used in computational biology fit this pattern [1]. The stochastic model approach tells
us what setting the threshold means—we are making a statement of belief about our prior expectations. For
example, if we expect some motif to be fairly rare, with maybe 10 occurrences out of 10,000,000 possibilities,
then we would set P(M)/P(N) = 10/10,000, 000 and our threshold at 19.93 bits (assuming we use base two
logarithms, as most computer scientists do).

When we are doing a database search with a model, we score each sequence (or part of a sequence) with

the model, and report any for which P (M ‘ 5) > P (N

log P(N) —log P(M). To simplify the setting of the threshold, most systems allow you to express how many
hits E you expect. This number is divided by the number of different sequences or sequence parts scored to
get an estimate for P(M)/P(N), which can then be used to set the score threshold.!

Note: the search with the threshold set as above will find every sequence that is more probably from the
model than the null model. Since our null model is often not a very good description of the set of sequences
in the database, we sometimes want to set the threshold higher to increase our confidence in the results. For
example, if we want only sequences that are significant at the 0.05 level (20 times more probably from the
model than the null model), we need to raise the threshold by 4.3 bits. This is most conveniently done by
reducing our expected number of hits by a factor of 20.

Note that changing the expected number of hits £ changes how many hits we actually get—if we expect
more, we generally get more. Luckily, with good models the number of hits we get is not extremely sensitive
to E. We usually get only a small change in the number of hits over a very wide range of £ values, and
so the exact setting of E is usually not too important. If you want to be very careful, you can do a search
with a reasonable value (say E between 0.1 and 10), then repeat the search with E set to the number of
hits found multiplied by the significance level desired. There is no absolutely correct way to set F, since it
includes a statement of belief about the probabilities.

5) , that is, ones whose score is above the threshold

Quick review: This section has covered
e Bayes’ rule for conditional probabilities,

e turning recognition questions into discrimination questions,

the meaning of a score (as the logarithm of a likelihood ratio),

o using discrimination tests to search a database,

setting the score threshold for database search.

2.3 Information theory—what is a bit?

The last section discussed choosing between two models (one of which is usually a null model). In this
section we want to present a slightly different way of looking at the numbers so that we can apply other
mathematical tools—those of information theory and data compression.

Information is a measure of how surprising something is. If we already know something, there is no
information in getting the knowledge again. If we strongly suspect something, then confirmation contains a
small amount of information. If we are very certain that something is not true, then find out that we were
wrong, a large amount of information i1s conveyed by the new data.

1The BLAST program uses a different approach to reach essentially the same technique for more arbitrary scoring systems [2].

Technically, we measure information in a sequence (or set of sequences) relative to some model. The
information content of a sequence s relative to a model M is —log Pas(s). If the logarithm is taken in base
2, then the information is said to be in bits.?

Since our notion of a model is a probability distribution over sequences, we can talk about the entropy
of a model H(M) as the weighted average information for all sequences, where the weight is the probability
that the sequence is generated by the model:

H(M) == Pu(s)log Pa(s) .

Again, the computation can be done with logarithms base 2 to get entropy in bits or with natural logarithms
to get entropy in nats.

One sometimes sees the information content of a sequence or set of sequences referred to as the encoding
cost. This comes from a theorem by Shannon, the fundamental theorem of information theory, that any
encoding system for items drawn from some distribution must take at least as many bits on average as the
entropy of that distribution. Data compression techniques consist of two parts: finding a model for the data,
then choosing an encoder that assigns codes based on the estimated probabilities. The second part is not
very interesting to us here, and so we are often somewhat sloppy, and refer to the information content of a
sequence as 1ts encoding cost, as if we had an optimal encoder. Note that choosing a model to minimize the
encoding cost of a sequence is equivalent to choosing a model to maximize the sequence’s probability.

The score that we discussed in Section 2.2 is just the difference in the information content of a sequence
when computed using different models. We often talk about the score as the number of bits saved using the
model M (with an implicit null model N). If the sequence fits the model, then the model provides us extra
information, which we can use to encode the sequence in fewer bits. The score is measuring exactly how
much extra information the model gives us. A negative score (where the sequence does not fit the model)
tells us how many more bits we would need to encode the sequence if we insist that it comes from model M
rather than N.

There is a very nice way to look at the discrimination test of the Section 2.2 that allows us to generalize
the discrimination test to any number of models. Consider the picture in Figure 1. The two boxes correspond
to our two possible models M and N. The edges from the start node represent a choice we have to make of
which model to use. To encode a sequence, we first choose one of the two models, and encode that choice,
then encode the sequence according to the model chosen. To get an encoding for the choice, we need an
estimate of how often we will choose M and how often N. Let P(M) be the probability with which we expect
to choose M, and P(N) = 1 — P(M) be the probability of choosing N. The cost of encoding our choice
is —log P(M) if we choose M and —log P(N) if we choose N. The overall encoding cost for a sequence is
either —log P(M) — log Par(s), if we choose M, or —log P(N) — log Pn(s), if we choose N. If we choose
whichever model gives the smaller encoding, we’ll choose M when

—log P(M) — log Py(s) < —log P(N) —log Pn(s) ,

which is exactly the same test as we had for a sequence matching model M in Section 2.2.

The generalization of this test to more than two models is now straightforward. We can build a composite
model of many different models, as in Figure 2, and choose whichever model gives the lowest overall encoding
cost. The probabilities for choosing the various models have to add up to one, since we have to choose a
model in order to do the encoding. Note that once again the cost for choosing a particular model M; is
—log P(M;)—log Pu,(s), so that our prior beliefs about the relative probabilities of the models affects which
one we choose to minimize cost.

Finding a model that fits a given set of data (usually referred to as a training set) will be the subject
of this afternoon’s tutorial. For now, it suffices to know that we select a class of models, then adjust

2Some people, mainly physicists, insist on using natural logarithms. The resulting units of information are then sometimes
called nats or nits. Since the SAM program was initially written by a physicist, it uses nats rather than bits.

OP/

Figure 1: Two-part composite model, combining models M and N. To encode a sequence, we first choose
one of the two models, and encode that choice, then encode the sequence according to the model chosen. To
minimize the encoding cost for a sequence, we choose model M if the sequence fits the model (using the test
of Section 2.2.

O

.

Figure 2: Multi-part composite model, combining several models. To encode a sequence, we first choose one
of the models, encoding that choice, then encode the sequence according to the model chosen. Choosing the
model to minimize the encoding cost gives us a clean way to do discrimination among many models.

parameters in an attempt to minimize the encoding cost for the sequences in the training set. For some
types of models there are very simple techniques for doing this, but for other types the optimization problem
1s more complicated, and we have to use sophisticated optimization routines and still have no guarantee of
convergence to a global optimum.

To make things a little more complicated for us, we don’t really want a model that just encodes the
training set well—we could get that by just memorizing the training set and checking if a sequence had been
seen in the training set or not. What we really want is a model that generalizes the training set to similar
sequences.

The structure of the model determines what sorts of generalizations are possible, but even without
knowing the structure of a model, the entropy of a model measures how much generalization the model
makes. A model with a low entropy must assign high probability to very few sequences making a very
specific model with little generalization. A model with high entropy assigns somewhat lower probabilities
to many more sequences, providing more generalization but less specificity. This afternoon we’ll talk about
ways of controlling the entropy of a model to get different degrees of specificity.

Quick review: This section has covered

e the definition of information,

e the definition of entropy,

e composite models and their relationship with discrimination tests,

o the relationship between minimizing encoding cost and maximizing probability.

2.4 Computable models—simplifying assumptions

So far all our models have been purely mathematical objects—black-box functions with no internal structure.
Although we can learn a lot about how to use models that way, in order to do any real work we have to
have models that are computable. Ideally, we would also like the models to have some sort of biological

significance, so that we can learn more about the sequences they model by examining the details of the
model.

One type of model that is commonly used in data compression work is the Markov model (also called a
Markov chain). In this model we assign a probability for each character based only on what the preceding
few characters of the sequence were. The number of preceding characters is referred to as the order of the
Markov model.

