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Abstract

We have developed a method to extract the signal patterns in DNA
sequences. In this method, the Genetic Algorithm (GA) and Baum-
Welch algorithm are used to obtain the best Hidden Markov Model
(HMM) representations of the signal patterns in DNA sequences. The
GA is used to search the best network shapes and the initial parame-
ters of the HMMs. Baum-Welch algorithm is used to optimize the HMM
parameters for the given network shapes. Akaike Information Criterion
(AIC), which gives a criterion for the balance of adaptation and com-
plexity of a model, is applied in the HMM evaluation. We have applied
the method to the extraction of the signal patterns in human promoters
and 5’ ends of yeast introns. As a result, we obtained HMM represen-
tations of characteristic features in these sequences. To validate the
efficiency of the method, we have performed promoter recognition us-
ing obtained HMMs. Two entries including nine promoters are selected
from GenBank 76.0, and it is observed that the HMM can predicts eight
promoters correctly. These results imply that the method is efficient to
design preferable HMM networks, and provides reliable models for the
recognition of the signal patterns.



687

1 Introduction

As the advance in DNA sequencing projects, enormous DNA sequences have
been stored. In order to understand the meaning of the sequences, it is im-
portant to clarify the mechanism of expression and control of the genetic in-
formation in DNA sequences. It is known that the signals in DNA sequences
contain biologically important information about the function and the evolu-
tion. However, mutations accumulated in sequences yielded the diversities of
the sequences. The sequences in functional regions possess following diversi-
ties: the diversity of (1) signal sequences, (2) distances between signals, and
(3) permutation and combination of signals. For instance, it is known that
promoters contain several kinds of signals having various compositions and lo-
cations [Bucher 90]. Further, permutations and combinations of the signals are
different in promoters [Levin 94|. The signal patterns are usually expressed by
regular patterns, but it is difficult to capture these diversities by such simple
regular patterns. Reliable methods to extract the flexible signal patterns from
the data has been desired.

Stochastic models are useful for the representation of the diversity of the
signal patterns. In this study, we have adopted Hidden Markov Models (HMMs)
[Levinson et al. 83| as the representations of the signal patterns. An HMM is
defined as a nondeterministic finite state automaton represented by a Markov
process. It has been shown that HMMs are capable to represent the charac-
teristic features in the sequences [Asai et al. 93, Haussler et al. 93].

We used HMMs whose output symbols of the ’hidden’ states are ’A’, """,
'G’, ’C’. The parameters of an HMM, the transition probabilities and the out-
put distribution, can be trained using Baum-Welch Algorithm to maximize
the likelihood of the HMM to the DNA sequences. However, these algorithms
require that the network shape of the HMM is fixed before the learning. There-
fore, it is important to obtain the optimal HMM network for the given se-
quence. Since it is difficult to know which HMM network is optimal before the
training of the HMM, we have to repeat network design and parameter train-
ing by trial and error. Several methods, [Fujiwara et al. 94, Tanaka et al. 93]
have been proposed for designing HMM networks. However, these methods
have problems with constraints of the HMM topology and the dependency of
the initial parameter values.

The main purpose of this study is to develop an efficient method to generate
the optimal HMM networks and to get the optimal HMM representations of the
signal patterns of the DNA sequences. We have developed the method which
uses the Genetic Algorithm (GA) [Holland 92] to design the HMM network and
initial parameters of the HMM. The HMM networks and the initial parameters
are encoded into artificial chromosomes, and the GA is operated with these
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chromosomes to find the optimal HMM network and the initial parameters.
The fitness of an chromosomes is calculated by training the HMM, whose
network and initial parameters are represented by the chromosomes, by Baum-
Welch Algorithm with the DNA sequences whose signal patterns we want to
model.

