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Abstract

We consider a variant of the classical jeep problem. We have n cans of
fuel on the edge of a desert and a jeep with an empty tank whose capacity
is just one can. The jeep can carry one can in addition the fuel in its tank.
Moreover, when a can is opened, the fuel must immediately be filled into the
jeep’s tank. The goal is to find the farthest point in the desert which the jeep
can reach by consuming the n cans of fuel. Derick Wood [1984] treated this
problem similarly to the classical problem and gave the first solution. Ute and
Wilfried Brauer [1989] presented a new strategy and got a better solution than
Wood’s. They also conjectured that their solution was optimal for infinitely
many values of n. We give an algorithm which produces a better solution
than Brauers’ for all n > 6, and we use a linear programming formulation to
derive an upper bound which shows that our solution is optimal.

1 The jeep problem

A jeep starts at a depot in the desert with n cans of fuel and wants to reach a distant
oasis. The jeep has a certain capacity for carrying fuel, and it can deposit fuel at
intermediate depots along the way. This logistics problem has obvious applications
to arctic expeditions, space travel, or military logistics. A version of this problem
was posed more than 1000 years ago in the propositiones ad acuendos tuvenes, the
oldest known mathematical puzzle collection in Latin, attributed to Alcuin of York
(around 732-804). In the 52-nd problem, propositio de homine patrefamilias (a lord
of the manor), a certain amount of grain is to be carried across a given distance by
a camel which eats some of the grain on the way. The original Latin text with a
German translation can be found in Gericke and Folkerts [1993, pp. 356-357], based
on a critical edition of the text by Folkerts [1978, pp. 74-75], see also Folkerts [1993].
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There is an annotated English translation of Hadley and Singmaster [1992, p. 124—
125], who note that the given solution is not the correct optimal solution. They also
point out references to the literature where the problem appears in other guises.

The jeep problem was introduced in the modern mathematical literature by
Fine [1947]. Since then, many variations of the problem have been proposed.
Phipps [1947] considered the case of a group of jeeps. Suppose m jeeps fully loaded
with fuel set out from a depot in the desert. The goal is to advance one of them to
the greatest possible distance away from the depot. Phipps also mentioned several
related variations.

The problem has continued to attract the attention of mathematicians and puzzle
solvers alike, see Gale [1970, 1994] or Dewdney [1987]. Some recent references are
Hausrath, Jackson, Mitchem, and Schmeichel [1995] and Jackson, Mitchem, and
Schmeichel [1995].

The jeep problem with refilling of whole cans only. In the classical jeep
problem, depots can be set up anywhere, and fuel can be freely exchanged between
depots and the tank. We consider a variation with the following constraints.

1. Fuel can only be stored in cans (besides the jeep’s tank).

2. In addition to the fuel in its tank, the jeep can carry one can of fuel.
3. No fuel is ever moved from the tank into a can.

4. The jeep can be refilled only when its tank is empty.

5. The jeep’s tank is always refilled to its full capacity.

In other words, when a can is opened the whole content is immediately filled into
the jeep’s tank. Thus, in contrast to the classical problem, intermediate dumps can
only contain an integral multiple of one canful of fuel. In the context of the jeep in
the desert, these constraints appear natural. We might think of the fuel as stored in
drums or barrels which cannot be sealed once they are opened. Fuel in open drums
is wasted because it evaporates too fast in the desert.

We make the simplest additional assumptions:

6. All cans have the same size. The jeep’s tank contains precisely one can of fuel.

7. The fuel consumption is independent of the load. Without loss of generality
we define one unit of length as the distance which the jeep can travel with one
tankful.

8. The jeep’s tank is initially empty.
Under these constraints, we treat the following problem.

With n cans of fuel at the starting point, what is the most distant point
which the jeep can reach?



This problem was first stated in an exercise in a computer science textbook by
Wood [1984, section 8.3, pp. 173-180]. Wood proposed an algorithm which is anal-
ogous to the optimal algorithm for the classical jeep problem. He declared that
his algorithm yields the optimal distance. However, while the algorithm serves its
purpose in illustrating the principles of recursion in algorithms and reduction of a
given problem to a simpler problem, it is not optimal. Optimality of his algorithm
must have appeared so obvious to Wood that he did not even mention that such
an optimality claim ought to be proved, thus fostering among computer scientists a
negligent attitude towards rigor and mathematical proof.

Brauer and Brauer [1989] were the first to note that Wood’s algorithm is not
optimal and proposed a better algorithm, which follows a greedy strategy. They
conjectured that their algorithm is optimal for a certain infinite family of values
of n.

We will give the optimal solution to the problem, which is better than Brauer
and Brauer’s algorithm for all n > 6. It is a modified greedy algorithm, and it will be
described in Section 2. Section 3 is devoted to the optimality proof. In Section 3.1
we derive some conditions on a feasible tour. We introduce appropriate variables
and derive conditions which any solution must necessarily fulfill. In Section 3.2, we
model the problem as a linear programming problem. In Section 3.3 we derive an
upper bound for the maximum distance from the inequalities of the linear program.
Since this bound coincides with the value achieved by our algorithm, optimality is
proved.

In Appendix B we show that any set of values satisfying the inequalities gives rise
to a feasible solution of the jeep problem, thus showing that our model of Section 3.2
is complete.

Related work. A similar linear programming formulation, based on essentially
the same ideas, was used by Jackson, Mitchem, and Schmeichel [1995] to solve
another variant of the jeep problem proposed by Dewdney [1987]. We will discuss
this problem and the relation to our solution in the concluding section 4.

Problem variations. Actually, Wood explicitly stated only constraint 4 but not 5.
If one does not interpret the phrase “refilling the tank” in the strictest sense, one
need not assume property 5.

Both Wood’s and Brauer and Brauer’s algorithms satisfy property 5. The omis-
sion of property 5 allows even better solutions, as we will show in the final section.

2 The optimal algorithm

For describing the algorithm we will need some terminology. The jeep moves on
a line between the starting point and the destination. We place the origin 0 at
the starting point, and we let the positive coordinate direction point towards the
destination. As mentioned above, one unit is the distance which the jeep can travel
with one tankful (one can) of gas.



The part of the trip from one filling of the tank to the next will be called a
move. A move can be at most one unit long, and it is clear that every move must
start at a depot where a nonempty can is available, and every move except the last
must end at such a position. The structure of the algorithm is best described by
combining two successive moves into one double-move. At the start and end of each
double-move, the situation is always in a well-structured state:

1. There is a sequence of depots containing cans, and each depot contains an
even number of full cans.

For this reason we may also group the full cans into pairs which we call double-cans.
Let e; < €41 < -+ < ¢; denote the current positions of full double-cans from left to
right.

2. The jeep is positioned at the left-most full double-can ¢; and the jeep’s tank
is empty.

3. The jeep carries no can.

4. The following invariant is maintained:
epr1 <ep+1/2fork=1,...,5—1. (1)
This invariant ensures that the algorithm can continue.

If n is even these conditions are initially fulfilled, and we can set ¢ := 1, j := n/2,
and
€p =€ =" =¢ép; =0.

If n 1s odd we make one exceptional single move to satisfy the conditions: We
transport two cans from 0 to 1/4 and return to 0, using up fuel of one can. We set

i:=2,7:=(n+1)/2, and
er =€ =" =€n-1)2=0,€0nt1)/2 = 1-

Now we describe the double-move. It is illustrated in Figure 1. We assume that
7 > 1+ 1, that is, at least three double-cans are available.

1. The jeep fills the tank with one can of the double-can e; and loads the other
can.

2. The jeep brings this can forward to fi11/2 1= (€ + €;11)/2 4+ 1/2 and unloads
it there.

3. The jeep moves back to position e;11. Now the jeep has traveled precisely one
unit, and the first move is finished.

4. The second move is more complicated: The jeep fills the tank with one can of
the double-can €;4; and loads the other can.
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Figure 1: A double-move. The numbers indicate the operations as described in the
text. The successive operations are shown from top to bottom. Whenever the jeep
carries a full can the jeep’s path is drawn as a thick line. (This occurs precisely
when the jeep moves forward.) When the jeep fills the tank this is indicated by a
circle, which symbolizes the empty can that is left behind.