For example, if we are dealing with protein sequences and wanted an order-2 Markov model, we would
have a table of 20 x 20 probabilities; P[i,j, k], with the constraint that probabilities sum to one for any
fixed context (7,7). That is, >°, P[i,j,k] = 1. To get the probability of a sequence of amino acids, we
take the product of the probabilities of the individual amino acids. We have to do something special
for the first two amino acids in the sequence, since we don’t have a full context for them. One simple
trick is to sum over all possible contexts: for the first position P[k] = sum, ; P[i, j, k] and for the second
position P[j, k] = sum; P[i,j, k]. If we have the sequence DNDNDG, we would assign it the probability
P(s) = P[D]P[D, N]P[D, N, D|P[N, D, N|P[D, N, D|P[N, D, G].2

As discussed in Section 2.2, the product of these probabilities can get very small, and so we use logarithms.
If the probability tables P[k], P[j, k], and PJi, j, k] are replaced by tables of the logarithms, computing the
log of the probability of s is just the summation of 6 table lookups, making these simple Markov models very
fast to compute. We can also train simple Markov models easily, since we can just count how often each
triple occurs in the training set, and normalize to get the probabilities to sum to one in the last dimension.
(Note: if you use a high-order Markov model, you might not have enough counts in any context to get
a reliable estimate of the probabilities—we’ll discuss strategies for estimating probabilities from too-small
samples this afternoon.)

One common use of a simple Markov model 1s for defining the null model to use in comparisons. Many
of the search program have an implicit assumption of a zero-order Markov model as their null model (the
probabilities of the letters are the same in every position, independent of the context). Higher-order models
have been used for compositional models (for example, for recognizing introns and exons by using 5th-order
Markov models on the bases [4] and for recognizing repeated regions in DNA [17]).

The beauty of simple Markov models 1s that they provide a very simple computational technique both
for using the model and for training the model. This simplicity comes from defining specific easily deter-
mined contexts that allow us to compute the probabilities of the amino acids, and an assumption that the
probabilities don’t depend on anything except these contexts.

Unfortunately, the simple Markov models provide little insight into the structure of the sequences they
model, and the generalizations they make are not always the most appealing biologically. The next section
will describe a related type of model, the hidden Markov model, which still has the concept of distinct contexts
for determining the probabilities of amino acids, but which provides a much more transparent description of
sequences.

Quick review: This section has covered

o simple Markov models,

o computing probabilities by summing log probabilities,
o table lookup of log probabilities,

o zero-order Markov models as null models.

3Technically, this is not P(s), but P (s

length(s) = 6) . To get P(s) we have to also include in the product the probability
that the length of s is 6.

10

3 Overview of HMM Architecture

Leslie Grate (leslie@cse.ucsc.edu)

This section covers realizing HMMs as state machines, the reasoning behind the choice of the linear HMM
structure and comparisons to multiple alignments and profiles.

3.1 State machine visualization of Markov models

The simple Markov model introduced in Section 2.4 computed the probability of a sequence as the product
of separately estimated probabilities for each residue or base in the sequence. A hidden Markov model does
essentially the same thing, but provides a different way of computing the probabilities of the individual
letters of the sequence. Instead of relying on the previous k letters to determine what table to look up letter
probabilities in, hidden Markov models have a set of states, each of which has a table of letter probabilities.
Which state the hidden Markov model will use for a given letter is not immediately obvious from looking at
the sequence—what state you are in for each letter is what is “hidden” in a hidden Markov model.

In addition to states, a hidden Markov model needs edges or transitions between the states. There may
be multiple edges out of a state, in which case we assign a probability to each of the edges out of that state.
These branch probabilities are taken into account when we compute the probability of a sequence.

To compute the probability for a sequence, we have to consider a path through the states of the HMM.
Each time the path goes through a state, one letter from the sequence is “used up”, and the probability for
that letter 1s computed from the table for that state. We also have to pay for the freedom of choosing different
paths—the probability of the sequence is the product of the letter probabilities with the probabilities of the
edges we have used. Mathematically, we can express this computation as

P (5 M,path) = HP (si

When using HMMs, there are two standard approaches for choosing paths: either we take the single path
which has the highest probability (known as the Viterbi path)

path statei) H P(edge from path state ¢ to path state ¢ + 1) .

Viterbi probability(s|M) = maxP (5 M, p) ,
J2

or we add up the probabilities over all paths (known as the Baum-Welch method):
P(s|ar)=3p (s
P

For a more thorough introduction to HMMs, please refer to L. Rabiner’s paper, “A Tutorial on Hidden
Markov Models and Selected Applications in Speech Recognition” in the appendix [22].

M,p) .

3.2 Linear HMMs for Biological Sequences

A general HMM 1is an arbitrary graph of states and edges, and so can be very difficult for a biologist
to interpret. To make HMMs more comprehensible, we usually restrict the structure to a simple linear
arrangement.

The linear arrangement is motivated by the common biological modeling technique of aligning sequences
to a consensus sequence. In the linear HMM we will have maich states corresponding to the letters of the
consensus sequence. In addition we will have insert states corresponding to the positions between the letters
of the consensus sequence where gaps can be opened up and letters inserted. To get a complete analogy to
the alignment model, we also allow special delete states that do not “use up” any characters of the sequence

11

Figure 3: A small HMM model as displayed in Hmmedit. The Begin node is node 0, at left, and the end is
node 5 on the right. The thickness of an edge indicates its probability. The alphabet is 4 letters as can be
seen from the probability distribution bar charts inside of each Match (square) and Insert (diamond) state.
The Delete state (circle) does not consume any letters, hence has no distribution.

whose probability we are computing, but that allow paths to skip match states (just as alignments may
delete parts of the consensus sequence).

Figure 3 gives an example of a small model for RNA sequences. The delete, match, and insert states are
grouped into nodes. Each node has 3 states:

e Match state. These correspond to “good” columns of a multiple alignment and form the core of the
model. Each contains an independent distribution over the letters in the alphabet.

e Insert state. These states have self loops (edges from the state back to the same state), that allow for
arbitrary length insertions of letters. Each contains an independent distribution over the letters in the
alphabet.

e Delete state. These states are like Match states, but no letter from the sequence is used up. These
handle cases where a letter has been deleted relative to the consensus.

Each state has three incoming transitions and three outgoing transitions. The outgoing transitions are
to Insert in the same node and Match and Delete of the next node. Combining all the edges for a node,
we get three internal edges (to the Insert state), six external edges coming in (to Match and Delete), and
six external edges going out (to Match and Delete of hte next node). These allowed transitions define the
possible paths through the HMM. Two special nodes are added to the beginning and end (Begin and End),
and we only consider paths from Begin to End.

For instance, when in a Match or Delete state, we can only exit to 3 other states:

e The next node’s Match state. In most HMMs, this will be the most probable transition.
e The next node’s Delete state. This is used to skip the next letter relative to the consensus.

e The current node’s Insert state. This allows insertions of letters relative to the consensus.

12

Likewise, the insert state can exit to only 3 states: itself (forming a self loop), and the next node’s Match
or Delete states.

One of the nice properties of this particular HMM is that exactly the same dynamic programming
techniques that are used for sequence-sequence alignment can be used for finding the Viterbi path through
the HMM and computing the corresponding probability.

One major disadvantage of HMMs is that they cannot directly model long-distance interactions such as
base pairing in RNA. For this; more complex models such as stochastic contexi-free grammars [23, 8, 11] are
needed.

3.3 Multiple Alignments, Profiles, and HMMs

Several modeling techniques that are conceptually quite similar to linear HMMs have been used by biologists,
including multiple alignments, profiles, and generalized profiles. A good overview of these techniques can be
found in [5].

A multiple alignment is not really a modeling technique, but a way of presenting a group of related
sequences to highlight the parts they have in common. A multiple alignment 1s easily created from a linear
HMM by finding the Viterbi path in the HMM for each sequence. Each match state of the HMM creates a
column in the multiple alignment. The letters that come from insert states on the Viterbi path can either
be hidden (as is done in HSSP files) or shown in lower case to indicate that they are not necessarily aligned
with other letters from the same insert state (as we do in the output from align2model).

Converting a multiple alignment to a linear HMM 1is fairly straightforward— a node is created for each
column in which most sequences have an aligned residue. Columns with many missing letters are mapped
to insert states between match states. The probabilities used for the letters in Match states are computed
from the letters seen in the multiple alignment, using the techniques we’ll describe later (Section 5.1). For
Insert states, there are generally not enough examples to compute probabilities reliably from the observed
residues, and so an appropriate background frequency is used for Insert states.