2 Method

We have developed the method which uses the Genetic Algorithm (GA) to
design the HMM network and initial parameters of the HMM. The GA is a
heuristic algorithm to search the optimal solutions of problems, which simu-
lates the biological evolution process. Each individual has chromosomes, where
a possible solution of the problem is encoded. The individuals of the popula-
tion of new generation are produced by mating the individuals which have high
fitness in the population of previous generation. The fitness is the performance
of the solution which is encoded by the chromosomes of the individual. During
the process of mating, recombinations and mutations occur by some probabil-
ities. These recombinations and mutations have the effect of generating new
types of solutions and of avoiding local optima.
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In the method, the HMM network and the initial parameters are encoded
into 3 chromosomes of each individual. The first chromosome encodes the
HMM network, the second chromosome encodes the initial transition prob-
abilities, and the third chromosome encodes the initial output distributions.
Figure 1 illustrates the encoding of an HMM network and parameters into an
chromosome.

The method searches the optimal solution in the space of any kind of HMM
network, because the encoding uses connection matrix to represent the net-
work topology. Figure 2~5 illustrate the mutations and the recombination,
which are performed on the HMM networks during the mating process. We
have designed insert mutation so that the topology after the mutation always
includes the original one. With the help of this operation, the method can
perform the accumulative development of the topology.

The probability that an individual is used for mating is defined proportional
to the fitness of the individuals. The fitness of each individual is calculated
as follows. The HMM, whose network and initial parameters are encoded by
the chromosomes of the individual, is trained by Baum-Welch algorithm using
the given DNA sequences. This training optimize the parameters of HMM to
fit the sequences. By using Akaike Information Criterion (AIC)[Akaike 73],
the fitness W; of the ith individual (HMM) in the population is given by the
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following equations:

W, = wz‘/;wj (1)

with
w, = [~2logL(6;; f) + 2pi] ™! (2)

N is the number of HMMs in the population. 0, and f indicate the ith
HMM parameters optimized by Baum-Welch algorithm and the set of DNA
sequences. log L(éi; f) is the maximum logarithm likelihood estimates of the
ith HMM. The p;, which is the number of free parameters consisting of the
ith HMM, indicates the complexity of the HMM. In general, the likelihood of
HMM for the given sequences increases with the complexity of the network
increases. However, it is known that over representation is frequently observed
as the complexity increases [Konagaya and Kondo 93]. Therefore, we have
considered the balance of the likelihood and the complexity.

3 Data

According to the procedures described below, we have created three data sets
of human DNA sequences and one data set of yeast DNA sequences, CAAT
boxes, TATA boxes, promoters and 5’ ends of introns.

From GenBank release 76.0 [GenBank 93], we selected three groups of hu-
man entries. The entries of the first group have clear descriptions of CAAT
box in the feature tables, and we took sequences in the vicinity of CAAT box
from the entries. In order to remove bias from the sequences, we selected the
sequences with less than 70 % similarity. The selected sequences are regarded
as a CAAT box data set. The second group consists of the entries having clear
descriptions of TATA box in the feature tables. From the second group, we
created a TATA box data set by applying the procedures similar to the CAAT
box data set. Each sequence in both sets consists of 36 bases. The third
group consists of the entries having clear descriptions of both CAAT box and
TATA box in the feature tables. From the third group, we created a promoter
data set. Each sequence in the set consists of 71 bases. From NRFES (Non-
Redundant Functionally Equivalent Sequences) version 0.5 [Konopka 93|, we
collected DNA sequences in the vicinity of 5’ ends of introns. Each sequence
consists of 25 bp.

By applying the procedures described above, we have collected 168, 123,
55 and 57 sequences as the CAAT box, TATA box, promoter data set and the
5’ ends of introns, respectively.
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Table 1;: Parameters of the method
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Searching generation ............... .. i, 100
Recombination rate ........... ... i 0.10
Polit matation Fatel ; wovw mvuvas peses v owses Srpss o8 5e o5 v 0.05
Insert mutation rate ....... ... it 0.04
Dielete nOulALION TAEE o oo mnimin wmmbmiss sooms ws v s wows s 0.02
Nusiiber of states at fixst generation .. veq e o voson sevan swvem s 2
Balancing BElOr ... o cimms snmsisvis soinins sivmnisais soroniis sinmnsn dpdis 0.10
Maximum iteration number of Baum-Welch algorithm ........ 50
Results
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We have applied the method for the extractions of the signal patterns from
four data sets described above. Parameters of the method are shown in Table
1. Figure 6~9 show HMMs obtained by the method using CAAT box, TATA
box, promoter data set and 5 ends of introns, respectively. The filled states,
the solid output symbol distributions and the solid state transitions correspond
to the signal patterns which are extracted from the data sets. In this study,
we have defined that state transition starts at the first number of state and
ends at the last number of state for all sequences in a data set.

