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Outline

This  project  will  consist  of  an  implementation  of  two different   biologically
inspired methods which will be used together in an attempt to solve instances of a
class of  problems known as job shop scheduling problems. A job shop scheduling
problem is concerned with assigning a set of discrete operations to a set of processors.
The operations are grouped into subsets called jobs. For the purpose of this project, we
will  always  make  the  number  of  operations  per  job  the  same for  each  job.  The
operations that make up a job must proceed in a specific order, and an operation can
only proceed when its  preceding operation has completed. Each operation requires
exclusive access to a specific processor for a specific amount of time. The problem,
then, is to assign each operation to a processor in a way that abides by these two
constraints and minimizes the total time required to complete all of the jobs. Clearly
the job shop scheduling problem is an example of a constraint-based problem. 

The  two  biologically  inspired  methods  that  we  will  use  to  solve  job  shop
scheduling problems are genetic algorithms and neural networks. A genetic algorithm
is an algorithm based on a very rough approximation of how the evolutionary process
has occurred in the animal kingdom. A solution to a problem is  represented as a
sequence  of  “genes”  which  form  a  “chromosome”.  A  large  number  of  random
chromosomes are generated, and then the quality of the solutions that they represent
is evaluated. The chromosomes which represent the solutions that are of the highest
quality  then go on to  “mate” to  produce a new generation of  chromosomes. The
process repeats, and it is assumed that eventually, by only mating the high quality
solutions, an optimal solution will be reached. This is the concept of “survival of the
fittest”. A neural network is a processing structure that is made up of many small units
which we refer to as nodes. Nodes are extremely simple processing units that simply
take a number of inputs, sum them up, and then generate a single output based on
this sum. The nodes are grouped into layers, and the layers are connected to each
other by weighted connections. An input is provided to the input layer, and then the
output signals propagate along the weighted connections to the next layer and so on
until they reach the output layer. The output signal of the output layer represents the
solution generated by the neural network. Based on this output, the neural network
can  be  made  to  produce  a  different  output  by  changing  the  weighting  of  the
connections. Neural networks take advantage of what is called massive parallelism, in
which a huge number of very simple processes operate in parallel and coordinate and
cooperate in such a way that an extremely complex behaviour can emerge. Neural
network have been shown to be extremely good at finding patterns in large sets of
data, and it is this property that we will take advantage of for solving our job shop
scheduling problems.

We will  create a  system that is  a  hybrid of  these two biologically  inspired
systems, and we will apply our system to a set of job shop scheduling problems in
order to evaluate it's performance. To measure the performance of the algorithm, we
will  compare  the  quality  of  solutions  that  it  generates for  a  number  of  standard
previously studied problems to the results generated by a number of other methods as
described in the paper “Job Shop Scheduling by Local Search” by Vaessens, Aarts, and
Lenstra1.  We will  also include measurements of  the running time required by the
system to generate high quality solutions, as well as the rate at which the solutions
improve as the algorithm proceeds. We will also experiment with various parameters
for both the genetic algorithm and the neural network, and discuss the effects.

1 R.J.M. Vaessens, E.H.L. Aarts, and J.K. Lenstra. “Job Shop Scheduling by Local Search.” COSOR
Memorandum 94-055. Eidenhoven University of Technology, Eidenhoven, The Netherlands.
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This  approach  to  solving  job  shop  scheduling  problems is  very  interesting
because  of  it's  basis  on  biologically  inspired  methods.  It  is  assumed  that  the
evolutionary process has produced highly intelligent organisms by performing very
simple operations, the combining of chromosomes during sexual reproduction, over a
huge number of generations, and by providing an environment in which only the most
fit organisms survive. By mimicking this process in software, with genetic algorithms,
scientists  have  introduced  an  entirely  new  paradigm  to  the  realm  of  software
development. Instead of analyzing a problem in an iterative, straightforward manner,
and then creating a specific solution based on the analysis, a generic evolutionary
algorithm is applied to the problem, and the computer itself  generates a solution.
Often it has been the case that the solution that the computer comes up with is better
than that created by a human. It  has also been the case from time to time, that
solution generated by the computer will work, but no one is able to figure out why it
does.  This is  an exciting field,  and it  seems very likely that extremely interesting
results will come of it. Neural networks, on the other hand, are based on our current
understanding of how the brain processes information. It is believed that the brain
consists of billions of neurons which are very simple processing devices. By wiring
these  neurons  together  with  weighted  synaptic  connectors,  and  by  propagating
electrical impulses through the neurons, we get an incredibly advanced device, namely
the human brain. That such tremendous processing power can arise from such simple
components is very cool.

