
Optimization of Static Task and Bus Access Schedules for
Time-Triggered Distributed Embedded Systems with

Model-Checking

Zonghua Gu, Xiuqiang He and Mingxuan Yuan
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

ABSTRACT
Time-Triggered Protocol for the bus and static task schedul-
ing for the CPU are widely used in safety-critical distributed
embedded systems. Researchers have presented efficient heuris-
tic algorithms to jointly optimize static task and bus access
schedules. In this paper, we use the model checker SPIN
to provide a flexible and configurable technique for obtain-
ing provably optimal solutions, and evaluate its performance
tradeoffs compared to heuristic algorithms.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed applications; D.4.1 [Operating Sys-
tems]: Process Management—Scheduling ; D.4.7 [Operating
Systems]: Organization and Design—Real-time systems and
embedded systems

General Terms
Algorithms, Verification, Performance

Keywords
model-checking, optimization, scheduling

1. INTRODUCTION
Time-Triggered Protocol (TTP) [1] is a widely used bus

protocol for safety-critical automotive and avionics control
systems, e.g., X-by-wire, where X stands for drive, steer,
brake, etc. It relies on time-triggered static scheduling, i.e.,
the bus media access protocol is Time-Division Multiple Ac-
cess (TDMA), where the bus schedule is divided into time
slots of fixed length, and each CPU node on the bus is as-
signed a time slot in which to transmit messages. In this pa-
per, we consider statically-scheduled distributed embedded
systems, where both software tasks and network messages
are scheduled offline to build a schedule table, and runtime
dispatch relies on simple table lookup operations. Static

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM ACM 978-1-59593-627-1/07/0006 ...$5.00.

cyclic scheduling has the advantages of runtime predicabil-
ity and low overhead, and has been advocated as an effective
approach to building predictable hard real-time systems.

When a task sends a message to another task on a dif-
ferent CPU, the message is put in the local communication
controller, which in turn puts the message on the bus based
on the static schedule. All messages in the same bus time
slot are delivered to their destination CPU nodes at the end
of the time slot, regardless of the messages’ exact arrival
times. When the receiver task is activated based on a static
schedule, it should find its input message ready to be read
in the local buffer. As an illustrating example, Figure 1
shows a task graph, where T0, T2 and T3 are assigned to
CPU0; T1 and T4 are assigned to CPU1. The numbers in
parentheses denote either task execution time on the CPU
or message transmission delay on the bus. Suppose each
task reads its input messages at the beginning, and sends
its output messages at the end of its execution. There are
two bus time slots: S0 assigned to CPU0 and S1 assigned to
CPU1, each with the same length 15. Consider the schedule
in Figure 2(a). T0 is invoked on CPU0 at time 0, finishes ex-
ecution and puts m0 in the local buffer at time 20. T0 sends
a local message to T2 on the same node, so it does not need
to access the bus, and T2 starts to execute at time 20. m0 is
given access to the bus at time 30 in time slot S0 assigned
to CPU0, and finishes transmission at time 35. However,
it is not delivered until the end of the time slot at time 45,
according to the TDMA bus protocol, and that is when the
downstream task T1 begins to execute on CPU1, which fin-
ishes execution at time 55 and puts a message m1 in the
local buffer. There happens to be enough space in time slot
S1 assigned to CPU1, so m1 immediately gains access to the
bus and arrives at CPU0 at time 60, at which time T3 starts
on CPU0 since T2 happens to finish execution at time 60 and
CPU0 is free. T3 finishes execution at time 70 and sends m2

on the bus. Finally, T4 starts at time 75 and finishes at time
95. Figure 2(b) shows how an initial task release offset can
reduce schedule length, and Figure 2(c) shows a preemptive
schedule with the shortest possible schedule length.