5. The jeep brings this can forward to ej11 = (&; + 2€,41 + €i42)/4 + 1/2 and
unloads it there.

6. The jeep moves back to position fii1/s.
7. The jeep loads the can that was deposited there in Step 2.
8. The jeep brings also this can forward to e;41 and unloads it there.

9. The jeep moves back to position €;42. Now the jeep has traveled one more
unit, and the second move is completed.

This double move has removed the double cans at e; and e;41, and it has established
a new double-can at e;1;. The jeep is now positioned at the leftmost non-empty
double-can €;45. Thus we can set j := 741 and ¢ := 1+ 2, and the situation is ready
for the next double-move. Note that the double-move leaves precisely two empty
cans at positions e; and e;4;. To show that all required moves can be carried out in
the described direction we must check that

€i, Cit1 < fi+1/27 and (2)
ei+17fi+1/27 €it+2 < €i+1

holds for the new values of f;y1/ and ¢;4; defined above. This follows easily from

the invariant (1). It follows also that e;4; < €;41/2, and thus (1) is again fulfilled.



When ¢; = €;41 = €42, we have fi11/2 = ¢;11 and Steps 6-8 are void. All other
inequalities in (2) are satisfied as strict inequalities.

For showing that all required moves are possible with the fuel of the two cans,
it can be easily checked that

(fi-|—1/2 - ei) + (fi-|—1/2 - ei+1) =1, and
(€j+1 - €i+1) + (€j+1 - fz'+1/2) + (€j+1 - fz’+1/2) + (€j+1 - €¢+2) = L.

At the end we have to make a modified double-move and two exceptional last
moves. Since the number of double-cans decreases at each step. we will eventually
come to the situation when 5 = ¢+ 1, that is, only four cans are left. It will turn out
that ¢ = n — 3 then. In this case we carry out a modified double move as follows.
(A modified double-move appears in Figure 2 between e;9 and ey;.) Steps 1-4 are
as above, but the second move is modified. There is no point in returning to e;o at
the end of the second move because e, is not even defined yet. Therefore we make
the following modified steps.

5. The jeep brings the can which it has just loaded from e;4; forward to e;41 =
€it2 := (€ + 2€i41)/3 + 2/3 and unloads it there.

6'. The jeep moves back to position fiiy/,.
7'. The jeep loads the can that was deposited there in Step 2.

8. The jeep brings also this can forward to e;j1;. This concludes the modified
double-move. Now there are just two cans remaining, and they are located at

€i+1 = €p—1.

9’. Now the algorithm makes two final moves. It fills the tank with the can which
was deposited in Step 5.

10’. It moves the can which is still loaded to e,_; + 1;
11’. It fills the tank from the loaded can.
12'. It drives to €, := e,_; + 2 and stops at e,.
With the correct values of i and j the new location in Step 5’ is written as

€n_s3 + 2€,_ 2
€p—1 = % + g (3)

Summary of the algorithm. We assume that n > 4.
Set €1 1= ey := -+ = €ny) :=0;
if n is odd then Move two cans from 0 to 1/4 and return to 0;

Set emir)/2 :=1/4;1:=2; 5 := (n+1)/2;
else Seti:=1;j:=n/2;



while j <n -2 do
Perform a double-move, transforming two double-cans
at positions e; and e;11 into one double-can
at position e;41 1= (€ + 2€;41 + €i42)/4 + 1/2;
Set 1 :=142; 5 :=75 4 1;
end while;
Perform a modified double-move, transforming two double-cans
at positions e,_3 and e,_5 into one double-can
at position e,_1 := (€n—3 + 2€,-2)/3 + 2/3;
Make a move to e,_; + 1, and from there make a move to ¢, :=e,_1 + 2.

When n = 1 and n = 2, the problem is trivial. When n = 3, the jeep first moves
two cans of fuel to e; = 1/3 and the following is the same as the case of n = 2.
The following example gives the sequence (ey, ... ,€,) for n = 22.

(0,0,0,0,0,0,0,0,0,0,0, 1,1, 1,1 1,7 1 35 101 3ss 7r2)

7 27272727278777327 1287 1927 192

. . . . 773 _ 5 .
The .correspondmg tour of the jeep, which reaches a distance of {55 = 4155, is shown
in Figure 2.

Several observations can be made.

e Whenever the jeep moves backward it has no can loaded.

e Whenever the jeep moves forward it has a full can loaded, except in the last
move (Step 12'). In this sense, there are no “wasted” moves.

e There are “big” dumps with many double-cans at half-integer positions 0, 1/2,

1,3/2, ...

e In addition, there are “singular” dumps with single double-cans at interme-
diate positions. Between 0 and 1/2, there is a singular dump at position 1/4
whenever n is odd. Between successive big dumps beyond the point 1/2, there
are in general two singular dumps, but there may also be only one.

e All can positions are fractions whose denominator is a power of 2, except e,_1
and e,, which may have an additional factor of 3 in the denominator.

o At any time during the algorithm there are at most two big dumps and possibly
two more single dumps plus possibly one “temporary” dump of the type fiy1/2
with only one can deposited after Step 2 of the algorithm. However, at a time,
there can be at most four dumps with non-empty cans.

The values e; can be given by an explicit formula, which is however a little
complicated to describe. Since ¢ and j change simultaneously in increments of 2 and
1, respectively, we always have n — ¢ = 2(n — j) — 1. Writing j as n — k — 1, the
recursive equation defining e; 4, takes the following form.

€n—2k—1 F 2€n—2k + €n—2k+1

1 +1/2, fork=1,...,|n/2]| -1 (4)

Cn—k =
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Figure 2: The optimal tour of the jeep with n = 22 cans. The top part shows the
functions ¢g(y) and h(y) defined in Section 3.1 (equations (8) and (9), respectively).
The graph of h(y) has been slightly offset from ¢g(y). The small numbers adjacent
to the graphs are the negative slopes of the linear pieces.



Note that this equation is true even for k = 1, where it is equivalent to (3). Through-
out this paper we will denote

p = [logy(n —1)] =1,

i. e., we have 2°T! < n < 2°P %2,
For 0 < g < p we set

—1
aq = [an J 7 by :=n—1—a,2% by := 27 — b,. (5)

In other words, b, = (n — 1) mod 27, and b, is the “complementary” remainder.
Then we have n = a,2? 4+ by + 1. Furthermore, we set

Ay :=n —ay, for ¢ > 0.

The indices 1 = A; and ¢ = A; — 1 are those indices for which e; is possibly not a
multiple of 1/2 and therefore the position of a singular dump. The following formula
defines ¢; for 1 < <n — 3.

-1 b, /2)?
eAq_lz‘ZQ +L( q4/q”, forg>1, A;—1<n-3

by/2)?
_7|-(qiq)J, forg>0, A, <n-3 (6)

for A, <1 <A1 —1, ¢>20, :<n—-3

The last three values are given as follows.

B { p/2 =24 5(n —1)/20t2 —3|(n — 1)%/4] /4Pt (20T < < 3. 27)
2T\ p/241/4 — (n = 1)/20%2 4 [(n — 1)2/A] /4P (3.2 < n < 2042)
. _p—1 n—l_L(n—l)2/4j
=l =y op+l 6 - 4P

p+3 n-1 [(n—1)*/4]

€p, =€,_1+2= 5 + 2p 1 — 6 Ar (7)

The proof that these values fulfill the inductive definition (4) is somewhat tedious
and is given in Appendix A.

Theorem 1 The mazimum distance L, which the jeep can reach with n cans and
restricted refilling is given by
Cp43 n—1 [(n- 1P/

2 or+1 6 - 4p ’

Ly

where 2071 < n < 2°%2 forn > 2, and Ly = 1.



