
Scheduling with Group Dynamics: a Multi-Robot

Task Allocation Algorithm based on Vacancy

Chains

Torbjørn S. Dahl, Maja J. Matarić, and Gaurav S. Sukhatme
tdahl|mataric|gaurav@usc.edu

Robotics Research Laboratory, Center for Robotics and Embedded Systems

Department of Computer Science, University of Southern California

Henry Salvatori Computer Science Center

941 West 37th Place, SAL 214, Los Angeles, California 90089-0781

Abstract

Existing task allocation and scheduling algorithms, including task-
allocation algorithms for multi-robot systems, generally assume that
tasks are independent. This assumption is often violated in groups
of cooperative mobile robots, where the group dynamics can have a
critical impact on performance. We present a multi-robot task allo-
cation algorithm that is sensitive to group dynamics. Our algorithm
is based on vacancy chains, a resource distribution process common
in human and animal societies. We study the problem of cooperative
transportation in simulation. We demonstrate through experiments in
simulation that if robots keep local task utility estimates, and follow
a greedy task selection policy, the interactions in the group cause the
collection of learned policies to converge toward an optimal allocation
pattern as defined by the vacancy chain framework. As the robots are
continuously updating their individual utility estimates, the vacancy
chain algorithm has the additional property of adapting automatically
to changes in the environment, e.g., robot breakdowns or changes in
task values. Our experiments show that in the case of such changes, the
vacancy chain algorithm consistently outperforms random and static
task allocation algorithms. Finally, the vacancy chain algorithm uses
no communication or unique roles, and as a result it is more likely to
scale to large groups and will degrade gracefully in response to indi-
vidual breakdowns.

1

1 Introduction

Existing task allocation and scheduling algorithms, including task-allocation
algorithms for multi-robot systems, generally assume task independence, i.e.,
they do not consider synergistic or interference-related aspects of group dy-
namics. Task independence is an important assumption in that it facilitates
the production of optimal schedules by general scheduling algorithms. In
static domains such as job-shop scheduling, task independence is a fair as-
sumption, but it is not always valid in groups of cooperative mobile robots.
In such systems group dynamics can have a critical impact on performance.
This forces task allocation algorithms to be sensitive to such dynamics if
they are to produce optimal schedules. However, as we will demonstrate,
the problem of scheduling with group dynamics is NP-hard, and modeling
group dynamics can in itself be difficult. This implies that general algo-
rithms for identifying optimal schedules in multi-robot systems are infeasi-
ble. It is possible to circumvent the modeling problem by estimating the
task utilities under different allocation patterns without an explicit model
of the underlying dynamics. However, estimating the task utilities for all
possible allocation patterns can only be done when the number of robots
and tasks is small, as the related number of possible allocation patterns
grows exponentially. We present a task allocation algorithm that handles
the complexity of task allocation by using local task utility estimates and
by relying on the ability of groups of adaptive robots to produce specialized
individuals. Using Q-learning with an ǫ-greedy task selection function, the
interaction between the robots produces a collection of learned policies that
converge toward an optimal allocation pattern as defined by the vacancy
chain formalism. We do not initially handle the full complexity of general
task utility estimation for multi-robot systems, but study at a restricted
class of multi-robot task allocation problems.

In Section 2 we review the formal framework used to study traditional
scheduling as well as some common results with regard to the complexity of
scheduling problems. This framework is later used to formalize the problem
of multi-robot task allocation and relate it to other well-studied schedul-
ing problems in terms of relevant properties and problem complexity. In
Section 3 we review previous work on modeling group dynamics. Group
dynamics set multi-robot task allocation problems apart from traditional
scheduling problems. Problems in modeling such dynamics limit the sound-
ness of the predictions that can be made about group performance and job
processing times. This affects the feasibility of finding optimal schedules
in the multi-robot task allocation domain. Section 4 presents the problem

2

of multi-robot task allocation in detail and formalizes the problem in the
scheduling-theoretic framework reviewed in Section 2. We demonstrate that
multi-robot task allocation is an NP-hard problem by showing that a differ-
ent scheduling problem known to be NP-hard, reduces to the multi-robot
task allocation problem. We conclude that optimal solutions in terms of
scheduling are infeasible for multi-robot task allocation problems and sug-
gest the use of machine learning as a way to estimate the effects of the
group dynamics and to provide heuristics for a heuristics-based scheduling
algorithm. Section 4 also reviews previous work on multi-robot task allo-
cation and previous work using machine learning methods to overcome the
problems of complexity in scheduling. In Section 5 we define a sub-problem
of the general multi-robot task allocation problem where jobs are spatially
classifiable. We study this sub-problem as a way of examining the issues
of group dynamics in scheduling without embracing the full complexity of
general multi-robot task allocation. Section 5 also reviews vacancy chains,
a resource distribution process common in human and animal societies, and
presents an algorithm for multi-robot task allocation for spatially classifiable
jobs based on the vacancy chain process. Section 6 presents a concrete multi-
robot task allocation problem, prioritized transportation, and describes how
some instances of this problem belong in the restricted problem class we sug-
gest to study. In Section 7 we present the robot controllers implementing
the vacancy chain task allocation algorithm. Section 8 presents three exper-
iments we designed to evaluate the vacancy chain task allocation algorithm
and Section 9 presents the results. In Section 10 we discuss the experimen-
tal results along with a number of other issues related to our vacancy chain
task allocation algorithm and multi-robot task allocation in general. Finally,
Section 11 outlines promising avenues for future work.

2 Scheduling

In an idealized form, multi-robot task allocation is the problem of optimiz-
ing, over time, with respect to some given criteria, the allocation of tasks
to robots. This problem can be formalized within the existing framework
of scheduling. Scheduling (Brucker, 1998) has been well studied and the
complexity of many scheduling problems has previously been established.
These results suggest what classes of algorithms may be applicable to dif-
ferent scheduling problems. If the multi-robot task allocation problem is
defined in terms of a scheduling formalism, those results can also indicate
what classes of algorithms are suitable for that problem.

3

Scheduling problems are described in terms of a set of machines Mj(j =
1, ..., m) that process a set of jobs Ji(i = 1, ..., n). Jobs may consist of
a set of operations, Oi1, ..., Oi,ni

. If any job can run on any machine,
the machines are called parallel. Parallel machines are the most general
instance of a class called multi-purpose machines (MPM). In MPM, a
job can be processed on any machine which has the appropriate tools. If the
machines in Mj are used simultaneously the scheduling problem is called a
multiprocessor task scheduling problem.

In the simplest case where ni = 1, each job Ji has a related processing

requirement pi and a cost function fi(t) reflecting the cost of completing
Ji at time t. The cost function fi may use a due date di and a weight wi.
Further constraints on precedence, preemptability, and batching of jobs are
also common.

The machine environment is also subject to a number of further for-
malizations. Parallel machines for example, are divided into three classes:
identical machines, P, uniform machines, Q, and unrelated machines,
R. For identical machines, P, the processing time of a job Ji is the same
on all machines Mj , i.e. pij = pi. For uniform machines, Q each machine
has a related speed sj and the processing time of a job is dependent on the
machine, i.e. pij = pi/sj . Lastly, for unrelated machines, R, the processing
time may be dependent on the machine-job combination, i.e. pij = pi/sij .

2.1 Optimality and Complexity

A common optimization criterion in scheduling is the weighted total flow

time, denoted
∑

wiCi, where Ci is the finishing time of each job, Ji.
Other common optimization criteria are defined with respect to other values
than the total flow time, e.g. job earliness, job tardiness, or deviation from
deadline. Scheduling problems in general can be denoted by three main
features: the class of machines, the attributes of the jobs, and the function
to be optimized, e.g., Q | pi = 1 |

∑

fi, denotes a problem with uniform
machines and uniform task processing times, where the value to optimize is
the sum of the cost. Some scheduling problems are solvable in polynomial
time. Other scheduling problems, such as finding the minimal weighted
total flow time for identical machines, P ‖

∑

wiCi, have been shown to be
NP-hard (Brucker, 1998).

