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Topics

e Hidden markov models
— posterior probabilities over states
— the EM algorithm
— viterbi (dynamic programming)
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Hidden Markov models: review

A hidden Markov model (HMM) is model where we generate
a sequence of outputs in addition to the Markov state
sequence

e To fully specify an HMM, we need to know

. the number of states m

. the initial state distribution Py(sq)

. the hidden state transition probabilities P;(s;11|s¢)

. the output distribution P,(x¢|s;) (discrete or continuous)
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HMM problems: review

e [here are several problems we have to solve

1. How do we evaluate the probability that our model
generated the observation sequence {xg,x1,...,X,}7?
— forward-backward algorithm

2. How do we uncover the most likely hidden state sequence
corresponding to these observations?
— dynamic programming

3. How do we adapt the parameters of the HMM to better
account for the observations?

— the EM-algorithm
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Recursive computation: review

Sop — S1. — SS9 —/. — Sn—1 — Sn
| | | | |
X0 X1 X2 Xn—1 Xn

e Forward (predictive) probabilities a(%):

ai(i) = P(Xgy...,X¢, 8¢ = 1)
(1)

Zj ()

e Backward (diagnostic) propabilities 3(%):

= P(sy =1i|xg,...,X¢)

Bi(i) = P(X¢y1,. .., Xn|s5¢ = 1)

(evidence about the current state from future observations)
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Recursive computation: review

S — S1 — S9 — ...—> Sp—-1 — Sn
! ! ! ) |
X0 X1 X2 Xn—1 Xn

Forward recursion:
Oéo(?:) — Po(SO — Z) PO(X()‘SO — Z)
(i) = Y o 1(f) Pilse = isi—1 = ) Po(xy| sy = i)

Backward recursion:

Bn(i) = 1
@5—1(73) = Zpl(st:ﬂst—l:i)Po(Xt|St:j)5t(j)
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Uses of forward/backward probabilities
e Complementary forward /backward probabilities
ai(i) = P(xg,...,Xt, 8¢ =1)
Be(i) = P(Xia1,---,Xn|S¢ = 1)
permit us to evaluate various (posterior) probabilities

First, we can evaluate the probability of the observation
sequence:
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Forward /backward probabilities cont’d

Ssop —...— S — St41 — ... —7 Sn
l ! ! !
X0 Xt Xt41 Xn

e \We can evaluate the posterior probability that the HMM was
In a particular state 7 at time ¢

P(xq,...,Xn, St = 1)
P(xg,...,Xp)

B (1) Be (1) def ;

O

P(sy =1|xg,...,Xn) =
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Forward /backward probabilities cont’d

Ssop —...— S — St4+1 — ... —7 Sn
l l l l
X0 Xt Xt4+1 Xn

e We can also compute the posterior probability that the
system was in state 7 at time ¢ AND transitioned to state j
at time ¢t 4 1:

P(sy =i, 541 = j|Xo,...,Xp)
fixed 1 — 3 transitlgn, one observation
(i) Pi(ser1 = jlse = ) Po(Xey1lse11 = J) Brra(d)

Zj at(J)B:(J)

def

— gt(ivj)a

wheret =0,...,n — 1.
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The EM algorithm for HMMs

l
Assume we have L observation sequences x( ) . ,Xq(zl)

E-step: compute the posterior probabilities

v foralll, i, and t (t=0,...,m)
DG i) foralll,d,andt (¢ =0,...,n;—1)
M-step: First, the initial state distribution can be updated

according to the expected fraction of times the sequences
started from a specific state ¢

Z 7(l)
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M-step cont'd
Second, to update the transtion probabilities, we first define

the expected number of transitions from ¢ to j

L n-—1

i) = > Y &9, 5)

=1 t=0

e The maximum likelihood estimate of the one step transition
probabilities can be obtained by normalization

D [ ] . ﬁ(’&,])

Pl(]‘l) Z’ﬁ(z ]l)
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M-step cont'd

e Third, if the outputs are discrete, we define the expected
number of times a particular observations say x = k was
generated from a specific state ¢

. <Z> l)
EﬁE Vs k)
[=1 t=0

The ML estimate is again obtained by normalization

N Mo (i, k)
) )
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M-step cont'd

e If the outputs are continuous (e.g., multi-variate Gaussian),
we have to solve a weighted maximum likelihood estimation

problem as in the mixture of Gaussians models

Separately for each state ¢ we maximize:

J(0)=>" Z 79 (i) log P(x"]6;)

[=1 t=0

with respect to the parameters 6; (e.g, the mean and the
covariance).
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Observed output as a function of time

HMM example
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e We will try to model this with a 3-state HMM with Gaussian

outputs p(z|s = i) = p(x|p;, 0?), 1 = 1,2, 3.
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HMM example cont’d
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prior /posterior means and (-

prior mean(t) = Zpt(i)ﬂz' (')

posterior mean(t) = Z’Yt(i)ﬂi ('*)

where P;(i) is the probability of being in state i after ¢ steps
without observations; ji; is the mean output from the ith state
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HMM example cont’d
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Dynamic programming (Viterbi)

Xo = heads, x1 = tails, x5 = heads

e The probability of generating a particular hidden state
sequence Sg 1, s1 = 2, s, = 1 and the observations

IS
Py(1)P,(heads|1) x Py(2|1)P,(tails|2) x Pi(1|2)P,(heads|
— S50 — 51 — SS9
l l l
X0 X1 X2
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Dynamic programming (Viterbi)

Xo = heads, x1 = tails, xo = heads

e The probability of the most likely (partial) state sequence
and the corresponding observations:

0:(1) = max {P(XQ, e X150, - - Stl)}PO(Xt|St = 1)

80,--+,St—1

=  max {P(SO)PO(X0|SO)“'P1(St = Z'|St—1)}Po(?(it\st = 1)

S0y--+3St—1

Tommi Jaakkola, MIT Al Lab 18



Dynamic programming (Viterbi)

D 3 2

Xo = heads, x1 = tails, xo = heads

e Recursive updates (same as forward probabilities but “sum”
replaced with “max")

00(7) = Pol(j)Polheads|j), j=1,2
51(1) = max{ 50( )Pl(l‘l) ( )P1(1]2) } X PO(tCL’iZS‘l)
01(2) = max{ do(1)P1(2]|1), 60(2)P1(2]2) } x P,(tails|2)
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Dynamic programming: backtracking

e The most likely value for state s5 is the one that corresponds
to the most likely path

s5 = argmax { d2(1), d2(2) }

(say s5 =1 as in the figure)
e The most likely previous state is

st = argmax {8, (1P (1]1), 51(2)Pi(1]2) }

and so on...  (what about observations?)
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Dynamic programming: properties
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Red path (dotted): most likely path landing on s; = 2
Blue path (dashed): most likely path landing on s =1

e Possible?
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