Given a task graph and an execution platform, Pop et al
[2] used heuristic algorithms to find near-optimal static task
and message schedules with the optimization objective of
minimizing total schedule length and maximizing utilization
of the CPUs and bus bandwidth. In general, static schedul-
ing is a NP-complete combinatorial optimization problem,
any heuristic algorithm necessarily produces sub-optimal so-
lutions. In this paper, we use the model-checker SPIN [3]
to tackle the optimization problem and evaluate its perfor-

294

16.4

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

m0(5)

m1(5)

m2(5)

T0(20)

T4(20)

T2(40)T1(10)

T3(10)

Figure 1: A task graph as a running example.

(a) Schedule length of 95

(c) Schedule length of 75

(b) Schedule length of 90

0 15 30 45 60 75 90 105

0 15 30 45 60 75 90 105

CPU0

CPU1

Bus

T3T2T0

m2m1m0

m0 m1 m2

T0

T22T21 T3T0

m2m1m0

Bus

T2T3

CPU0

CPU1

CPU0

CPU1

Bus

0 15 30 45 60 75 90 1055

5

T4T1

S0=15 S1=15

S1=15

T1

S0=15
T4

S0=15
T4

S1=15

T1

Figure 2: Static schedules for the task graph in Fig-
ure 1. (a) and (b) are non-preemptive schedules,
and (c) is a preemptive schedule. Schedule length is
the distance between the two dotted arrows, which
indicate start and end of the task graph’s execution.

mance tradeoffs in terms of optimality vs. scalability.
This paper is structured as follows: we present the for-

mal problem formulation in Section 2; the modeling details
in Section 3; performance evaluation results in Section 4;
related work in Section 5; finally, conclusions in Section 6.

2. PROBLEM FORMULATION
A bus access schedule for a TDMA bus refers to a set

of configuration parameters including time slot lengths and
slot-to-CPU assignments. Defined formally:

Definition 1 (Bus Access Schedule). Consider an
execution platform with M identical CPU nodes {CPUi|0 ≤
i ≤ M − 1} connected via a TDMA bus. A Bus Access
Schedule consists of M time slots TS {tsi|0 ≤ i ≤ M − 1},
and each time slot tsi is assigned to a unique CPU node
CPUj with a function F : TS → Z+ mapping from each bus
time slot to a unique CPU ID, and has a length of sli ∈ Z+,
where Z+ is the set of non-negative integers.

Definition 2 (Task Graph). A Task Graph is a di-
rected graph G = (V, E), where V is a set of N tasks {Ti|0 ≤
i ≤ N − 1}, and E is a set of edges {eij |0 ≤ i, j ≤ N − 1}
representing precedence relations among tasks. Each task Ti

has a worst-case execution time eti, and each edge eij from

Ti to Tj has a message size mk measured in terms of the
length of time it occupies the bus to finish transmission if
Ti and Tj are assigned to different CPU nodes. If they are
assigned to the same CPU node, then message passing does
not access the bus and takes 0 time.

A static schedule can be non-preemptive, where each task
runs to completion once invoked, or preemptive, where a
task can be stopped and resumed later. Note the differ-
ence between preemptive static schedules and priority-driven
preemptive scheduling such as Rate Monotonic or Earliest
Deadline First, where each task is assigned a priority, and a
high priority task can preempt low-priority tasks at runtime.
For static schedules, all task invocation times are determined
offline and there are no runtime priority-based arbitration.
Instead, preemption refers to the fact that a task can be
broken up into multiple segments of execution instead of
running to completion once invoked. For example, in Fig-
ure 2(c), task T3 is ready for execution at time 45 when
task T2 is running. For priority-driven scheduling, T2 pre-
empts T3 if T2 has higher priority than T3, otherwise T3

continues execution. For static scheduling, the offline opti-
mization algorithm tries both possibilities (continue to run
T2, or preempt T2 and run T3) and chooses the one resulting
in the shorter schedule length.

We can formulate the static task and bus access optimiza-
tion problem as follows:

Given a task graph, a preemption policy and an execution
platform with M CPU nodes connected via a TDMA bus,
find a set of task-to-CPU assignments, a Bus Access Sched-
ule, and a table of task and message start times such that
all precedence and mutual exclusion constraints are satisfied,
and the total schedule length (makespan) is minimized.