4

2.2 On-Line Scheduling

Scheduling without a priori knowledge of the start-times of the tasks is called
on-line scheduling. On-line scheduling algorithms are said to be optimal if
they can achieve scheduling, i.e., if they find a schedule that does not break
any deadlines, whenever any other algorithm can do so. Dertouzos and Mok
(Dertouzos & Mok, 1989) showed that without a priori knowledge of task
start-time, it is impossible to guarantee optimal scheduling.

3 Modeling Group Dynamics

Scheduling problems assume task independence, i.e., they do not consider
synergistic or interference-related aspects of group dynamics. In multi-robot
task allocation however, the effects of group dynamics can have a critical
impact on system performance. When group dynamics have a major effect
of performance, understanding and modeling these dynamics is necessary to
predict the value of different schedules. Accurate models of the effects of
group dynamics however, are hard to construct. The effects of group dynam-
ics on a group’s performance may correlate non-linearly with the number of
robots working on a task. Effects such as synergy and interference may con-
tribute concurrently to group performance. Models of group dynamics have
been divided into microscopic or simulation-based and macroscopic (Lerman,
Galstyan, Martinoli, & Ijspeert, 2001). Simulation-based models explicitly
represent each agent in the model and the properties of the system can be
recorded as the agents interact. Macroscopic models directly describe prop-
erties of systems in terms of abstract parameters such as the number and
general distribution of agents. Below we review the most relevant work on
producing and using explicit models of group dynamics to improve group
performance.

Simulation-Based Models Goldberg and Matarić (Goldberg & Matarić,
2000) developed Augmented Markov Models, or transition probability ma-
trices with additional temporal information, to learn statistical models of
interaction in a space of abstract behaviors. They also used these models to
maximize reward in a multi-robot mine collection task.

Balch et al. (Balch, Khan, & Veloso, 2001) studied live insect colonies
and construct three-dimensional histograms of insect presence over a dis-
cretized area. The work was a step toward a long term goal of combining
spatio-temporal models with Behavior Hidden Markov Models for behavior
recognition (Han & Veloso, 1999) in order to recognize colony behaviors.

5

Yan and Matarić (Yan & Matarić, 2002) have attempted multi-level
modeling of group behaviors from spatial data describing both human and
robot activity. Like Balch et al., They used three-dimensional histograms
to recognize and describe different activity distributions as produced by
underlying behaviors.

Seth (Seth, 2001) pointed out the distinction in biology between ‘phe-
nomenological’ and ‘mechanistic’ models of interference, where the former
identifies mathematical relationships between intake rates and agent density
in empirical data while the latter constructs individual-based models with
pre-specified rules for agent behavior. This distinction corresponds closely
to the distinction between macroscopic and simulation-based models used in
robotics. Mechanistic models allow a derivation of the interaction between
agent density and rule application with respect to intake rates. The phe-
nomenological models assume that agents always optimize their individual
intake rates. They also assume unstructured environments. These assump-
tions are often invalid both in biological systems and in the multi-robot task
allocation domain. As an alternative to the traditional biological models,
Seth presents a simulation-based model using genetic algorithms to evolve
foraging behaviors for multiple agents in spatially explicit environments.
The evolved systems are able to reproduce interference functions previously
described in field studies of insects, but not reproduced by phenomenological
models.

Macroscopic Models Matarić (Matarić, 1994) proposed a macroscopic
model of interference as an estimate based on group density. Group den-
sity is defined as the ratio between the agents’ footprints and the available
interaction space. An agent’s footprint is its sphere of influence, including
factors such as geometry, motion constraints, and sensor range. If only the
number and size of the agents are used, a mean free path can be computed
and used to estimate the number of expected collisions for agents executing
random walks.

Lerman et al. (Lerman et al., 2001) have studied three different types
of models of cooperation and interference in groups of robots: sensor-based
simulations, microscopic numerical models, and macroscopic numerical mod-
els. They used differential equations to model the group dynamics on a
macroscopic level and showed that the three different models produced cor-
responding results. Unlike the sensor-based simulation and the microscopic
numerical model, the macroscopic model had the advantage of being very
fast and independent of the number of robots modeled. To make a macro-

6

scopic model tractable however, many simplifying assumptions were neces-
sary.

Generally macroscopic or phenomenological models are not sophisticated
enough for optimizing specific task allocation problems. In particular, Matarić’s
model for estimating interference does not consider synergistic effects or en-
vironmental complexity. The differential equation models produced by Ler-
man et al. similarly assume uniform distributions of robots and tasks. The
simulation-based models or mechanistic models produce problem-specific
models, but the time needed to construct these models makes them un-
suitable for task allocation algorithms. Currently there are no models of the
effects of group dynamics with the speed, generality, and predictive accuracy
necessary for specifying the effects of interaction on task processing times
in task allocation problems with the aim of constructing optimal schedules.
Simulation-based models are in general too slow while macroscopic math-
ematical models make too many simplifying assumptions in order to be of
predictive use. Our task allocation algorithm uses reinforcement learning as
a way of handling the unknown group dynamics by continuously estimating
the effects the group dynamics have on relevant task properties.

4 Multi-Robot Task Allocation

Multi-robot task allocation is concerned with allocating tasks to robots.
This problem can also be framed in the more general scheduling framework.
When this is done, the terms job and task as well as the terms machine
and robot become interchangeable. We will use the terms job and machine
when we relate the multi-robot task allocation problem to other scheduling
problems and the terms task and robot when we discuss the specifics of
multi-robot task allocation.

In groups of mobile robots, the group dynamics can have a critical impact
on the job processing times, pi. As these dynamics are difficult to model,
and as a result, their effect on task processing times is difficult to predict.
Within a given environment, the group dynamics may depend on which ma-
chines/robots the different jobs are allocated to, i.e., the allocation pattern.
We formally define an allocation pattern to be a function from machines
to jobs. For m machines and n jobs, this function can be represented as a
vector A of size m, where vector element i indicates what job is allocated
to machine i. We use ∅ to indicate a machine that has not been allocated a
job. Intuitively, an allocation pattern can be seen as a slice of a schedule

7

as represented by a Gantt chart (Brucker, 1998). Figure 1 illustrates this
for two allocation patterns A1 and A2. The patterns are indicated by the
dashed lines through a job-oriented schedule presented as a Gantt chart.
The corresponding allocation patterns are presented in Equations 1 and 2.

J1

J2

J3

J4

M1 M1

M1

M1

M2

M2

M2

M3

M3

t

A1 A2

Figure 1: Job-Oriented Gantt chart

A1 = [M1, M2, M3, ∅] (1)

A2 = [∅, ∅, ∅, M1] (2)

We suggest that when the effects of group dynamics on job processing
times are mainly dependent on allocation patterns, these dynamics can be
included in the formal scheduling framework by making the job processing
time, pi, from the time the job is started, ts, to the time the job is finished,
tf , a function of the allocation patterns during this time, Ats,tf , as shown
in Equation 3.

pi = gi(Ats,tf) (3)

We call the function g, the interaction function. We call the class of
machines with this kind of dynamics interaction dependent machines and
denote the class using the letter S.

4.1 Computational Complexity

The problem R ‖
∑

wiCi describes a set of unrelated machines, R, a set of
non-preemptable jobs, Ji, with related weights, wi, and processing times,
pi. The machine speeds, sij , are job dependent. Unrelated machines are a
subclass of Interaction Dependent Machines in that the function describing
the task processing time, pij = pi/sij , is a deformed interaction function that

8

is only dependent on the task and machine in question and not on what tasks
are allocated to the other machines. We can create, in polynomial time, a
corresponding problem S ‖

∑

wiCi with an identical set of machines, S, an
identical set of weighted jobs, but with task processing times described by
the interaction function gi(Ats,tf).

The assumption that the machines in the original problem are unrelated
implies that the value of gi(Ats,tf) is only dependent on which machine
Mj , the related job, Ji, is allocated to in the relevant allocation patterns
Ats,tf . For non-preemptable jobs, Mj will be the same for all those patterns.
The interaction functions gi(Ats,tf) can be produced in polynomial time, by
finding which machine job, Ji, is allocated to in the initial allocation pattern,
Ats . The job, Ji, and machine Mj , can then be used to find the machine
speed using the given function, pi/sij .