1 1 = 1 = 1.0000000 | 21 383/96 = 1532/384 = 3.9895833
2 2 = 2 = 2.0000000 || 22 773/192 = 1546/384 = 4.0260417
3 7/3 = 14/6 =12.3333333 || 23 | 1559/384 = 1559/384 = 4.0598958
4 8/3 = 16/6 = 2.6666667 | 24 131/32 = 1572/384 = 4.0937500
5 17/6 = 68/24 =2.8333333 || 25 33/8 = 1584/384 = 4.1250000
6 3 = 72/24 =3.0000000 | 26 133/32 = 1596/384 = 4.1562500
7 25/8 = 75/24 =3.1250000 || 27 | 1607/384 = 1607/384 = 4.1848958
8 13/4 = 178/24 =3.2500000 | 28 809/192 = 1618/384 = 4.2135417
9 10/3 = 320/96 =3.3333333 | 29 407/96 = 1628/384 = 4.2395833

10 41/12 = 328/96 = 3.4166667 || 30 273/64 = 1638/384 = 4.2656250
11 | 335/96 = 335/96 = 3.4895833 | 31 549/128 1647/384 = 4.2890625
12 57/16 = 342/96 = 3.5625000 || 32 69/16 = 1656/384 = 4.3125000
13 29/8 = 348/96 = 3.6250000 || 33 13/3 = 6656/1536 = 4.3333333
14 59/16 = 354/96 = 3.6875000 || 34 209/48 = 6688/1536 = 4.3541667
15 | 359/96 = 359/96 = 3.7395833 | 35 | 6719/1536 = 6719/1536 = 4.3743490
16 91/24 = 364/96 = 3.7916667 || 36 | 1125/256 = 6750/1536 = 4.3945313
17 23/6 = 1472/384 = 3.8333333 || 37 565/128 = 6780/1536 = 4.4140625
18 31/8 = 1488/384 = 3.8750000 || 38 | 1135/256 = 6810/1536 = 4.4335938

19 | 501/128 = 1503/384 = 3.9140625 || n=20¥1 + 1 (p > 0): Ly = p/2 + 7/3
20 | 253/64 = 1518/384 =3.9531250 || n=3-22+1 (p>1): L, =p/2+21/8

Table 1: Values of L,

We have just seen that the distance L,, which coincides with the formula for e,
given above, can be attained. The proof that L, is also an upper bound will be
given in Section 3.

Table 1 gives a few values of L,, and Figure 3 shows L, as a function of n.
The figure exhibits a logarithmic behavior, and indeed, when one interpolates a
logarithmic function through the values Lqsy; = (3k 4 11)/6, one gets a very good
approximation:

11 11

5 +logs(n — 1) —0.005 < L, < 5 + log4(n — 1) 4+ 0.005, for all n > 9.
When restricted to even values of n or to odd values of n, the function is piecewise
quadratic, with breakpoints at the powers of 2. The recurrence relation L4+ =
Lany1 4 1/2, which can be proved easily, is also in accordance with the logarithmic
growth of L,.

Comparison with Brauer and Brauer’s solution Brauer and Brauer [1989]
conjectured that for the values of the form n = (4% +2)/3 (k > 0), their solution
achieves the optimal distance fy7(n) = k+1. For these values of n, we have p = 2k—3,
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Figure 3: The maximum attainable distance L, for the jeep problem with n cans
and with refilling of whole cans only.

and we get | - X

Lo=kt 14 gz (1= g+ )
Therefore, when n = 2 (k = 1) or n = 6 (k = 2), our solution is the same as
Brauer and Brauer’s solution, but for n > 6 (k > 3), our solution is better, and the
difference approaches 1/27 as k — oo. In contrast to Wood’s solution, whose length
is bounded by a constant fraction of the optimum, Brauer and Brauer’s solution
achieves the correct asymptotic growth factor.

One characteristic of our algorithm is that cans are always kept in pairs. To
see why this is a good idea, consider the situation after a double-move, as shown
in Figure 1, but assume that position €;15 contains only a single can. Then the
jeep can only fill the tank there but carry no useful load. (The other possibility
would be to skip this can, but then the can would be wasted.) This unsatisfactory
situation can never be avoided when the jeep tries to follow the straightforward
greedy strategy that always goes from e; to fi;1/2 and back to €;41. The optimal
algorithm also follows the greedy approach, but with the additional proviso that the
single can f;1/7 is never left alone: in the next move, instead of bringing a new can
to fiti41/2, it is better to fetch the single can from f;;/, and have the two cans in
one place. This approach leads naturally to the structure of double-moves.



3 The upper bound

3.1 Valid inequalities

Let’s take the attitude of the Desert Intelligence Service who would like to prove
that the driver of the jeep could not have completed the journey without illicit help.
Besides the traces on the road-track, which are not very reliable, the clues which
are at our disposal for investigating the matter are the empty cans on the way. We
assume that, whenever the tank is filled, the empty can is left behind, because an
empty can would block the transport of a full can. As an exception to this rule, we
assume that, after filling the tank for the last time, in the absence of other cargo, the
jeep carries the last empty can to the final destination. Let’s denote the positions
of the empty cans by ¢ < e3 < --+ < ¢,. It is no coincidence that we use the
same notation e; as for the positions of the double-cans in Section 2, because in
that solution, one empty can is left at each double-can position. The jeep starts at
position 0 = e; and terminates at €,. We can assume without loss of generality that
€n > €n—1 + 1, because at least one can was opened to the right of e,_;, and thus
the jeep could certainly have reached e,_; + 1. (If this condition is not fulfilled we
redefine e, :=¢€,_1 + 1.)

Let’s look at a segment [e;, €;41] with ¢; < e;11. Between ¢; and ¢;41, we know
that the jeep must have passed at least 2(n —¢) — 1 times: Since n — ¢ cans were
moved into the interval [e;41,00], the jeep must have passed at least n — ¢ times
in the forward direction, in order to bring these cans to e;y; or beyond. Hence it
must have passed at least n —2 — 1 times in the backward direction. We denote this
necessary driving density, which depends on the location y, by ¢(y). So we have

cy)=2-Hj:1<j<n, ¢, 2y} -1, for 0 <y <e,

This gives us, for any position y between 0 and e,, a lower bound ¢(y) on the
total distance which the jeep has driven in the interval [y, oo], or in other words, on
the total amount of fuel spent in this interval. If e;, <y < €;4 for some 1 <1 < n
then

o(v) = [ el) de

= (=) Qo= =)+ 3 (=) (2 —3) =)
=—y(2n—-2i-1) + nf 2 + en = nf 2(e; —y) + (en—y).
j=it1 j=it1 (8)

Now we derive an upper bound A(y) on the amount of fuel used in the interval
[y, oc]. For this bound, we will just consider the positions e; at which the tank was
filled, without caring how the cans got there.



Lemma 1 For any y with 0 < y < e,, the amount of fuel consumed by driving in
the interval [y, o0] is bounded by
i—1

h(y) := > max{l +¢; + ¢j11 — 2y,0} + (1 + & — y) + (n — i), (9)

J=1
where i (1 <1 < n) is an index for which ¢; <y < e;11 holds.

An example of the function A is shown in the upper part of Figure 2.

Before proving this bound we note that the bound A(y) in the lemma is actually

achieved by a “right-extreme consumption tour”, which visits the cans in the left-to-
right order ey, ... ,¢e,. Between e; and €41, the jeep moves forward to the turning
point fi11/, = (e; + €j41 + 1)/2 and retreats to ej11. If €;41 < e; + 1 and such a
tour is at all possible, h(y) equals the amount of fuel consumed by driving in the
interval [y, oo], for all y with 0 <y <e,.
Proof. Let us call a move relevant if the jeep reaches some point in the interval [y, oo]
during the move. Let [;,ls, ... ,[; denote the starting cans and let my, mo, ...  ms_4
denote the ending cans of the relevant moves. (The last move has no ending can.)
Each can 1,... ,n occurs at most once in the list {1,[5,... ,l; and at most once in
the list my,ma,... ,ms_1, and each can 2+ 1,... ,n occurs either in both lists or in
none (in case the can is not used at all). We now delete cans > i+ 1 from both lists.
Let ly,05,...,0; (1 <t < 1) denote the starting cans of the relevant moves among
the first ¢ cans, and let my, mq,... ,m;—; denote the ending cans of the relevant
moves among the first ¢ cans. There are at most ¢t + (n — i) relevant moves, which
contribute to the fuel consumed in the interval [y, c0]. From the total amount of
fuel consumed during these moves, t + n — 7, we must subtract

(y_611)+(y_612)+”'+(y_€lt)

for the fuel that is necessary to reach y from [;, and

(y_eml)-l_(y_emz)-l_"'-l_(y_emt—l)

for the fuel to return from y to m;. Thus we have

hly) <(n—i)+t—[(y—e,) +(y—ep)+- +(y—e,)
_[(y_em1)+(y_em2)+”'+(y_eﬂw—l)]'

Since the [; and the m; are distinct indices from the set {1,...,7} and ¢; < e; <
- < e we get

hy) <(n—i)+t=[(y—e)+ (y—eict) + -+ (y — €imeq1)]
—[(y—e)+(y—eim) + + (y — €imeg2)]
= (=)t (L e+ 3 (L4 6+ e = )
<n—i)+(1+e—y)+ § max{l + ¢; + €¢;_; — 2y,0}

j=1—t



This is clearly bounded by expression (9). m

With ¢g(y) and h(y) as defined above, we can write a necessary condition that
the sequence ey, ... , e, comes from a feasible solution.