In general, the optimal preemptive schedule is guaranteed
to be not longer than the optimal non-preemptive sched-
ule, since the set of non-preemptive schedules is a subset of
the set of preemptive schedules for a given static scheduling
problem.

Definition 3 (Work-Conserving Schedule). A sched-
ule is work-conserving if the CPU is never left idle when
there are one or more ready tasks waiting for execution.

Theorem 1. Every static preemptive scheduling problem
has a solution of an optimal work-conserving schedule.

This is an old and well-known theorem that allows us to
reduce the search space to work-conserving schedules for pre-
emptive scheduling. Next, we prove a theorem that allows
us to further reduce the search space significantly for both
preemptive and non-preemptive scheduling.

Definition 4 (Initial and Non-Initial Tasks/Messages).
An initial task does not have any predecessor tasks or mes-
sages in the task graph; a non-initial task or message has
one or more predecessor tasks or messages.

Definition 5 (Anchor Point). An anchor point is a
time instant when either a task finishes execution, or a mes-
sage finishes transmission, or the bus switches to the next
time slot.

Anchor points are important because they are the time
instants when one or more non-initial tasks may start exe-
cution, or messages may gain access to the bus.

295

Theorem 2. To find the shortest static schedule, we only
need to try the anchor points as possible start times for non-
initial tasks and messages, not the time instants in-between
anchor points.

Proof. Suppose Ti (mi) is the earliest task1 (message)
in the schedule that is not an anchor point. Suppose Ti

(mi) starts at time instant ti. Let apk be the nearest ear-
lier anchor point before ti, i.e., there are no other anchor
points in the time interval [apk, ti]. We then move Ti (mi)’s
start time earlier to apk. This is always possible because
the CPU (bus) is idle in the time interval [apk, ti], and Ti

(mi)’s precedence constraints will not be violated by the
move, otherwise apk would not be the nearest earlier anchor
point. This may in turn cause Ti (mi)’s successor tasks or
messages to start at non-anchor points. We perform this op-
eration repeatedly to tasks and messages from left to right
on the timeline until all non-initial tasks or messages start
at anchor points. Each step either keeps the total schedule
length unchanged if the task or message that is moved ear-
lier on the timeline is not the last one in the schedule, or
reduces the schedule length if the last task in the schedule
is moved.

(c) Schedule length of 110

(b) Schedule length of 105

(a) Schedule length of 105

T2T3

4530150 m0

m1 m2

60 75 90 105
Bus

CPU1

CPU0

4530150 m0

m1 m2

60 75 90 105
Bus

CPU0

CPU1

4530150 m0

m1 m2

60 75 90 105

T0

Bus

CPU1

CPU0

T0 T2T3

T2T3T0

T4

T4

S0=15

S1=15

T1

T1 T4

S0=15

S1=15

T1

S0=15

S1=15

Figure 3: Illustration of Theorem 2’s proof.

Figure 3 illustrates the proof. The schedule in (a) with
length 105 contains two time instants when some tasks start
at non-anchor point time instants: non-initial task T3 starts
at time 55, which lies between two anchor points [45, 60];
initial task T0 starts at time 5, which lies between two anchor
points [0, 15]. We first move T3 to start earlier at time 45
and finish at time 55. Now T2’s start time 65 is no longer
an anchor point, and lies within the time interval between
two anchor points [60, 75]. We then move T2 to start earlier
at time 60 to obtain the schedule in (b), where all tasks
start at anchor points and the schedule length is still 105.
Intuitively, this operation “squeezes out the slack” in the
schedule to make it more compact without violating any
precedence constraints.

Theorem 2 is not applicable to the initial task T0, e.g., if
T0 and m0 are both moved earlier as shown in Figure 3(c),

1Or task segment if the schedule is preemptive.

then the schedule length is increased to 110. Therefore,
to obtain the shortest possible schedule, we should try all
possible initial task start times (release offsets) from 0 up to
the period of the TDMA bus, defined as the sum of all M

time slot lengths. However, it is a reasonable assumption,
as made in [2], to let the initial task release offset always be
0, i.e., the initial task starts at the anchor point when the
bus switches to a new time slot. We consider both cases in
Section 4 in the performance evaluation experiments.

