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Abstract

We present two approaches to the analysis of the relationship between a recurrent neural

network �RNN� and the �nite state machine M the network is able to exactly mimic
 First�

the network is treated as a state machine and the relationship between the RNN and M is

established in the context of algebraic theory of automata
 In the second approach� the RNN

is viewed as a set of discrete�time dynamical systems associated with input symbols of M
 In

particular� issues concerning network representation of loops and cycles in the state transition

diagram of M are shown to provide a basis for the interpretation of learning process from the

point of view of bifurcation analysis
 The circumstances under which a loop corresponding

to an input symbol x is represented by an attractive �xed point of the underlying dynamical

system associated with x are investigated
 For the case of two recurrent neurons� under some

assumptions on weight values� bifurcations can be understood in the geometrical context of

intersection of increasing and decreasing parts of curves de�ning �xed points
 The most typical

bifurcation responsible for the creation of a new �xed point is the saddle node bifurcation




� Introduction

The relationship between recurrent neural networks �RNN� and automata has been treated by

many ����� ��	�� �
�� ����� ����� ��
�� ���� ��
�� ����� ��
�� ����� ����� State units� activations represent

past histories and clusters of these activations can represent the states of the generating automaton

��
��

In this contribution� the relationship between a RNN and a �nite state machine it exactly mimics

is investigated from two points of view� First �section ��� the network is treated as a state machine�

The concept of state equivalence is used to reduce the in�nite� non�countable set of network states

�activations of RNN state neurons� to a �nite factor state set corresponding to the set of states of

M� Second �section 	�� the RNN is viewed as a set of discrete�time dynamical systems associated
with input symbols of M� The dynamical systems operate on ��� ��L� where L is the number
of recurrent neurons of the RNN� In our experiments� loops and cycles corresponding to an input

symbol x ofM have stable representation as attractive �xed points and periodic orbits respectively

of the dynamical system associated with the input x� Suppose there is a loop associated with an

input x in a state q ofM� Denote the set of network states equivalent to q by �q�N � Then� if there
is a vertex v � f�� �gL such that v is in the closure of �q�N � the loop is likely to be represented by
an attractive �xed point� �near� v�

A related work was independently done by Casey ���� �	�� In his setting� RNN is assumed to

operate in a noisy environment �representing for example a noise corresponding to round�o� errors

in computations performed on a digital computer�� RNNs are trained to perform grammatical

inference� It is proved that a presence of a loop in the state transition diagram of the automaton

� necessarily implies the presence of an attractive set inside RNN state space �see the discussion

in section 	�� It is also shown that the method for extraction of an automaton from a trained

RNN introduced in ��
� is consistent� the method is based on dividing RNN state space into equal

hypercubes and there is always a �nite number of hypercubes one needs to unambiguously cover

regions of equivalent network states�

In section 
 a more detailed analysis of the case when RNN has two state neurons is presented�

�of the corresponding dynamical system

�recognizing the same language as the RNN

�



Under some conditions on weight values� the number� position and stability types of �xed points of

the underlying dynamical systems are analyzed and bifurcation mechanism is clari�ed� The most

typical bifurcation responsible for the creation of a new �xed point as the saddle node bifurcation� A

mechanism of correct behaviour of RNN for short input strings� when for long strings� the network

is known to generalize poorly is investigated in section 
� In such cases� a correct state transition

diagram of a FSM the network was trained with can still be extracted ��
�� A tool called the

state degradation diagram is developed to illustrate how regions of network state space� initially

acting as if they assumed the role of states of the FSM in which there is a loop associated with an

input symbol x� gradually degradate upon repeated presentation of x� Sections � and � bring brief

introductions to state machines and dynamical systems respectively� Section � is devoted to the

model of RNN ���� used for learning FSMs�

� State Machines

This section introduces the concept of state machine� which is a generalized �nite state machine

with possibly uncountable number of states� When viewed as automata� RNNs can be described

in terms of state machines�

A state machine �SM� is a 	�tupleM��X�Y� S� fs� fo� s��� where

� X is a nonempty �nite set called the input set

� Y is a nonempty �nite set called the output set

� S is a nonempty set called the set of internal states

� fs is a map fs � S �X � S called the next�state function

� fo is a map fo � S �X � Y called the output function

� s��S is called the initial state

SMs with a �nite internal state set are called �nite state machines �FSMs��

We assume that the reader is familiar with the notion of monoid of words over a �nite set�

Following the standard notation� �� X��X� and uv denote the empty word� the set of all words

over X� the set of all nonempty words over X� and concatenation of words u and v respectively�

