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� Introduction

This tutorial is organized conceptually to provide
 �rst
 a theoretical framework for stochastic modeling
 and
second
 to enable readers to use stochastic models to their advantage� The tutorial includes a wide variety
of examples
 mostly drawn from the Sequence Alignment and Modeling System �SAM� ���
 ���
 which will
be the focus of the hands�on session in the second half of the tutorial� Many of the tasks we discuss can also
be performed �sometimes better�� with HMMer
 about which Sean Eddy will talk in the second half of the
tutorial ���
 ��� The appendix includes both the SAM and the HMMer documentation�

If you have any questions about this material
 feel free to direct them to any of the authors� If you have
speci�c questions relating to only one section
 you may wish to ask the primary author of that section
 as
listed at the top of the section� The SAM hidden Markov model implementation is constantly undergoing
revisions and additions� If you have any questions
 comments
 or suggestions about current or future features

please contact Richard Hughey �rph�cse�ucsc�edu
 sam�info�cse�ucsc�edu�� If you would like to try out the
SAM WWW server
 or obtain a copy of SAM
 please read our WWW page

http���www�cse�ucsc�edu�research�compbio�sam�html

for instructions� If you have comments or questions about HMMer
 contact Sean Eddy �email address�
eddy�genome�wustl�edu� or visit the HMMer WWW page

http���genome�wustl�edu�eddy�hmm�html






� Mathematical Foundations of Stochastic Models

Kevin Karplus �karplus�cse�ucsc�edu�

This section will present a mathematical foundation for the stochastic approach to modeling biological
sequences� The basic idea behind stochastic modeling is to construct amodel that describes a set of sequences

then to use the model for �nding related sequences
 or examine the model to determine properties of the
sequences�

This section is almost entirely mathematical foundations�the interesting applications to biology don�t
really start until Section 

 where we describe a particular type of stochastic model� the hidden Markov
model�

The mathematical foundations are necessary for answering questions like �Which sequences in a database
�t a model�� or �How well do they �t�� or �Which of a set of models best describes a set of sequences��
The �rst two questions arise naturally when searching a database for examples of a motif or protein family

or when trying to �nd introns
 exons
 and splice sites in a stretch of DNA� The last question comes up in
the fold�recognition problem
 when the models represent di�erent possible protein folds or domains
 and we
want to �nd the most likely fold for a new protein�

The approach used in stochastic modeling to answer these questions mathematically employs Bayesian
statistics and information theory as the foundation� This section attempts to give a very brief overview of
these �elds as they apply to biosequence analysis� The approach is very general and can be applied to many
di�erent sorts of models� alignment to single sequences
 pro�les
 hidden Markov models
 simple Markov
chains
 stochastic context�free grammars
 threading models
 � � � �

After this general introduction
 we�ll focus more closely on hidden Markov models
 which we have found
to be particularly useful for modeling protein motifs and families� �For RNA
 we�ve had some success with
stochastic context�free grammars
 and for DNA parsing we�ve used mainly pro�les
 simple Markov models

and neural nets��

��� What is a model�

This tutorial is about stochastic models in general
 and hidden Markov models in particular� Before we get
into details about how the models work
 it would be good to make sure we all have the same understanding
of what a model is�

There are two rather di�erent views of models in the scienti�c community� One view is a mechanistic one

in which models elucidate the mechanism by which something happens� These models are very powerful

but they are also very di�cult to create
 often requiring years of experimental work and di�cult intellectual
insights� A di�erent view of models treats them as �black boxes
� and makes no claims that the mechanism
of the model matches anything in the real world� In this approach
 a model�s value is determined solely by
the accuracy of its predictions
 not by the mechanism used to make those predictions�

Making numerically accurate and fullymechanistic models is rarely possible in the realm of biosequences�
there is far too much that is still unknown about how large
 complex molecules work� Most of the stochastic
modeling techniques are black�box techniques� they examine the data and try to �t some class of models to
it
 without making any claim that the models explain the data�

The scienti�c test for a mechanistic model is a combination of its predictive power
 its elegance
 and its
consistency with other accepted models� The scienti�c test for a black�box model is mainly its predictive
power�

In the arena of sequence analysis and modeling
 the sorts of predictions a black�box model can make are
somewhat limited� These models are mainly designed for recognition
 discrimination
 and database search
tasks
 answering questions like �Is this protein a globin�� or �Does this look more like a hemoglobin or a
myoglobin�� or �What are all the examples of sequences that look like these known calcium�binding sites��

The models of most interest to us today
 hidden Markov models
 fall somewhere between the extremes
of mechanistic models and pure black�box models� They don�t provide mechanistic explanations
 but they
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have some internal structure that can be examined for biological insights� Using hidden Markov models
 we
can sometimes answer more detailed questions
 such as �What amino acids in this sequence correspond to
the ones that bind calcium in this other sequence�� In Section ���
 when we look in more detail at hidden
Markov models
 we�ll see how these models help answer these more probing questions� First
 let�s start with
the more general questions that don�t require any knowledge of the inside of the black box�

The basic idea of a stochastic black�box modelM is to assign a number PM�s� to every possible sequence
s� For ease in interpreting and manipulating the numbers
 we add the constraint that the in�nite sum of the
numbers is one
 X

s

PM �s� � � �

so that the numbers can be interpreted as probabilities� Note that PM �s� is not the probability that the
sequence belongs to the interesting class�rather it is the probability that if you select a sequence randomly
from the interesting set
 you will get this particular sequence� In the next section we�ll look at how to
manipulate these probabilities to answer the recognition and discrimination questions�

For example
 let�s say we want to recognize the following sequences fAAACA
 ATA
 ATACA
 TACAg and
no others� We could create a model that assigns P �AAACA� � ���	
 P �ATA� � ���	
 P �ATACA� � ���	

P �TACA� � ���	
 and zero to all other sequences� Of course
 biologically interesting models are more
complex than this
 since we want to recognize not just a small set of already known sequences
 but a large
class of closely related sequences�

Furthermore
 we won�t usually have such a sharp cuto� between sequences that �t the model and ones
that don�t�there will be a fuzzy area where sequences are somewhat similar to ones we want to recognize�
That is
 we are not dealing with precisely de�ned sets of sequences
 but with probability distributions over
all possible sequences�

In this small example
 we might want to assign small probabilities to sequences similar to the ones in the
set
 such as AAAGA or AACA� To keep the sum over all sequences equal to one
 we would have to �steal
probability� from the other sequences in the set� Much of the work in stochastic modeling involves coming
up with disciplined ways to assign these probabilities so that they re ect the real distributions of sequences�

��� Bayesian statistics�when does a model �t a sequence�

The stochastic model introduced in the �rst section is not directly usable
 because it answers the wrong
question� It is designed to answer the question� if a sequence is drawn from the distribution of sequences
modeled by a particular model
 what is the probability of getting this particular sequence� The recognition
question we want to answer is� given this particular sequence
 what is the probability that it came from the
distribution described by this model�

If we use the notation of conditional probability
 we can express PM �s� as

P
�
x � s

��� x is drawn from the model M
�
�

This is typically abbreviated as P
�
s
���M
�

 which is read
 �the probability of s given M �� Answering the

recognition question is then a matter of computing the conditional probability

P
�
x is drawn from the model M

��� x � s
�
�

which is typically abbreviated as P
�
M
��� s
�
�

Bayes� rule gives us a way to do this computation�

P
�
M
��� s
�
�

P
�
s
���M
�
P �M �

P �s�
�

	



All we need to know are two prior probabilities� the probability P �M � that x is drawn from model M and
the the probability P �s�that x � s� These prior probabilities are in some very real sense unknowable
 and
so the simplest form of the recognition question is unanswerable�

Although the situation for pure recognition looks hopeless
 there is a standard solution�we turn all such
questions into discrimination questions� Instead of asking �What it is the probability that the sequence came
from modelM�� we instead ask �What are the the odds that the sequence came from modelM rather than
model N�� That is we compute

P
�
M
��� s
�

P
�
N
��� s
� �

P
�
s
���M
�
P �M �

P �s�

P �s�

P
�
s
��� N
�
P �N �

�
P
�
s
���M
�

P
�
s
��� N
� P �M �

P �N �
�

Now
 in addition to the numbers provided by the models �P
�
s
���M
�
� PM �s� and P

�
s
��� N
�
� PN �s��

we need only one number
 the prior expectation of the relative probability of the two models P �M�
P �N� � Since

we no longer need the absolute probabilities of the models or the sequences
 this is a much more manageable
problem�

To answer the recognition question using this technique
 we need to make up a null model N � The null
model is a model that attempts to match all the sequences in the universe of possible sequences� This may be
a model that tries to �t all the sequences in the database we are searching
 or one that �ts some theoretical
universe of possible protein sequences� Note that it may do a good job of �tting the database or a poor one�
A poorly �tting null model may cause the model M to �t more sequences than we had intended
 since our
recognition test is a competition between the models� Some people view the null model as the model that
�ts the null hypothesis� more correctly
 the null model de�nes what the null hypothesis is�

Once we have de�ned a null model
 we then can say that the sequence �ts model M if P
�
M
��� s
�
�

P
�
N
��� s
�
� Furthermore
 the ratio P

�
M
��� s
�
�P
�
N
��� s
�
expresses our con�dence in the assertion that the

sequence is more similar to those represented by the model M than a sequence drawn at random from the
distribution represented by the null model� This is not equivalent to saying a sequence drawn at random from
the database
 since we can�t usually have null models good enough to represent the unknown distribution
the database is drawn from�

The probabilities P
�
M
��� s
�
and P

�
N
��� s
�
described above are typically very small
 since there are a

very large number of sequences that we want to give non�zero probabilities to� The ratios of the probabilities

on the other hand
 can get very large
 since the null model has to model an even larger set of sequences�
To avoid having to write out or compute with these very large and very small numbers
 we take logarithms�

The log�likelihood of a sequence is logP
�
s
���M
�
and our test that P

�
M
��� s
�
� P

�
N
��� s
�
translates to

logP
�
M
��� s
�
� logP

�
N
��� s
�
� �� Let�s use Bayes� Rule to rewrite this test�

logP
�
M
��� s
�
� logP

�
N
��� s
�

� log
P
�
M
��� s
�

P
�
N
��� s
�

� log
P
�
s
���M
�

P
�
s
��� N
� P �M �

P �N �

� logPM �s�� logPN �s� ! log
P �M �

P �N �
�
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The value logPM �s� � logPN �s� is often referred to as the score of the model �though more properly it
should be called the score relative to the null model N�� Our test for something �tting the model can then
be translated as requiring score � logP �N � � logP �M �� Furthermore
 as described above
 the amount by
which the score exceeds the threshold expresses our con�dence in the result�

This form of test
 that a score be larger than some threshold
 should be a familiar one
 since almost all the
recognition models used in computational biology �t this pattern ���� The stochastic model approach tells
us what setting the threshold means�we are making a statement of belief about our prior expectations� For
example
 if we expect some motif to be fairly rare
 with maybe �� occurrences out of ��
���
��� possibilities

then we would set P �M ��P �N � � ������ ���� ��� and our threshold at ����
 bits �assuming we use base two
logarithms
 as most computer scientists do��

When we are doing a database search with a model
 we score each sequence �or part of a sequence� with

the model
 and report any for which P
�
M
��� s
�
� P

�
N
��� s
�

 that is
 ones whose score is above the threshold

logP �N �� logP �M �� To simplify the setting of the threshold
 most systems allow you to express how many
hits E you expect� This number is divided by the number of di�erent sequences or sequence parts scored to
get an estimate for P �M ��P �N �
 which can then be used to set the score threshold��

Note� the search with the threshold set as above will �nd every sequence that is more probably from the
model than the null model� Since our null model is often not a very good description of the set of sequences
in the database
 we sometimes want to set the threshold higher to increase our con�dence in the results� For
example
 if we want only sequences that are signi�cant at the ���	 level ��� times more probably from the
model than the null model�
 we need to raise the threshold by ��
 bits� This is most conveniently done by
reducing our expected number of hits E by a factor of ���

Note that changing the expected number of hits E changes how many hits we actually get�if we expect
more
 we generally get more� Luckily
 with good models the number of hits we get is not extremely sensitive
to E� We usually get only a small change in the number of hits over a very wide range of E values
 and
so the exact setting of E is usually not too important� If you want to be very careful
 you can do a search
with a reasonable value �say E between ��� and ���
 then repeat the search with E set to the number of
hits found multiplied by the signi�cance level desired� There is no absolutely correct way to set E
 since it
includes a statement of belief about the probabilities�

Quick review� This section has covered

� Bayes� rule for conditional probabilities�

� turning recognition questions into discrimination questions�

� the meaning of a score �as the logarithm of a likelihood ratio��

� using discrimination tests to search a database�

� setting the score threshold for database search�

��� Information theory�what is a bit�

The last section discussed choosing between two models �one of which is usually a null model�� In this
section we want to present a slightly di�erent way of looking at the numbers so that we can apply other
mathematical tools�those of information theory and data compression�

Information is a measure of how surprising something is� If we already know something
 there is no
information in getting the knowledge again� If we strongly suspect something
 then con�rmation contains a
small amount of information� If we are very certain that something is not true
 then �nd out that we were
wrong
 a large amount of information is conveyed by the new data�

�The BLAST programuses a di�erent approach to reach essentially the same technique for more arbitrary scoring systems ����
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Technically
 we measure information in a sequence �or set of sequences� relative to some model� The
information content of a sequence s relative to a modelM is � logPM�s�� If the logarithm is taken in base
�
 then the information is said to be in bits��

Since our notion of a model is a probability distribution over sequences
 we can talk about the entropy
of a model H�M � as the weighted average information for all sequences
 where the weight is the probability
that the sequence is generated by the model�

H�M � � �
X
s

PM�s� logPM �s� �

Again
 the computation can be done with logarithms base � to get entropy in bits or with natural logarithms
to get entropy in nats�

One sometimes sees the information content of a sequence or set of sequences referred to as the encoding
cost� This comes from a theorem by Shannon
 the fundamental theorem of information theory
 that any
encoding system for items drawn from some distribution must take at least as many bits on average as the
entropy of that distribution� Data compression techniques consist of two parts� �nding a model for the data

then choosing an encoder that assigns codes based on the estimated probabilities� The second part is not
very interesting to us here
 and so we are often somewhat sloppy
 and refer to the information content of a
sequence as its encoding cost
 as if we had an optimal encoder� Note that choosing a model to minimize the
encoding cost of a sequence is equivalent to choosing a model to maximize the sequence�s probability�

The score that we discussed in Section ��� is just the di�erence in the information content of a sequence
when computed using di�erent models� We often talk about the score as the number of bits saved using the
modelM �with an implicit null model N �� If the sequence �ts the model
 then the model provides us extra
information
 which we can use to encode the sequence in fewer bits� The score is measuring exactly how
much extra information the model gives us� A negative score �where the sequence does not �t the model�
tells us how many more bits we would need to encode the sequence if we insist that it comes from modelM
rather than N �

There is a very nice way to look at the discrimination test of the Section ��� that allows us to generalize
the discrimination test to any number of models� Consider the picture in Figure �� The two boxes correspond
to our two possible models M and N � The edges from the start node represent a choice we have to make of
which model to use� To encode a sequence
 we �rst choose one of the two models
 and encode that choice

then encode the sequence according to the model chosen� To get an encoding for the choice
 we need an
estimate of how often we will choose M and how often N � Let P �M � be the probability with which we expect
to choose M 
 and P �N � � � � P �M � be the probability of choosing N � The cost of encoding our choice
is � logP �M � if we choose M and � logP �N � if we choose N � The overall encoding cost for a sequence is
either � logP �M � � logPM �s�
 if we choose M 
 or � logP �N � � logPN �s�
 if we choose N � If we choose
whichever model gives the smaller encoding
 we�ll choose M when

� logP �M �� logPM�s� � � logP �N �� logPN �s� �

which is exactly the same test as we had for a sequence matching modelM in Section ����
The generalization of this test to more than two models is now straightforward� We can build a composite

model of many di�erent models
 as in Figure �
 and choose whichever model gives the lowest overall encoding
cost� The probabilities for choosing the various models have to add up to one
 since we have to choose a
model in order to do the encoding� Note that once again the cost for choosing a particular model Mi is
� logP �Mi�� logPMi

�s�
 so that our prior beliefs about the relative probabilities of the models a�ects which
one we choose to minimize cost�

Finding a model that �ts a given set of data �usually referred to as a training set� will be the subject
of this afternoon�s tutorial� For now
 it su�ces to know that we select a class of models
 then adjust

�Some people� mainly physicists� insist on using natural logarithms� The resulting units of information are then sometimes
called nats or nits� Since the SAM program was initially written by a physicist� it uses nats rather than bits�
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N

M

1 - P

P

Figure �� Two�part composite model
 combining models M and N � To encode a sequence
 we �rst choose
one of the two models
 and encode that choice
 then encode the sequence according to the model chosen� To
minimize the encoding cost for a sequence
 we choose modelM if the sequence �ts the model �using the test
of Section ����

P2P1

P3

P
k

M k

M3

M2

M1

Figure �� Multi�part composite model
 combining several models� To encode a sequence
 we �rst choose one
of the models
 encoding that choice
 then encode the sequence according to the model chosen� Choosing the
model to minimize the encoding cost gives us a clean way to do discrimination among many models�

parameters in an attempt to minimize the encoding cost for the sequences in the training set� For some
types of models there are very simple techniques for doing this
 but for other types the optimization problem
is more complicated
 and we have to use sophisticated optimization routines and still have no guarantee of
convergence to a global optimum�

To make things a little more complicated for us
 we don�t really want a model that just encodes the
training set well�we could get that by just memorizing the training set and checking if a sequence had been
seen in the training set or not� What we really want is a model that generalizes the training set to similar
sequences�

The structure of the model determines what sorts of generalizations are possible
 but even without
knowing the structure of a model
 the entropy of a model measures how much generalization the model
makes� A model with a low entropy must assign high probability to very few sequences making a very
speci�c model with little generalization� A model with high entropy assigns somewhat lower probabilities
to many more sequences
 providing more generalization but less speci�city� This afternoon we�ll talk about
ways of controlling the entropy of a model to get di�erent degrees of speci�city�

Quick review� This section has covered

� the de	nition of information�

� the de	nition of entropy�

� composite models and their relationship with discrimination tests�

� the relationship between minimizing encoding cost and maximizing probability�

��� Computable models�simplifying assumptions

So far all our models have been purely mathematical objects�black�box functions with no internal structure�
Although we can learn a lot about how to use models that way
 in order to do any real work we have to
have models that are computable� Ideally
 we would also like the models to have some sort of biological

�



signi�cance
 so that we can learn more about the sequences they model by examining the details of the
model�

One type of model that is commonly used in data compression work is the Markov model �also called a
Markov chain�� In this model we assign a probability for each character based only on what the preceding
few characters of the sequence were� The number of preceding characters is referred to as the order of the
Markov model�

For example
 if we are dealing with protein sequences and wanted an order�� Markov model
 we would
have a table of �� � �� probabilities
 P �i� j� k�
 with the constraint that probabilities sum to one for any
�xed context �i� j�� That is


P
k P �i� j� k� � �� To get the probability of a sequence of amino acids
 we

take the product of the probabilities of the individual amino acids� We have to do something special
for the �rst two amino acids in the sequence
 since we don�t have a full context for them� One simple
trick is to sum over all possible contexts� for the �rst position P �k� � sumi�jP �i� j� k� and for the second
position P �j� k� � sumiP �i� j� k�� If we have the sequence DNDNDG
 we would assign it the probability
P �s� � P �D�P �D�N �P �D�N�D�P �N�D�N �P �D�N�D�P �N�D�G���

As discussed in Section ���
 the product of these probabilities can get very small
 and so we use logarithms�
If the probability tables P �k�
 P �j� k�
 and P �i� j� k� are replaced by tables of the logarithms
 computing the
log of the probability of s is just the summation of � table lookups
 making these simple Markov models very
fast to compute� We can also train simple Markov models easily
 since we can just count how often each
triple occurs in the training set
 and normalize to get the probabilities to sum to one in the last dimension�
�Note� if you use a high�order Markov model
 you might not have enough counts in any context to get
a reliable estimate of the probabilities�we�ll discuss strategies for estimating probabilities from too�small
samples this afternoon��

One common use of a simple Markov model is for de�ning the null model to use in comparisons� Many
of the search program have an implicit assumption of a zero�order Markov model as their null model �the
probabilities of the letters are the same in every position
 independent of the context�� Higher�order models
have been used for compositional models �for example
 for recognizing introns and exons by using 	th�order
Markov models on the bases ��� and for recognizing repeated regions in DNA ������

The beauty of simple Markov models is that they provide a very simple computational technique both
for using the model and for training the model� This simplicity comes from de�ning speci�c easily deter�
mined contexts that allow us to compute the probabilities of the amino acids
 and an assumption that the
probabilities don�t depend on anything except these contexts�

Unfortunately
 the simple Markov models provide little insight into the structure of the sequences they
model
 and the generalizations they make are not always the most appealing biologically� The next section
will describe a related type of model
 the hidden Markov model
 which still has the concept of distinct contexts
for determining the probabilities of amino acids
 but which provides a much more transparent description of
sequences�

Quick review� This section has covered

� simple Markov models�

� computing probabilities by summing log probabilities�

� table lookup of log probabilities�

� zero�order Markov models as null models�

�Technically� this is not P �s	� but P

�
s

��� length�s	 
 �

�
� To get P �s	 we have to also include in the product the probability

that the length of s is ��

��



� Overview of HMM Architecture

Leslie Grate �leslie�cse�ucsc�edu�

This section covers realizing HMMs as state machines
 the reasoning behind the choice of the linear HMM
structure and comparisons to multiple alignments and pro�les�

��� State machine visualization of Markov models

The simple Markov model introduced in Section ��� computed the probability of a sequence as the product
of separately estimated probabilities for each residue or base in the sequence� A hidden Markov model does
essentially the same thing
 but provides a di�erent way of computing the probabilities of the individual
letters of the sequence� Instead of relying on the previous k letters to determine what table to look up letter
probabilities in
 hidden Markov models have a set of states
 each of which has a table of letter probabilities�
Which state the hidden Markov model will use for a given letter is not immediately obvious from looking at
the sequence�what state you are in for each letter is what is �hidden� in a hidden Markov model�

In addition to states
 a hidden Markov model needs edges or transitions between the states� There may
be multiple edges out of a state
 in which case we assign a probability to each of the edges out of that state�
These branch probabilities are taken into account when we compute the probability of a sequence�

To compute the probability for a sequence
 we have to consider a path through the states of the HMM�
Each time the path goes through a state
 one letter from the sequence is �used up�
 and the probability for
that letter is computed from the table for that state� We also have to pay for the freedom of choosing di�erent
paths�the probability of the sequence is the product of the letter probabilities with the probabilities of the
edges we have used� Mathematically
 we can express this computation as

P
�
s
���M� path

�
�
Y
i

P
�
si

��� path statei

�Y
i

P �edge from path state i to path state i ! �� �

When using HMMs
 there are two standard approaches for choosing paths� either we take the single path
which has the highest probability �known as the Viterbi path�

Viterbi probability�sjM � � max
p

P
�
s
��� M�p

�
�

or we add up the probabilities over all paths �known as the Baum�Welch method��

P
�
s
���M
�
�
X
p

P
�
s
��� M�p

�
�

For a more thorough introduction to HMMs
 please refer to L� Rabiner�s paper
 �A Tutorial on Hidden
Markov Models and Selected Applications in Speech Recognition� in the appendix �����

��� Linear HMMs for Biological Sequences

A general HMM is an arbitrary graph of states and edges
 and so can be very di�cult for a biologist
to interpret� To make HMMs more comprehensible
 we usually restrict the structure to a simple linear
arrangement�

The linear arrangement is motivated by the common biological modeling technique of aligning sequences
to a consensus sequence� In the linear HMM we will have match states corresponding to the letters of the
consensus sequence� In addition we will have insert states corresponding to the positions between the letters
of the consensus sequence where gaps can be opened up and letters inserted� To get a complete analogy to
the alignment model
 we also allow special delete states that do not �use up� any characters of the sequence
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Figure 
� A small HMM model as displayed in Hmmedit� The Begin node is node �
 at left
 and the end is
node 	 on the right� The thickness of an edge indicates its probability� The alphabet is � letters as can be
seen from the probability distribution bar charts inside of each Match �square� and Insert �diamond� state�
The Delete state �circle� does not consume any letters
 hence has no distribution�

whose probability we are computing
 but that allow paths to skip match states �just as alignments may
delete parts of the consensus sequence��

Figure 
 gives an example of a small model for RNA sequences� The delete
 match
 and insert states are
grouped into nodes� Each node has 
 states�

� Match state� These correspond to �good� columns of a multiple alignment and form the core of the
model� Each contains an independent distribution over the letters in the alphabet�

� Insert state� These states have self loops �edges from the state back to the same state�
 that allow for
arbitrary length insertions of letters� Each contains an independent distribution over the letters in the
alphabet�

� Delete state� These states are like Match states
 but no letter from the sequence is used up� These
handle cases where a letter has been deleted relative to the consensus�

Each state has three incoming transitions and three outgoing transitions� The outgoing transitions are
to Insert in the same node and Match and Delete of the next node� Combining all the edges for a node

we get three internal edges �to the Insert state�
 six external edges coming in �to Match and Delete�
 and
six external edges going out �to Match and Delete of hte next node�� These allowed transitions de�ne the
possible paths through the HMM� Two special nodes are added to the beginning and end �Begin and End�

and we only consider paths from Begin to End�

For instance
 when in a Match or Delete state
 we can only exit to 
 other states�

� The next node�s Match state� In most HMMs
 this will be the most probable transition�

� The next node�s Delete state� This is used to skip the next letter relative to the consensus�

� The current node�s Insert state� This allows insertions of letters relative to the consensus�
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Likewise
 the insert state can exit to only 
 states� itself �forming a self loop�
 and the next node�s Match
or Delete states�

One of the nice properties of this particular HMM is that exactly the same dynamic programming
techniques that are used for sequence�sequence alignment can be used for �nding the Viterbi path through
the HMM and computing the corresponding probability�

One major disadvantage of HMMs is that they cannot directly model long�distance interactions such as
base pairing in RNA� For this
 more complex models such as stochastic context�free grammars ��

 �
 ��� are
needed�

��� Multiple Alignments	 Pro�les	 and HMMs

Several modeling techniques that are conceptually quite similar to linear HMMs have been used by biologists

including multiple alignments
 pro�les
 and generalized pro�les� A good overview of these techniques can be
found in �	��

A multiple alignment is not really a modeling technique
 but a way of presenting a group of related
sequences to highlight the parts they have in common� A multiple alignment is easily created from a linear
HMM by �nding the Viterbi path in the HMM for each sequence� Each match state of the HMM creates a
column in the multiple alignment� The letters that come from insert states on the Viterbi path can either
be hidden �as is done in HSSP �les� or shown in lower case to indicate that they are not necessarily aligned
with other letters from the same insert state �as we do in the output from align�model��

Converting a multiple alignment to a linear HMM is fairly straightforward� a node is created for each
column in which most sequences have an aligned residue� Columns with many missing letters are mapped
to insert states between match states� The probabilities used for the letters in Match states are computed
from the letters seen in the multiple alignment
 using the techniques we�ll describe later �Section 	���� For
Insert states
 there are generally not enough examples to compute probabilities reliably from the observed
residues
 and so an appropriate background frequency is used for Insert states�

Setting the transition probabilities is equivalent to setting gap penalties in sequence alignment and
remains more of an art than a science� The program modelfromalign in the SAM suite of tools creates
HMMs from multiple alignments automatically
 with fairly reasonable default transition probabilities�

A pro�le is a summary of the alignment columns of a multiple alignment
 giving the probability for each
letter in each column� This is very similar to the linear HMM we have described
 but without the possibility
of having insertions or deletions� A pro�le can be converted to an HMM in the same way that multiple
alignments are
 but we have not provided any explicit program for this conversion
 since the conversion from
multiple alignments provided by modelfromalign is more versatile�
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Figure �� Hmmedit display of a small model made from the alignment� The ordering of the bar charts is
AGCU
 A at the top� Note the action of the built�in regularizer� The regularizer has made all letters in all
columns at least slightly possible
 even for pure columns�

� Basic Uses of Hidden Markov Models

Leslie Grate �leslie�cse�ucsc�edu�

This section discusses what can be done with the HMM methodology� HMMs can be built from aligned
and unaligned sequences
 sequences can be aligned to a HMM
 and databases can be searched for matches
to the HMM�

��� Building HMMs from existing alignments

The program modelfromalign creates a HMM from a group of aligned sequences� The fact that the linear
HMM structure maps alignment columns to nodes makes this process straightforward�

As in Figure �
 the program �rst creates a node for each column in the alignment� The transition
probabilities and insert distributions are set to defaults
 but the match state distribution is computed from
the letters in the corresponding columns�

An important issue arises in the process of computing match state distributions from a single �possibly
very small� column of letters� It is likely that some letters will not occur in a given column
 hence have zero
counts
 which directly translates to zero probability of occurring based on the raw frequencies� While this
might be appropriate for some columns
 most of the time we should not totally exclude the possibility of
observation of letters� to do so would limit the ability of the model to generalize�

Fixing these zero probabilities involves the process of regularization which will be covered in Section 	���
SAM has a built�in regularizer that users can override�

��� Aligning Sequences to HMMs

The program align�model creates a multiple alignment by aligning sequences to a HMM� Note that each
sequence is aligned individually to the model�

Alignment of a sequence to a model means that each letter in the sequence is associated with a match
or insert state in the model� Two 	�character sequences
 A and B
 are shown in a ��state model in Figure 	

along with the corresponding alignment between the sequences�
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Start End

a1

a2 b4
a1 a2 A3 - A4 . A5

. . B1 B2 B3 b4 B5

B1

A3

B2

A4

B3

A5

B5

a -

Figure 	� An example of two sequences whose characters are matches to states in an HMM
 and the corre�
sponding alignment�

One can specify such an alignment by giving the corresponding sequence of states with the restriction
that the transition lines in the �gure must be followed� For example
 to match a letter to the �rst match
state �m�� and the next letter to the third match state �m�� can only be done by using the intermediate
delete state �d��
 so that part of the alignment can be written as m�d�m�� In HMM terminology such an
alignment of a sequence to a model is called a path through the model� A sequence can be aligned to a model
in many di�erent ways
 just as in sequence�to�sequence or sequence�to�pro�le alignments� Each alignment of
a given sequence to the model is scored by using the probability parameters of the model� The best�scoring
path is usually reported as the �correct� alignment�

��� Scoring and Database Discrimination using HMMs

Once you have a model
 any sequence can be scored against it by computing the probability that the sequence
was generated by that model� An interpretation of this form of score is that it tells you how �far away� a
sequence is from the model�

However
 this is not the �nal word on scoring because these types of scores have a strong dependence on
sequence length� there is not a single �good� method for a scoring function�

The SAM suite program hmmscore has a few di�erent scoring methods the user can choose from �refer to
the SAM manual ��	� for details�� Either the Viterbi ��best path�� or Baum�Welch ��sum over all paths��
�see Section 
� method is used to compute the probability P �sjM � that a given sequence was generated by
a given model� The negative logarithm of this value is termed the NLL cost� A small cost corresponds to a
high probability
 and so a good match to the model�

SAM and HMMER also score each sequence against a user�adjustable null model� The di�erence between
the NLL score for the model and the NLL score of the null model is termed the log�odds score� SAM reports
NLL�Null costs
 for which a negative value means a good match to the model�

Discrimination involves choosing a score threshold which gives the best separation between sequences
that are in the family you are attempting to model and those that are not� Computing the scores of many
sequences from a data base and plotting them in histogram form is a useful method of visualizing the results�
The program makehist creates a gnuplot script for making histograms of hmmscore results �the �dist �les��
Examples of these histograms are shown in Figure ��
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Figure �� Histograms showing results of discrimination tests using HMMs� The left plot is of a SAM model
of the globins made using makehist� Negative scores mean the model �ts a sequence well
 so the more
negative the better� The right plot is a HMMER model for the efhands made with a special plot program�
Here positive scores are better� Regardless of the sign of the score
 note that there is a valley between �good�
and �bad� �ts to the model� Courtesy of Christian Barrett�
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� Building an HMM from training data

Kimmen Sj"olander �kimmen�cse�ucsc�edu�

Stochastic models for proteins are objects
 like pro�les
 that capture the statistics de�ning a protein family
or domain� Along with parameters expressing the expected amino acids at each position in the molecule or
domain
 and possibly other parameters as well
 a stochastic model will have a scoring function �as described
in Section �� for sequences with respect to the model� Models are built to accomplish a particular task�
thus the method used to build the model must be developed with that task in mind� In this section
 we will
focus primarily on how to build HMMs which are e�ective at recognizing homologs in the sequence databases
which may have low primary residue identity�

The e�ectiveness of a model in database search is tied closely to the accuracy of the parameters of
the model� These parameters must �t both the data seen �the training data� and the remote homologs�
sequences which are related by phylogeny and structure to those used in training
 but which have low primary
residue identity and are thus di�cult to recognize using general pro�le methods� The parameters must excel
at con icting tasks� they must give high probability to sequences seen �speci�city�
 but also give probability
to sequences not seen but which are homologous �sensitivity�� Along the way
 they must identify as not
belonging to the set all the other sequences�

The complexity of the model also in uences the kind of training data needed� Generally
 the more
parameters in the model
 the more data you need to train it e�ectively� In early work modeling protein
families and domains using HMMs ����
 we found this reliance on su�cient data to be pronounced
 such
that many �upwards of ���� training sequences from the protein family or domain of interest were generally
required in order to obtain reasonable results� For these rather complex models
 the more sequences available
for training
 and the more variation among the sequences
 the better� However
 sheer quantity of data is
not su�cient
 since alignments of virtual copies of the same sequence with only a few positions mutated give
almost no more information than a single sequence�

Unfortunately
 this kind of data is not always available� Most protein families contain a far smaller
number of sequences� In the extreme
 we may have a single sequence we are trying to characterize� One
of the �rst tasks
 in fact
 when a new protein is sequenced
 is to �nd all possible homologs in the protein
sequence databases� Any homologs identi�ed will contain information which assists the analysis of the
unknown protein� If we are lucky
 the annotation of the homolog will include information about its function
or structure� But even without such annotations
 the multiple alignment of all the sequences together will
reveal much about the important positions in the protein� which are conserved and which are variable
 which
give clues for active sites
 and so on�

Moreover
 the problem of �nding homologous sequences
 close or remote
 is not limited to the case where
one has a single protein� One may have several sequences available for a given family
 but expect that other
family members exist in the databases
 and want to locate these putative members�

Various methods have been developed to address the problem of recognizing homologous sequences�
Among the �rst developed were those that were based on string�matching algorithms� These methods were
developed based on the observation that when two sequences share at least �	# residue identity
 and each
is at least �� residues in length
 then the two sequences are homologous���
 ��� These methods attempt to
�nd a way of way of maximizing the number of matches between two sequences� Examples of this group
are algorithms that search for the longest common subsequence
 or exact matches to motifs of particular
lengths�

In contrast with homology determination by residue identity
 stochastic models use a very di�erent
technique to determine whether two sequences share a common structure� During database search with
these models
 each sequence in the database is assigned a score �or
 negatively
 a cost�� This score is
computed by adding the scores at each position
 as described in Section �� For instance
 a typical cost for
aligning residue a at position i
 is � logP�a j position i�
 where the base of the logarithm is arbitrary� As
we described in Section ���
 a sequence is identi�ed as a match to the model if the score of the sequence is
above a cuto� �or
 negatively
 if the cost of the sequence with respect to the model is below a cuto��� In
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SAM scoring
 we report the cost for a sequence
 thus smaller values indicate better matches� In HMMER
scoring
 scores are reported
 with higher values indicating better matches�

The naive approach for setting the amino acid probabilities to be the fraction of times each amino acid
was seen
 is inadvisable under this kind of scoring system� The reason is that allowing zero probabilities at
positions gives an in�nite penalty to sequences having the zero�probability residues at those positions� Even
if a sequence is homologous to those used in training the model
 a single mismatch at such a position would
render that sequence unrecognizable by the model�

If there are particular positions where we know �due to additional external information� that a particular
position must contain a residue with probability �
 then we can arti�cially set that probability� But as a
general rule
 the observed frequencies over the amino acids will generate many zero probabilities
 and should
be avoided in stochastic models which use this kind of scoring scheme��


�� Regularizer methods

We have included in the Appendix two papers which go into some detail describing the relative performances
of substitution matrices
 pseudocount methods
 and Dirichlet mixture priors
 for regularizing amino acid
distributions �see the Technical Reports on Dirichlet mixtures �Sj"olander et al� and Regularizers �Karplus���
In this section
 we simply give an overview of some of these di�erences�

Substitution matrices

Several approaches have been proposed to solve the problem of regularizing
 or generalizing amino acid
distributions in positions to be able to give probability to amino acids of similar types to those seen� Un�
doubtedly the most popular of these methods involves the use of substitution matrices ���
 �

 �
 ���� These
matrices are derived from alignments of homologous proteins
 which reveal certain substitutions to be more
likely than others among amino acids� For instance
 isoleucine and valine are often found in the same position
in homologous molecules
 but neither is particularly likely to substitute for glutamate� From this observa�
tion
 substitution matrices that formalized the cost of substituting one amino acid for another were created�
These substitution matrices have been used with good results to generalize the observed amino acids in a
protein sequence to create a pro�le which performs well at database search for homologous sequences�

There are two drawbacks associated with the use of substitution matrices� First
 each amino acid has a
�xed substitution probability with respect to every other amino acid�� However
 an amino acid seen in one
context
 for instance
 in a position that is functionally conserved
 will have di�erent substitution probabilities
than the same amino acid seen in another context
 where there are few functional or structural constraints�
Second
 only the relative frequency of amino acids is considered
 while the actual number observed is ignored�

Pseudocount methods

Pseudocount� methods were designed to handle the problems described above� avoiding zero probabili�
ties
 and adding some generalization capacity to the estimated probabilities� In these methods
 probability
estimates are obtained in a two�step process� First
 pseudocounts zi for each possible symbol i in the al�
phabet �amino acids
 in the case of proteins� are added to the number of observed counts ni in the data for
that symbol� Then
 the total counts for each symbol �observed plus pseudocounts� are divided by the total
counts over all symbols �observed plus pseudocounts�
 to obtain the probability of each symbol� That is
 the

�This kind of problem does not exist in methods that search databases for remote homologs using the fraction of identical
residues to score sequences� In these methods� all that is crucial is that the sequence being matched in the database be alignable
to the target sequence �the sequence used to search the database	 in such a way that ��
 of the residues are identical� It is
expected that most positions won�t have the same residue in both the target and in the aligned sequence�

�In the work by Overington et al� there has been an attempt to use structural information to create environment�speci�c
substitution matrices� However� this assumes that such structural information is available� and this is not always the case in
our work�

�The word �pseudocounts� is chosen to convey the arti�cial nature of these added counts�
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expected probability of a letter i is

$pi �
ni ! zi
jnj! jzj

Not surprisingly
 such pseudocount methods are limited in their e�ectiveness� Variants of these methods
have been developed that attempt to take into account some of the additional information in the column
being regularized� Such methods are called data�dependent pseudocounts �for example
 ��	���

Dirichlet mixtures

The dependency on su�cient data to estimate the parameters of a HMM prompted us to look for ways
to include prior information over amino acid distributions into our model�building process� We used the
excellent work by Duda and Hart on estimating mixtures of Gaussian densities ��� as a template to estimate
mixtures of Dirichlet densities� We chose Dirichlet densities because they had several nice mathematical
properties which made them very appealing�

Dirichlet densities are densities on probability distributions� In the case of a Dirichlet density over amino
acid distributions
 these densities give the likelihood of every point �p � p� � � � p�	� In our work
 we estimate
these densities from columns extracted from thousands of multiple alignments

 and the densities estimated
come to represent the probabilities of di�erent amino acid distributions within the context of the database
used to train the density�s parameters�

Dirichlet mixtures are
 quite simply
 mixtures of Dirichlet densities
 which jointly assign probabilities
to all distributions of the symbol alphabet in question� For instance
 a distribution over amino acids that
gave tryptophan probability ��	
 and glycine probability ��	
 would probably be given low probability by
a mixture of densities estimated on alignment columns� We simply don�t see too many distributions like
that� However
 since the alignments we used to estimate these densities were of fairly close homologs
 these
mixtures give pure distributions and mixtures of amino acids sharing common physico�chemical attributes
fairly high probability�

Each density is de�ned by a set of parameters
 which we refer to as ��� These parameters de�ne the
probability given each distribution of amino acids by the density� In the case of a mixture
 each density is
a component of the mixture
 and the probability of that component within the mixture is referred to as the
mixture coe
cient� In our work
 we refer to this prior probability as q�

The Dirichlet mixtures are used to add data�dependent pseudocounts from each component of the mixture
to the observed counts� The total counts for each symbol are then divided by the total counts over all symbols
�as described in the previous section�
 to form the posterior probability of each symbol in the alphabet given
the observed counts and the Dirichlet mixture prior�

These mixtures have been shown in various experiments ���
 ��
 
� to be more e�ective at reducing the
numbers of false positives and false negatives in database discrimination tests� A theoretical rationale for
these results is given in ���
 ���
 and is included in the Appendix�

The SAM suite of HMM programs incorporates the use of one nine�component Dirichlet mixture prior
which we have found to be the most e�ective� HMMer includes both mixture priors and structure�based
mixture priors �����


�� Weighting schemes

It�s undoubtedly not news to anyone attending this tutorial that alignments of protein or DNA sequences
often contain a large number of very close homologs or even exact duplicates� The �rst problem with this
kind of skewed data is that it directly con icts with the assumption of independence among the data
 which
lies at the heart of the stochastic model typically used��

Unfortunately
 the problem is not only theoretic� Skewed data can restrict the capabilities of a model
estimated from the data in several ways�

�Alignments used have come from the BLOCKS and HSSP databases�
�Actually� whenever we have aligned sequences we are not going to have independent data� sequences are aligned because

they are related by function or structure� and are� hence� clearly correlated�
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�� Poor generalization capacity�

When one subfamily in the data is well represented
 but the others are less so
 the statistics in the
dominant subfamily overwhelm the statistics in the other subfamilies� This results in models that
perform poorly in database discrimination or search tasks� they recognize sequences which are similar
to the dominant subfamily
 but fail to recognize sequences which are similar to the less�populated
subfamilies used in training� They may even fail to recognize sequences used in training
 if these
sequences are in the smaller subfamily�

If the method used to compute the expected amino acids at each position takes into account the actual
numbers of observations at each position �as is the case with Dirichlet mixtures�
 then an attempt must
also be made to estimate the actual number of independent counts in the data� Otherwise
 models
built using large numbers of highly similar sequences will have probability estimates for the amino
acids at each position which are sharply peaked around the residues seen� In an alignment containing
many columns
 such high requirements for matching at each position the residues seen in the training
data will make these models unable to recognize even fairly close homologs�

�� Di�culty distinguishing important
 or conserved
 positions
 from the less important positions�

The same type of situation gives rise to another problem� Without an estimate of the actual number
of independent counts in the data
 it is hard to di�erentiate a truly conserved position from a position
which is not conserved� On the other hand
 if one has a fairly diverse and large set of sequences
 any
positions which are conserved will stand out�


� Di�culty building alignments from skewed data�

Similar problems can arise when constructing an alignment in a nearest�neighbor approach
 if the
training data contains a dominant subfamily with high residue identity� By the time any outliers are
included
 it may be di�cult to align them properly using the expected amino acids estimated from the
dominant subfamily��

Because of this
 methods have been developed that attempt to compensate for bias among sequences�
Such methods are called sequence weighting schemes
 or simply weighting schemes� Most of these methods
allot smaller weights to sequences in the dominant set�s�
 and larger weights to outliers
 in an attempt to even
up the playing �eld� Increasing the weight of outliers is not without risk
 however
 as spurious inclusions
in the data can result in models that give too much weight to statistics from spurious members
 to the
detriment of the e�ectiveness of the model in representing the true members�

As noted above
 a weighting scheme on sequences must take into account the method which will be
used to compute the distribution of amino acids used for scoring� If the method incorporates the actual
number of observations
 it will be crucial to have the total weight allotted the sequences be tuned to the
goal of the model� If the distribution�estimation procedure is not a�ected by the total weight
 then relative
weights alone are su�cient� Since
 historically
 pro�le methods have used substitution matrices in computing
the expecting amino acids �see Section 	���
 sequence weighting schemes that ignore the total weight are
su�cient�

However
 our preferred method to compute the expected amino acids
 Dirichlet mixture priors
 is designed
to take the number of observations into account� In the absence of data
 our method relies heavily on prior
information for estimating distributions� But when much data is available
 we want to believe the evidence

and our amino acid estimates will converge to the actual frequencies observed� In our case
 then
 we need
to pick a weighting scheme that also carefully tunes the total weight allotted the sequences�

For instance
 lowering the total weight in a set of aligned sequences produces more di�use models with
greater generalization and less speci�city� The opposite occurs when the total weight is increased� Since
the speci�city �or generality� of the parameters is mirrored in the information content of the model �see

	As described earlier� this is more of a problem with methods for computing expected amino acids which take the number
of observations into account�
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Section ��
�
 we can use this measure to adjust our models so that they are suited to remote homolog search
for particular databases�

The weighting schemes developed by Kevin Karplus �unpublished� provide the user with a direct control
over the di�useness of the model created using them� The user speci�es how many bits per column on
average should be saved relative to using just the background frequencies
 and the total weight of the
sequences is adjusted until the Dirichlet mixture provides the right amount of generalization for the given
multiple alignment�

Although modifying the total weight for training sequences is not the means employed to obtain this
e�ect
 the various PAM matrices are designed with the same goal in mind� In fact
 Altschul�s paper gives a
table for translating the various PAM matrices into bits saved per column ���� A PAM distance of ��� is a
savings of about � bit per column and a PAM distance of ��� is a savings of about ��	 bits per column�

There are two ways one can pick the savings per column�

� One can specify the savings per column based on the PAM distance one wants to generalize the model
to
 using the table in Altschul�s paper� Figure � shows the translation between bits saved and the
Blosum or PAM matrix number� Some researchers prefer to think in terms of percent residue identity
or residue di�erence�Figure � provides a way of translating between percent di�erence and PAM
distance�

� One can set the savings as low as possible while still saving enough to �nd signi�cant hits in the
database� For example
 let�s say we want to �nd sequences of length �	 or more
 in a database of 	�
million residues
 with signi�cance ����� This means that our models must save at least log� 	� ��� ����
log� ���� bits �about 
����� That means we need to save about ��	 bits per column on the average�
If we try to generalize further than that
 we need longer matches to compensate for the lower score
per column �we can go to ��

 bits per column
 if we are willing to demand up to ��� residues�� If
we are looking for a short motif �say �� residues�
 we cannot generalize nearly as much without losing
statistical signi�cance�

In practice
 we often �nd shorter sequences than the above calculation implies� Since adjacent residues
are not independent
 a series of good matches in a row can make signi�cant savings in less than the
length one would expect for a random sequence from the distribution implied by the model�

Quick review� This section has covered how to build HMMs so that they are e�ective at recognizing
homologs in the sequence databases� including

� The kind and quantity of training data needed�

� The need for incorporating prior information�

� The need for and use of sequence weighting schemes�

� Di�erent techniques for regularizing model parameters� especially those representing amino acid distri�
butions�
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� Advanced Uses of Hidden Markov Models

��� Building multiple alignments from unaligned sequences

Kevin Karplus �karplus�cse�ucsc�edu�

This section will describe one method that we have used to build adequate hidden Markov models starting
with just a single target sequence� The method presented here was developed for making models from the
target sequences of the CASP� protein�structure prediction contest
 and is still being improved� It is intended
for use by computer scientists who have little knowledge of proteins
 and so has been made as automatic as
possible� The Makefile used to create the examples for this section is included in the appendix
 as are the
alignments produced�

As with any model building
 fully automatic techniques do not always provide the best models�a com�
petent molecular biologist who has additional biological information about a sequence can often improve on
them� Since the automatic techniques rely heavily on constructing and learning from multiple alignments

it is fairly easy for a biologist to introduce his or her knowledge by modifying the automatically produced
alignments
 or by editing the resulting model to adjust the importance of di�erent columns�

For the contest
 we do not need a sharp discrimination between the sequences that match the model and
those that do not�indeed we want a model that matches as distant a homolog as we can �nd
 while still
having high enough scores to get signi�cant hits in a large database� Ideally
 we would like to generalize the
models enough to �nd a signi�cant hit in a database of known structures
 but we don�t expect to be able
to do this��	 The problem of �nding remote homologs
 whether for structure prediction
 insight into the
function
 or determining which residues might be productively modi�ed in wet�lab work
 is a fairly common
one�

In this section
 we�ll construct both sharply discriminating models whose purpose is to align close ho�
mologs of the target sequence and a more di�use model whose purpose is to �nd more remote homologs�
For the examples
 we�ll use target t���	 from the CASP� contest
 the C�terminal domain of human gamma
�brinogen�

You can build a model directly from a single sequence using the program modelfromalign� The resulting
model has one state for each letter in the target sequence
 heavily weighted toward matching the letter in
the target� SAM does not currently support using substitution matrices to set the probabilities of the letters
in this model
 but it does allow the use of Dirichlet mixtures
 which produce very similar probabilities given
a single sequence�

Demonstrate modelfromalign� show resulting model with hmmedit�
One can use the model constructed from the target sequence to search a database for homologs
 but this

is a rather ine�cient use of resources
 since this initial model is not really any better for searching than the
faster techniques used by BLAST ���� A better technique for �nding the close homologs is to use BLAST on
the SwissProt or NR database to get a reasonably large set of homologous sequences quickly� Even faster
is to use Entrez to get the �protein neighbors� of a sequence
 and download the entire set as a FASTA �le�
Note that these two methods can produce somewhat di�erent sets of sequences
 and it is sometimes worth
merging the results of both methods to create a larger
 more diverse training set�

In general
 having more sequence data produces better models
 but the model�building process can get
confused if there are too many copies of some of the data
 giving the extra copies too much importance� Of
course
 sequence weighting can help reduce the e�ect of duplication� Having extra data also slows down the
model building process �which is generally linear in the number of sequences�� One technique that is both
e�cient and fairly e�ective is to build a model from a small number of sequences �say the BLAST hits in
SwissProt� then retrain it on a larger set �say the BLAST hits in NR or the Entrez neighbors�� For the
examples here
 we�ll build models �rst using just �� sequences �the BLAST hits in SwissProt�
 then retrain
using just under ��� sequences �the neighbors identi�ed by Entrez��

�
For more details on what we do expect to be able to do� wait to see what we have for the CASP� contest�
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Worldwide web demo here� take a target sequence� use BLAST to 	nd homologs� and use the link to
Entrez to get the neighbors and download them�

Once we have a set of homologous sequences
 we have some decisions to make about the structure of
the model� Do we want the model to preserve the one�to�one relationship with the target sequence� Do we
want to construct a more general model for the whole family
 possibly discarding some pieces of the target
sequence�

If we just want a generic model for the whole class
 we can use SAM%s buildmodel program with default
parameters� This program then builds a number of random models with lengths around the average length
of the sequences� For each model
 the sequences are aligned to the model and the model is updated based on
that alignment� Noise is added to the observed counts of amino acids and transitions
 so that the model space
is searched a little more broadly� The buildmodel program then selects the best of the resulting models and
tries to modify it with model surgery
 which cuts out nodes of the model that aren�t used often and adds
nodes where inserts were common� After surgery
 the modi�ed model is retrained� The training&surgery
loop can be repeated several times�

Running buildmodel with the default parameters is a little slow for these long sequences� and so will not
be demonstrated live�

The appendix includes two �les that result from building a model with default parameters�

t� default�stat which shows the progress of the model building
 and

t� default�pretty which shows the resulting alignment�

Note that the entire sequence has been modeled
 not just the C�terminal domain whose structure we want
to predict� Part of the region we�re interested in �between alignment columns 
�� and 
��� has been shoved
into an insertion�despite obvious homologies for the �rst 	 sequences� Also the large insertions in �ve
sequences between positions 
�� and 
�� make the section before 
�� grossly misaligned�there is a much
better alignment hidden in the insertion�

In the t�	default�stat �le
 we can see the training method gradually improving the model
 then losing
much of the gain when it does model surgery
 and almost recovering by retraining� The problem isn�t the
model surgery
 but the noise that is added to the model after surgery� The current default adds about ��# of
the noise used in the initial model
 that is
 about the amount of noise in the ��th iteration of retraining� It is
possible to reduce the amount of noise added
 keeping the training process from losing so much information�

The default training method described above tends to �nd and correctly align the more highly conserved
blocks of the family
 but often makes rather arbitrary choices on the less conserved regions� Di�erent runs
�with di�erent noise� will produce di�erent results
 some of which are better alignments than the one shown
here�

There is a better way to use SAM that is faster and produces better alignments� Since we have a speci�c
target sequence that we are interested in
 we are better o� starting with a model that has a one�to�one
relationship with our target� We can build such a model use modelfromalign on just the target sequence�
The alignment of the sequences to this model is shown in the appendix as t�	
�pretty�

Show alignment of homologous sequences to the model built from the single sequence� Look at the hmmscore
results to ensure that the homologous sequences match the model� �True for the BLAST hits� not necessarily
true for the Entrez neighbors� some of which are fragments that don�t overlap with the target��

We can take the model created from the target sequence and retrain it on the homologous sequences�
Since we want to preserve the relationship with the original sequence
 we turn o� model surgery and noise�
We want to allow the alignment here to open gaps freely to align the highly conserved blocks well
 even at
the cost of some very poor alignments in the variable regions� We�ll later try to keep just those gaps which
seem to be most useful� The gap costs in SAM are encoded in the transition probabilities�we can control
them somewhat by setting a special regularizer for the transitions�

Setting gap or transition costs appropriately is the hardest problem in building alignment�based models
�including hidden Markov models��we have no magic bullet for making this decision automatically� One
approach is to try a variety of di�erent transition costs
 and pick the range that produces the best alignments
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where �best� can be measured automatically �highest probability for the sequences in the training set� or
judged manually �highly conserved columns in known active positions
 cysteines in locations known to have
disulphide bridges
 gaps in loop regions
 and so forth��

Demo of buildmodel with cheap	gaps�regularizer� the resulting alignment is in the appendix as
t�	��pretty�

The resulting model may have created an alignment with too many places where insertions have been
allowed
 and with too many deletions� Retraining with a di�erent regularizer for transitions can clean up
these extraneous gaps� The long	match regularizer favors match�match transitions
 accepting somewhat
worse matches to reduce the number of gaps�

Demo of buildmodel with long	match�regularizer� the resulting alignment is in the appendix as
t�	��pretty�

All the models we�ve built so far have been very selective models
 built to get excellent discrimination
of the training set from other sequences� If we want to �nd more remote homologs than those in the the
training set
 we need to modify the model to make it less speci�c� We do this by giving less weight to the
sequences
 so that the Dirichlet mixture provides a somewhat  atter distribution of amino acids in each
position� See Section 	�� for more information about weighting schemes for sequences� For example
 if we
use Karplus�s entropy�based weighting scheme
 with the goal of getting ��

 bits&column of savings
 we get
sequence weights ranging from ����	� to ���	�� with a total weight of ��	�� for the set of �� sequences�

The alignment that results form using this di�use model is given in the appendix as t�	�w��pretty�
Aligning the training sequences to the model produces a somewhat di�erent result than with the sharper
models
 since there is less penalty for letter mismatches
 and so the gaps tend to get grouped together more�

Demo of weighting and building di�use model� Note that we stop the training after just one re�estimation�
so that the alignment used for training is not perturbed from the alignment from our sharply discriminating
model�

We can
 perhaps
 create a slightly more general model by training on all the Entrez sequence neighbors

instead of just the small set of homologs found in SwissProt� To avoid including fragments that match parts
of the sequence that we are not interested
 we �rst select the interesting domains from the training set using
multdomain with a sharp model built from the SwissProt sequences� The model is then retrained using this
set of found domains�

We then do a minimal retraining of the model using weighted sequences to make the model less sharply
discriminating� With Karplus�s entropy�weighting scheme and a target of ��

 bits&column
 we get weights
ranging from ����
�� to ������ with a total weight of ����	� for the set of �� sequences� The alignment of
the original �� sequences to this modi�ed model is only slightly di�erent from the alignment we get using
the similarly di�used model trained on just �� sequences
 but the range of scores is narrower
 indicating a
less sharply peaked model�

Demo� make t�	��more�mult �the matching domains from the larger set of sequences� and models
t�	
�mod and t�	
w��mod�

This di�use model can be used to search a large database to �nd more remote homologs
 and the resulting
set of sequences used to retrain the model� This iteration of �nding homologs and retraining the model to
match all the known homologs can be repeated until no new homologs are found� The iteration is a very
e�ective way to build models �����

Unfortunately� searching a large database �such as NR� can take several hours using hidden Markov
models� and so will not be demonstrated here�

Searching NRP with the t�	
w��mod model �nds �� matching domains
 most of which are duplicates of
ones already found in the Entrez nearest neighbors search� The number of sequences is only ��
 because two
of the sequences had ambiguous alignments
 producing two overlapping hits� Some of the Entrez neighbors
are not found in this search
 even though the signi�cance threshold was set very loosely to get even tentative
hits�

Most of the low�scoring sequences are not remote homologs but fragments of fairly close homologs�
Because SAM does not have local alignment
 but only global and domain�global
 fragments generally get low

��



total NLL�Null values
 even though their score per match position is good�
At least one genuine distant homology is found
 GP�CELD�

�
 but it is not very remote�BLAST was

able to �nd it �with name gi��
����
� from just the target sequence�
Based on savings per character
 the most distant homology is PIR��A
����
 which is a fairly old sequenc�

ing of bovine �brinogen gamma fragments� A higher quality sequencing of bovine �brinogen gamma is the
SwissProt sequence FIBG	BOVIN
 which is in the training set�

The next most distant homology is PIR��PC�

�
 which is a fragment fairly closely homologous to
GPN�HUMMFAPA
 which is in the training set as gi���
������

Other models with other weightings and signi�cance thresholds are being tried
 but are not ready in time
for the camera�ready copy deadline for the tutorial�if any of them produce convincing remote homologs

we�ll bring additional appendices to the tutorial�

��� Reestimating existing alignments using HMMs

Kimmen Sj"olander �kimmen�cse�ucsc�edu�

There are two primary reasons why we might want to re�ne an existing alignment� First
 we might
expect that some errors are in the alignment
 and want to correct them� Second
 we may wish to extend a
local alignment into a global alignment� In this section
 we focus on the �rst �easier� task� We will discuss
methods for doing the second task during the tutorial
 if time permits�

When the alignments are generally fairly good to start with
 the method we use to re�ne these alignments
is conservative� For instance
 we have found that the best alignments in general are produced by simply
avoiding some of the features available to us� we don�t add noise into the model
 we don�t allow surgery

we don�t let the program change the model length in any way��� We simply change the gap initiation and
extension parameters and the amino acid probabilities at each position to maximize the probability of the
sequences in the family�

Alignments can take many forms
 and the method to re�ne an alignment has to take that form into ac�
count� For instance
 at UCSC
 most of our work reestimating alignments has been done on HSSP alignments
����� These alignments indicate deleted �or inserted
 depending on the perspective� regions by lower�case
letters
 and put the excised residues at the end of the alignment �le� Because of this
 we don�t have a direct
way of estimating the insertion or deletion probabilities for those positions
 without some complicated I&O
routines� Since we �gure that we already write enough complicated I&O routines
 we avoid that task
 and
estimate the model transition probabilities in a di�erent way� We obtain an initial model from the alignment

ignoring the fact that we don�t know the length of the inserts� Then
 we let the sequences align themselves
to the model
 and reestimate the transition parameters only��� Once the transition parameters are tuned

we have in e�ect the model we would have had in one step if we�d had an initial alignment with all inserts
noted directly� At this point
 we allow all the parameters to be reestimated
 which results in changes in the
actual residues seen in each position�

An example of this process is the reestimation of an HSSP alignment for a family of hydrolase proteins
��prd�hssp�� This family contains � sequences
 forming two distinct subfamilies� The �rst six sequences
form the �rst subfamily
 and the last three form a second subfamily��� The initial alignment is fairly good

except for the region between positions 
� and 	�
 where the last sequence
 IPYR KLULA
 is misaligned�
The reestimated alignment shows an almost exact match of IPYR KLULA to its closest homologs in the
set
 IPYR BOVIN and IPYR SCHPO
 in this region� Note that the �rst alignment was obtained directly

��Wouldn�t it be great if all the databases used a single name space� so you could check identity by looking at the names�
��This is accomplished by setting the SAM program parameters nsurgery� initial noise� anneal noise� and modellength all

to zero in command�line arguments to buildmodel� as follows� 
 buildmodel outputmodel �i initialmodel �train sequences
�initial noise � �anneal noise � �modellength � �nsurgery ��

��This is achieved by setting each node in the model to be of type K� indicating amino acid emission probabilities may not
be changed during training�

��This subfamily identi�cation is easy to make from visual inspection of the alignment� it is also con�rmed by an information
theoretic program we have for determining subfamilies in an alignment�
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ipyr	theth ANLKSLPVGDKAPEVVHMVIEVPRGSGNKYEYDPDLGAIKLDRVLPGAQFY

ipyr	ecoli �SLLNVPAGKDLPEDIYVVIEIPANADIKYEIDKESGALFVDRFMSTAMFY

ipyr	thep
 �������������KIVEAFIEIPTGSQNKYEFDKERGIFKLDRVLYSPMFY

ipyr	theac ��YHSVPVGPKPPEEVYVIVEIPRGSRVKYEIAKDFPGMLVDRVLYSSVVY

ipyr	arath ��WHDLEIGPEAPTVFNCAVEISKGGKVKYELDKNSGLIKVDRVLYSSIVY

ipyr	haein �����LTPGDVDAGIINVVNEIPEGSCHKIEWNRKVAAFQLDRVEPAIFAK

ipyr	bovin ����������ADKEVFHMVVEVPRWSNAKMEIATKLNPIKQDVKKGKLRYY

ipyr	schpo �������YANAEKTILNMVVEIPRWTQAKLEITKELNPIKQDTKKGKLRFY

ipyr	klula �������YADEANGIFNMVVEIPRWTNAKLEITKEKGKLRFVRNCFPHHGY

Table �� Alignment from HSSP database for IPYR THETH and homologs ��prd�hssp�� Note
 the columns
printed are just the initial 	� for reasons of space�
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IPYR	THETH ANLKSLP�VGDKAPEVVHMVIEVPRGSG�NKYEYDPD��LGAIKLDRVLPGAQF���������YPGD