The schedule in Figure 3(b) still contains unnecessary
slacks, since it is possible to move m2 and T2 to start at
time 55 and T4 to start at time 60 to obtain the schedule in
Figure 2(b) with length 90. However, the utility of Theo-
rem 2 is to eliminate certain unnecessary slacks in order to
reduce the search space, not to find the optimal schedule,
which is the job of the model-checker.

3. MODELING WITH SPIN
SPIN [3] is an explicit-state, on-the-fly model-checker,

which means that system states are represented explicitly
instead of symbolically using data structures such as Bi-
nary Decision Diagrams, and the state space is searched on-
the-fly instead of after the whole state space is constructed.
Promela is the input modeling language of SPIN. Its syn-
tax is similar to programming languages like C, with data
types such as short, int, bool and struct. The main dif-
ference from programming languages lies in its concurrency
and non-determinism constructs. proctype is used to de-
clare a process with its own independent thread of control.
The operator -> is equivalent to ;, and if condition1 evalu-
ates to false in the line of code condition1 -> statement1,
then the process containing this line blocks until condition1
becomes true. If all processes block, then the system runs
into a deadlock. SPIN does not have a built-in concept of
real-time. The timeout statement becomes enabled when
all other processes are blocked, thus bringing the system
out of a deadlock situation. SPIN’s property specification
language is Linear Temporal Logic (LTL). The reachability
property <> p states that “From the initial state, all exe-
cution paths eventually lead to a state where property p is
true”.

A task is modeled as a finite state machine with three
states (IDLE, RUNNING, DONE) for non-preemptive scheduling,
or 4 states (IDLE, RUNNING, PREEMPTED, DONE) for preemptive
scheduling. A task is initialized to be in state IDLE. It can
make a transition to state RUNNING when all its precedence
constraints are satisfied and the CPU is free, and make a
transition from RUNNING to DONE when it finishes execution.
We use a global integer variable time to represent real-time,
and keep incrementing it until all tasks have finished execu-
tion. We then ask SPIN to check the reachability property
φ “from the initial state, all possible execution paths even-
tually lead to a state where current time is ≥ lb.”, expressed
in LTL as <> time>=lb, where lb is a possible lower-bound
of the length of all possible execution paths. If φ is proven
false, then an execution path has been found leading to a
state when all tasks have finished execution before time lb,
and we need to reduce lb to search for a tighter lower-bound;
otherwise, any execution path must have length ≥ lb, and
we need to increment lb. Length of the shortest execution
path is the value lb such that φ is true for lb but false for
lb+1, and the schedule is the execution path with length lb,
produced by the model-checker when proving the property

296

<> time>=lb+1 to be false. We use the branch-and-bound
technique based on embedded C code in Promela [4] to au-
tomate this search process for the correct and tight bound
lb.

We use a small example with two tasks and two CPUs
to illustrate the Promela model, where Task[0] is assigned
to CPU[0] and Task[1] is assigned to CPU[1]. In the code
listings, we use /**/ to enclose comments, and {} to en-
close descriptions of code segments that are too long to be
included themselves. Here are the global variable declara-
tions:

#define N 2 /*Number of tasks*/
#define M 2 /*Number of CPUs*/
mtype={IDLE, RUNNING, PREEMPTED, DONE}; /*Task status*/
mtype={FREE, BUSY}; /*CPU status*/
typedef TaskInfo {

byte cpuID; /*ID of node that the task is allocated to*/
short et; /*Execution time*/
short finTime; /*Finish time*/
mtype status;}; /*IDLE, RUNNING, PREEMPTED or DONE*/

TaskInfo Task[N]; /*N tasks*/
typedef CPUInfo {

mtype status;}; /*FREE or BUSY*/
CPUInfo CPU[M]; /*M CPUs*/
typedef BusInfo {

short slotLength[M]; /*slotLength[i] is length of the
ith time slot*/

byte cpuID[M];/*cpuID[i] is ID of the CPU that the
ith time slot is assigned to*/

byte curSlot; /*Currently active bus time slot*/
short NSST;}; /*Next slot start time*/

