
Machine learning: lecture 17

Tommi S. Jaakkola

MIT AI Lab

Topics

• Hidden markov models

– posterior probabilities over states

– the EM algorithm

– viterbi (dynamic programming)

Tommi Jaakkola, MIT AI Lab 2

Hidden Markov models: review

A hidden Markov model (HMM) is model where we generate

a sequence of outputs in addition to the Markov state

sequence

s0

↓
x0

→ s1

↓
x1

→ s2

↓
x2

→ . . .

• To fully specify an HMM, we need to know

1. the number of states m

2. the initial state distribution P0(s0)
3. the hidden state transition probabilities P1(st+1|st)
4. the output distribution Po(xt|st) (discrete or continuous)

Tommi Jaakkola, MIT AI Lab 3

HMM problems: review

• There are several problems we have to solve

1. How do we evaluate the probability that our model

generated the observation sequence {x0,x1, . . . ,xn}?
– forward-backward algorithm

2. How do we uncover the most likely hidden state sequence

corresponding to these observations?

– dynamic programming

3. How do we adapt the parameters of the HMM to better

account for the observations?

– the EM-algorithm

Tommi Jaakkola, MIT AI Lab 4

Recursive computation: review

s0

↓
x0

→ s1

↓
x1

→ s2

↓
x2

→ . . .→ sn−1

↓
xn−1

→ sn

↓
xn

• Forward (predictive) probabilities αt(i):

αt(i) = P (x0, . . . ,xt, st = i)
αt(i)∑
j αt(j)

= P (st = i|x0, . . . ,xt)

• Backward (diagnostic) propabilities βt(i):

βt(i) = P (xt+1, . . . ,xn|st = i)

(evidence about the current state from future observations)

Tommi Jaakkola, MIT AI Lab 5

Recursive computation: review

s0

↓
x0

→ s1

↓
x1

→ s2

↓
x2

→ . . .→ sn−1

↓
xn−1

→ sn

↓
xn

Forward recursion:

α0(i) = P0(s0 = i) Po(x0|s0 = i)

αt(i) =
∑

j

αt−1(j) P1(st = i|st−1 = j)Po(xt|st = i)

Backward recursion:

βn(i) = 1

βt−1(i) =
∑

j

P1(st = j|st−1 = i)Po(xt|st = j) βt(j)

Tommi Jaakkola, MIT AI Lab 6

Uses of forward/backward probabilities

• Complementary forward/backward probabilities

αt(i) = P (x0, . . . ,xt, st = i)

βt(i) = P (xt+1, . . . ,xn|st = i)

permit us to evaluate various (posterior) probabilities

First, we can evaluate the probability of the observation

sequence:

P (x0, . . . ,xn) =
∑

i

P (x0, . . . ,xn, st = i)

=
∑

i

P (x0, . . . ,xt, st = i)P (xt+1, . . . ,xn|st = i)

=
∑

i

αt(i)βt(i)

Tommi Jaakkola, MIT AI Lab 7

Forward/backward probabilities cont’d

s0

↓
x0

→ . . .→ st

↓
xt

→ st+1

↓
xt+1

→ . . .→ sn

↓
xn

• We can evaluate the posterior probability that the HMM was

in a particular state i at time t

P (st = i|x0, . . . ,xn) =
P (x0, . . . ,xn, st = i)

P (x0, . . . ,xn)

=
αt(i)βt(i)∑
j αt(j)βt(j)

def
= γt(i)

Tommi Jaakkola, MIT AI Lab 8

Forward/backward probabilities cont’d

s0

↓
x0

→ . . .→ st

↓
xt

→ st+1

↓
xt+1

→ . . .→ sn

↓
xn

• We can also compute the posterior probability that the

system was in state i at time t AND transitioned to state j

at time t + 1:

P (st = i, st+1 = j|x0, . . . ,xn)

=
αt(i)

fixed i→ j transition, one observation︷ ︸︸ ︷
P1(st+1 = j|st = i)Po(xt+1|st+1 = j) βt+1(j)∑

j αt(j)βt(j)
def
= ξt(i, j),

where t = 0, . . . , n− 1.