An algorithm solving R ‖
∑

wiCi problems uses sets of machines, sets
of jobs, and optimization criteria that are identical to the ones used by an
algorithm for solving the corresponding S ‖

∑

wiCi problems. The only
difference between the problems is the representation of the function for job
processing times. We have shown how the function pi/sij can be truthfully
represented in the more general form gi(Ats,tf), and that the transformation
can be done in polynomial time. Hence, an optimal solution to the new
problem would be an optimal solution to the original problem. This again
shows that R ‖

∑

wiCi which is NP − hard, reduces to S ‖
∑

wiCi which
ipso facto, must also be NP-hard.

4.2 Previous Work on Multi-Robot Task Allocation

A number of algorithms for multi-robot task allocation already exist. Below
we review a selection of the most prominent of these and discuss how their
different approaches to task utility effect their applicability in domains where
group dynamics have significant effects on group performance.

Botelho and Alami’s M+ algorithm (Botelho & Alami, 1999) used a
task allocation protocol based on the Contract Net protocol with formalized
capabilities and task costs. The need to pre-define the capabilities and costs
limits the applicability of the M+ algorithm to domains where these are
known.

Gerkey and Matarić’s Murdoch system (Gerkey & Matarić, 2002) used a
set of metrics to locally score the suitability of the participating robots and
a publish/subscribe communication paradigm with an auction mechanism
for task allocation. Murdoch also used unique task monitors or ‘watchers’.
Frequent re-allocations however, makes Murdoch robust to individual robot

9

failures.

Werger and Matarić’s work on the Broadcast of Local Eligibility (BLE)
algorithm for task allocation compares locally decided eligibilities to allocate
tasks using Port Arbitrated Behaviors (Werger & Matarić, 2000), an inter-
robot coordination mechanism based on a fully connected communication
network. Their example of Cooperative Multi-Robot Observation of Mul-
tiple Moving Targets used spatial proximity as a measure of eligibility, but
BLE can also use model free eligibility estimates. Werger and Matarić also
described a dynamic leader selection mechanism where a unique leader mon-
itored the environment for new tasks and relinquished the leadership role
for high-priority tasks. The available position as leader was then taken by a
robot currently assigned to a low-priority tasks, in a mechanism that closely
resembles a vacancy chain. This mechanism however would fail critically if
the current leader broke down.

Both the Murdoch and the BLE algorithm implicitly ignore group dy-
namics by delegating the responsibility of utility estimation to the individual
robots and using these estimates to allocate tasks from a global perspective.
Since the interaction function depends on global allocation patterns, it is
not possible for robots to independently estimate the global task utility.

In the L-ALLIANCE work by Parker (Parker, 1997), each robot explic-
itly estimates its own performance and the performance of other robots on
selected tasks and uses these values to reallocate tasks by taking them over
or acquiescing. The L-ALLIANCE algorithm uses local utility estimates to
make local allocation decision, but needs pre-programmed estimation pro-
cedures that reduce the general applicability of this algorithm.

We are not aware of any existing, general multi-robot task allocation
algorithms that are sensitive to the effects of group dynamics. As such, our
vacancy chain algorithm represents an attractive alternative for domains
where these dynamics have significant effects on the system performance.

4.3 Learning Approaches to Scheduling and Task Allocation

As we have shown, the multi-robot task allocation problem is, like many
scheduling problems, NP-hard. One way of dealing with NP-hard problems
is to use polynomial time heuristic algorithms that produce sub-optimal but
satisfactory solutions. Learning such heuristics in the domain of scheduling,
is a well studied problem. Below we present a selection of successful uses of
machine learning as a way of finding heuristics for scheduling and discuss
the applicability of these algorithms in domains with significant effects from
group dynamics.

10

Zhang and Dietterich (Zhang & Dietterich, 1995) presented a reinforce-
ment learning approach to scheduling, that learned domain specific heuris-
tics for the scheduling procedure. The state space consisted of possible
schedules and actions were possible changes to the schedules. The system
learned what changes would quickly create feasible schedules with maxi-
mized capacity utilization. The problem domain considered was space shut-
tle payload processing.

Zomaya et al. (Zomaya, Clements, & Olariu, 1998) presented another
algorithm for learning scheduling heuristics. Their algorithm learned dy-
namic scheduling, i.e., scheduling when there is no a priori knowledge about
the tasks. It used a back-propagation neural network and a history queue
that functions like an eligibility trace to learn how to associate a set of job
parameters with a set of machines.

Both the algorithm by Zhang and Dietterich and the algorithm by Zomaya
et al. are general algorithms applicable to all scheduling problems. How-
ever, it relies on a centralized learning mechanism. Such mechanisms can
fail critically on a robot breakdown and does not scale easily to large groups.

Brauer and Weiß (Brauer & Weiß, 1998) used the multi-agent learn-
ing paradigm to distribute the learning of heuristics for scheduling a set of
multi-operation jobs over a set of machines. The operations were totally or-
dered and each operation could only be performed by a subsets of machines.
Using reinforcement learning, each machine estimated the efficiency of the
possible predecessors and together the machines learned to improve the total
production rate from an initial state where all machines were assumed to
be equally efficient. Brauer and Weiß also showed that the learning allowed
the system to adapt to machine breakdowns. This algorithm is restricted to
completely ordered jobs and this limits its applicability to general scheduling
and task-allocation problems.

Blum and Sampels (Blum & Sampels, 2002) studied different pheromone
representations in ant colony optimization of first order job shop schedul-
ing. Each job traversed a set of machines by stochastically selecting ma-
chines in accordance with a given set of constraints on the job’s operations.
Throughout the traversal, the system updated a pheromone trace, effectively
learning environmentally embedded heuristics for scheduling. The different
pheromone representations allowed the system to estimate utilities for differ-
ent combinations of machines, including estimating the utility of a machine
in isolation and the utility of a machine depending on the last machine vis-
ited. This algorithm is limited to jobs that consist of multiple operations.
It is difficult to see how a similar pheromone trail could be used successfully
as a general scheduling algorithm.

11

Tangamchit et al. (Tangamchit, Dolan, & Khosla, 2000) used distributed
reinforcement learning on a set of robots to allocate patrolling tasks. Each
robot locally estimated the utility of a set of patrolling points and together
learned to divide the set of point between them in an optimal manner.
Tangamchit et al. also used local and global proximity measures as heuristics
for action selection in order to speed up learning. The specificity of the
spatial heuristics limits the applicability of this algorithm to general task
allocation problems.

The work reviewed above demonstrates the use of machine learning tech-
niques to learn successful heuristics for scheduling. The heuristics can be
centralized, environmentally embedded, or distributed. However, the do-
mains considered in all of the work reviewed above, except for Tangamchit
et al., do not have significant effects from group dynamics. In spite of this,
all the learning algorithms reviewed above would likely improve a group’s
performance in the presence of significant effects from group dynamics, as
they in general learn where to allocate jobs according to feedback based on
processing time. The advantage of our vacancy chain algorithm over ex-
isting learning algorithms for scheduling is the combination of its general
applicability and its distributed learning mechanism.

5 Interference-Sensitive Task Allocation

There are two main reasons why it is difficult to find optimal solutions
to multi-robot task allocation problems when the group dynamics have a
significant effect on performance.

First, the problem has been shown to be NP-hard. This indicates that
for large numbers of robots and jobs, it is not feasible to find an optimal so-
lution within a reasonable time-frame. In such problems, finding an optimal
solution might also not be worth the trouble. Corkill and Lesser (Corkill
& Lesser, 1983) demonstrated that in the domain of coordination of dis-
tributed problem solving networks, the computational and communication
cost of finding an optimal solution could outweigh the benefits such a solu-
tion brought over solutions produced using heuristic methods.

Second, there is currently no way of accurately modeling group dynamics
so as to support on-line task allocation. As long as this is the case, task
allocation algorithms must rely on approximate models or estimates of the
interaction function. The number of possible allocation patterns increases
exponentially with the number of robots and tasks. This indicates that in
general it is not feasible to even estimate accurately the complete interaction

12

function.