9(y) < h(y), for all y € [0, e,] (10)

These are infinitely many conditions, but we will show that it suffices to check them
at a finite number of points.

3.2 A linear programming formulation

First, note that the function g(y) is continuous, piecewise linear, and convez, see
Figure 2. Its slope ¢'(y), when it is defined, equals —c(y). As y decreases from €41
to eq, this quantity decreases (becomes more negative, i. e., the function becomes
steeper). Therefore g(y) is convex.

The function h(y), on the other hand, is also piecewise linear and continuous,
but neither concave nor convex. As y increases from 0 to e,, the function will make
a downward bend at each point e; (and its slope h'(y) decreases by 2) because the
summation bound 7 in (9) increases by 1. On the other hand, h(y) will make an
upward bend at each point y for which 1 + ¢; 4+ €;41 — 2y = 0 (and A/(y) increases
by 2). These are just the points y = fj11/2 = (e; + €41 +1)/2. Of course, if several
of these events occur at the same point y, their effects may cumulate or cancel each
other, and A may either bend upward or downward.

What is important, however, is that A~ may bend upward only at the points
fj+1/2- Between two such points, it is a concave function.

Now if some function ¢ is convex and another function A is concave over some
interval, then ¢(y) < h(y) holds for the whole interval if and only if it holds for the
endpoints of the interval. Thus by decomposing the whole range into subintervals
where h is concave, we see that it is sufficient to check (10) at the possible points
of nonconcavity of A, i. e, at the points f;;1/2, and at the endpoints 0 and e, of the
whole interval. All values y = f;11/; liein the interval [0, e,] and can be tested, since
Ja=1/2 < e, follows from e, > e,_1 + 1. At y = e,, we have g(y) = h(y) = 0, and
thus ¢(y) < h(y) is automatically fulfilled. Condition (10) takes now the following
form.

9(y) < h(y), for y =0, fas2, f52,- - 5 fa—1/2 (11)

We will now substitute these values y into (10), using (8) and (9). For y = 0 we get
n—1

9(0) = 2e; +en (12)
J=1

and h(0) = n, which yields the first inequality:

n—1
Z 2¢j+e,<n (13)

i=1



For the values y = fi11/2 = (ex + exy1+1)/2 (k=1,2,... ,n — 1), we can simplify
the expression (9) for h(y), because we have 1 + €; + €41 — 2y > 0 for 7 > k, and
l+e;+e41—2y <0fory<k.

i—1

h(frrrze) = h(y) =D_(1+ ¢+ e —2y) + (L+ e —y) + (n — 1)

i=k

—(e—w)+ Y Aes—y) =kt D)
j=k+1

Combining this with (8) gives
0> —h(y) +9(y)
n—1

=(y—e)+ > 2y—e)—(n=k+1)+ D 2(e;—y)+ (en—y)
j=kt1 j=itl
n—1

=€, — €+ Z 2le; —yl—(n—k+1).
j=k+1

The last equation is true because e; < y for j < ¢ and e; > y for j > 1. So we finally
get the following inequalities.

n—1
en—ek—l—ZQ-‘ej—ka/g‘gn—k-l—l, fork=1,...,n—1
j=k+1

It will be convenient to change the index variable from k£ to &' = n — k. Writing
again k instead of k' gives us the final form in which we want to use the inequalities.

n—1

€n — €n— + Z 2le; — faktr2| < k+1, fork=1,...,n—1 (14)

j=n—k+1

To summarize, we get the following optimization problem whose objective value
is an upper bound on the solution of the jeep problem.

maximize e, (15)
15
subject to (13), (14), and 0 = ¢; <ex < -+- < gy < €, — L.

This problem can be formulated as a linear programming problem. The standard
way to get rid of the absolute value signs in the constraints is as follows: replace
each absolute value |E| of an expression E that occurs on the left side by a new
variable x, and add the two inequalities £ < x and —F < x to the set of constraints.
This results in a standard linear programming problem, which can be solved by the
simplex algorithm or any of the more recent linear optimization algorithms. This
is how we initially obtained the values e; which are given in Section 2, for different
values of n.

It turns out that the optimal solution is highly degenerate: all inequalities (13)
and (14) are fulfilled with equality, and many of the expressions in (14) whose abso-
lute value is taken are zero. Thus, when solving the linear programs on the computer



by the simplex method, it seems preferable to solve the dual linear program. Indeed,
we observed a speedup factor of almost 10 for large problems when we switched from
the primal simplex method to the dual simplex method.

3.3 An upper bound

The inequalities (14) are difficult to handle because they contain absolute values.
Using the fact that « < |z| and —z < |z| holds for all z, we can replace each
expression |e; — fn_gt1/2| either by (e; — fu—gt1/2) or by —(e; — fa—ky1/2), as we
please, and we derive a valid inequality.

We now take inequality (14) for each even k and replace |e; — fn_gy1/2| by
(€j = fakt1/2) for 3 > n —k/2 and by —(e; — fr—pt1/2) otherwise. This gives the
following inequalities

n—k/2 n—1
€n — Cn—k+1 — Z 2(€j - fn—k+1/2) + Z 2(€j - fn—k+1/2) <k
j=n—k+2 j=n—k/2+1

The terms f,_j41/2 cancel, and we get

— €n k1 — Z 2e; + Z 2ej + €, <k, for 2 <k <n-—1,k even. (16)
j=n—k+2 j=n—k/2+1

Examples. For n = 10, this gives, together with (13), the following 5 inequalities:

—eg+ €10 < 2
—e7 — 2eg +2e9 + €10 < 4
—e5 — 2eg — 2e7 + 2eg + 2e9 + €10 < 6
—e3 — 2e4 — 2e5 — 2eg + 2e7 + 2eg + 2e9 + €19 < 8
2e1 + 2e3 + 2e3 + 2eq + 2e5 + 2e6 + 2er + 2es + 2e9 + €10 < 10

TN TN TN TN N
Syl lien e
N N N N S

11 1 - -
51 57 and 15, and summing them gives

Multiplying the inequalities by %7 é7

€1 € €3 €4 €5 41
Lz < —.
6 e TR TR TN
Since ej, €g, €3, €4, €5 > 0, this implies that the farthest distance that a jeep can
travel with 10 cans of fuel is at most e;o = 41/12. This is the value achieved by the
algorithm in Section 2.
For n =9, we get the following 5 inequalities:

—eg+ 69 <2

—eg — 2e7 + 2eg + €9 < 4

—ey — 2e5 — 2€6 + 2€7 + 2eg + €9 < 6

—eg — 2e3 — 2e4 — 2e5 + 2eg + 2e7 + 2es + eg < 8

2e1 + 2eg + 2e3 + 2e4 + 2e5 + 2e6 + 2e7 + 2eg + €9 <9

e e N e e T
S S S
N N N SN SN



The same multipliers as above lead to

€1 €9 €3 €4 10
R T A T A Wt <
6 + 3 -|-12-|-24-|-69_ 3
giving a bound of 10/3 for 9 cans.
Generally, we proceed as follows. We denote the inequalities (16) by Iy, I5,. .. ,
I|(n=1)/2], where I; denotes the inequality with & = 2[. By I, we denote the inequal-

ity (13). Consider the infinite sequence (m;, mg,...) = (2,4 L L L 1 1 1 1

L ...) defined by

3847

1
mp =g, : for 29 <1< 29" ¢ =-1,0,1,2,...,

=

which has 372, m; = 1. Now we multiply I; by m; for [=1,...,[(n—1)/2] and I,
by r, where
l(n=1)/2]

r=1-— Z my
=1

denotes the remaining part of the series > ;2, m;. By summing these inequalities we
obtain one inequality of the following form.

cier + o+ -+ cpor€not + cren <5, (17)
Lemma2 ¢; >co>c3> > cClja) >0=clpjoiq1 =" =¢c-1=0, and ¢, = 1.