Setting the transition probabilities is equivalent to setting gap penalties in sequence alignment and
remains more of an art than a science. The program modelfromalign in the SAM suite of tools creates
HMMs from multiple alignments automatically, with fairly reasonable default transition probabilities.

A profile 18 a summary of the alignment columns of a multiple alignment, giving the probability for each
letter in each column. This is very similar to the linear HMM we have described, but without the possibility
of having insertions or deletions. A profile can be converted to an HMM in the same way that multiple
alignments are, but we have not provided any explicit program for this conversion, since the conversion from
multiple alignments provided by modelfromalign is more versatile.

13

3 4

il
—

ceee| M

* ok x A
OOOO
corn
apdela
QX0 >
cccgd
o000
cccgd

Figure 4: Hmmedit display of a small model made from the alignment. The ordering of the bar charts is
AGCU, A at the top. Note the action of the built-in regularizer. The regularizer has made all letters in all
columns at least slightly possible, even for pure columns.

4 Basic Uses of Hidden Markov Models

Leslie Grate (leslie@cse.ucsc.edu)

This section discusses what can be done with the HMM methodology. HMMs can be built from aligned
and unaligned sequences, sequences can be aligned to a HMM, and databases can be searched for matches
to the HMM.

4.1 Building HMMs from existing alignments

The program modelfromalign creates a HMM from a group of aligned sequences. The fact that the linear
HMM structure maps alignment columns to nodes makes this process straightforward.

As in Figure 4, the program first creates a node for each column in the alignment. The transition
probabilities and insert distributions are set to defaults, but the match state distribution is computed from
the letters in the corresponding columns.

An important issue arises in the process of computing match state distributions from a single (possibly
very small) column of letters. Tt is likely that some letters will not occur in a given column, hence have zero
counts, which directly translates to zero probability of occurring based on the raw frequencies. While this
might be appropriate for some columns, most of the time we should not totally exclude the possibility of
observation of letters: to do so would limit the ability of the model to generalize.

Fixing these zero probabilities involves the process of regularization which will be covered in Section 5.1.
SAM has a built-in regularizer that users can override.

4.2 Aligning Sequences to HMMs

The program align2model creates a multiple alignment by aligning sequences to a HMM. Note that each
sequence is aligned individually to the model.

Alignment of a sequence to a model means that each letter in the sequence is associated with a match
or insert state in the model. Two 5-character sequences, A and B, are shown in a 4-state model in Figure 5,
along with the corresponding alignment between the sequences.

14

al al a2 A3 - A4 . A5
B1 B2 B3 b4 B5

A3 A4 A5
End
Bl B2 B3 B5

Start

Figure 5: An example of two sequences whose characters are matches to states in an HMM, and the corre-
sponding alignment.

One can specify such an alignment by giving the corresponding sequence of states with the restriction
that the transition lines in the figure must be followed. For example, to match a letter to the first match
state (my) and the next letter to the third match state (ms) can only be done by using the intermediate
delete state (da), so that part of the alignment can be written as midams. In HMM terminology such an
alignment of a sequence to a model is called a path through the model. A sequence can be aligned to a model
in many different ways, just as in sequence-to-sequence or sequence-to-profile alignments. Each alignment of
a given sequence to the model is scored by using the probability parameters of the model. The best-scoring
path is usually reported as the “correct” alignment.

4.3 Scoring and Database Discrimination using HMMs

Once you have a model, any sequence can be scored against it by computing the probability that the sequence
was generated by that model. An interpretation of this form of score is that it tells you how “far away” a
sequence is from the model.

However, this is not the final word on scoring because these types of scores have a strong dependence on
sequence length: there is not a single “good” method for a scoring function.

The SAM suite program hmmscore has a few different scoring methods the user can choose from (refer to
the SAM manual [15] for details). Either the Viterbi (“best path”) or Baum-Welch (“sum over all paths”)
(see Section 3) method is used to compute the probability P(s|M) that a given sequence was generated by
a given model. The negative logarithm of this value i1s termed the NLL cost. A small cost corresponds to a
high probability, and so a good match to the model.

SAM and HMMER also score each sequence against a user-adjustable null model. The difference between
the NLL score for the model and the NLL score of the null model is termed the log-odds score. SAM reports
NLL—Null costs, for which a negative value means a good match to the model.

Discrimination involves choosing a score threshold which gives the best separation between sequences
that are in the family you are attempting to model and those that are not. Computing the scores of many
sequences from a data base and plotting them in histogram form is a useful method of visualizing the results.
The program makehist creates a gnuplot script for making histograms of hmmscore results (the .dist files).
Examples of these histograms are shown in Figure 6.

15

60

—
&

o
=
Q
=

=
o)

INI W=
g

Score histogram for run sprot32.nm1.01
100 T T

S
o

80 q

60 [| q

Number of sequences
)
=)
I
|

Counts

40 1

L i

0
A . il n o, b Score

0
-300 -250 -200 -150 -100 -50 0 50 100
Score

Figure 6: Histograms showing results of discrimination tests using HMMs. The left plot is of a SAM model
of the globins made using makehist. Negative scores mean the model fits a sequence well, so the more
negative the better. The right plot is a HMMER model for the efhands made with a special plot program.
Here positive scores are better. Regardless of the sign of the score, note that there is a valley between “good”
and “bad” fits to the model. Courtesy of Christian Barrett.

16

5 Building an HMM from training data

Kimmen Sjélander (kimmen@cse.ucsc.edu)

Stochastic models for proteins are objects, like profiles, that capture the statistics defining a protein family
or domain. Along with parameters expressing the expected amino acids at each position in the molecule or
domain, and possibly other parameters as well, a stochastic model will have a scoring function (as described
in Section 2) for sequences with respect to the model. Models are built to accomplish a particular task;
thus the method used to build the model must be developed with that task in mind. In this section, we will
focus primarily on how to build HMMs which are effective at recognizing homologs in the sequence databases
which may have low primary residue identity.

The effectiveness of a model in database search is tied closely to the accuracy of the parameters of
the model. These parameters must fit both the data seen (the training data) and the remote homologs—
sequences which are related by phylogeny and structure to those used in training, but which have low primary
residue identity and are thus difficult to recognize using general profile methods. The parameters must excel
at conflicting tasks: they must give high probability to sequences seen (specificity), but also give probability
to sequences not seen but which are homologous (sensitivity). Along the way, they must identify as not
belonging to the set all the other sequences.

The complexity of the model also influences the kind of training data needed. Generally, the more
parameters in the model, the more data you need to train it effectively. In early work modeling protein
families and domains using HMMs [12], we found this reliance on sufficient data to be pronounced, such
that many (upwards of 100) training sequences from the protein family or domain of interest were generally
required in order to obtain reasonable results. For these rather complex models, the more sequences available
for training, and the more variation among the sequences, the better. However, sheer quantity of data is
not sufficient, since alignments of virtual copies of the same sequence with only a few positions mutated give
almost no more information than a single sequence.

Unfortunately, this kind of data is not always available. Most protein families contain a far smaller
number of sequences. In the extreme, we may have a single sequence we are trying to characterize. One
of the first tasks, in fact, when a new protein is sequenced, is to find all possible homologs in the protein
sequence databases. Any homologs identified will contain information which assists the analysis of the
unknown protein. If we are lucky, the annotation of the homolog will include information about its function
or structure. But even without such annotations, the multiple alignment of all the sequences together will
reveal much about the important positions in the protein: which are conserved and which are variable, which
give clues for active sites, and so on.

Moreover, the problem of finding homologous sequences, close or remote, is not limited to the case where
one has a single protein. One may have several sequences available for a given family, but expect that other
family members exist in the databases, and want to locate these putative members.

Various methods have been developed to address the problem of recognizing homologous sequences.
Among the first developed were those that were based on string-matching algorithms. These methods were
developed based on the observation that when two sequences share at least 25% residue identity, and each
is at least 80 residues in length, then the two sequences are homologous[24, 6]. These methods attempt to
find a way of way of maximizing the number of matches between two sequences. Examples of this group
are algorithms that search for the longest common subsequence, or exact matches to motifs of particular
lengths.