5.1 Spatially Classifiable Jobs

As a way of reducing the complexity of estimating the interaction function,
we focus initially on a particular class of problems where the machines are
homogeneous and the jobs are spatially classifiable. Spatially classifiable jobs
can be divided into classes, Kk, where the interactions between machines
working on tasks in different classes have no significant effects on the groups
performance. In terms of scheduling, we denote spatially classifiable jobs,
sc. The problem of optimizing the weighted total flow time in a system with
interaction dependent machines and spatially classifiable jobs is denoted
S | sc |

∑

wiCi. One example of such problems is when classes of jobs take
place in spatially separate areas. For such jobs, the speed of a machine, Mj ,
with respect to a given job, Ji, in class Kk, is a function of the allocation
of the machines that are currently working on jobs in class, Kk, only. The
allocation of robots between jobs of other classes is not relevant. Within
this class we restrict ourselves to looking at problems where the interaction
function is dependent only on the number of robots, mk, currently working
on jobs in class Kk. The job processing time function or interaction function
for this class is given in Equation 4.

pij = gi(mj) (4)

In this problem class, an estimate of the interaction function is tractable.
While these restrictions limit the applicability of our algorithms, they allow
us to do initial studies of group dynamics in task allocation without being
swamped by the complexity of the problem in its most general form.

5.2 The Vacancy Chain Distribution Process

The inspiration for our adaptive task allocation algorithm is the vacancy
chain process. The vacancy chain process is a process through which re-
sources are distributed to consumers. The typical example is a bureaucracy
where the retirement of a senior employee creates a vacancy that is filled by
a less senior employee. This promotion, in turn, creates a second vacancy to
be filled, and so on. The vacancies form a chain linked by the promotions.
Thus the resources that are distributed in this example are the positions
and the consumers are the employees.

The general process of distributing resources in this way has been rec-
ognized in many different domains. It was originally reported in human

13

populations relating to houses and apartments as well as to jobs in bureau-
cracies. Chase (Chase, Weissburg, & Dewitt, 1988) proposed that major
human consumer good such as cars, boats, and airplanes, also move through
vacancy chains and that vacancy chains are common in other species such
as the hermit crab, the octopus and different species of birds. In the case of
the hermit crab, the empty gastropod shells they carry around as portable
shelters are distributed through vacancy chains.

Chase lists three requirements for resource distribution through vacancy
chains:

1. The resource must be reusable, discrete, and used by only one indi-
vidual.

2. A vacancy is required before an individual takes a new resource unit,
and individuals must need or desire new units periodically.

3. Vacant resource units must be scarce, and many individuals must oc-
cupy sub-optimal ones.

The vacancy chain resource distribution mechanism is both simple and
powerful. It is based on stigmergy, unintentional communication between
the robots through their effects on the environment (Holland & Melhuish,
1999). This makes distribution through vacancy chains robust and efficient
in large groups/societies.

While distribution through vacancy chains ensures that the most attrac-
tive resources are consumed, it does not, like more sophisticated resource
distribution mechanisms, take into account the consumer. As such, the
vacancy chain distribution process can not exploit the possible advantages
of distributing particular resources to particular consumers. The vacancy
chain distribution mechanism treats all consumers as equals. In terms of
task allocation the vacancy chain distribution algorithm does not guarantee
optimal allocation patterns as it does not consider possible differences in
machine speed. This initial study of vacancy chain distribution reflect this
by only implementing it in groups of homogeneous robots.

5.3 Task Allocation through Vacancy Chains

Inspired by the vacancy chain process we developed a formal framework
describing how the allocation of tasks to machines influences system per-
formance for spatially classifiable tasks. Our model also has the important

14

property of breaking the group performance down to individual machine
contributions. This property allows us to use distributed control algorithms.

According to our vacancy chain formalism, any number of robots can be
assigned to tasks from a given class. When a j’th robot is assigned to a task
from a class, i, we say that service-slot, (i, j) is filled.

A particular number of homogeneous robots, j, servicing the same class
of tasks, i, will have a task processing frequency, ci,j , dependent on the
degree to which the robots are able to work concurrently without getting in
each other’s way. The difference in task processing frequency together with
the class task value, vi, define the contribution of the last robot added or
the last service-slot filled. We call this contribution, which can be negative,
the slot-value, si,j . The formal definition is given in Equation 5.

si,j = (ci,j − ci,j−1)vi (5)

When assigning an additional robot to a task leads to a decrease in the
task processing frequency, the slot-value correspondingly becomes negative.
When all the available service-slots have negative values, we say the task is
saturated. If all the tasks are saturated, the system is saturated.

In this framework, when the slot values decrease monotonically, opti-
mizing the group performance becomes identical to optimizing the value of
the individual slots. With spatially classifiable tasks and given the relevant
slot-values, a group of robots can optimize the value of completed tasks over
time, the throughput value, by allocating robots to tasks or service-slots in
order of decreasing slot-value. In this case, the throughput value, T , for n
robots is simply the sum of the individual contributions as stated in Equa-
tion 6.

Tn =
∑

n

sn (6)

In these kinds of problems, the task allocation algorithm can be dis-
tributed by letting each robot optimize the value of the service-slot it oc-
cupies. Distributed algorithms are generally more robust than centralized
algorithms. They also scale more easily to large numbers of robots.

In a scenario where the service-slots are allocated optimally, a failure
in a robot servicing a high-value task will result in an empty high-value
service-slot that must be re-allocated for optimal system performance. If
the value of the vacant slot is greater than the value of one or more of the
other occupied service-slots, the vacant slot will have to be filled in order
to restore optimal performance. Expressed in the vacancy chain framework,

15

a vacant, high-value service-slot is a resource to be distributed between the
robots.

5.4 The Vacancy Chain Task Allocation Algorithm

We have previously studied the use of distributed reinforcement learning as
a way of optimizing the performance of multi-robot systems in an interaction
sensitive manner (Dahl, Matarić, & Sukhatme, 2002). In our vacancy chain
task allocation algorithm, a task corresponds to an action, and each robot
keeps a local estimate of task utilities and choses its next task using an
ǫ-greedy selection function.

Q-learning is not sensitive to the frequency of rewards. Hence, the esti-
mated values of actions do not necessarily correspond to the action’s con-
tribution to performance over time. In order to use Q-learning to optimize
performance over time it is necessary to make the temporal aspect of per-
formance explicit in the reward function. Such a reward function using the
last task processing time, t, and task value, wi, is given in Equation 7.

r = wi/t (7)

This reward function promotes the tasks with the highest value because
these will on average provide a higher reward. However, if a robot consis-
tently occupies a service-slot that is sub-optimal due to too much interfer-
ence, the increased average traversal time will reduce the average reward for
that slot below the average reward of the optimal service-slots. This change
in average reward will attract the robot back to an optimal slot. For j robots
servicing a task, i, the formal relationship between slot-value, average re-
ward, ri,j , and average task processing time ti,j is given in Equation 8.

Si,j = vi

∑

j

(cj − cj−1) =
∑

j

ri,j = vi

∑

j

1

ti,j
(8)

6 The Prioritized Transportation Problem

Cooperative transportation is a multi-robot task allocation problem where
group dynamics can have a critical impact on performance. It is also pos-
sible to construct spatially classifiable instances of this problem which lets
us reduce the complexity of the group dynamics found in the general trans-
portation problem. This reduced complexity again facilitates the initial
study of algorithms for dealing with group dynamics in multi-robot task
allocation.

16

In the basic transportation problem, a group of robots traverse a given
environment in order to transport items between the sources and the sinks.
We call the time taken to traverse the environment once from a sink via a
source and back to a sink, the traversal time. To perform optimally on the
this task the robots must maximize the number of traversals in general. The
basic transportation problem (Dahl et al., 2002) is one of the sub-problem of
foraging (Balch, 1999; Goldberg & Matarić, 2001; Østergaard, Sukhatme, &
Matarić, 2001). If the locations of sources and sinks are given, the foraging
problem is reduced to a problem of transportation. The prioritized trans-
portation problem extends the basic transportation problem by dividing the
sinks into sets of different priority.

When there is a source close to each of the sinks and the sinks are
far apart, the optimal solution is to have the robots distributed over the
local source/sink pairs or circuits, so as to avoid the increased traversal
time implied by crossing between circuits. To optimize its performance on
the prioritized transportation problem, a group of robots must strike the
correct balance between different target values and different traversal times
as defined by the different interference rates on each circuit.