Proof. e; and e; have the same coefficients in all inequalities except in I(,_1)/2, when
n 1s odd. There the coeflicient of e is 0 and the coefficient of e 1s —1. Thus ¢; > cs.

If 2 <35 <n/2 e and €41 have the same coefficients in all inequalities except
I{(n=j)/21, where the coefficients of ¢; and ¢;1; are —1 and —2 if n — j is odd 0 and
—1if n—j is even. In any case, the coefficient of €;4, is smaller than the coefficient
of e; and hence ¢; > ¢;4;.

For n/2 < j <n — 2, we will first show that ¢; = ¢;41; in the end we will show
that ¢,-1 = 0. If n/2 < 57 <n —2, then ¢; and €;4; have different coefficients only
in the two inequalities I,,_; and Ijn—j)/2):

—€jont1 =+ — 26j + 2€j41 + - <20 =25 (In—;)
The other inequality If(,—;)/2) reads
—ej =2+t F+e, <n—j+1, (L(n—jr1)/2)
if n — 7 is odd, and
—€jy1 —2¢jp2 -+ e <n— 7, (Lin-s)/2)

if n—jiseven. If 29 < [(n—j)/2] < 29t then 297! < n — 5 < 292 Hence,
M[(n—j)/2] = Yq and m,_; = gy41 for some ¢, and

G —Cit1 = 9q+1(_2 - (+2)) + gq(_l - (_2)) = =441 + 9, =0,



if n — 7 1s odd, and
¢ — Cit1 = ggr1(—2 = (+2)) + 9,(0 — (—1)) = 0,
if n — j is even. Finally, we consider ¢,_; and ¢,. We have
Cn1 = —2/34+2(1-2/3)=0

and

The proof is complete. [

Lemma 3 The constant term S, in inequality (17) is given by the expression

. _pt3 n—1 [(n—1)?/4]
hE T W T e

where 20T < n < 2PF2,

Proof. We have
l(n=1)/2]
S, =nr+ Z 2lmy
=1
Since 2Pt < n < 2P72 ) we have 27 < |[(n — 1)/2] < 2P™! — 1, and the two parts in
this expression can be calculated as follows.

(n=1)/2] 5 p1
=1y =1 (5 + X219, + (1254 - 27)g,)
q=0
2 19 . 1
— __2?
(z + (154 -2) 5
11 1 1
=-—->.2(1-= |21 — 9¢
36 2) =57 >64p
_ 1t e=hR] 1 = 1)/2
3.9p 6.2p 6. 4r Ip+1 6. 4pr
wikJ 4 Sf gf KEYM
2m; = - + 20+ —- 21
=1 3 q06 4ql2‘1+1 4P [=2P+
4 Pl fatl 4 9atl _ L L2 4 LTJ_4p_2p
a i’*’qzo 6 -4q 6 - 47
4 p 2 IV S = S B
— _ ~ _1__ 2 2 _
3+2+6< %>+ 64 6 6.2
3 p, A
BRI 6 - 4» 20+l



Therefore,

_pt3  on 1 [ onlr] 41

Sn 5 T o T e 6 - 4p

When n is odd,

(252 — a2 4 55 = —(n = 1)2/4 = = | 0,

and when n is even,

277 = n22t 4 12 = —n(n = 2)/4 = - [ 251,

n

So we finally get
_p+3 n—=1 [(n—1)%/4]
Sn = 5 T T g

and the proof is complete. [

With the two previous lemmas, the proof of Theorem 1 can be completed. By
Lemma 2, (17) gives rise to

en < crer a4+ cht€pot F €y <5y, (18)

and by Lemma 3, the upper bound S, is equal to the value L,, claimed in Theorem 1.

Remark 1. The optimal values of ey,...,¢e, are unique. This can be seen as
follows. Since the upper bound in (18) is tight, all inequalities that entered into
the derivation of e, < S, must be fulfilled as equations. These are the inequalities
Io, Iy, ..., I|(n=1)/2), i. €. the relations (13) and (16); all of them were used with
positive multipliers m; and r. In addition, the inequalities e; > 0, e > 0, ...
€|n/2] = 0 were used in (18) with positive multipliers, by Lemma 2. (Note that the
relations e; < e;11 were not used in bounding e,, but of course they are important
for deriving the constraints (10) and hence (13) and (14).)

So any solution with e, = S, must have ey = €3 = -++ = €nj2) = 0. This
corresponds to the initialization step of the algorithm in Section 2. Now we use the
relations (16) as equations. From (16) with £ = 2 obtain directly e, = €,y + 2. If
we take the equations (16) for two successive even values k = 2{ and k = 2/ + 2 and
form their difference, we obtain

—€p_21-1 — 2€5_9] — €p_9i—1 +4e, =2, forl=1,... [(n—-1)/2] — L.

(See the examples after (16).) This is just the recursive relation (4), which in-
cludes (3) as a special case. One more relation can be obtained by taking the
difference of (13) and (16) for k = 2| =% ]. Simplifying by the fact that the first val-
ues €, €z, ... ,€n/2| are 0, we obtain 4e,/911 = 2 if n is even, and 4e(,q1)2 = L if n
is odd. In the even case, this corresponds to the case €,/941 1= 51"'2++63 +1/2=1/2
of the recursion (4), which was still missing. If n is odd, this corresponds to the
initialization statement e(n41y/2 := 1/4 of the algorithm, which was also missing. So



we have derived all initial conditions and recursive equations that are necessary to
determine the values e; uniquely.

The above argument can also be reversed to show that the values e; given by the
initial conditions and the recursion fulfill (16), (13), and hence (18) as equations.
This gives an independent verification that the value e, calculated in Appendix A
must equal the value S, computed in Lemma 3.

Remark 2. All inequalities (13) and (14) are fulfilled with equality. We have just
observed that (14) is fulfilled as inequality for all even k because (16) is derived
from these inequalities. If we take (14) for an odd value &” and use the same rules
for replacing the absolute values as at the beginning of Section 3.3 in the derivation
of (16), it turns out that we get precisely the same inequality as (16) with &k = k' +1,
and hence equality must hold for all k.

Remark 3. Theorem 2 and Corollary 1 in Appendix B show that the necessary
inequalities for €; of problem (15), which we have derived in this section, are sufficient
to guarantee a feasible trip where the jeep leaves the empty cans at the specified
positions. (Actually, it turns out that a very restricted set of inequalities is already
sufficient for this purpose.)

In the proof, we construct the tour for the jeep in a way which is somewhat
similar to the algorithm of Section 2, except that the values e; are given in advance,
and there is the possibility of failure, in which case one violated condition must be
identified. Although this construction in its generality is not needed for proving
the optimality results in our paper, we think that it might be useful to treat other
variations of the problem.

We used a construction procedure similar to the one given in Appendix B to find
the feasible solutions for some sets of values (e, ... ,e,) which we had obtained from
our model with linear programming software. By studying many optimal solutions
which were obtained in this way we finally discovered the easy strategy lying behind
them which is described in Section 2.

Finally, knowing the optimal solution, we went back to the constraints of the
linear program to investigate which of them are really needed to bound the optimum.
This is how we obtained the above optimality proof.

4 Other Variants of the Problem

Dewdney [1987] proposed a variant of the problem in which only constraint 1 but
none of the constraints 4 and 5 is enforced, i. e., fuel can only be stored in cans,
but any amount of fuel can be filled in the tank at any time. This problem was
solved by Jackson, Mitchem, and Schmeichel [1995]. Actually, Dewdney proposed
a variation where each can holds C' = 5 tankfuls of fuel, and this variation is the
problem which was explicitly solved by Jackson et al. As they pointed out in their
paper, their solution can be applied for general C'. Their approach also uses a linear
programming problem which is derived in a very similar way as the inequality in our



paper. However, their solution has a completely different character from the solution
of our problem. Dewdney’s constraint leads to a different expression for h(y), and the
finite set of “critical values” y at which the inequality ¢g(y) < h(y) must be checked
consists of the values e;41/2, as opposed to fi11/2 in our case. Moreover, they could
show that their linear program can be solved in a greedy manner from right to left,
by setting e, at some arbitrary value and successively minimizing €, _1,€,_2,... ,€;.
This is in contrast to our solution, where ¢; is successively determined from left to
right. All depot locations e; are “singular” in the sense that only one can is stored
in each location, apart from the cans which remain at the starting location and are
never moved. It even turns out that locations of the cans which are moved form
a pattern which is independent of n. In other words, for any n, the sequence of
numbers e, — €,_1,€, — €,_2,€, — €,_3,... forms an initial segment of an infinite
sequence which is independent of n.