System Design

The system will be implemented using a combination of Python 2.32 and C++.
Python will be used to quickly implement the framework for reading in problem sets
and manipulating the data in such a way that it can be processed by the algorithm.
Python will also be used to create a very basic GUI, using the wxPython3 module. The
GUI  will  allow  the  user  to  load  a  data  set,  manipulate  the  parameters  for  the
algorithms, and view the output of the algorithms in a intuitive format both during the
running of the system, and once the system has found it's “best” solution. Python has
been chosen for these parts since they are not computationally intensive, and so an
interpreted language allows for rapid implementation of the framework and GUI. For
the algorithms, C++ will be used. Python allows for integration of modules that are
implemented using compiled modules, so the framework can make use of the high
performance compiled C++ modules. The system will be implemented on a Macintosh
system running OS 10.3 using GNU emacs as an editor, GCC 3.3 as the compiler for the
C++ code,  and the  Python 2.3  interpreter as  the  runtime environment.  By using
Python and wxPython for the GUI, the framework will be platform independent, though
the C++ modules will have to be compiled under different operating systems, In theory
the system will run on Macintosh, Windows, or Linux without modification by simply
compiling the modules on the target system.

The framework will be highly modular so that in the future, different algorithms
can be “plugged in”. The structure of the framework is shown in Figure 1. We will look
at each component in detail.

Problem Set

The problem set is simply a flat text file that specifies the job shop problem. The

2 http://www.python.org/
3 http://www.wxpython.org/
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first line of the file states the number of jobs and the number of machines, and then it
is followed by one line for each job, listing the machine number and processing time
for each step of the job. This data is read from the file system and processed by the IO
Module.

IO Module

The IO module is responsible for reading in the data from the problem set and
communicating with the GUI. The problem set is read in and converted into a data
structure representing the problem, which is then passed on to the solution generator.
Input from the GUI representing the parameters for the algorithm are also passed on to
the solution generator. When the system has decided on a solution, that solution is fed
back into the IO module where it is outputted to the GUI.

GUI

The GUI is the interface through which the user interacts with the system. It
consists  of  a  set  of  input  boxes  for  setting  the  various  parameters  such  as  the
population rate, the mutation rate, the survival rate, and the average offspring per
parent ratio for the genetic algorithm and the learning rate for the neural network. The
solution that the system generates will be displayed as a chart displaying the time line
and the various machines with boxes representing the job that is active on the specific
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machine at the specific time.

Solution Generator

The solution generator consists of the genetic algorithm. The genetic algorithm
initially takes the problem set from the IO module and generates a number of random
solutions. The solutions are then fed to the solution evaluator. After the solutions get
evaluated, if the ending criteria is not met, the solutions are fed back into the solution
generator along with their quality rating, and a new set of solutions are generated
based  on  this  information.  After  a  certain  number  of  iterations  of  this  type,  the
solutions are then fed into the solution processor, as well as the solution evaluator.

Solution Processor

The solution processor consists of the neural network. After a certain iterations
of the genetic algorithm, the solutions begin to flow into the solution processor. These
solutions are then used to train the neural network. After each training iteration, the
neural network is used to generate a new solution, which is then fed into the solution
evaluator. Therefore, after the neural network begins processing, it contributes a new
solution to the set of solutions, and this new solution then competes with the other
solutions generated by the genetic algorithm.

Solution Evaluator

The solution evaluator takes a set of solutions and assigns a value to each
solution that represents the makespan of that solution. The makespan is equivalent to
the total time that the schedule represented by the solution would take to run to
completion. The higher the makespan, the lower the quality of the solution, and so the
system will be designed with the goal of minimizing the makespan.

Ending Criteria

The ending criteria specifies when the system will stop running and decide on a
solution.  The criteria may be based on the quality  of  the solution, the number of
iterations that the system has gone through, or both. If the criteria is not met, the
solutions and their corresponding makespans are fed back into the solution generator,
and if the criteria is met then the solution with the smallest makespan will be fed to the
IO module so that it can be displayed in the GUI.