In contrast with homology determination by residue identity, stochastic models use a very different
technique to determine whether two sequences share a common structure. During database search with
these models, each sequence in the database is assigned a score (or, negatively, a cost). This score is
computed by adding the scores at each position, as described in Section 2. For instance, a typical cost for
aligning residue a at position i, is —log P(a | position¢), where the base of the logarithm is arbitrary. As
we described in Section 2.2, a sequence is identified as a match to the model if the score of the sequence is
above a cutoff (or, negatively, if the cost of the sequence with respect to the model is below a cutoff). In

17

SAM scoring, we report the cost for a sequence, thus smaller values indicate better matches. In HMMER,
scoring, scores are reported, with higher values indicating better matches.

The naive approach for setting the amino acid probabilities to be the fraction of times each amino acid
was seen, is inadvisable under this kind of scoring system. The reason is that allowing zero probabilities at
positions gives an infinite penalty to sequences having the zero-probability residues at those positions. Even
if a sequence is homologous to those used in training the model, a single mismatch at such a position would
render that sequence unrecognizable by the model.

If there are particular positions where we know (due to additional external information) that a particular
position must contain a residue with probability 1, then we can artificially set that probability. But as a
general rule, the observed frequencies over the amino acids will generate many zero probabilities, and should

be avoided in stochastic models which use this kind of scoring scheme?.

5.1 Regularizer methods

We have included in the Appendix two papers which go into some detail describing the relative performances
of substitution matrices, pseudocount methods, and Dirichlet mixture priors, for regularizing amino acid
distributions (see the Technical Reports on Dirichlet mixtures (Sjolander et al) and Regularizers (Karplus)).
In this section, we simply give an overview of some of these differences.

Substitution matrices

Several approaches have been proposed to solve the problem of regularizing, or generalizing amino acid
distributions in positions to be able to give probability to amino acids of similar types to those seen. Un-
doubtedly the most popular of these methods involves the use of substitution matrices 27, 13, 1, 21]. These
matrices are derived from alignments of homologous proteins, which reveal certain substitutions to be more
likely than others among amino acids. For instance, isoleucine and valine are often found in the same position
in homologous molecules, but neither is particularly likely to substitute for glutamate. From this observa-
tion, substitution matrices that formalized the cost of substituting one amino acid for another were created.
These substitution matrices have been used with good results to generalize the observed amino acids in a
protein sequence to create a profile which performs well at database search for homologous sequences.

There are two drawbacks associated with the use of substitution matrices. First, each amino acid has a
fixed substitution probability with respect to every other amino acid®. However, an amino acid seen in one
context, for instance, in a position that is functionally conserved, will have different substitution probabilities
than the same amino acid seen in another context, where there are few functional or structural constraints.
Second, only the relative frequency of amino acids is considered, while the actual number observed is ignored.

Pseudocount methods

Pseudocount® methods were designed to handle the problems described above: avoiding zero probabili-
ties, and adding some generalization capacity to the estimated probabilities. In these methods, probability
estimates are obtained in a two-step process. First, pseudocounts z; for each possible symbol ¢ in the al-
phabet (amino acids, in the case of proteins) are added to the number of observed counts n; in the data for
that symbol. Then, the total counts for each symbol (observed plus pseudocounts) are divided by the total
counts over all symbols (observed plus pseudocounts), to obtain the probability of each symbol. That is, the

4This kind of problem does not exist in methods that search databases for remote homologs using the fraction of identical
residues to score sequences. In these methods, all that is crucial is that the sequence being matched in the database be alignable
to the target sequence (the sequence used to search the database) in such a way that 25% of the residues are identical. It is
expected that most positions won’t have the same residue in both the target and in the aligned sequence.

5In the work by Overington et al, there has been an attempt to use structural information to create environment-specific
substitution matrices. However, this assumes that such structural information is available, and this is not always the case in
our work.

8The word “pseudocounts” is chosen to convey the artificial nature of these added counts.

18

expected probability of a letter 7 1s
b= N + 2z
= —
In]+ =]
Not surprisingly, such pseudocount methods are limited in their effectiveness. Variants of these methods
have been developed that attempt to take into account some of the additional information in the column

being regularized. Such methods are called data-dependent pseudocounts (for example, [25]).

Dirichlet mixtures

The dependency on sufficient data to estimate the parameters of a HMM prompted us to look for ways
to include prior information over amino acid distributions into our model-building process. We used the
excellent work by Duda and Hart on estimating mixtures of Gaussian densities [7] as a template to estimate
mixtures of Dirichlet densities. We chose Dirichlet densities because they had several nice mathematical
properties which made them very appealing.

Dirichlet densities are densities on probability distributions. In the case of a Dirichlet density over amino
acid distributions, these densities give the likelihood of every point p'= py ...pag. In our work, we estimate
these densities from columns extracted from thousands of multiple alignments”, and the densities estimated
come to represent the probabilities of different amino acid distributions within the context of the database
used to train the density’s parameters.

Dirichlet mixtures are, quite simply, mixtures of Dirichlet densities, which jointly assign probabilities
to all distributions of the symbol alphabet in question. For instance, a distribution over amino acids that
gave tryptophan probability 0.5, and glycine probability 0.5, would probably be given low probability by
a mixture of densities estimated on alignment columns. We simply don’t see too many distributions like
that. However, since the alignments we used to estimate these densities were of fairly close homologs, these
mixtures give pure distributions and mixtures of amino acids sharing common physico-chemical attributes
fairly high probability.

Each density is defined by a set of parameters, which we refer to as @. These parameters define the
probability given each distribution of amino acids by the density. In the case of a mixture, each density is
a component of the mixture, and the probability of that component within the mixture is referred to as the
maxture coefficient. In our work, we refer to this prior probability as gq.

The Dirichlet mixtures are used to add data-dependent pseudocounts from each component of the mixture
to the observed counts. The total counts for each symbol are then divided by the total counts over all symbols
(as described in the previous section), to form the posterior probability of each symbol in the alphabet given
the observed counts and the Dirichlet mixture prior.

These mixtures have been shown in various experiments [26, 14, 3] to be more effective at reducing the
numbers of false positives and false negatives in database discrimination tests. A theoretical rationale for
these results is given in [18, 19], and is included in the Appendix.

The SAM suite of HMM programs incorporates the use of one nine-component Dirichlet mixture prior
which we have found to be the most effective. HMMer includes both mixture priors and structure-based
mixture priors [10].

5.2 Weighting schemes

It’s undoubtedly not news to anyone attending this tutorial that alignments of protein or DNA sequences
often contain a large number of very close homologs or even exact duplicates. The first problem with this
kind of skewed data is that it directly conflicts with the assumption of independence among the data, which
lies at the heart of the stochastic model typically used.®

Unfortunately, the problem is not only theoretic. Skewed data can restrict the capabilities of a model
estimated from the data in several ways:

7 Alignments used have come from the BLOCKS and HSSP databases.
8 Actually, whenever we have aligned sequences we are not going to have independent data; sequences are aligned because
they are related by function or structure, and are, hence, clearly correlated.

19

1. Poor generalization capacity.

When one subfamily in the data is well represented, but the others are less so, the statistics in the
dominant subfamily overwhelm the statistics in the other subfamilies. This results in models that
perform poorly in database discrimination or search tasks; they recognize sequences which are similar
to the dominant subfamily, but fail to recognize sequences which are similar to the less-populated
subfamilies used in training. They may even fail to recognize sequences used in training, if these
sequences are in the smaller subfamily.

If the method used to compute the expected amino acids at each position takes into account the actual
numbers of observations at each position (as is the case with Dirichlet mixtures), then an attempt must
also be made to estimate the actual number of independent counts in the data. Otherwise, models
built using large numbers of highly similar sequences will have probability estimates for the amino
acids at each position which are sharply peaked around the residues seen. In an alignment containing
many columns, such high requirements for matching at each position the residues seen in the training
data will make these models unable to recognize even fairly close homologs.

2. Difficulty distinguishing important, or conserved, positions, from the less important positions.

The same type of situation gives rise to another problem. Without an estimate of the actual number
of independent counts in the data, it is hard to differentiate a truly conserved position from a position
which is not conserved. On the other hand, if one has a fairly diverse and large set of sequences, any
positions which are conserved will stand out.