Despite this large amount of structure, it seems difficult to give an explicit for-
mula for the maximum distance that can be traveled with n cans, or even to compute
the precise order of magnitude.

We initially developed our solution for our version of the jeep problem indepen-
dently of the paper of Jackson et al. [1995]. However, their paper made us aware
that assumption 5 must be stated explicitly, and in general one must distinguish
very carefully the different constraints that are formulated in different versions of
the jeep problem. “It is good exercise to cultivate the habit of being very wary about
the exact wording of a puzzle. It teaches exactitude and caution,” as Dudeney [1917,
p. vi] put it in the introduction to his classic collection of mathematical puzzles.

When only property 5 but not 4 is omitted, we have another possible interpreta-
tion of Wood’s jeep problem, as mentioned in the introduction: Any amount of fuel
may be filled into the tank, but only when the tank is empty. The range of permis-
sible solutions is now intermediate between our problem and Dewdney’s problem,
and the optimal solution is different from both problems.

The example in Figure 4 shows a solution for the case n = 22. The distance
traveled exceeds the optimal solution of our problem (shown in Figure 2) by 1/224.
Whereas the final part (from ej4 to the end) follows the same scheme of double-
moves as our algorithm of section 2, the initial part is different. The parameters of
the initial part have been “locally” optimized, but we do not claim that the optimal
algorithm would follow this type of strategy.

The difference between the problem with constraint 4 and Dewdney’s jeep prob-
lem, where constraint 4 is omitted, can be ascertained already for n = 5. The
optimal solution of Dewdney’s problem has the unique values e; = e3 = 0, e3 = 1/5,
eq = 13/15, and e5 = 43/15. It can be checked quite easily that it is impossible to
attain these values when constraint 4 is in effect.

Acknowledgement. We thank Professor W. Oberschelp for pointing out the ref-
erences to Alcuin’s problem collection.
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Figure 4: A solution for n = 22 cans where partial refilling is allowed. The jeep
starts by filling the tank only to a level 2/7 and carrying the partially emptied can
to €11 := 5/56. With the remaining fuel and an additional can, two full cans are
deposited at ejp := 12/56 and €15 := 19/56. These two cans and the can at ejq,
which contains 5/7 tankfuls of fuel, are used to support the transportation of 8 full
cans from 0 to 75/128. On the back movements of these 8 trips, the jeep takes in
just enough fuel at ey3, €12, and e;; to reach the next depot with an empty tank.
In total, the 8 trips use up all the fuel from the three support cans. The remaining
tour of the jeep, from €19 onward, follows the strategy of Section 2.
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A Calculation of the values ¢;

We will now prove that the values e; given by (6) fulfill the inductive definition (4)
and (3). We assume n > 6. (For smaller n, correctness of (6) can be checked by
direct computation.) From the definitions in (5) we obtain

G,():n—l, b(]:O7 60:1,
g1 = %, byr1 = by, b1 = by + 27, if a, is even; (19)
-1 _ _
gy = 2 . b =b 42, b=, if a, is odd.

First we check the initial conditions. From (19) we have a; = |[(n — 1)/2], and
therefore

Ag=1 and A;=|n/2|+ 1.
So,

1= eay =0 [(1/27] =0,
e; =0, for 1 <1< |n/2].

Since by = 0 or by = 1, we have

[(b1/2)?]

1 = 0.

eTL/2 = eAl—l = 0 +

If n is odd, by = 2, and

en_+1:eA = - —_— = 7 - =
2

o2 4 4
Thus the initial conditions are fulfilled.



To check that the values in (6) satisfy the inductive definition (4) of e,_; for
k > 3, let’s find out the formula which we have to apply in order to compute
€n—2k—1, €n—2k, and €,_gky1, respectively: If n —k = A4y or n —k = Ag4q — 1 then
these formulas depend on the parity of a,. The following table holds for n—k& < n—3,
i.e, k>3.

case n—=k parity of a, || €n—2k—1  €n—2k  €n—2ky1 | range of ¢
1 €[A;+1,A;41 — 2] arbitrary %1 % % (¢g>1)
2 L a, even % % €Ag—1 (¢g>1)
3 g+l a, odd % €A -1 €A, (¢>1)
4 ) a, even €A-1 €4, 1 (¢g>1)
5 at1 a, odd €4, 1 1 (¢ >0)

The last column gives the range of ¢ for which (4) applies, i. e., k < [n/2] — 1.
Let’s check case 1: We haven —k € [A;+ 1, A1 —2],0or agy1 +2 < k <a,— 1.
Using the inequalities ag41 > ay — 1/2 and ay < ay—1/2, we obtain

n—2k+1<n—-2a,41—-3<n—-aq,—2<A; -1

and
n—2k—1>n—-2a,4+1>n—ag1+1>A,4.

Hence,

— — — g1
€n—2k—1 = €n—2k = €n—2k+1 = “5 -

In case 2, we have n — k = Aj4y — 1 and a4 i1s even. We must have ¢ > 1;
otherwise, for ¢ =0, Agy1 —1 =41 -1 =n— ”Zi, and the value k = % is beyond
the bound |n/2| — 1 for which (4) holds.

Since a4 is even, we have k = ag41 + 1 = a4/2 + 1, and thus n — 2k + 1 =
n—a;—1=A,—-1,and n —2k —1,n — 2k < A; — 1. On the other hand, since
k >3 we have ag41 > 2, ag > 2a441 > 4, and ag—1 > 2a4 > a4 + 4. Therefore,

n—2k—-1l=n—-a,—-3>n—a,1+1>A,4,

and

— — k-1
€n—2k—1 = Cn—2k = ~—5 .

Cases 3-5 are similar.

Now it is a matter of straightforward computation to check (4). For example,
let us consider case 3, which is, together with its symmetric counterpart, case 4, the
most difficult case. In order to inductively prove the formula for €4 ,, 1 when a,
is odd we have to substitute the expressions given by (6) into the right side of the
following equation.

€n—2k—1 1+ 2€n_2k + €n_2k+1
4

— 1,1 fg=1, o,

=5+3 [ — t2-ea,-1+ €4,

€Agy-1=1/2+



Using the substitution b, := 2¢ — b,, the expression in (6) for €4, can be written in
the following more convenient equivalent form:

_a=1 1 b2 (52

€4, = 5 1 9 TR for ¢ > 1.
This gives
I 1 —1
€Agp1—-1 = 3 + 1 [qT +2-e4,1+ €Aq]
1 1 [g—1 q—1  [(b/2)°]
=S+ 240,
2 + 4 l 2 i ( 2 + 49
q—1 by/2 _ |(b/2)*)
* ( 2 = 17 41
g 1 by 1(6/2)]
2116 "o 4a+1
q N AT/4+ (227 - by) /4 + [b]/4] q N (27 +b,)%/4] q [62,,/4]
2 4a+1 2 4a+1 2 4ot

The last equation uses (19). The final expression equals the claimed value of €4
The other four cases are handled in the same way.

q+1—1-

The above formulas extend only up to e,_3. We still have to compute e,,_2, €,_1,
and e,. Substituting e, o = % + 4 et 4 =2 into (3) gives

€n-5 €n—4 €n-3
n:2 n-1 = . 2
e tena =3+ "+ T+ (20)

Since e,_9 and e,_; are only intermediate values and not directly of interest, we
shall prove only the formula for e,. To find out which formulas in (5) apply to
these indices, we again make a case distinction. Since 2P7! < n < 2772 the value of

a, = [(n —1)/27| can be 2 or 3.

Case 1. a, = 3. In this case, b, = n —1 — 3 - 2P and moreover, A, = n — 3
Ap—1l=n—-44,1<n-6<n—-5<A4,—-1.

?

I (G Jeol B s L L= 174
nS T A T 1v 2 2p-1 1v
N J2 2
en_4:€Ap_1:pgl_l_U(n 1 ; 27)/2)*|
_p-1 9_3(n—1)+L(n—1)2/4J

2 4 2p+1 4p

—1

€n—5 = —57

2
Substituting these values into (20) gives (7).



Case 2. a, = [(n —1)/2?] = 2. Hence A, — 1 =n —3 and b, =n — 1 — 2P, This
gives

p=1, [(n—1=-2%1)/2)]
2 4p
p=l =1 [(n=1?/]
P
2 + 2° + 4p
We further distinguish two subcases according to the value of a,_y = [(n—1)/2P71],
which can be 4 or 5.