We consider fetching and delivering one puck to be one task. In terms of
scheduling, each transportation task corresponds to a job and the traversal
times correspond to job processing times. The value of a task/job corre-
sponds to its weight. The robots correspond to machines and since their
allocation has a significant effect on the performance of the system, the
robots/machines are interaction dependent. When the sources and sinks
are distributed so as to make the tasks/jobs spatially classifiable, the prob-
lem of optimizing throughput in prioritized transportation is an instance of
S | sc |

∑

wiCi. According to our vacancy chain formalism, this problem can
be solved optimally by distributing the robots over the optimal service-slots
according to the vacancy chain formalism. We studied one concrete instance
of the prioritized transportation problem and demonstrated through a series
of experiments, that our algorithm consistently produced dedicated optimal
allocation patterns in accordance with the definition of optimality provided
by the vacancy chain framework.

7 Controller Architecture

All the robots in our demonstration used the same adaptive, behavior-based
controller (Matarić, 1997). However, our vacancy chain task allocation al-
gorithm is independent of the underlying architecture, being defined purely

17

in terms of distributed reinforcement learning of task utilities.

Based on individual experience our robots learned to specialize. How-
ever, they always retained a certain level of exploration that allowed them
to find and fill new vacancies.

7.1 The State/Action Space

Each controller in our experiments had a set of pre-programmed high-level
approach behaviors. Each behavior corresponded to servicing one of the
available tasks. Each of the high-level behaviors consisted of multiple shared
lower level behaviors:

• obstacle avoidance: avoided obstacles detected (by laser range finder)
in the desired path.

• visible target approach: approached the desired target when it was
visible (to the laser range finder).

• target location approach: approached the location of the desired
target when the target itself was not visible.

• wall following: followed the walls to the first available target when
the desired target was not visible and localization (based on odometry)
was deemed to be inaccurate.

The localization was deemed to be inaccurate whenever the desired tar-
get was not visible, but should have been so according to the robot’s esti-
mated position and orientation. On encountering a target, the localization
estimate was reset and again deemed to be accurate.

7.2 Adaptation

The individual robots were homogeneous with respect to hardware configu-
ration and control algorithms. Each robot used reinforcement learning with
a randomly initialized Q-table. Over time, the reinforcement learning dif-
ferentiated the group by letting the individual robots specialize on certain
tasks. The robots used temporal difference Q-learning (Sutton & Barto,
1998) to associate the different input states with one of the high level ap-
proach behaviors. The Q-tables ware initialized with random values between
−0.1 and 0.1, the learning rate, α, was set to 0.1, and the discount factor γ
was set to 0.95.

18

The input- or state-space reflected which circuit the robot had used for
its last traversal. This allowed the robots to learn policies that were not
dedicated to one circuit. The learned policies could switch between tasks
in order to construct optimal task sequences. In spite of this, the robots
consistently learned a set of policies dedicated to single tasks.

The action space corresponded to the available tasks. For action selection
we used a greedy-ǫ strategy (Sutton & Barto, 1998), where ǫ was set to
0.1. Because we wanted the system to remain adaptive to changes in the
environment we did not decrease ǫ over time, as is common.

8 Experimental Design

The goal of our experiments was to show that a group of robots could op-
timize its performance by distributing tasks through a vacancy chain struc-
ture. First we aimed to show that the group structure and individual robot
actions satisfied the requirements for resource distribution through vacancy
chains. Secondly we wanted to showed that the group’s performance was
significantly better than the performance of groups of robots using random
or static task allocation algorithms.

The experiments were done in simulation on the Player/Stage(Gerkey,
Vaughan, Støy, Howard, Sukhatme, & Matarić, 2001) software platform1.
From experience, controllers written for the Stage simulator work with little
or no modification on real Pioneers. The robots in the experiments were
simulated Pioneer 2DX robots with SICK laser range-finders and PTZ color
cameras. Each robot wore colored markings that could be recognized using
ActiveMedia’s Color-Tracking Software (ACTS). The prototype markings
as they appear on a real Pioneer 2DX are shown in Figure 2.

The experiments took place in a simulated twelve by eight meter en-
vironment with two sets of sources and sinks. Figure 3 shows a graphical
rendering of the simulated environment in which the experiments took place,
with the sources and sinks labeled.

The sources and sinks were simulated laser-beacons, effectively bar-codes
made from high-reflection material and recognizable by the laser range
finder. We did not require actual objects to be carried. A minimum prox-
imity to a source or sink was interpreted as a delivery or a pick-up.

1Player is a server and protocol that connects robots, sensors and control programs

across a network. Stage simulates a population of Player devices, allowing off-line de-

velopment of control algorithms. Player and Stage were developed jointly at the USC

Robotics Research Labs and HRL Labs and are freely available under the GNU Public

License from http://playerstage.sourceforge.net

19

Figure 2: Prototype Pioneer 2DX with Color Markings

Figure 3: The Simulated Environment with Circuits Indicated

20

To demonstrate that the structure of the group conformed to the def-
inition of resource distribution through vacancy chains we designed three
experiments as follows:

1. Base Distribution: The goal of this experiment was to show that
the vacancy chain framework could distribute six robots over two tasks
of different value in the pattern it describes as optimal.

2. Filling a Vacancy: This experiment was designed to demonstrate
the filling of a vacancy. We created a vacancy by removing one of the
robots occupying a high-value service slot. According to the vacancy
chain framework, this vacancy should be filled by one of the robots
servicing a low-value service-slot.

3. Breakdown without Vacancy: This experiment was a control ex-
periment showing that, in accordance with the vacancy chain frame-
work, the removal of a robot servicing a low-value service slot did not
lead to robot migration.

Together these three experiments demonstrate that the vacancy chain
algorithm can establish and maintain optimal allocation as defined by the
vacancy chain framework.

8.1 Reward Function

In order to demonstrate that resource distribution through vacancy chains
could emerge from a collection of adaptive policies of highly abstracted be-
haviors we designed a set of rewards that would promote this behavior in the
robots. We call the circuit with the highest related reward the high-value
circuit and correspondingly, the the circuit with the lowest related reward
is called the low-value circuit.

Specifically, in order to produce an initial task allocation where three
robots serviced circuit one and three robots serviced circuit two, it was
necessary that it was less attractive to the robots to be one of four robots
servicing the high-value circuit than to be one of three servicing the low-
value circuit. This constraint on the reward function is presented formally
in Equations 9.

∀(x, y).rx,4 < ry,3 (9)

In order for a vacancy in the high-value circuit to be filled, it must be
more attractive to be the third robot in that circuit than to be the third

21

robot in the low-value circuit. This is expressed formally in Equation 10,
where p denotes the preferred circuit.

∀(x 6= p).rx,3 < rp,3 (10)

We empirically estimated the relevant average traversal times. To satisfy
the given constraints we chose the circuit values, as defined in Equation 7,
to be w1 = 2200 and w2 = 2000.

9 Results

We performed the three main experiments defined in Section 8, for different
configurations of robots and tasks as well as a number of supporting empir-
ical experiments. The resulting data are presented and analyzed below.

9.1 Base Distribution

For each experiment we defined a convergence period and a stable period ac-
cording to the stability of the system performance. This experiment started
with six robots that had randomly initialized Q-tables. We performed 20
10-hour long individual experiments, each averaging 3000 traversals in total
or 500 traversals per robot. The convergence period was 2.5 hours.

To examine the performance we consider the last target visited by each
robot. This gives seven possible system states. We refer to each state using
the notation, h : l, where h is the number of robots whose last target was on
the high-value circuit. Correspondingly, l is the number of robots whose last
target was on the low-value circuit. The rows labeled A in Table 1 shows
the mean, s and standard deviation, s, of the time the system spent in each
of the states. The values are percentages of the total stable period. The
rows labeled R describe the same values for a set of 20 trials using a group
of robots that randomly chose between tasks.

State 0:6 1:5 2:4 3:3 4:2 5:1 6:1

A µ 0.1 2.7 19.0 41.8 29.3 6.6 0.5
σ 0.3 1.9 7.7 6.6 9.0 3.2 0.5

R µ 2.0 7.2 22.6 34.5 24.7 8.2 0.7
σ 0.6 2.9 3.4 3.1 3.3 3.1 0.4

T 1.6 9.4 23.4 31.2 23.4 9.4 1.6

Table 1: Empirical end Theoretical State-Time Distributions for Six Robots

22

The row labeled T lists the number of different ways to choose a sample
of size n from a population of m, as percentage of all possible samples,
according to Equation 11. It is worth noticing that the time distribution
produced by the six random controllers is closely aligned with the theoretical
estimate, though the differences are statistically significant.