BusInfo theBus; /*The one unique bus*/

Here is the Promela model for the TDMA bus:

proctype Bus(){
/*Block until time advances to the Next Slot Start Time.*/
atomic(time==theBus.NSST ->

{Deliver messages in its current time slot.}
theBus.curSlot=(theBus.curSlot+1)%M;
theBus.NSST=time+theBus.slotLength[theBus.curSlot]}

Here is the Promela model of a non-preemptive task:

proctype Task(byte i) {
{Block until precedence relations are satisfied.}
/*Block until CPU is free.*/
atomic{CPU[Task[i].cpuID].status==FREE->

Task[i].status=RUNNING;
Task[i].finTime=time+Task[i].et;
CPU[Task[i].cpuID].status=BUSY;}

/*Block until time advances to its finish time*/
atomic{time==Task[i].finTime->

Task[i].status=DONE;
CPU[Task[i].cpuID].status=FREE;
{Send messages to remote receiver tasks.}

In order to exploit Theorem 2, which allows us to limit
the possible start time instants for non-initial tasks and mes-
sages to be at anchor points, we adopt the well-known Vari-
able Time Advance (VTA) approach in Discrete Event Sim-
ulation [5, 4] to increment the global variable time repre-
senting global time. Each event is tagged with a timestamp,
and events are put in a queue sorted and processed in in-
creasing timestamp order. The global clock always advances
to the timestamp of the next event in the queue. Compared
to the naive approach of periodic clock ticks to drive system
execution, the VTA approach avoids unnecessary clock ticks
and associated state space cost during periods of inactivity
where nothing interesting happens.

#define AllTasksDone\
(Task[0].status==DONE&&Task[1].status==DONE)
#define TimeAdvanceGuard\ !AllTasksDone&&(theBus.NSST>time)\
(Task[0].status!=RUNNING||Task[0].finTime>time)&&\
(Task[1].status!=RUNNING||Task[1].finTime>time)&&\
proctype Advance(){
byte i=0; int minstep;
do::atomic{

TimeAdvanceGuard->
minstep=MAXSTEP; int i=0;
do::(i<N)->
if::(Task[i].finTime>time&&(Task[i].finTime-time)<minstep)

->minstep=(Task[i].finTime-time)
::else fi; i++

::(i==N)->break
od;
if::(theBus.NSST>time&&theBus.NSST-time<minstep)

->minstep=theBus.NSST-time;
::else fi;

time=time+minstep;}
od}

Figure 4: Promela code for incrementing the global
variable time.

For non-work-conserving schedules, Figure 4 shows the
code for advancing the time variable to the nearest future
time instant. TimeAdvanceGuard ensures:

• Variable time representing global time stops advancing
after all tasks have finished their execution (moved to
state DONE), so we can use the maximum value of time
as the total schedule length.

• The bus next slot start time theBus.NSST must be in
the future. This prevents time from advancing past
theBus.NSST without triggering it to change to the
next time slot.

• When a task is running, its finish time (finTime) must
be in the future. This prevents time from advanc-
ing past a task’s finTime without triggering its state
change to DONE.

Therefore, TimeAdvanceGuard forces the state transition
guarded by time == Task[i].finTime in Task and time ==

theBus.NSST in Bus to be taken as soon as the respective
guard conditions become true, i.e., the task must finish run-
ning at its finTime and the bus must change its slot at
theBus.NSST. However, nothing forces a transition guarded
by CPU[Task[i].cpuID].status==FREE to be taken as soon
as enabled. This means that a task can wait for a non-
deterministic amount of time before starting to run even
when the CPU is free. This forces the model-checker to try
all possible task delays to find the optimal schedule.