Subcase 2.1.  ay—y = 4. In this case, A,y = n -4, Apoy —1 =n -5, and
bp—l =bp=n—l—2p+1,bp_1 =5-2p+1—n-|—1.

€n—-3 = €4,—1 =

Cp—1 (B2 =t 1)/2)]

€n—q4 = eAp_l - -

2 4p-1
p=1 25 5(n—=1) [(n—=1)/4]
2 4 2P 4p-1
—2 n—1—2rt1)/2)?
enos = a1 = P 2y L(( - )/2)°]
_p—2 n—1  |(n—1)%/4]
=g Pttt

Again, substituting these values of e,_5, €,_4, and €,_3 into (20) gives (7).
Subcase 2.2.  ap—1 = 5. In this case, Ay_; =n—95, 4,1 <n—-4<A,—1, and
b,y =3-2r* — 4 1. This gives €, 4 = %1 and

e el p—=1 [(B-22-n+1)/2)*| p- 1_9+3(n— 1) [(n=1)%/4]
n—5 — €A, | = 9 Ap—1 - 2 9p—1 4p—1 .

Again, we substitute into (20) and obtain formula (7) for e,.

B Sufficiency of the conditions

In this section we show that the constraints (13) and (14) which we used to derive an
upper bound on L, are sufficient for characterizing the possible empty can positions
e; of feasible trips. In fact we will show that this characterization is even achieved by
a very restricted set of O(n) linear inequalities including (13), (16), and the relations
€ < €iy1.

It is clear that in a feasible solution there cannot be a gap larger than 1 between
e; and e;11, since the jeep cannot cross an interval larger than 1 without opening a
can. We show that this condition arises as a consequence of (13) and (16).

Lemma4 [f0=¢€ <e < -+ <ep1 <€, — 1 satisfies (13) and (16), then

i1 <e+1, fori=1,... . n—2, and
en < €p_1 + 2.



Proof. By setting k = 2 in (16) we directly obtain €, < e,y +2. If 2+ <7 <n -2,
we take (16) with k := 2n — 27 and we obtain

7 n—1
—€2i_nt1 — Z 2e; + Zer + e, < 2n — 21.
7j=21—n+2 j=1+1

Using the fact that e¢; < ¢; for 7 <1, e; > €49 for g > 141, and e, > €41 + 1, we
get

—(2n—2i—1)e; + (2n — 21 — 1)ejqq + 1 < 2n — 21,
which clearly implies €;1; < ¢; + 1. For 1 <@ < n/2, we argue similarly, starting
from (13):

n—1 n—1
n>> 24e,> > 2e4e,>2n—2—1)eg+1>(n—1)eyr+1

This gives 1 > €;11 > €j+1 — €;. ]

Theorem 2 Let ey,... €, be any feasible solution of the inequalities (13), (16),
and 0 = e < ey < -+ < e,_1 < e, — 1. Then there ts a feasible trip of the jeep
which reaches e,, leaving empty cans at positions ey, ... ,€,.

Proof. We will prove this by an algorithm which constructs a trip for the jeep, and
we will show its correctness with the help of some intermediate lemmas.

We plan the jeep’s trip move by move. (A typical move will look as shown in
Figure 5 below.) However, the tasks belonging to a single move are not planned in
the sequence in which they are finally carried out. We rather start with a required
initial move of the form e¢; - y — €;41. Afterwards we extend the move by giving
the jeep additional tasks on its way.

The quantity s will denote the fuel which is still available for new tasks of this
move. These new tasks are planned by sweeping from left to right. During this
sweep, s decreases with the amount of driving that is planned.

The algorithm tries to establish depots of double-cans at the positions es, €3, . ...
All remaining cans which have not reached their current destination in some depot e;
are at some common position y, which advances from one move to the next. Between
two moves the jeep and the full cans are in one of three well-structured situations,
which are described below.

It may happen that there is still fuel available (s > 0) but there is no further
work for the jeep to be done on this move, and so the remaining fuel is wasted. A
variable waste accumulates the total amount of wasted fuel.

Description of a move. We now specify how to construct the :-th move, which
starts at e; and ends at €41, for 1 <1 < n — 2. We assume that the jeep is at
position e; with an empty tank. The description will be somewhat informal, since
we will let a variable y vary continuously, and other variables will vary as a function
of y until something happens. The reader who is unsure about the precise meaning
of the following description may consult the realization of the algorithm in Maple
in Appendix C.



Case 1. There are double-cans at positions €;, €;11,... ,¢; with ! > ¢+1. In addition
there are n, > 0 cans at some position y with ¢; <y < e4;.

1.1.

1.2.

Plan the initial move e; = y — e;41: fill the tank and load a can at e;;
move the can to y; and return to e;41.

Let s :=1—(y —€;) — (y — €iy1). [We will show below that s > 0, and
hence the initial move is possible.]

Set ny := n, + 1. This accounts for the additional can brought by the
initial move. [Now we have n, = n — 2/ 4 1.]

While s > 0 and n, > 0, move all n, cans forward, increase y, and
decrease s at speed 2n,. This means that an increase from y to y + Ay
will cause a decrease of s from s to s — 2n, - Ay. The increase of y and
decrease of s continues until one of the following two events occurs.

— If s becomes 0, then stop. Set 7 := ¢+ 1 and plan the next move. If
we still have 1 < [, we continue with Case 1; otherwise the next move
will be in Case 2.

— If y reaches €;4; and n, > 2, then drop a double-can there: set
[:=1+4+1, ny :=ny — 2, and continue. [During the sweep, we alway
maintain the condition n, = n — 20 + i.] However, if n, < 2, then n,
would become zero or negative at this point. In this case we cannot
continue. We set waste := waste + s; 1 := 1+ 1, and go to the next
move.

Case 2. There is a double-can at position ¢;, and n, > 0 cans at some position y
with €; <y < e;41. [We have ny =n —1— 1]

2.1.

2.2.

Plan the initial move €¢; — €;4;: carry a can from e; to e;+1. Let s :=
1 —(éi41 —€). By Lemma4, s > 0.

While s > 0, increase y, decreasing s at speed 2n,,.

— If s becomes 0 before y reaches €;41, (i. €., if s/(2n,) < €;41 —y) then
stop. Set ¢ := 7+ 1 and plan the next move. (The next move will be
in Case 3.)

— If y reaches €;11, and if n, > 1, then drop a can there. (Another can
was placed there during the initial move.) Set n, :=n,—1,1:=1+1,
and continue as in Step 1.2.

However, if n, = 1, we stop at this point y = ¢;41. We set waste :=
waste + s; ¢ := ¢ + 1, and continue with the next move. (This will
happen if i = n — 2.)

Case 3. There is a single can at position e;, and n, > 0 cans at some position
y < e;. [We have ny, =n —1.]

3.1.

Plan the initial move e; — y — €;41: fill the tank at e;; move back to y
and load a can there; bring the can forward to e;1;. Set n, 1= n, — L.
[We have n, =n —1—1, as in Step 2.1.]



Let s:=1—(e; —y) — (€41 — y). If s is negative then stop. There is no
solution.

3.2. This is identical to Step 2.2.

Q ny:9 ny/:6 nyu:4
e
‘ J
D ‘
)
D)
—
> ;
T T T T —
e; Y €it1 €it2 y’ €i4+3 y” €it4

Figure 5: A typical move constructed be the algorithm. This :-th move starts at ¢;
in Case 2 with n, = 9. During the planning of the move, y advances over y’ to its
final value y”, and n, decreases to n,» = 4 on the way. In the end, we have [ = 1 +3,
and the (7 + 1)-st move will start in Case 1. The parts which are accompanied by a
thick arrow constitute the “initial move”.

We initialize the algorithm by setting 1 := 1, y := 0, n, := n — 2, waste := 0.
The starting situation is Case 2. It is straightforward to verify that at the end of
each move, the situation of the jeep is again as described in one of the three cases,
and that the expressions for n, in terms of ¢ and [ given in brackets remain valid
during the algorithm, and n, remains positive.