IPYR	ECOLI S�LLNVP�AGKDLPEDIYVVIEIPANADpIKYEIDKE��SGALFVDRFMSTAMF���������YPCN

IPYR	THEP
 AF����������ENKIVEAFIEIPTGSQ�NKYEFDKE��RGIFKLDRVLYSPMF���������YPAE

IPYR	THEAC SFYHSVP�VGPKPPEEVYVIVEIPRGSR�VKYEIAKD��FPGMLVDRVLYSSVV���������YPVD

IPYR	ARATH HPWHDLE�IGPEAPTVFNCAVEISKGGK�VKYELDKN��SGLIKVDRVLYSSIV���������YPHN

IPYR	HAEIN DFNQILT�PGDVDAGIINVVNEIPEGSC�HKIEWNRK��VAAFQLDRVEPAIFA���������KPTN

IPYR	BOVIN SPFHDIP�IY�ADKEVFHMVVEVPRWSN�AKMEIATKdpLNPIKQDVKKGKLRYvanlfpykgYIWN

IPYR	SCHPO SSWHDIPlYANAEKTILNMVVEIPRWTQ�AKLEITKEatLNPIKQDTKKGKLRFvrncfphhgYIWN

IPYR	KLULA SAFHDIPlYADEANGIFNMVVEIPRWTN�AKLEITKEepLNPIIQDTKKGKLRFvrncfphhgYIHN

Table �� Reestimated alignment for ipyr theth and homologs�
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from the HSSP �le
 and did not show the inserted residues with respect to the consensus� Those residues

as noted earlier
 are listed at the end of the HSSP �le� The second alignment shows the inserted residues
with respect to the consensus
 highlighting the subfamilies in the data
 which make similar inserts�

For reasons of space
 we include here only that particular region where the alignment shifted so dramat�
ically�

��



� Validating a model

Kevin Karplus �karplus�cse�ucsc�edu�

We�ve discussed several techniques for building models
 but haven�t asked the very important question�
how do we know that the model is any good� Before we can answer that
 we need to know �good for what��

There are several di�erent tasks that we have proposed HMMs for� recognizing sequences
 �nding se�
quences or motifs in a database
 searching for remote homologs
 aligning sequences
 and improving existing
alignments� Obviously
 a model is good if it does well at the task it is intended for�

For discrimination tasks
 we can give the model a number of test sequences to recognize �some that
should match the model and some that shouldn�t�
 and count how many it gets correct� The standard of
truth should be the result of wet�lab work or other solid evidence
 not just sequence similarity found by some
other model �otherwise we�re just testing the similarity of the models��

We can adjust the scoring threshold to trade o� false negatives �real sequences that the model doesn�t
recognize� and false positives �sequences that the model thinks it recognizes
 but which it shouldn�t�� Various
measures have been proposed for summarizing this tradeo� in a single number
 but none of them seem very
satisfactory
 since in di�erent applications there are very di�erent penalties for the di�erent sorts of mistakes�
Perhaps the best thing to do is to plot the number of false positives versus the number of false negatives as
the threshold is adjusted�

One commonly used plot
 the receiver operating characteristic �ROC�
 plots the sensitivity of the test
versus the selectivity as the scoring threshold is changed��� The area under the ROC curve represents the
average probability
 over all pairs of sequences with di�ering true outcome
 that the classi�cation technique
will assign a higher score to responses with a correct value of � compared to those with a correct value
of �� This method is used extensively in medical applications
 where tests are typically rather unreliable�
In our applications the curve is not usually very interesting�most of our models have no trouble getting
�	'��# sensitivity with ���# selectivity��� This means that the area under the curve is almost always very
close to one�that is
 that sequences that are supposed to be modeled almost always score higher than ones
that aren�t� We�re mainly interested in the last few percent sensitivity ��nding the remote homologs� where
selectivity drops rather sharply�

Another method of presentation is to provide score histograms for the positive and negative examples�
the overlap between these histograms shows the tradeo� in errors� This histogram presentation is also good
for a very good model
 for which there will be a range of settings in which there are no mistakes made� For
such models the scoring gap between the lowest scoring positive and the highest scoring negative is also a
measure of the quality of the model
 though one that is overly sensitive to the exact test set used� The
histograms generally need to be clipped
 since there are a usually a lot of negative examples�we�re mainly
interested in the high�scoring tail of that distribution
 where we are likely to get false positives�

When validating a model used for database search
 the usual approach is to search a large database
and see how many of the known instances of the motif or sequence are missed� Testing sensitivity this way
without a control on selectivity is not very useful
 but in most cases we do not have the necessary information
to claim that something found by the model is a false positive
 since it is most likely an unannotated sequence
about which nothing is yet known�

Searching for remote homologs is even more problematic
 since we often do not have a standard of truth
to compare with�if the model reports a sequence as matching
 then it is a sequence homolog� There is
 of
course
 no guarantee that it shares structure or function with the sequences in the training set
 or any other
property that we might be hoping homologs will share�

��Sensitivity and selectivity are such useful concepts in many �elds that they have several di�erent names� Sensitivity is also
referred to as recall or generality�it measures how many of the sequences that are supposed to be found actually are found
�the ratio of true positives to all true sequences	� Selectivity is also called precision or speci�city�it measures how many of
the sequences that are identi�ed by the model are correct �ratio of true positives to all positives	�

��The high accuracy of our models may be more a function of the problems we apply them to than to any intrinsic power�
�gold standard� data is only available for fairly easy discrimination problems�
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When HMMs are used to improve multiple alignments
 we do have an internal check to see if we have
made progress�we can examine the alignment columns and see how likely such distributions are to occur in
good alignments� Dirichlet mixtures provide a way of computing the probability of a particular alignment
column
 and we can score a multiple alignment by how likely all its alignment columns are� This does not take
into account how well the insertions and deletions are handled
 and it is quite possible to get misalignments
that look very good in the alignment columns but which have a biologically implausible mapping of the
residues�

One of the best checks for alignment is to check residues that are known to correspond �either from
chemical tests or from structure�structure alignments�� If these residues are not correctly aligned
 our
con�dence in the multiple alignment drops substantially� Unfortunately
 such information is rarely available
for verifying new models�

	 Local HMM installation

��� Obtaining SAM and HMMer

To use SAM locally
 the �rst step is to get a copy of the source code� SAM distribution is via a WWW
interface� The SAM distribution can be clicked to from the main SAM page
 but requires a password� To
receive a password
 send e�mail to sam�info�cse�ucsc�edu��
 In response to your email
 you�ll receive the
password
 which you can then use to get to the distribution page� You�ll also be added to the list of people
who have received a copy of SAM
 and will receive messages about any updates�

Once you gotten a copy of SAM
 such as sam�tar�gz
 you will need to do the following�

gunzip sam�tar�gz

tar �xf sam�tar

This will create a SAM directory with the source �les�
See the SAM manual Section �� for information on editing the Makefile and other aspects of installation�
To use HMMer locally
 download a copy of the software from the HMMer WWW page and follow the

instructions of the documentation�s Appendix C�

��� SAM runtime

Once you have installed your own copy of SAM
 you will have direct access to all the programs discussed in
this tutorial� When using your own copy
 it is important to remember that several of SAM�s operations can
be quite time consuming
 especially building models and scoring large databases� For this reason
 it is well
worth the time to discover what compilers and compiler options work best on your machine�

There are several e�ective ways to reduce buildmodel runtime� One is to start with a preliminary
alignment
 essentially giving buildmodel a jump start� The number of sequences in the training set
 however

has the strongest in uence on runtime� Buildmodel can randomly select a subset of the sequences to be
used as a training set �by setting the Nseq variable�� Unfortunately
 this may eliminate critical sequences� A
better method is to trim the set of training sequences
 either by removing homologues
 or by using a weighting
program to determine low�weight sequences
 remove them
 and then recompute the sequence weighting on
this smaller set of sequences�

The scoring procedure of hmmscore will be faster if Viterbi scoring is used �by setting the viterbi score

parameter to ��� This will produce slightly di�erent scores but the �nal discrimination results will be similar�
We are currently building an MPI �Message Passing Interface� implementation of the major SAM pro�

grams so that you will be able to run SAM on a network of workstations�

��Commercial users will have to sign a licensing agreement and pay a nominal fee�
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��� SAM parameter settings

The SAM programs have a uni�ed parameter setting interface that combines parameter �les and command�
line options� Command�line options have been seen throughout this tutorial
 as have been parameter �les

which are speci�ed on the command line with the �include
 or �i for short� Further discussion of parameters
can be found in the documentation�


�
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