The algorithm will make use of a number of data structures. The number of  The
problem set will be internally represented by a set of two matrices, the width of which
is the maximum number of operations per job, the height of which is the total number
of jobs. The elements of the first matrix represent the resource required for the specific
operation, and so the element at position (i, j) represents the resource required by the
i-th operation of job  j. The elements of the second matrix represent the processing
time required by each specific operation and ,similar to the first matrix, the element at
position (i, j) represents the time required by the i-th operation of job j. Because zeros
play a crucial role in the data structures and the algorithm, as we will see later, the
machines, jobs, and operations are all indexed starting with one, so for example, the
first job is Job1, not Job0. The solutions are represented as a vector of integer values.
The length of the vector is equal to the number of operations per job multiplied by the
number of jobs. The elements of the vector represent the job that is to be scheduled,
and the order of the elements specifies the order in which the jobs are scheduled. So
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for example if we have the vector [2, 4, 5, 3, 5, 1], this specifies that we will first assign
the first unassigned operation of job 2 to the resource that it requires, then we will
assign the first unassigned operation of job 4, then job 5, then job 3, then job 5, and
finally job 1. The order is important, because it may be the case that both jobs 2 and 4
require the same resource for their first operation. In this example, job 2 would be
assigned the resource, and job 4 would have to wait until  job 2 is done with that
resource before it can begin it's operation. A vector data structure was chosen for two
reasons. First of all,  both genetic algorithms and neural networks are designed to
operate on a sequence of elements. For genetic algorithms, this sequence represents
the chromosome, and its elements represent the individual genes. In keeping with our
biological analogue, the numeric values representing the resources comprise the set of
alleles, which are the set of possible values for the genes. With neural networks, the
input is usually given as a bit vector, and so with a little coaxing, our vector can be
used. The second reason for using a vector for our solution is that it is essentially a
recipe for building a schedule, and as such it will always represent a feasible, or valid,
solution. We never have to worry about ensuring that our constraints are satisfied as
long  as  the  method  for  generating  the  schedule  from  the  solution  vector  is
implemented properly.

The algorithm for generating a schedule from a solution consists of iterating
over the elements of the solution vector and constructing the schedule from beginning
to end. Due to the two constraints, that the operations must proceed in order, and that
no two operations can make use of a single resource at the same time, we have not
been able  to  come up with  an algorithm that  consists  of  only  a  series of  matrix
operations. We do suspect though, that such an algorithm, which would operate in
constant time regardless of the size of the inputs, may exist. Our current algorithm is O
(n2)  since  on  each iteration,  we must  find  the  earliest  time that  the  resource  in
question  is  free,  as  well  as  the  earliest  time  that  the  preceding  operation  has
completed, and then take the maximum of the two as the start time for the current
operation.  In  order  to  experiment  with  various  solution  vectors,  we have already
implemented this algorithm as an OpenOffice4 spreadsheet (which also happens to be
compatible with Excel, but Microsoft is evil). The solution vector is entered into the
spreadsheet as an array, and then the spreadsheet automatically calculates the start
and  end  time  of  each  operation,  calculates  the  makespan  for  the  schedule,  and
generates a visual  representation of  the schedule. This makes it  easy to see how
modifications to the solution vector affect the final schedule. A sample solution for a
simple 6-job, 6-machine, 6-operations/machine problem is included in Appendix A.

Work Plan

This system must be completed by December 1, 2004. This project plan was
completed on November 1, 2004, and so we have exactly one month to complete the
system. As stated earlier,  Python has been chosen as  the language in  which the
framework will be implemented in order to speed up development, and leave adequate
time for working on the real guts of the system, the algorithms. Here is the breakdown,
in hours of the time required for each of the components described in the previous
section, as well as the number of days over which this work will be spread. 

• IO Module and GUI – 6 hours over 2 days.

• Solution Generator – 15 hours over 4 days.

4 http://www.openoffice.org/   - OpenOffice has evolved into an excellent alternative to Microsoft's Office
suite, and is nearly 100% compatible. It also happens to be free.
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• Solution Evaluator – 2 hours over 1 day.