The last two moves must be modified a little. For : = n — 1, one can only arrive
in Case 3, with one can at position y, because the other cases would lead to n, < 0.
The (n — 1)-st move is of the form e,_; — y — e, — 1, like in Step 3.1. This move
is only possible if s := 1 — (e,-1 —y) — (e, — 1 —y) > 0. The last move goes straight
from e, — 1 to e,. It is always possible.

Each move of the jeep is initially of the form e; — y — €;4;. In addition, the
jeep may have to transport a number of cans from y forward, “dropping” some
cans on the way. So the jeep interrupts the normal course of the initial move upon
reaching y, carries out the additional operations, and resumes the initial move at
the end. The number of additional cans is decreasing as y increases, and so there is
no problem in carrying out the additional transport. A typical move generated by
the algorithm is shown in Figure 5. The program in Appendix C gives details about
the construction of the move.



We will first show that, unless the algorithm stops in Step 3.1, it produces a
feasible solution. In the end we will demonstrate that the algorithm can only stop
in Step 3.1 if one of the conditions (16) is violated.

Lemma 5 In Step 1.1, s does not become negative.

Proof. The previous move has started from ¢;_1, reached y, and terminated in e;.

Therefore,
1> (y—ei_1)+(y—€¢) > (y—ei)+(y—ei+1). [ ]

The total amount of driving is at least g(0), where ¢(0) is given by (12). Since
there are n cans available, it is clear that at most n —¢(0) cans of fuel can be wasted.
As soon as we have wasted more than this amount, we are sure to fail. The following
lemma shows that the moves constructed by our algorithm will never waste more
than this bound.

Lemma 6 During the algorithm, the total waste is always bounded by n — g(0).

Proof. Assume that a move terminates in Step 1.2 with s > 0. The total amount of
fuel which has been used equals ¢ cans minus the total waste so far. This must be
equal to the amount B of driving done. We always have n, = n — 2/ 4+ 1 and this
must be 1 or 2 upon reaching e;1. If n 4 7 is even, we have [ + 1 = (n 4 1)/2, and
the last value of n, is 2. If n 4+ ¢ is odd, we have [ +1 = (n + ¢+ 1)/2, and the last
value of n, is 1.

The quantity B can now be computed by observing how often the jeep has gone
back and forth between each e; and €41, as in the derivation of (8).

B=(2n—1)er+(2n—3)(e2— )+ + (2(n —i) = 1) (eiy1 — )
+ (2(n —1) - 4) (€itz — €iy1) + (Q(n —1) - 8)(€i+3 — €it2) + -

+ deg, if n 41 is even

=2e1 4 2e3 + -+ 26 + €41 +Aeipa - ..
“ “ ‘ Citl Ci+2 {+4€1+2€1+1, ifn+41is odd

We are interested in the quantity ¢g(0) — B. If n + ¢ is even, we have
9(0) — B = —e€iy1 —2€402 — -+ — 2€141 + 2€142 + - + 2€p—1 + €, < — 1.
This follows by taking k = n — ¢ in (16). If n 4 ¢ is odd, we have similarly
9(0) — B=—¢€iy1 — 2640 — - —2e1+ 2€140+ -+ 2€,1 + €, < — 1.

The last inequality may be derived by taking (16) for K = n—i—1 and for & = n—i+1.
The average of these two inequalities together with e; < e;4o gives the above relation.
Summarizing, we have ¢(0) — B < n — 1 and B < i — waste, which gives the desired
result. ]

Now the only thing that can happen is that the algorithm terminates with failure
in Step 3.1 of the i-th move, for 2 <1 < n — 1. In this case we compare the amount



of driving which was done with the amount of fuel spent, as above, and we will
obtain a contradiction. Let us first assume that : < n — 2.

The situation is as follows. The total amount of fuel spent is 1 — waste. With
this fuel, the jeep has moved cans to ey, eq,... ,€; (they are now empty), and it has
moved n, = n — ¢ additional cans to y; but the jeep did not succeed to bring the
last can from y to e;41. Thus, if we increase y to (e; + €;41 — 1)/2 and assume that
a can was brought to €;41, we get an amount of driving C' which is more work than
the jeep has done:

C >1i—waste >1—n — g(0), (21)
by Lemma 6. With y := (e; + €;41 — 1)/2 we can now write

C =242+ - +2e+e€41 + 2n—i—1)y
=2e;1+2e+-- 426+ (n—t+1)e+(n—1)eg — (n—1—1).

Combining this with (21) gives

0<C—-g0)+n—:
=n—i1—1e+(n—1—2)ei41 — 2642 — - — 2,1 — (e, — 1) <0,

using the fact that e; < ey <--- <e,_1 < e, — 1. This is a contradiction.

For the (n —1)-st move, the role of e;4; in the expression for C' is taken by e, — 1
instead of €,, and a suitably modified calculation leads again to a contradiction.
This ends the proof of Theorem 2. [

It is remarkable that the very small set of constraints (13) and (16), together with
the ordering of ¢;, is sufficient to characterize feasible solutions. The full generality
of (14) is not necessary.

Corollary 1 Any feasible solution of Problem (15) gives rise to a journey of the
jeep which reaches e,,.

Proof. Since the conditions (16) were derived from (14), the assumptions of Theo-
rem 2 follow from the constraints of Problem (15). ]

C Program for the algorithm of Appendix B

The following program implements the algorithm described above. Given the num-
ber n of cans, and the sorted array ey, ... , e, of desired final position of empty cans,
it constructs a feasible tour, or otherwise it prints an error message exhibiting one
of the conditions which is violated.

The program is written in the programming language Maple, but it should be
understandable by anybody who is familiar with some procedural programming
language.

The three cases are encoded by the variable [ which is defined by the condition
that €;41, €149, ... are the positions beyond e; at which no double-cans have yet been



established. The result is a sequence of “commands” (procedure calls) which tell
the jeep what to do, in the correct order. The program assumes that the conditions
e =0,0<e¢ —e€41 <1,and 1 < e,_; — e, <2 have been checked beforehand.!

max_waste :=n — 2 *sum(eli], 7’ =1..n —1) — e[n];
if maz_waste < 0 then ERROR(‘(13) is violated.) fi;
y:=0; n_y:=n—2; waste :=0; [:=1; # The jeep starts at ¢[1] = 0.
for : from 1 to n — 2 do
fill_tank();
s:=1—abs(e[i] — y) — abs(e[i + 1] — y);
# carry out the first part of the initial move, up to y:
ifl>ithen # CASE Ll efi+1]<e[l]<y
load_can(); move_to(y); unload_can();
ny:=ny+1;
elif [ =i then # CASE 2. ¢[i] <y <e[i+ 1]
load_can(); move_to(y); unload_can();
else # CASE 3. [=1—1and y < et
move_to(y);
l:=1+1; ny:=n_y—1;
fi;
# plan additional work:
y_old :=vy;
while s > 0 do
Delta_y := min(e[l + 1] — y, s/(2 * n_y));
y =1y + Delta_y;
§:=8— 2% Delta_y * n_y;
if s=0or
n.y<lor ({>iand n.y <2) then break fi; # exit the while loop.
load_can(); move_to(y); unload_can(); move_to(y_old);

ny :=ny—1;
if [ > 7 then
load_can(); move_to(y); unload_can(); move_to(y-old);
n_y = n_y— 1;
fi;
l:=1+1;
od;

for j from 1 to n_y do # We always have n_y > 0.
load_can(); move_to(y); unload_can(); move_to(y-old);

od:

?

waste := waste + s;
if waste > maz_waste then

!The PostScript file from which the copy of the paper which you are now looking at was
generated contains the text of a Maple procedure which carries out these statements, together
with some auxiliary procedures, near its beginning.



if (n —7) mod 2 = 0 then ERROR(‘(16) is violated for k = n —i.%);
else ERROR(‘(16) is violated for k =n —t—1or for k=n —1+ 1.°);
fi fi;

# carry out the final part of the initial move, from y_old:
if yold < e[i + 1] then load_can(); move_to(e[i + 1]); unload_can();
else move_to(e[i + 1]);
fi;
od;
# the last two moves:
s:=1—abs(e[n — 1] —y) — abs(e[n] — 1 —y);
waste := wasle + s;
fill_tank(); move_to(y); load_can(); move_to(e[n] — 1);
fill_tank(); move_to(e[n]); unload_can();