To model work-conserving schedules, we replace
TimeAdvanceGuard with timeout, thus forcing all enabled
transitions to be taken before timeout is enabled. This
removes the non-deterministic delay of a task’s start time
when the CPU is free. For non-preemptive scheduling, this
represents a tradeoff between optimality and scalability, since
the search space is reduced if only work-conserving schedules
are considered. But for preemptive scheduling, Theorem 1
ensures that optimality is not sacrificed. Compared to the
heuristic list scheduling algorithm in [2], which chooses one
task among all ready tasks to be started based on a heuris-
tic priority function, the Promela model with timeout ex-

297

haustively tries all possible choices of the task to be started
at each decision point by exploiting non-determinism when
multiple tasks compete for the CPU. Therefore, the sched-
ules produced by list scheduling form a subset of all possible
work-conserving schedules searched by SPIN using timeout,
which in turn form a subset of all possible work-conserving
and non-work-conserving schedules searched by SPIN using
TimeAdvanceGuard.

4. PERFORMANCE EVALUATION
We compare performance of the model-checking approach

to that of heuristic algorithms used in [2] in terms of sched-
ule length, algorithm running time and memory consump-
tion. With the common objective of minimizing the schedule
length, there are several degrees of freedom when formulat-
ing the optimization problem for model-checking:

• Preemptive or non-preemptive task scheduling.

• Work-conserving, or non-work-conserving task schedul-
ing.

• Given initial task release offset of 0, or trying all pos-
sible offsets.

• Given task allocation to CPU nodes, or trying all pos-
sible task allocations.

We consider task allocation to CPU nodes to be already
given, and vary the other degrees of freedom to consider four
representative cases:

• H: heuristic algorithm used in [2].

• A: model-checking with non-preemptive, work-conserving
scheduling, given initial task release offset of 0

• B: model-checking with non-preemptive, non work-
conserving scheduling, given initial task release offset
of 0.

• C: model-checking with preemptive, work-conserving
scheduling, trying all possible initial task release off-
sets.

NT 4 5 7 8 9 10 12

H SL 40 54 89 74 93 102 163

A

SL 38 54 89 74 93 102 161

RT 0.04 0.2 2.8 10.9 44.0 174.0 357.9

Mem 6 8 37 110 369 1272 51

B

SL 32 42 79 63 90 108 161

RT 1.6 44.5 46.3 51.3 78.2 152.9 268.4

Mem 44 1012 51 51 51 51 51

C

SL 27 37 62 50 67 90 132

RT 0.3 0.9 21.8 53.4 219.4 241.9 489.0

Mem 10 22 439 626 1759 51 51

Table 1: Performance evaluation results. NT stands
for Number of Tasks; SL stands for Schedule Length;
RT stands for Running Time in seconds; Mem

stands for Memory Size in MB. Italic font is used
to denote results obtained with bit-state hashing,
and normal font is used to denote results obtained
with exhaustive search.

Table 1 shows the performance evaluation results. SPIN
provides a compile-time option -DBITSTATE, standing for bit-
state hashing. When enabled, SPIN searches the state space

non-exhaustively in order to reduce size of the memory space
that stores the states that have been visited previously. This
allows SPIN to handle larger problem sizes at the cost of
not always finding the optimal solution. We turn on bit-
state hashing when exhaustive search is not feasible, and
the results produced are shown in italic font in Table 1.

The execution platform consists of two CPUs connected
via a TDMA bus. Since [2] assumes a given task-to-CPU
allocation and did not mention how the allocation was ob-
tained, we assign tasks to CPUs randomly. We developed a
small utility tool to generate Promela code from a task graph
specification, and used TGFF [6] to generate random task
graphs as input to the tool. The model-checking sessions
were run on an AMD Opteron-based Linux workstation with
four 1.8GHz CPUs and 8GB of RAM. Since SPIN is not par-
allelized, only one CPU is actually utilized. We terminate a
model-checking session if it has not finished within 30 min-
utes, at which time the memory size of the model-checker
process has typically exceeded 6GB. Obviously, performance
depends on many factors including number of tasks, task
graph shape, task execution times, message sizes and task-
to-CPU allocation, but we only show the number of tasks,
since it has the largest impact on state space size. Since
the heuristic algorithm in [2] generally finishes within a few
seconds and consumes little memory, we do not show its
running time and memory size information, but only show
its schedule lengths.