3. Difficulty building alignments from skewed data.

Similar problems can arise when constructing an alignment in a nearest-neighbor approach, if the
training data contains a dominant subfamily with high residue identity. By the time any outliers are
included, it may be difficult to align them properly using the expected amino acids estimated from the
dominant subfamily.®

Because of this, methods have been developed that attempt to compensate for bias among sequences.
Such methods are called sequence weighting schemes, or simply weighting schemes. Most of these methods
allot smaller weights to sequences in the dominant set(s), and larger weights to outliers, in an attempt to even
up the playing field. Increasing the weight of outliers is not without risk, however, as spurious inclusions
in the data can result in models that give too much weight to statistics from spurious members, to the
detriment of the effectiveness of the model in representing the true members.

As noted above, a weighting scheme on sequences must take into account the method which will be
used to compute the distribution of amino acids used for scoring. If the method incorporates the actual
number of observations, it will be crucial to have the total weight allotted the sequences be tuned to the
goal of the model. If the distribution-estimation procedure is not affected by the total weight, then relative
weights alone are sufficient. Since, historically, profile methods have used substitution matrices in computing
the expecting amino acids (see Section 5.1), sequence weighting schemes that ignore the total weight are
sufficient.

However, our preferred method to compute the expected amino acids, Dirichlet mixture priors, is designed
to take the number of observations into account. In the absence of data, our method relies heavily on prior
information for estimating distributions. But when much data is available, we want to believe the evidence,
and our amino acid estimates will converge to the actual frequencies observed. In our case, then, we need
to pick a weighting scheme that also carefully tunes the total weight allotted the sequences.

For instance, lowering the total weight in a set of aligned sequences produces more diffuse models with
greater generalization and less specificity. The opposite occurs when the total weight is increased. Since
the specificity (or generality) of the parameters is mirrored in the information content of the model (see

9 As described earlier, this is more of a problem with methods for computing expected amino acids which take the number
of observations into account.

20

Section 2.3), we can use this measure to adjust our models so that they are suited to remote homolog search
for particular databases.

The weighting schemes developed by Kevin Karplus (unpublished) provide the user with a direct control
over the diffuseness of the model created using them. The user specifies how many bits per column on
average should be saved relative to using just the background frequencies, and the total weight of the
sequences 1s adjusted until the Dirichlet mixture provides the right amount of generalization for the given
multiple alignment.

Although modifying the total weight for training sequences is not the means employed to obtain this
effect, the various PAM matrices are designed with the same goal in mind. In fact, Altschul’s paper gives a
table for translating the various PAM matrices into bits saved per column [1]. A PAM distance of 120 is a
savings of about 1 bit per column and a PAM distance of 240 is a savings of about 0.5 bits per column.

There are two ways one can pick the savings per column:

e One can specify the savings per column based on the PAM distance one wants to generalize the model
to, using the table in Altschul’s paper. Figure 7 shows the translation between bits saved and the
Blosum or PAM matrix number. Some researchers prefer to think in terms of percent residue identity
or residue difference—Figure 8 provides a way of translating between percent difference and PAM
distance.

e One can set the savings as low as possible while still saving enough to find significant hits in the
database. For example, let’s say we want to find sequences of length 65 or more, in a database of 50
million residues, with significance 0.01. This means that our models must save at least log, 50 000 000 —
log, 0.01 bits (about 32.2). That means we need to save about 0.5 bits per column on the average.
If we try to generalize further than that, we need longer matches to compensate for the lower score
per column (we can go to 0.33 bits per column, if we are willing to demand up to 100 residues). If
we are looking for a short motif (say 20 residues), we cannot generalize nearly as much without losing
statistical significance.

In practice, we often find shorter sequences than the above calculation implies. Since adjacent residues
are not independent, a series of good matches in a row can make significant savings in less than the
length one would expect for a random sequence from the distribution implied by the model.

Quick review: This section has covered how to build HMMs so that they are effective at recognizing
homologs in the sequence databases, including

o The kind and quantity of training data needed.
e The need for incorporating prior information.
o The need for and use of sequence weighting schemes.

o Different techniques for regularizing model parameters, especially those representing amino acid distri-
butions.

21

1.6

1.2

08 [

0.6 [

relative entropy (bits saved)

04

0.2

1.4

30 40 50 6070809200
blosum or PAM matrix number

150 200

300 400

Figure 7: Graph showing the translation between average bits saved per position and Blosum matrix number
or PAM matrix number. The PAM curve is from Altschul [1], and the BLOSUM curve is from the Henikoffs’
program (version 5.0 of the Blocks database).

22

100 ! T T T T T E— !

% residues that differ

10 20 30 40 50 6070809000 150 200 300 400
PAM matrix number

Figure 8: Graph showing the approximate number of different residues expected with different PAM
matrices. The PAM matrix is put on the x-axis with the same scale as Figure 7 so that one can
translate from percent residue difference to PAM distance to entropy visually. Numbers taken from
http://www.lmb.uni-muenchen.de/groups/bioinformatics/ch4/matrices.html

23

6 Advanced Uses of Hidden Markov Models

6.1 Building multiple alignments from unaligned sequences

Kevin Karplus (karplus@cse.ucsc.edu)

This section will describe one method that we have used to build adequate hidden Markov models starting
with just a single target sequence. The method presented here was developed for making models from the
target sequences of the CASP2 protein-structure prediction contest, and is still being improved. It is intended
for use by computer scientists who have little knowledge of proteins, and so has been made as automatic as
possible. The Makefile used to create the examples for this section 1s included in the appendix, as are the
alignments produced.

As with any model building, fully automatic techniques do not always provide the best models—a com-
petent molecular biologist who has additional biological information about a sequence can often improve on
them. Since the automatic techniques rely heavily on constructing and learning from multiple alignments,
it is fairly easy for a biologist to introduce his or her knowledge by modifying the automatically produced
alignments, or by editing the resulting model to adjust the importance of different columns.

For the contest, we do not need a sharp discrimination between the sequences that match the model and
those that do not—indeed we want a model that matches as distant a homolog as we can find, while still
having high enough scores to get significant hits in a large database. Ideally, we would like to generalize the
models enough to find a significant hit in a database of known structures, but we don’t expect to be able
to do this.'® The problem of finding remote homologs, whether for structure prediction, insight into the
function, or determining which residues might be productively modified in wet-lab work, is a fairly common
one.

In this section, we’ll construct both sharply discriminating models whose purpose is to align close ho-
mologs of the target sequence and a more diffuse model whose purpose is to find more remote homologs.
For the examples, we’ll use target t0005 from the CASP2 contest, the C-terminal domain of human gamma
fibrinogen.

You can build a model directly from a single sequence using the program modelfromalign. The resulting
model has one state for each letter in the target sequence, heavily weighted toward matching the letter in
the target. SAM does not currently support using substitution matrices to set the probabilities of the letters
in this model, but it does allow the use of Dirichlet mixtures, which produce very similar probabilities given
a single sequence.

Demonstrate modelfromalign, show resulting model with hmmedit.

One can use the model constructed from the target sequence to search a database for homologs, but this
is a rather inefficient use of resources, since this initial model is not really any better for searching than the
faster techniques used by BLAST [2]. A better technique for finding the close homologs is to use BLAST on
the SwissProt or NR database to get a reasonably large set of homologous sequences quickly. Even faster
is to use Entrez to get the “protein neighbors” of a sequence, and download the entire set as a FASTA file.
Note that these two methods can produce somewhat different sets of sequences, and it is sometimes worth
merging the results of both methods to create a larger, more diverse training set.

In general, having more sequence data produces better models, but the model-building process can get
confused if there are too many copies of some of the data, giving the extra copies too much importance. Of
course, sequence weighting can help reduce the effect of duplication. Having extra data also slows down the
model building process (which is generally linear in the number of sequences). One technique that is both
efficient and fairly effective is to build a model from a small number of sequences (say the BLAST hits in
SwissProt) then retrain it on a larger set (say the BLAST hits in NR or the Entrez neighbors). For the
examples here, we’ll build models first using just 18 sequences (the BLAST hits in SwissProt), then retrain
using just under 100 sequences (the neighbors identified by Entrez).

10For more details on what we do expect to be able to do, wait to see what we have for the CASP2 contest.

24

Worldwide web demo here: take a target sequence, use BLAST to find homologs, and use the link to
Entrez to get the netghbors and download them.

Once we have a set of homologous sequences, we have some decisions to make about the structure of
the model: Do we want the model to preserve the one-to-one relationship with the target sequence? Do we
want to construct a more general model for the whole family, possibly discarding some pieces of the target
sequence?