• Solution Processor – 20 hours over 4 days.

We will also budget 2 hours over 1 day for wiring together the components, 4
hours over 1 day for testing, and 12 hours over two days for evaluation and reporting.
4 hours for testing would typically be inadequate, but due to the rapid development of
this project, as well as the modularity, the project will be tested throughout the entire
development process. Figure 2 shows how this time will be allocated throughout the
next month. As this project is being done by a single student, project management will
require very little, if any, time, and all tasks will be allocated to a single developer. The
total amount of time required for this project will be approximately 61 hours, and just
to bring the real world into this, a project such as this would cost around $15,000 were
you to hire the company that I work for (and co-founded) to develop it.

Testing and Evaluation

In order to evaluate this project, we will be comparing the output to that of a
number of other local search algorithms on a set of problems that are widely used for
testing job shop scheduling algorithms. The system will be tested on the 82 job shop
scheduling problems provided by the instructor5.  For  the problems that  were also

5 http://www.cs.sfu.ca/CC/417/havens/project/jobshop1.txt
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Figure 2: Timeline for Project

November

Sun. Mon. Tues. Wed. Thur. Fri. Sat.

1 2 3 4 5 6

IO Module and GUI

Solution Generator

Solution Evaluator

Solution Processor

Component Integration

Testing and Bugfixes

Evaluation and Reporting

7 8 9 10 11 12 13

IO Module and GUI

Solution Generator

Solution Evaluator

Solution Processor

Component Integration

Testing and Bugfixes

Evaluation and Reporting

IO Module and GUI 14 15 16 17 18 19 20

Solution Generator

Solution Evaluator

Solution Processor

Component Integration

Testing and Bugfixes

Evaluation and Reporting

IO Module and GUI 21 22 23 24 25 26 27

Solution Generator

Solution Evaluator

Solution Processor

Component Integration

Testing and Bugfixes

Evaluation and Reporting



tested in the Vaessens, Aarts, and Lenstra paper, we will provide a detailed comparison
of our results and theirs. We will also provide graphs showing the rate at which the
solutions to specific problems improve over the course of the operation of the system,
as well as a discussion of how the various parameters for the algorithms affect the
quality of the solution and the amount of time required to find the best solutions.
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Appendix A: Sample Mapping from Solution Vector to Schedule

Sample Solution Vector

[2,3,2,4,6,3,6,4,1,3,4,3,1,6,2,6,3,5,6,5,1,4,1,2,3,6,5,4,5,5,2,1,2,5,4,1]

Graphical Representation of corresponding Schedule

9

Fisher and Thompson 6x6 Instance (also known as mt06)

F P
3 1 2 4 6 5 1 3 6 7 3 6
2 3 5 6 1 4 8 5 10 10 10 4
3 4 6 1 2 5 5 4 8 9 1 7
2 1 3 4 5 6 5 5 5 3 8 9
3 2 5 6 1 4 9 3 5 4 3 1
2 4 6 1 5 3 3 3 9 10 4 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
M1 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 21 21 21 21 21 0 0 0 0 0 0 0 31 31 31 41 41 41 41 41 41 41 41 41 41 50 50 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 0 0 0 0 0
M2 8 8 8 8 8 8 8 8 11 11 11 16 16 16 16 16 19 19 19 25 25 25 25 25 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M3 1 10 10 10 10 10 10 10 10 10 15 15 15 15 15 20 20 20 20 20 0 26 26 26 26 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
M4 0 0 0 0 0 0 0 0 0 0 0 14 14 14 0 0 0 0 0 0 24 24 24 24 0 0 29 29 29 36 36 36 36 36 36 36 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 64 64 64 0
M5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 24 24 24 24 34 34 34 34 34 34 34 34 34 34 42 42 42 42 42 42 42 42 46 46 46 46 0 0 0 0 0 58 58 58 58 58 58 58 64 64 64 64 64 64 0
M6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 23 23 23 23 23 23 23 23 0 28 28 28 28 36 36 36 36 36 36 36 36 46 46 46 46 46 46 46 46 46 46 49 49 49 58 58 58 58 58 58 58 58 58 0 0 0 0 0 0 0

Jobs: 1 2 3 4 5 6 Makespan: 64