T =
m!

n!(m − n!)2m
(11)

The two time distributions given in Table 1 are presented as histograms
in Figure 4 with the standard deviation indicated by the error bars for each
state.

% of total time % of total time

1:50:6 2:4 3:3 4:2 5:1 6:0
State

50

40

30

20

10

6:05:14:23:32:41:50:6

50

40

30

20

10

State

Random Controllers Adaptive Controllers

Figure 4: Time-State Distribution for Six Random and Six Adaptive Robots

Over 20 experiments, the difference in time spent in state 3 : 3 is sta-
tistically significant. The time the adaptive group spends in state 3 : 3 is
also statistically higher than the time spent in any of the other states. This
confirms that the group’s set of task-selection policies have converged to pro-
mote the state defined as optimal according to the vacancy chain framework,
the rewards and the estimated task-processing times.

Figure 5 presents the average performance of a group of robots controlled
by the vacancy chain algorithm over both the convergence period and the
stable period. This group’s performance is indicated by the thick, solid line.
The average performance of a group of six robots controlled by an algorithm
that choses randomly between the high-level approach behaviors is indicated
by the dashed line. The performance is calculated as the sum of the delivery
frequencies for each circuit weighted by the value of the task.

23

Adaptive Controllers

Seconds(1000)

Random Controllers

Total Delivery Value/10 Seconds

1

0.8

0.6

0.4

0.2

0
0 50 100 150 200 250 300 350

Figure 5: The Performance of Six Adaptive Robot Controllers

The performance data show that the performance of a group of robots
controlled by the vacancy chain algorithm is significantly higher than the
performance of a group of robots controlled by a random choice algorithm.
Together, the time distribution data and the performance data show that
the adaptive controllers improve the group’s performance by adopting a
dedicated service structure that conforms to the rules of the vacancy chain
framework.

9.2 Filling a Vacancy

In order to demonstrate filling of a vacancy, we performed a second experi-
ment, with five robots. The robots used Q-tables from the end of the stable
period of the initial convergence experiment. We removed randomly one of
the three robots that were servicing the high-value circuit, thus creating a
vacancy on that task. We performed 20, 10 hour experiments. The conver-
gence period again was 2.5 hours. The data presented here are taken from
the stable period.

The converged controllers kept the system in state 3 : 2 for a significantly
larger amount of time than a group of five random controllers. The values
of the time distributions are given in Table 2 and a graphical presentation
if provided in Figure 6.

This showed that the group had adapted its structure from one that
promoted the 3 : 3 state to one that promoted the 3 : 2 state. This change
showed that a robot from the low-value circuit had filled the vacancy we

24

State 0:5 1:4 2:3 3:2 4:1 5:0

A µ 0.8 7.8 31.1 40.7 17.7 1.8
σ 1.1 5.1 6.3 5.3 5.9 1.6

R µ 2.6 12.6 32.4 34.8 15.5 2.1
σ 0.9 2.2 4.0 2.3 3.7 0.4

C 3.1 15.6 31.3 31.3 15.6 3.1

Table 2: Imperial and Theoretical Distributions after a Breakdown creating
a Vacancy

0:5 1:4 2:3 3:2 4:1 5:0 0:5 1:4 2:3 3:2 4:1 5:0

% of total time

50

40

30

20

10

% of total time

50

40

30

20

10

State State

Adaptive ControllersRandom Controllers

Figure 6: State-Time Distributions after a Breakdown creating a Vacancy

25

had created in the high-value circuit.

The performance data presented in Figure 7 show that the removal of
a robot from the high-value circuit causes the performance to drop sharply.
After the re-convergence period, the performance rose again to a level that
was significantly higher than the performance of five random controllers
and also significantly higher than the mean performance, over 20 trials, of a
group of robots controlled by a static task allocation algorithm. The average
performance of the static group is indicated by the thin solid line.

Random Controllers

Static Controllers

Adaptive Controllers

Seconds(1000)

Total Delivery Value/10 Seconds

0

0.8

0.6

0.4

0.2

1

0 100 200 300 400 500 600 700 800 900

Figure 7: Group Performance on a Breakdown creating a Vacancy

9.3 Breakdown without Vacancy

To show that our algorithm is stable with respect to failures in robots as-
signed to low-value service-slots, we performed an experiment similar to the
one presented in Section 9.2, but this time we removed a robot from the
low-value circuit.

According to the vacancy chain formalism, this did not create a vacancy
and hence, the system was expected to remain in the 3 : 2 state. We ran 20
individual 10 hour trials for this experiment, and the convergence time was
2.5 hours.

The time distribution during the stable period of this experiment, pre-
sented in Table 3, was not significantly different from the distribution pro-
duced during the experiment presented in Section 9.2.

As shown in Figure 8, performance fell significantly when the robot was
removed, but remained significantly higher that the performance of five ran-

26

State 0:5 1:4 2:3 3:2 4:1 5:0

µ 0.3 6.7 34.6 47.1 10.5 0.7

σ 0.3 3.7 9.2 9.4 3.8 0.4

Table 3: State-Time Distribution after a Breakdown not creating a Vacancy

dom controllers. There was no significant difference in the performance
during the stable period of this experiment and the stable period during
the experiment where a vacancy was created. Also, there was no significant
difference in performance between the convergence and stable periods. This
consistency in the performance reflects the fact that the group structure
remained unchanged.

Adaptive Controllers

Random Controllers

Seconds(1000)

Total Delivery Value/10 Seconds

0.8

1.0

0.6

0.4

0.2

0
0 100 200 300 400 500 600 700 800 900

Figure 8: Group Performance on a Breakdown not creating a Vacancy

This result demonstrates that our algorithm produces the group struc-
ture required for vacancy chain distribution, independently of which partic-
ular robot may fail.

10 Discussion

Our experiments showed that the vacancy chain mechanism is efficient and
robust as a task allocation algorithm. The fact that our algorithm needs
only a minimal amount of information about any particular problem domain
makes it potentially applicable to a large class of problems. We demon-
strated that in spite of the difficulties related to modeling group dynamics

27

and the general complexity of scheduling, it is possible, under certain restric-
tions, to use the interference sensitive vacancy chain algorithm to improve
on existing task allocation algorithms. In particular, we studied a prioritized
transportation problem where the robots/machines were interaction depen-
dent and where the tasks/jobs were spatially classifiable. Our experiments
showed that using distributed reinforcement learning and rewards based on
the vacancy chain framework, the allocation patterns that emerged were
consistent with the definition of optimality defined by that framework.

Our work on the vacancy chain task allocation algorithm has brought up
several issues that do not relate directly to the experimental results. Below
we discuss the most important of these in some detail.

10.1 Stability and Optimality

A group of non-communicating, adaptive, greedy robots can be seen as
participants in a multi-player game and as such, the group behavior can be
analyzed using game theory. To converge to a stable solution, our algorithm
depends on finding allocation patterns where no single robot can benefit
from unilaterally changing tasks. In game theory, such allocation patterns
are called Nash equilibria (Ritzberger, 2002). Anther important result from
game theory is that some problems have sub-optimal Nash equilibria, and
some problems do not have Nash equilibria. Problems with sub-optimal
Nash equilibria, such as prisoner’s dilemmas, would lead to sub-optimal
allocation patterns. On problems without Nash equilibria, our algorithm
would not converge.

Prisoner’s Dilemmas Consider two robots m1 and m2 and two tasks
classes k1 and k2 with identical value. Assuming identical traversal times,
start and finishing times, and interaction functions, the interaction function
defined in Equation 12 will lead to convergence on a sub-optimal allocation
pattern.

gi(A) =



















2 if A = [k1, k1]
4 if other robot changes class
1 if this robot changes class
3 if A = [k2, k2]

(12)

This interaction function assumes that some allocation patterns produce
synergistic effects. One example of a synergistic effect is when the robots
need to continuously repair a degrading path, e.g., by removing items that

28

appear on a regular basis. In this case, the average traversal time for two
robots can be higher than for one robot.