If we just want a generic model for the whole class, we can use SAM‘s buildmodel program with default
parameters. This program then builds a number of random models with lengths around the average length
of the sequences. For each model, the sequences are aligned to the model and the model is updated based on
that alignment. Noise is added to the observed counts of amino acids and transitions, so that the model space
is searched a little more broadly. The buildmodel program then selects the best of the resulting models and
tries to modify it with model surgery, which cuts out nodes of the model that aren’t used often and adds
nodes where inserts were common. After surgery, the modified model is retrained. The training/surgery
loop can be repeated several times.

Running buildmodel with the default parameters is a little slow for these long sequences, and so will not
be demonstrated live.

The appendix includes two files that result from building a model with default parameters:

t5_default.stat which shows the progress of the model building, and
t5_default.pretty which shows the resulting alignment.

Note that the entire sequence has been modeled, not just the C-terminal domain whose structure we want
to predict. Part of the region we’re interested in (between alignment columns 312 and 314) has been shoved
into an insertion—despite obvious homologies for the first 5 sequences. Also the large insertions in five
sequences between positions 309 and 310 make the section before 309 grossly misaligned—there is a much
better alignment hidden in the insertion.

In the t5_default.stat file, we can see the training method gradually improving the model, then losing
much of the gain when it does model surgery, and almost recovering by retraining. The problem isn’t the
model surgery, but the noise that is added to the model after surgery. The current default adds about 10% of
the noise used in the initial model, that is, about the amount of noise in the 10th iteration of retraining. It is
possible to reduce the amount of noise added, keeping the training process from losing so much information.

The default training method described above tends to find and correctly align the more highly conserved
blocks of the family, but often makes rather arbitrary choices on the less conserved regions. Different runs
(with different noise) will produce different results, some of which are better alignments than the one shown
here.

There is a better way to use SAM that is faster and produces better alignments. Since we have a specific
target sequence that we are interested in, we are better off starting with a model that has a one-to-one
relationship with our target. We can build such a model use modelfromalign on just the target sequence.
The alignment of the sequences to this model is shown in the appendix as t5_0.pretty.

Show alignment of homologous sequences to the model built from the single sequence. Look at the hmmscore
results to ensure that the homologous sequences match the model. (True for the BLAST hits, not necessarily
true for the Entrez neighbors, some of which are fragments that don’t overlap with the target.)

We can take the model created from the target sequence and retrain it on the homologous sequences.
Since we want to preserve the relationship with the original sequence, we turn off model surgery and noise.
We want to allow the alignment here to open gaps freely to align the highly conserved blocks well, even at
the cost of some very poor alignments in the variable regions. We’ll later try to keep just those gaps which
seem to be most useful. The gap costs in SAM are encoded in the transition probabilities—we can control
them somewhat by setting a special regularizer for the transitions.

Setting gap or transition costs appropriately is the hardest problem in building alignment-based models
(including hidden Markov models)—we have no magic bullet for making this decision automatically. One
approach is to try a variety of different transition costs, and pick the range that produces the best alignments,

25

where “best” can be measured automatically (highest probability for the sequences in the training set) or
judged manually (highly conserved columns in known active positions, cysteines in locations known to have
disulphide bridges, gaps in loop regions, and so forth).

Demo of buildmodel with cheap_gaps.regularizer; the resulling alignment is in the appendiz as
t5_1.pretty.

The resulting model may have created an alignment with too many places where insertions have been
allowed, and with too many deletions. Retraining with a different regularizer for transitions can clean up
these extraneous gaps. The long_match regularizer favors match-match transitions, accepting somewhat
worse matches to reduce the number of gaps.

Demo of buildmodel with long_match.regularizer; the resulling alignment is in the appendiz as
t5_2.pretty.

All the models we’ve built so far have been very selective models, built to get excellent discrimination
of the training set from other sequences. If we want to find more remote homologs than those in the the
training set, we need to modify the model to make it less specific. We do this by giving less weight to the
sequences, so that the Dirichlet mixture provides a somewhat flatter distribution of amino acids in each
position. See Section 5.2 for more information about weighting schemes for sequences. For example, if we
use Karplus’s entropy-based weighting scheme, with the goal of getting 0.33 bits/column of savings, we get
sequence weights ranging from 0.0257 to 0.0501 with a total weight of 0.599 for the set of 18 sequences.

The alignment that results form using this diffuse model 1s given in the appendix as t5_2w7.pretty.
Aligning the training sequences to the model produces a somewhat different result than with the sharper
models, since there 1s less penalty for letter mismatches, and so the gaps tend to get grouped together more.

Demo of weighting and building diffuse model. Note that we stop the training after just one re-estimation,
so that the alignment used for training ts not perturbed from the alignment from our sharply discriminating
model.

We can, perhaps, create a slightly more general model by training on all the Entrez sequence neighbors,
instead of just the small set of homologs found in SwissProt. To avoid including fragments that match parts
of the sequence that we are not interested, we first select the interesting domains from the training set using
multdomain with a sharp model built from the SwissProt sequences. The model is then retrained using this
set of found domains.

We then do a minimal retraining of the model using weighted sequences to make the model less sharply
discriminating. With Karplus’s entropy-weighting scheme and a target of 0.33 bits/column, we get weights
ranging from 0.00389 to 0.0119 with a total weight of 0.6757 for the set of 97 sequences. The alignment of
the original 18 sequences to this modified model is only slightly different from the alignment we get using
the similarly diffused model trained on just 18 sequences, but the range of scores is narrower, indicating a
less sharply peaked model.

Demo: make t5_2.more.mult (the matching domains from the larger set of sequences) and models
t5_3.mod and t5_3w7.mod.

This diffuse model can be used to search a large database to find more remote homologs, and the resulting
set of sequences used to retrain the model. This iteration of finding homologs and retraining the model to
match all the known homologs can be repeated until no new homologs are found. The iteration is a very
effective way to build models [26].

Unfortunately, searching a large database (such as NR) can take several hours using hidden Markov
models, and so will not be demonstrated here.

Searching NRP with the t5_3w7.mod model finds 79 matching domains, most of which are duplicates of
ones already found in the Entrez nearest neighbors search. The number of sequences is only 77, because two
of the sequences had ambiguous alignments, producing two overlapping hits. Some of the Entrez neighbors
are not found in this search, even though the significance threshold was set very loosely to get even tentative
hits.

Most of the low-scoring sequences are not remote homologs but fragments of fairly close homologs.
Because SAM does not have local alignment, but only global and domain-global, fragments generally get low

26

total NLL—Null values, even though their score per match position is good.

At least one genuine distant homology is found, GP:CELD1009, but it is not very remote—BLAST was
able to find it (with name gil1072170) from just the target sequence.

Based on savings per character, the most distant homology is PIR2: 405295, which is a fairly old sequenc-
ing of bovine fibrinogen gamma fragments. A higher quality sequencing of bovine fibrinogen gamma is the
SwissProt sequence FIBG_BOVIN, which is in the training set.

The next most distant homology is PIR2:PC2036, which is a fragment fairly closely homologous to
GPN:HUMMFAPA, which is in the training set as gi|790817.11

Other models with other weightings and significance thresholds are being tried, but are not ready in time
for the camera-ready copy deadline for the tutorial—if any of them produce convincing remote homologs,
we’ll bring additional appendices to the tutorial.

6.2 Reestimating existing alignments using HMMs

Kimmen Sjélander (kimmen@cse.ucsc.edu)

There are two primary reasons why we might want to refine an existing alignment. First, we might
expect that some errors are in the alignment, and want to correct them. Second, we may wish to extend a
local alignment into a global alignment. In this section, we focus on the first (easier) task. We will discuss
methods for doing the second task during the tutorial, if time permits.

When the alignments are generally fairly good to start with, the method we use to refine these alignments
is conservative. For instance, we have found that the best alignments in general are produced by simply
avoiding some of the features available to us: we don’t add noise into the model, we don’t allow surgery,
we don’t let the program change the model length in any way'?. We simply change the gap initiation and
extension parameters and the amino acid probabilities at each position to maximize the probability of the
sequences in the family.