The results show that model-checking with exhaustive
search always produces schedules with equal or shorter length
than heuristic algorithms in [2]. However, this comes at a
cost of significantly increased running time and memory size.
Model-checking with bit-state hashing sometimes produces
inferior results to heuristic algorithms (schedule length of
108 for B with 10 tasks), but has almost constant memory
size requirements (51MB). With exhaustive search, A pro-
duces shorter schedules than H because A tries to place all
possible ready tasks when the CPU is free and chooses the
one resulting in the shortest schedule length, while H uses a
heuristic priority function based on Partial Critical Path [2]
to make the choice. B produces shorter schedules than A
since it can delay a task’s start time even when the CPU
is free, so it is not limited to work-conserving schedules.
C produces the shortest schedules among all four cases be-
cause it is preemptive, and it tries all possible task release
offsets. In terms of memory size, B consumes the most
amount of memory since it searches a larger state space by
using TimeAdvanceGuard to try both work-conserving and
non-work-conserving schedules, while A and C use timeout

in the code listing in Figure 4 to try only work-conserving
schedules.

We briefly discuss the cause of the state space explosion
problem. Consider a system of 10 tasks without any prece-
dence relationships scheduled non-preemptively on a single
CPU. Obviously, the only possible schedule length is sum of
execution times of the 10 tasks. But the model-checker will
exhaustively search all possible execution paths as permuta-
tions of task sequences before reaching the same obvious con-
clusion. This is a characteristic of any model-checking tech-
nology, which relies on exhaustive state space exploration,
not specific to SPIN. Adding task graph precedence relation-
ships can reduce the search space and improve scalability.
Generally, model-checking performs better for task graphs
that are “long and thin”, which have a smaller number of

298

possible execution paths than task graphs that are “short
and fat”. In the extreme case, a linear task-chain can be
easily handled with model-checking. SPIN has the built-
in optimization of Partial Order Reduction, which avoids
searching for all possible interleavings of statements from
different processes if they are independent from each other
in order to reduce the search space size. For the example
with 10 tasks, if we are only interested in the logical re-
sult of computation instead of timing behavior, and the 10
tasks do not interact with each other by sharing global vari-
ables or sending messages, then SPIN only needs to try one
of the many possible execution sequence. However, for the
real-time scheduling problem considered in this paper, all
processes of type Task share a global variable time, which
must be explicitly incremented in the process Advance based
on execution times and sequencing of all tasks. This causes
Partial Order Reduction to be non-applicable, and SPIN
must try all possible execution sequences as a result. Since
symbolic model-checkers such as NuSMV [7] often scale up
better than explicit-state model-checkers such as SPIN, we
plan to use NuSMV to tackle the problem in our future
work. Preliminary results are promising with potentially
significant improvements in scalability.

5. RELATED WORK
Static scheduling of a task graph on a multiprocessor sys-

tem is a well-studied topic. However, most prior research as-
sumed negligible or constant network delays and did not con-
sider the issue of TDMA bus access schedules. Eles et al [2]
first considered this issue, and developed efficient heuris-
tic list scheduling algorithms for finding near-optimal bus
access schedules. Besides minimizing scheduling length, it
may be also important to consider other optimization cri-
teria. Pop et al [8] addressed the problem of minimizing
system modification cost in an incremental design method-
ology by aggregating unused time slots in the bus schedule to
accommodate addition of new functionality during system
evolution, which is not considered in this paper.