Tommi Jaakkola, MIT AI Lab 9

The EM algorithm for HMMs

Assume we have L observation sequences x(l)
0 , . . . ,x(l)

nl

E-step: compute the posterior probabilities

γ
(l)
t (i) for all l, i, and t (t = 0, . . . , nl)

ξ
(l)
t (i, j) for all l, i, and t (t = 0, . . . , nl − 1)

M-step: First, the initial state distribution can be updated

according to the expected fraction of times the sequences

started from a specific state i

P̂0(i) ←
1
L

L∑
l=1

γ
(l)
0 (i)

Tommi Jaakkola, MIT AI Lab 10

M-step cont’d

Second, to update the transtion probabilities, we first define

the expected number of transitions from i to j

n̂(i, j) =
L∑

l=1

n−1∑
t=0

ξ
(l)
t (i, j)

• The maximum likelihood estimate of the one step transition

probabilities can be obtained by normalization

P̂1(j|i) ←
n̂(i, j)∑
j′ n̂(i, j′)

Tommi Jaakkola, MIT AI Lab 11

M-step cont’d

• Third, if the outputs are discrete, we define the expected

number of times a particular observations say x = k was

generated from a specific state i

n̂o(i, k) =
L∑

l=1

nl∑
t=0

γ
(l)
t (i) δ(x(l)

t , k)

The ML estimate is again obtained by normalization

P̂o(k|i) ←
n̂o(i, k)∑
k′ n̂o(i, k′)

Tommi Jaakkola, MIT AI Lab 12

M-step cont’d

• If the outputs are continuous (e.g., multi-variate Gaussian),

we have to solve a weighted maximum likelihood estimation

problem as in the mixture of Gaussians models

Separately for each state i we maximize:

J(θi) =
L∑

l=1

nl∑
t=0

γ
(l)
t (i) log P (x(l)

t |θi)

with respect to the parameters θi (e.g, the mean and the

covariance).

Tommi Jaakkola, MIT AI Lab 13

HMM example

0 20 40 60 80 100 120
−1.5

−1

−0.5

0

0.5

1

1.5

Observed output as a function of time

• We will try to model this with a 3-state HMM with Gaussian

outputs p(x|s = i) = p(x|µi, σ
2
i), i = 1, 2, 3.

Tommi Jaakkola, MIT AI Lab 14

HMM example cont’d

0 20 40 60 80 100 120
−1.5

−1

−0.5

0

0.5

1

1.5

prior/posterior means and γt(·)

prior mean(t) =
∑

i

Pt(i)µ̂i (’*’)

posterior mean(t) =
∑

i

γt(i)µ̂i (’*’)

where Pt(i) is the probability of being in state i after t steps

without observations; µ̂i is the mean output from the ith state

Tommi Jaakkola, MIT AI Lab 15

HMM example cont’d

0 5 10 15 20 25 30 35
−60

−40

−20

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120
−1.5

−1

−0.5

0

0.5

1

1.5

Log-prob. of data after 0 iterations

0 20 40 60 80 100 120
−1.5

−1

−0.5

0

0.5

1

1.5

0 20 40 60 80 100 120
−1.5

−1

−0.5

0

0.5

1

1.5

after 7 iterations final

Tommi Jaakkola, MIT AI Lab 16

Dynamic programming (Viterbi)

s0 s2s1

1

2

x0 = heads, x1 = tails, x2 = heads

• The probability of generating a particular hidden state

sequence s0 = 1, s1 = 2, s2 = 1 and the observations

is

P0(1)Po(heads|1) × P1(2|1)Po(tails|2) × P1(1|2)Po(heads|1)
→ s0

↓
x0

→ s1

↓
x1

→ s2

↓
x2

Tommi Jaakkola, MIT AI Lab 17

Dynamic programming (Viterbi)

s0 s2s1

1

2

x0 = heads, x1 = tails, x2 = heads

• The probability of the most likely (partial) state sequence

and the corresponding observations:

δt(i) = max
s0,...,st−1

{
P (x0, . . . ,xt−1, s0, . . . , st−1)

}
Po(xt|st = i)

= max
s0,...,st−1

{
P (s0)Po(x0|s0) · · ·P1(st = i|st−1)

}
Po(xt|st = i)

Tommi Jaakkola, MIT AI Lab 18

Dynamic programming (Viterbi)

s0 s2s1

1

2

x0 = heads, x1 = tails, x2 = heads

• Recursive updates (same as forward probabilities but “sum”

replaced with “max”)

δ0(j) = P0(j)Po(heads|j), j = 1, 2

δ1(1) = max { δ0(1)P1(1|1), δ0(2)P1(1|2) } × Po(tails|1)

δ1(2) = max { δ0(1)P1(2|1), δ0(2)P1(2|2) } × Po(tails|2)

. . .

Tommi Jaakkola, MIT AI Lab 19

Dynamic programming: backtracking

s0 s2s1

1

2

• The most likely value for state s2 is the one that corresponds

to the most likely path

s∗2 = argmax { δ2(1), δ2(2) }

(say s∗2 = 1 as in the figure)

• The most likely previous state is

s∗1 = argmax { δ1(1)P1(1|1), δ1(2)P1(1|2) }

and so on... (what about observations?)

Tommi Jaakkola, MIT AI Lab 20

Dynamic programming: properties

s0 s2s1

1

2

Red path (dotted): most likely path landing on s2 = 2
Blue path (dashed): most likely path landing on s2 = 1

• Possible?

Tommi Jaakkola, MIT AI Lab 21