Alignments can take many forms, and the method to refine an alignment has to take that form into ac-
count. For instance, at UCSC, most of our work reestimating alignments has been done on HSSP alignments
[24]. These alignments indicate deleted (or inserted, depending on the perspective) regions by lower-case
letters, and put the excised residues at the end of the alignment file. Because of this, we don’t have a direct
way of estimating the insertion or deletion probabilities for those positions, without some complicated I/0
routines. Since we figure that we already write enough complicated I/O routines, we avoid that task, and
estimate the model transition probabilities in a different way. We obtain an initial model from the alignment,
ignoring the fact that we don’t know the length of the inserts. Then, we let the sequences align themselves
to the model, and reestimate the transition parameters only'®. Once the transition parameters are tuned,
we have in effect the model we would have had in one step if we’d had an initial alignment with all inserts
noted directly. At this point, we allow all the parameters to be reestimated, which results in changes in the
actual residues seen in each position.

An example of this process is the reestimation of an HSSP alignment for a family of hydrolase proteins
(2prd.hssp). This family contains 9 sequences, forming two distinct subfamilies. The first six sequences
form the first subfamily, and the last three form a second subfamily'®. The initial alignment is fairly good,
except for the region between positions 36 and 50, where the last sequence, IPYR_KLULA, is misaligned.
The reestimated alignment shows an almost exact match of IPYR_KLULA to its closest homologs in the
set, IPYR_BOVIN and TPYR_SCHPO, in this region. Note that the first alignment was obtained directly

' Wouldn't it be great if all the databases used a single name space, so you could check identity by looking at the names?

12This is accomplished by setting the SAM program parameters nsurgery, initial noise, anneal noise, and modellength all
to zero in command-line arguments to buildmodel, as follows: % buildmodel outputmodel -i initialmodel -train sequences
-initial noise 0 -anneal noise 0 -modellength O -nsurgery 0.

13 This is achieved by setting each node in the model to be of type K, indicating amino acid emission probabilities may not
be changed during training.

14 This subfamily identification is easy to make from visual inspection of the alignment; it is also confirmed by an information
theoretic program we have for determining subfamilies in an alignment.

27

ipyr_theth
ipyr_ecoli
ipyr_thep3
ipyr_theac
ipyr_arath
ipyr_haein
ipyr_bovin
ipyr_schpo
ipyr_klula

Table 1: Alignment from HSSP database for IPYR_.THETH and homologs (2prd.hssp). Note, the columns

10 20
I I

30 40 50
I I I

ANLKSLPVGDKAPEVVHMVIEVPRGSGNKYEYDPDLGAIKLDRVLPGAQFY
-SLLNVPAGKDLPEDIYVVIEIPANADIKYEIDKESGALFVDRFMSTAMFY
————————————— KIVEAFIETIPTGSQNKYEFDKERGIFKLDRVLYSPMFY
-—YHSVPVGPKPPEEVYVIVEIPRGSRVKYEIAKDFPGMLVDRVLYSSVVY
-—WHDLEIGPEAPTVFNCAVEISKGGKVKYELDKNSGLIKVDRVLYSSIVY
————— LTPGDVDAGIINVVNEIPEGSCHKIEWNRKVAAFQLDRVEPAIFAK
—————————— ADKEVFHMVVEVPRWSNAKMETATKLNPIKQDVKKGKLRYY
——————— YANAEKTILNMVVEIPRWTQAKLEITKELNPIKQDTKKGKLRFY
——————— YADEANGIFNMVVEIPRWTNAKLEITKEKGKLRFVRNCFPHHGY

printed are just the initial 51 for reasons of space.

IPYR_THETH
IPYR_ECOLI
IPYR_THEP3
IPYR_THEAC
IPYR_ARATH
IPYR_HAEIN
IPYR_BOVIN
IPYR_SCHPO
IPYR_KLULA

10 20 30 40 50

I I I I I
ANLKSLP .VGDKAPEVVHMVIEVPRGSG.NKYEYDPD. .LGATIKLDRVLPGAQF......... YPGD
S-LLNVP.AGKDLPEDIYVVIEIPANADpIKYEIDKE. . SGALFVDRFMSTAMF......... YPCN
AF-——- .————ENKIVEAFIEIPTGSQ.NKYEFDKE. .RGIFKLDRVLYSPMF......... YPAE
SFYHSVP.VGPKPPEEVYVIVEIPRGSR.VKYEIAKD. .FPGMLVDRVLYSSVV......... YPVD
HPWHDLE . IGPEAPTVFNCAVEISKGGK.VKYELDKN. . SGLIKVDRVLYSSIV......... YPHN
DFNQILT.PGDVDAGIINVVNEIPEGSC.HKIEWNRK. .VAAFQLDRVEPAIFA......... KPTN
SPFHDIP.IY-ADKEVFHMVVEVPRWSN . AKMETATKdpLNPIKQDVKKGKLRYvanlfpykgYIWN

SSWHDIP1YANAEKTILNMVVEIPRWTQ.
SAFHDIP1YADEANGIFNMVVEIPRWTN.

AKLEITKEatLNPIKQDTKKGKLRFvrncfphhgVYIWN
AKLEITKEepLNPIIQDTKKGKLRFvrncfphhgVYTHN

Table 2: Reestimated alignment for ipyr_theth and homologs.

28

from the HSSP file; and did not show the inserted residues with respect to the consensus. Those residues,
as noted earlier, are listed at the end of the HSSP file. The second alignment shows the inserted residues
with respect to the consensus, highlighting the subfamilies in the data, which make similar inserts.

For reasons of space, we include here only that particular region where the alignment shifted so dramat-
ically.

29

7 Validating a model
Kevin Karplus (karplus@cse.ucsc.edu)

We’ve discussed several techniques for building models, but haven’t asked the very important question:
how do we know that the model is any good? Before we can answer that, we need to know “good for what?”

There are several different tasks that we have proposed HMMs for: recognizing sequences, finding se-
quences or motifs in a database, searching for remote homologs, aligning sequences, and improving existing
alignments. Obviously, a model is good if it does well at the task it is intended for.

For discrimination tasks, we can give the model a number of test sequences to recognize (some that
should match the model and some that shouldn’t), and count how many it gets correct. The standard of
truth should be the result of wet-lab work or other solid evidence, not just sequence similarity found by some
other model (otherwise we're just testing the similarity of the models).

We can adjust the scoring threshold to trade off false negatives (real sequences that the model doesn’t
recognize) and false positives (sequences that the model thinks it recognizes, but which it shouldn’t). Various
measures have been proposed for summarizing this tradeoff in a single number, but none of them seem very
satisfactory, since in different applications there are very different penalties for the different sorts of mistakes.
Perhaps the best thing to do is to plot the number of false positives versus the number of false negatives as
the threshold 1s adjusted.

One commonly used plot, the receiver operating characteristic (ROC), plots the sensitivity of the test
versus the selectivity as the scoring threshold is changed.’®> The area under the ROC curve represents the
average probability, over all pairs of sequences with differing true outcome, that the classification technique
will assign a higher score to responses with a correct value of 1 compared to those with a correct value
of 0. This method 1s used extensively in medical applications, where tests are typically rather unreliable.
In our applications the curve is not usually very interesting—most of our models have no trouble getting
95-99% sensitivity with 100% selectivity.'® This means that the area under the curve is almost always very
close to one—that is, that sequences that are supposed to be modeled almost always score higher than ones
that aren’t. We’re mainly interested in the last few percent sensitivity (finding the remote homologs) where
selectivity drops rather sharply.

Another method of presentation is to provide score histograms for the positive and negative examples—
the overlap between these histograms shows the tradeoff in errors. This histogram presentation is also good
for a very good model, for which there will be a range of settings in which there are no mistakes made. For
such models the scoring gap between the lowest scoring positive and the highest scoring negative is also a
measure of the quality of the model, though one that is overly sensitive to the exact test set used. The
histograms generally need to be clipped, since there are a usually a lot of negative examples—we’re mainly
interested in the high-scoring tail of that distribution, where we are likely to get false positives.

When validating a model used for database search, the usual approach is to search a large database
and see how many of the known instances of the motif or sequence are missed. Testing sensitivity this way
without a control on selectivity is not very useful, but in most cases we do not have the necessary information
to claim that something found by the model is a false positive, since it is most likely an unannotated sequence
about which nothing is yet known.

Searching for remote homologs is even more problematic, since we often do not have a standard of truth
to compare with—if the model reports a sequence as matching, then it is a sequence homolog. There is, of
course, no guarantee that it shares structure or function with the sequences in the training set, or any other
property that we might be hoping homologs will share.