While SPIN has been traditionally applied to protocol ver-
ification, several authors have used SPIN to solve scheduling
problems. Geilen et al [9] used SPIN to find the optimal ac-
tor firing sequence that minimizes buffer size requirement
of a Synchronous Dataflow (SDF) graph. This is not a real-
time scheduling problem, since the buffer size requirement is
only affected by the sequence of actor firings, not the execu-
tion time of each actor firing. For real-time static scheduling,
Brinksma et al [5] used SPIN to derive the optimal schedule
for the Programmable Logic Controller (PLC) of an experi-
mental chemical plant, and Ruys [4] used SPIN to solve the
traveling salesman problem and job-shop scheduling prob-
lem for a smart-card personalization machine. Instead of
finding the shortest static schedule, Cofer et al [10] used
SPIN to verify the time partitioning properties of an avion-
ics real-time operating system with rate monotonic schedul-
ing and slack reclaiming. In this paper as well as in [5,
4, 10], a discrete time model is adopted, where real time
is represented by an integer variable and explicitly incre-
mented at discrete time instants, which is less expressive
than a continuous real-time model. We believe this is not
a serious limitation for real-time scheduling problems. Due
to inherent limitations of the model-checking technology, all
timing attributes must be integers, including task execution
times, deadlines and but time slot lengths. (We are not

aware of any model-checkers that can handle non-integer
variables, which cause the model-checking procedure to be
undecidable.) Given this constraint, we can prove that the
search space can be restricted to static schedules where all
scheduling events (start and finish of task execution and
message transmission, bus cycle switches) happen at integer
time instants without sacrificing optimality, by transforming
a static schedule with non-integer time instants into another
one with integer time instants by rearranging the fractional
parts. This allows us to model the scheduling problem with
a discrete time model without losing correctness or com-
pleteness.

6. CONCLUSIONS
In this paper, we use the model-checker SPIN to solve the

problem of optimization of static task and bus access sched-
ules for time-triggered distributed embedded systems. Com-
pared to the heuristic algorithms, the key benefit of model-
checking is that it generates provably optimal solutions by
virtue of exhaustive state space exploration. However, scal-
ability is still the limiting factor despite several techniques
for reducing the search space, e.g., taking advantage of The-
orem 1 to eliminate non-work-conserving schedules for pre-
emptive scheduling, and Theorem 2 to remove unnecessary
slacks in the schedule. We conclude that model-checking is
not meant to replace other optimization algorithms, but it
can be another useful tool alongside others in the designer’s
toolbox with its own advantages and limitations.

7. REFERENCES
[1] H. Kopetz and G. Bauer, “The time-triggered

architecture.” Proceedings of the IEEE, vol. 91, no. 1,
pp. 112–126, 2003.

[2] P. Eles, A. Doboli, P. Pop, and Z. Peng,
“Scheduling with Bus Access Optimization for
Distributed Embedded Systems,” IEEE Trans. VLSI
Syst., vol. 8, no. 5, pp. 472–491, 2000.

[3] The SPIN website. [Online]. Available:
http://spinroot.com/

[4] T. C. Ruys, “Optimal Scheduling Using Branch and
Bound with SPIN 4.0.” in The SPIN Workshop, 2003,
pp. 1–17.

[5] E. Brinksma, A. Mader, and A. Fehnker,
“Verification and optimization of a PLC control schedule.”
Software Tools for Technology Transfer, vol. 4, no. 1,
pp. 21–33, 2002.

[6] Task Graphs For Free. [Online]. Available:
http://ziyang.ece.northwestern.edu/tgff/

[7] A. Cimatti and et al, “NuSMV 2: An OpenSource
Tool for Symbolic Model Checking,” in International
Conference on Computer-Aided Verification (CAV),
2002.

[8] P. Pop, P. Eles, Z. Peng, and T. Pop, “Scheduling and
mapping in an incremental design methodology for
distributed real-time embedded systems.” IEEE
Trans. VLSI Syst., vol. 12, no. 8, pp. 793–811, 2004.

[9] M. Geilen, T. Basten, and S. Stuijk, “Minimising
buffer requirements of synchronous dataflow graphs with
model checking.” in DAC, 2005, pp. 819–824.

[10] D. D. Cofer and M. Rangarajan, “Formal Modeling
and Analysis of Advanced Scheduling Features in an Avionics
RTOS.” in EMSOFT, 2002, pp. 138–152.

299