The average processing time matrix corresponding to the interaction
function presented in Equation 12 is presented in Table 4. This matrix
shows the expected average processing time for m1 and m2 respectively
based on the task the robots are allocated to.

m2

k2 k2

m2 k1 1/1 2/3
k2 3/2 4/4

Table 4: Processing Time Matrix Leading to Sub-Optimal Allocation

The optimal allocation pattern, with the minimal processing times, for
the interaction functions given above, is [k1, k1], with the minimal total av-
erage processing time, 4. The individual reward, due to the lower processing
time, for a robot when unilaterally changing to task k2 or deflecting, will
likely be reflected in both the robots’ task utility estimates. With an ex-
ploration rate, ǫ, below 0.5, the majority of the exploratory changes will,
on average, be unilateral. This is likely to lead to one of the robots eventu-
ally changing tasks. The deflection of one robot will increase the remaining
robot’s processing time on k1 task and eventually force it to deflect as well.
Intuitively, k2 tasks will look more attractive due to the lower repair load,
but turns out to be worse due to high levels of interference, e.g. due to less
available space.

An exploration rate of less than 0.5 rate will inhibit the robots from
returning to the [k1, k1] pattern as most exploratory changes are unilaterally
and will yield a reward lower than the one for the [k2, k2] allocation pattern.

Instability It is possible, with heterogeneous robots, to construct pro-
cessing time matrices that imply ever changing allocation patterns. In game
theory these are games without Nash equilibria. One such processing time
matrix is given in Table 5.

With the job processing time matrix presented in Table 5, there will
always be an incentive for m1 to change in order to be working alone on a
task. For m2 on the other hand, it will always be advantageous to change
in order to work on the same task as m1. This will leave the system in
a constant state of change, not settling on any of the optimal allocation
patterns.

29

m2

k2 k2

m2 k1 2/2 4/1
k2 4/1 2/2

Table 5: Unstable Processing Time Matrix

10.2 Satisfying the Vacancy Chain Formalism

The results presented above showed that our implementation of task allo-
cation satisfied the restrictions on vacancy chain mechanisms reviewed in
Section 5.

1. The reusability of a resource was demonstrated by the filling of a
vacancy produced by a robot breakdown. The robot that filled the
vacancy was using the same resource that was used by the robot that
broke down.

2. The requirement of a vacancy before an individual took a new resource
was demonstrated by the stability of the time distributions presented
in Figures 4 and 6. These distributions did not change significantly un-
til a vacancy was introduced. The ǫ-greedy action selection algorithm
ensured that the robots constantly looked for vacancies and that the
robots would choose to occupy new units when these had higher esti-
mated utility.

3. In both time distributions presented in Figures 4 and 6, multiple robots
consistently serviced the low-value circuit. The service-slots on the
low-value circuit were suboptimal compared to the first three service-
slots on the high-value circuit. This shows that multiple individuals
occupied suboptimal resource units.

10.3 Allocation Strategies

The goal of task allocation is not always to maximize throughput. Keeping
general geographical patterns can be another possible goal. Theoretically the
vacancy chain algorithm can be manipulated through the reward function
to produce specific allocation patterns. In dynamic environments and when
robots are subject to individual failures, the adaptive properties can then be
used to establish optimal patterns for the current number of active robots.
Below we discuss briefly reward design for throughput- and pattern-based
allocation.

30

Value-Based Allocation Patterns The reward functions we used in our
experiments were based on task values and processing times. This resulted in
task allocation patterns that optimized the throughput value of the system.
Optimizing the throughput value implies finding a balance between task
value and robot interference. Equation 6 formalizes this implication for
applications that satisfy the restrictions in the vacancy chain framework.
Equation 5 defines the individual slot values for a task i being serviced by
j robots in terms of task value, vi, and processing frequencies, ci,j .

Slot-Based Allocation Patterns Reward functions can also, in theory,
be used to produce pre-specified allocation patterns. This type of task al-
location can be desirable in problem domains where there is no clear rela-
tionship between the values of the tasks. However, this reward function is
based on an estimate of what service-slot the robot is currently filling. It
can be difficult to estimate this accurately in complex or unfamiliar problem
domains.

To specify the desired allocation pattern for any number of working
robots we can use slot-values. By making the value of each service-slot
explicit, we can implement any allocation pattern. The vacancy chain al-
gorithm will allocate tasks to robots according to the specified patterns by
ensuring that the high-value service-slots are always filled.

Imagine an application where it is desirable to have at least two robots
dedicated to a task A. However, if there are also two robots dedicated to
task B, then it is preferable to have the fifth robot helping on task A rather
than B. One imaginable scenario demanding this kind of configuration is the
exploration and analysis of unknown environments such as other planets. In
this scenario it can be important to always have two robots dedicated to
exploring the environment and localization of places of interest. If a place
of interest is found and more robots are available, then two other robots
should analyze the interesting site. If no further robots are necessary for the
analysis, any other available robots should aid in the exploration.

A ranking, R, of the service-slots in such a scenario is a vector of service-
slots, as presented in Equation 13.

R = [(1, 1), (1, 2), (2, 1), (2, 2), (1, 3), (2, 3), (2, 4)] (13)

We assume that unlisted service-slots all have the same ranking, one
higher than the number of listed service-slots. This allocation pattern is
presented graphically in Figure 9.

31

Sub−Task 2Sub−Task 1

Slot 1 Slot 1

Slot 2

Slot 3

Slot 2

Slot 3Rank 5

Rank 2

Rank 1

Rank 7

Rank 6

Rank 4

Rank 3

Slot 4

Figure 9: Service Slot Ranking for Slot-Based Allocation

A ranking defines a set of constraints on the average rewards, ri,j , related
to the individual service-slots.

The purpose of the reward function is to reflect the given allocation
pattern and hence the values it produces must satisfy the constraints the
pattern imposes. To do this, the reward function must differentiate between
the different service slots on the same task. We have demonstrated how
this can be done by using an estimate of the average processing time, pij ,
produced by filling service-slot, j on task, i. For the experiments presented
in this paper, this estimate showed itself to be a reliable indicator of the
number of robots currently servicing the task.

In the prioritized transportation problem, for a given task, i, the pro-
cessing time, pij , is a function of the number of robots, j, currently servicing
that task.

If the interaction function, gi, is injective or one-to-one, a reward function
based on service-slots can trivially be made to mirror any desired allocation
pattern. If the interaction function is not injective, but one-to-many, dif-
ferent or additional indicators must be used to allow the state estimator to
differentiate between states with identical task processing times.

10.4 Commitment vs Opportunism

Østergaard, Matarić, and Sukhatme (Østergaard et al., 2001) have empir-
ically studied the role of commitment and opportunism in task allocation,
defining a parameter space over which different degrees of these are prefer-
able. The exploration rate, ǫ, and learning rate, α, together with the reward
function, decide how easily our robots switch between tasks. By adjusting
these parameters, a wide spectrum of commitment levels is available.

32

10.5 Re-convergence

Mustapha and Lachiver (Mustapha & Lachiver, 2000) have previously pre-
sented work on re-convergence of trained RL systems. Their conclusion is
that re-convergence can be either faster or slower than initial convergence
depending on the difficulty of the learning task. Our experiments show that
re-convergence can be slower of faster than initial convergence dependent on
how closely related the new environment is to the old. In the case where one
robot has to switch the task completely, effectively inverting the Q-table,
the re-convergence takes roughly twice as long as the initial convergence,
because the learned Q-values first have to be un-learned.

11 Future Work

Most other multi-robot task allocation algorithms, like Murdoch (Gerkey
& Matarić, 2002), L-ALLIANCE (Parker, 1997), BLE (Werger & Matarić,
2000), and M+ (Botelho & Alami, 1999), can allocate tasks efficiently also
for heterogeneous robots with different individual performance levels. We
intend to conduct experiments with a modified vacancy chain task allocation
algorithm using a static, non-Boltzmann softmax action selection function
rather than the ǫ-greedy function we used in the experiments presented
here. A softmax action selection function might allow the vacancy chain
algorithm to solve the problem of allocating tasks among heterogeneous
robots. A softmax function relates difference in utility to probability of
selection. This indicates that high performing robots should have a higher
probability of establishing themselves in the high-value service-slots. Since
the vacancy chain algorithm is completely distributed, needs only a minimal
amount of information about the problem at hand, and does not use any
communication, it will be an attractive alternative to existing task allocation
algorithms for domains with complex or unfamiliar dynamics.