0.18

T 0.22 083 005 T 0.94
C: 0.19] C: 0.301
G: 033 [c: 1.00][A: 1.00][A: 1.00] [T 1.00]|G: 0.25

Figure 6: A CAAT box HMM obtained by the method
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Figure 7: A TATA box HMM ob- Figure 8: A promoter region HMM
tained by the method obtained by the method

In Figure 6, CAAT box is represented by state transition 2 — 3 — 4 — 5,
and it is obvious that ?CAAT” subsequence can be regarded as consensus pat-
tern of CAAT box. In Figure 7, TATA box is represented by state transition
between states 2 and 3. The transition represents TATA box as AT-rich sub-
sequence which starts with base T. State 1 and 6 in Figure 6 and state 1 and
4 in Figure 7 are dummy states which indicate that no significant bias of base
composition is observed in the vicinity of either box. In Figure 8, the HMM
represents three kinds of signal sequences. CAAT and TATA box are repre-
sented by states 2 and 3. State I represents GC box of GC-rich subsequence
located upstream of CAAT and TATA box. Note that we were not conscious
of GC box in collecting promoter sequences. However, the HMM dose not
specify the positional relation between CAAT and TATA box. Further search
is required for more detailed representations.

Figure 9 shows the effect of balancing factor X in Equation 2. Both HMMs
represents that AT-rich sequences are located downstream from the pattern.
However, the upper HMM represents “GTATG” pattern as a consensus se-
quence and the lower HMM represents “GTATGT” pattern as a seconsensus
sequence. The upper HMM has the simpler network than the lower HMM,
but maximum likelihood of upper one is smaller than that of lower one. That
indicates the factor A has the capability to design the balance of likelihood and
complexity of the HMMs.

In order to validate the efficiency of the method, we have performed pro-
moter recognition using the HMM shown in Figure 8. From GenBank 76.0, we
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have selected two entries including nine promoters. Figure 10 shows the result
of the recognition. The horizontal axis indicates the position in the DNA se-
quence. The vertical axis indicates the score of DNA subsequence. Filled bars
show that the HMM recognizes subsequences as promoter regions. Arrows
shows the positions of promoters. It is observed that the HMM can predict
eight promoters correctly, but several false positives are observed. The HMM
contains characteristic features in human promoter region and it is surprising
that the features of complex promoter are encoded into only 23 parameters in
the HMM.

As seen from Figures 6~9 and Figure 10, the method is capable of ex-
tracting signal patterns from given sequences and provides a reliable model
for the identification of functional sites. Note that the extraction is performed
without a priori knowledge of the sequences. That implies the method has an
ability for the automatic extraction of the signal patterns.
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Figure 9: HMMs of 5’ end of yeast introns
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5 Conclusion

We have developed the method, for the extraction of the HMM representations
of the signal patterns in DNA sequences. The GA has been used to design the
optimal networks of the HMMs. The balance of likelihood and complexity of
the models has been evaluated based on AIC. Using the method, the signal
patterns of CAAT box, TATA box, promoter data set and 5 ends of introns
have been extracted, and reasonable HMM representations have been obtained.
The HMM representation of the promoter data set has shown a good poten-
tial for the recognition of the signal patterns. To conclude from the results of
signal pattern extraction and recognition, the method is capable of extract-
ing the patterns from given sequences and providing a reliable model for the
identification of them, without a priori knowledge of the sequences.
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