15 Sensitivity and selectivity are such useful concepts in many fields that they have several different names. Sensitivity is also
referred to as recall or genmerality—it measures how many of the sequences that are supposed to be found actually are found
(the ratio of true positives to all true sequences). Selectivity is also called precision or specificity—it measures how many of
the sequences that are identified by the model are correct (ratio of true positives to all positives).

16 The high accuracy of our models may be more a function of the problems we apply them to than to any intrinsic power—
“gold standard” data is only available for fairly easy discrimination problems.

30

When HMMs are used to improve multiple alignments, we do have an internal check to see if we have
made progress—we can examine the alignment columns and see how likely such distributions are to occur in
good alignments. Dirichlet mixtures provide a way of computing the probability of a particular alignment
column, and we can score a multiple alignment by how likely all its alignment columns are. This does not take
into account how well the insertions and deletions are handled, and it is quite possible to get misalignments
that look very good in the alignment columns but which have a biologically implausible mapping of the
residues.

One of the best checks for alignment is to check residues that are known to correspond (either from
chemical tests or from structure-structure alignments). If these residues are not correctly aligned, our
confidence in the multiple alignment drops substantially. Unfortunately, such information is rarely available
for verifying new models.

8 Local HMM installation

8.1 Obtaining SAM and HMMer

To use SAM locally, the first step is to get a copy of the source code. SAM distribution is via a WWW
interface. The SAM distribution can be clicked to from the main SAM page, but requires a password. To
receive a password, send e-mail to sam-info@cse.ucsc.edu.’” In response to your email, you’ll receive the
password, which you can then use to get to the distribution page. You’ll also be added to the list of people
who have received a copy of SAM, and will receive messages about any updates.

Once you gotten a copy of SAM, such as sam.tar.gz, you will need to do the following:

gunzip sam.tar.gz
tar —xf sam.tar

This will create a SAM directory with the source files.
See the SAM manual Section 10 for information on editing the Makefile and other aspects of installation.
To use HMMer locally, download a copy of the software from the HMMer WWW page and follow the
instructions of the documentation’s Appendix C.

8.2 SAM runtime

Once you have installed your own copy of SAM, you will have direct access to all the programs discussed in
this tutorial. When using your own copy, it is important to remember that several of SAM’s operations can
be quite time consuming, especially building models and scoring large databases. For this reason, it is well
worth the time to discover what compilers and compiler options work best on your machine.

There are several effective ways to reduce buildmodel runtime. One is to start with a preliminary
alignment, essentially giving buildmodel a jump start. The number of sequences in the training set, however,
has the strongest influence on runtime. Buildmodel can randomly select a subset of the sequences to be
used as a training set (by setting the Nseq variable). Unfortunately, this may eliminate critical sequences. A
better method is to trim the set of training sequences, either by removing homologues, or by using a weighting
program to determine low-weight sequences, remove them, and then recompute the sequence weighting on
this smaller set of sequences.

The scoring procedure of hmmscore will be faster if Viterbi scoring is used (by setting the viterbi_score
parameter to 1). This will produce slightly different scores but the final discrimination results will be similar.

We are currently building an MPI (Message Passing Interface) implementation of the major SAM pro-
grams so that you will be able to run SAM on a network of workstations.

17 Commercial users will have to sign a licensing agreement and pay a nominal fee.

31

8.3 SAM parameter settings

The SAM programs have a unified parameter setting interface that combines parameter files and command-
line options. Command-line options have been seen throughout this tutorial, as have been parameter files,
which are specified on the command line with the —include, or -1 for short. Further discussion of parameters

can be found in the documentation.

32

References

(1]

[18]

[19]

[20]
[21]
[22]

[23]

Stephen F. Altschul. Amino acid substitution matrices from an information theoretic perspective. JMB, 219:555—
565, 1991.

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Meyers, and David J. Lippman. Basic local alignment
search tool. JMB, 215:403-410, 1990.

Timothy L. Bailey and Charles Elkan. The value of prior knowledge in discovering motifs with MEME. In
ISMB-95, pages 21-29, Cambridge, England, July 1995.

M. Borodovsky and J. McIninch. Genmark: Parallel gene recognition for both DNA strands. Computers and
Chemistry, 17(2):123-133, 1993.

Philipp Bucher, Kevin Karplus, Nicolas Moeri, and Kay Hoffman. A flexible motif search technique based on
generalized profiles. Computers and Chemistry, 20(1):3-24, January 1996.

R. F. Doolittle. Of URFs and ORFs: A primer on how to analyze derived amino acid sequences. University
Science Books, Mill Valley, California, 1986.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New York, 1973.
S. R. Eddy and R. Durbin. RNA sequence analysis using covariance models. NAR, 22:2079-2088, 1994.

Sean Eddy. Multiple alignment using hidden Markov models. In ISMB-95, pages 114-120, Cambridge, England,
July 1995. AAAT/MIT Press.

S.R. Eddy, G. Mitchison, and R. Durbin. Maximum discrimination hidden Markov models of sequence consensus.
J. Comput. Biol., 2:9-23, 1995.

Leslie Grate. Automatic RNA secondary structure determination with stochastic context-free grammars. In

ISMB-95, pages 136-144, Menlo Park, CA, July 1995. AAAI/MIT Press.

D. Haussler, A. Krogh, 1. S. Mian, and K. Sjolander. Protein modeling using hidden Markov models: Analysis of
globins. Technical Report UCSC-CRIL-92-23, University of California at Santa Cruz, Computer and Information
Sciences Dept., Santa Cruz, CA 95064, 1992.

Steven Henikoff and Jorja G. Henikoff. Amino acid substitution matrices from protein blocks. PNAS, 89:10915—
10919, November 1992.

Steven Henikoff and Jorja G. Henikoff. Personal communication, January 1995.

R. Hughey and A. Krogh. SAM: Sequence alignment and modeling software system. Technical Report UCSC-
CRL-95-7, University of California, Santa Cruz, Computer Engineering, UC Santa Cruz, CA 95064, 1995.

Richard Hughey and Anders Krogh. Hidden Markov models for sequence analysis: Extension and analysis of
the basic method. CABIOS, To appear 1996.

Kevin Karplus. Using Markov models and hidden Markov models to find repetitive extragenic palindromic
sequences in Fscherichia coli. Technical Report UCSC-CRIL-94-24, University of California, Santa Cruz, July
1994.

Kevin Karplus. Regularizers for estimating distributions of amino acids from small samples. In ISMB-95
Cambridge, England, July 1995.

Kevin Karplus. Regularizers for estimating distributions of amino acids from small samples. Technical Report
UCSC-CRL-95-11, University of California, Santa Cruz, March 1995. URL ftp://ftp.cse.ucsc.edu/pub/tr/ucsc-
crl-95-11.ps.Z.

A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler. Hidden Markov models in computational
biology: Applications to protein modeling. JMB, 235:1501-1531, February 1994.

John Overington, Dan Donnelly, Mark S. Johnson, Andrej Sali, and Tom J. Blundell. Enviroment-specific amino
acid substitution tables: Tertiary templates and prediction of protein folds. Protein Science, 1:216-226, 1992.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proc.
of the IEEE, 77(2):257-286, February 1989.

Yasubumi Sakakibara, Michael Brown, Richard Hughey, I. Saira Mian, Kimmen Sjolander, Rebecca C. Under-
wood, and David Haussler. Stochastic context-free grammars for tRNA modeling. NAR, 22:5112-5120, 1994.

33

[24] C. Sander and R. Schneider. Database of homology-derived protein structures and the structural meaning of
sequence alignment. Proteins, 9(1):56-68, 1991.

[25] Manfred J. Sippl. Calculation of conformational ensembles from potentials of mean force: an approach to the
knowledge-based prediction of local structures in globular proteins. JMB, 213:859-883, 1990.

[26] Roman L. Tatusov, Stephen F. Altschul, and Eugen V. Koonin. Detection of conserved segments in proteins:
Iterative scanning of sequence databases with alignment blocks. PNAS, 91:12091-12095, December 1994.

[27] Gerhard Vogt, Thure Etzold, and Patrick Argos. An assessment of amino acid exchange matrices in aligning
protein sequences: The twilight zone revisited. JMB, 249:816-831, 1995.

34

9 Appendices

35