The prioritized transportation problem has a very restricted interaction
function which reduces the scheduling complexity. In the future we would
also like to explore problems with more complex interaction functions in
order to see how generally applicable the vacancy chain algorithm is.

Vacancy chain distribution only partially describes the distribution mech-
anism used to distribute shells among hermit crabs. It is also common for
crabs to fight over shells (Chase et al., 1988). Inspired by such negotiated
resource exchanges it might be possible to produce algorithms that go fur-
ther in allocating high resources to high quality consumers. We intend to
study local interactions in an attempt to generalize the vacancy chain task

33

allocation algorithm to groups of heterogeneous robots.

Acknowledgements

This work is supported in part by a Department of Energy (DOE) Robotics
and Intelligent Machines (RIM) grant DE-FG03-01ER45905 and in part by
an Office of Naval Research (ONR) Defense University Research Instrumen-
tation Program (DURIP) grant 00014-00-1-0638.

References

Balch, T. R. (1999). The impact of diversity on performance in multi-robot
foraging. In Etzioni, O., Müller, J. P., & Bradshaw, J. M. (Eds.),
The proceedings of the Third International Conference on Autonomous
Agents (Agents’99), pp. 92–99, Seattle, WA. ACM Press.

Balch, T. R., Khan, Z., & Veloso, M. M. (2001). Automatically tracking and
analyzing the behavior of live insect colonies. In Proceedings of the
Fifth International Conference on Autonomous Agents (Agents’01),
pp. 521–528, Montreal, Canada.

Blum, C., & Sampels, M. (2002). Ant colony optimization for fop shop
scheduling: A case study on different pheromone representations.
In Proceedings of the 2002 Congress on Evolutionary Computing
(CEC’02), pp. 1558–1563, Honolulu, Hawaii. IEEE Press.

Botelho, S., & Alami, R. (1999). M+ : a scheme for multi-robot cooperation
through negotiated task allocation and achievemen. In Proceedings of
the 1999 IEEE International Conference on Robotics and Automation
(ICRA’99), pp. 1234–1239, Detroit, Michigan.

Brauer, W., & Weiß, G. (1998). Multi-machine scheduling - a multi-agent
learning approach. In Proceedings of the 3rd International Conference
on Multi-Agent Systems (ICMAS’98), pp. 42–48, Paris, France.

Brucker, P. (1998). Scheduling Algorithms (Second edition). Springer.

Chase, I. D., Weissburg, M., & Dewitt, T. H. (1988). The vacancy chain
process: a new mechanism of resource distribution in animals with
application to hermit crabs. Animal Behavior, 36, 1265–1274.

Corkill, D. D., & Lesser, V. R. (1983). The use of meta-level control for
coordination in a distributed problem solving network. In Proceedings

34

of the Eight International Joint Conference on Artificial Intelligence
(IJCAI’83), Vol. 2, pp. 748–756, Karlsruhe, West Germany.

Dahl, T. S., Matarić, M. J., & Sukhatme, G. S. (2002). Adaptive spatio-
temporal organization in groups of robots. In Proceedings of the 2002
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS’02), pp. 1044–1049, Lausanne, Switzerland.

Dertouzos, M. L., & Mok, A. K.-L. (1989). Multiprocessor on-line scheduling
of hard-real-time tasks. IEEE Transactions on Software Engineering,
15 (12), 1497–1506.

Gerkey, B. P., & Matarić, M. J. (2002). Sold!: Auction methods for multi-
robot coordination. IEEE Transactions on Robotics and Automation,
18 (5), 758–768.

Gerkey, B. P., Vaughan, R. T., Støy, K., Howard, A., Sukhatme, G. S., &
Matarić, M. J. (2001). Most valuable player: A robot device server
for distributed control. In Proceedings of the 2001 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS’01), pp.
1226–1231, Wailea, Hawaii.

Goldberg, D., & Matarić, M. J. (2000). Learning multiple models for re-
ward maximization. In Proceedings of the Seventeenth International
Conference on Machine Learning (ICML’00), pp. 319–326, Stanford,
California.

Goldberg, D., & Matarić, M. J. (2001). Design and evaluation of robust
behavior-based controllers for distributed multi-robot collection tasks.
In Balch, T., & Parker, L. E. (Eds.), Robot Teams: From Diversity to
Polymorphism, pp. 315–244. A K Peters Ltd.

Han, K., & Veloso, M. (1999). Automated robot behavior recognition applied
to robotic soccer. In Proceedings of the Ninth International Symposium
on Robotics Research (ISRR’99), pp. 199–204, Snowbird, Utah.

Holland, O., & Melhuish, C. (1999). Stigmergy, self-organization and sorting
in collective robotics. Artificial Life, 5 (2), 173–202.

Lerman, K., Galstyan, A., Martinoli, A., & Ijspeert, A. J. (2001). A macro-
scopic analytical model of collaboration in distributed robotic systems.
Artificial Life, 7 (4), 375–393.

Matarić, M. J. (1997). Behavior-based control: Examples from navigation,
learning, and group behavior. Journal of Experimental and Theoret-
ical Artificial Intelligence, special issue on Software Architectures for
Physical Agents, 9 (2–3), 323–336.

35

Matarić, M. J. (1994). Interaction and Intelligent Behavior. Ph.D. thesis,
Massachusets Institute of Technology.

Mustapha, S. M., & Lachiver, G. (2000). RL-Cyclist: A Self-Teaching Agent
Driving a Bicycle. In Proceedings of the IASTED International Con-
ference on Artificial Intelligence and Soft Computing, pp. 222–226.
Banff, Canada.

Østergaard, E., Sukhatme, G. S., & Matarić, M. J. (2001). Emergent Bucket
Brigading - A simple mechanism for improving performance in multi-
robot constrained-space foraging tasks. In Proceedings of the 5th In-
ternational Conference on Autonomous Agents (Agents’01), pp. 29–30,
Montreal, Canada. ACM Press.

Parker, L. E. (1997). L-ALLIANCE: Task-Oriented Multi-Robot Learn-
ing in Behaviour-Based Systems. Advanced Robotics, Special Issue on
Selected Papers from IROS’96, 11 (4), 305–322.

Ritzberger, K. (2002). Foundations of Non-Cooperative Game Theory. Ox-
ford University Press.

Seth, A. K. (2001). Modelling group foraging: Individual suboptimality,
interference, and a kind of matching. Adaptive Behavior, 9 (2), 67–91.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Intro-
duction. Adaptive Computation and Machine Learning. MIT Press.

Tangamchit, P., Dolan, J. M., & Khosla, P. K. (2000). Learning-based
task allocation in decentralized multirobot systems. In Parker, L. E.,
Bekey, G., & Barhen, J. (Eds.), Distributed Autonomous Robotic Sys-
tems 4, Proceedings of the 5th International Symposium in Distributed
Autonomous Robotic Systems (DARS’2000), pp. 381–390, Knoxville,
Tennessee.

Werger, B. B., & Matarić, M. J. (2000). Broadcast of local eligibility for
multi-target observation. In Proceedings of the Fifth International
Symposium on Distributed Autonomous Robotic Systems (DARS’00),
pp. 347–356, Knoxville, TN. Springer.

Yan, H., & Matarić, M. J. (2002). General spatial features for analysis of
multi-robot and human activities from raw position data. In Proceed-
ings of the 2002 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’02), pp. 2770–2775, Lausanne, Switzer-
land.

Zhang, W., & Dietterich, T. G. (1995). A reinforcement learning ap-
proach to job-shop scheduling. In Proceedings of the 14th International

36

Joint Conference on Artificial Intelligence (IJCAI’95), pp. 1114–1120,
Montréal, Canada. Morgan Kaufmann.

Zomaya, A. Y., Clements, M., & Olariu, S. (1998). A framework for
reinforcement-based scheduling in parallel processor systems. IEEE
Transactions On Parallel and Distributed Systems, 9 (3), 249–259.

37