�



In every moment M is in exactly one state s � S� When an element x � X is read in� the

machine changes its state to fs�s� x� and yields the output fo�s� x�� The processing of any input

word w�X� byM always starts withM being in the initial state�

If for some x � X and s � S� it holds fs�s� x� � s� then it is said that there is an x�loop in the

state s� If there exist m �m � �� distinct states s�� ���� sm � S and an input x � X� such that

fs�si� x� � si��� for all i � �� ����m� � and fs�sm� x� � s�� then the set fs�� ���� smg is said to be
an x�cycle of length m passing through the states s�� ���� sm�

It is convenient to extend the domain of fs and fo from S�X to S�X� and S�X� respectively�

� �s�S� fs�s����s�

� �s�S� �w�X�� �x�X� fs�s� wx��fs�fs�s� w�� x� and fo�s� wx��fo�fs�s� w�� x��

Yet further generalization of fo is useful�

�s�S� �w�x�x����xn�X�� f�o �s� w��fo�s� x��fo�s� x�x�����fo�s� x�x����xn��

A distinguishing sequence of M is a word w � X� such that there are no two states s�� s� of M
for which f�o �s�� w� � f�o �s�� w��

The behaviour of M is a map BM �X
��Y � �w�X�� BM�w��fo�s�� w��

A state s��S is said to be accessible and x�accessible from the state s��S if there exists some
w � X� and w � fxg� respectively� such that s� � fs�s�� w�� M is said to be connected if every

state s�S is accessible from s�� The set of all states that are x�accessible from a state s � S is

denoted by Acc�x� s�� An x�cycle � � fs�� ���� smg is said to be x�accessible from a state p � S� if

� 	 Acc�x� p��

An input word w �X� is leading to a state q if fs�s�� w� � q� An input word leading to q is

minimal if there is no input word leading to q of shorter length�

We shall also need some concepts concerning state and machine equivalence� Let Mi �

�X�Y� Si� f
i
s� f

i
o� s�i�� i � �� � be two SMs� States s� � S� and s� � S� are said to be equivalent

if there is no non�empty word over X which would cause M� to give di�erent output from that

given byM�� providedM� andM� started from s� and s� respectively� This is formally represented

by the equivalence relation E�M��M�� 	 S��S��

�s�� s���E�M��M�� i� �w�X�� f�o �s�� w��f
�
o �s�� w��

�



The set fp � S�j�q� p� � E�M��M��g of all states of M� that are equivalent to a state q � S� of

M� is denoted by �q�E�M��M��� WhenM��M��M� the equivalence relation E�M�M� partitions
the state set S ofM into the set of disjoint equivalence classes S�E�M�M��

M� andM� are said to be equivalent if for every state s��S� there exists a state s��S� such
that �s�� s���E�M��M��� and vice�versa� If there exists a bijection bS � S� � S� satisfying�

� �s�S�� �x�X� bS�f
�
s �s� x���f

�
s �bS�s�� x� and f�o �s� x��f

�
o �bS�s�� x�

� bS�s
�
���s

�
��

then M� and M� are said to be isomorphic� Isomorphic SMs can be considered identical since

they di�er only in names of states�

An SM is said to be reduced if no two of its states are equivalent to each other� Reduced SM

equivalent toM��X�Y� S� fs� fo� s�� is �X�Y� S�E�M�M�� f �s � f �o� �s��E�M�M��� with f
�
s � S�E�M�M��

X��S�E�M�M� and f �o � S�E�M�M��X��S�E�M�M� de�ned as follows�

�s�S��w�X�� f �s��s�E�M�M�� w���fs�s� w��E�M�M�� ���

�s�S��w�X�� f �o��s�E�M�M�� w��fo�s� w�� ���

� Dynamical Systems

Analysis of dynamical systems �DSs� via state space structures plays an important role in ex�

perimenting and interpreting complex systems� Most of the important qualitative behaviors of a

nonlinear system can be made explicit in the state space with a state space analysis� In this paper

only discrete�time DSs �i�e� DSs evolving in discrete time� will be considered� Our theoretical

knowledge about nonlinear DSs is far from complete� The state space of a nonlinear DS often con�

sists of qualitatively di�erent regions� It is useful to take into account the geometric information

about the structures and spatial arrangements of these regions�

Among the most important characteristics of a DS are the �xed points� periodic orbits� their

stability types� and the spatial arrangement of the corresponding stability regions� We review some

of the basic concepts in DS theory�

�



A discrete�time DS can be represented as the iteration of a �di�erentiable� invertible� function

f � A� A �A 	 
n�� i�e�

xt�� � f�xt�� t � Z� ���

where Z denotes the set of all integers� For each x � A� the iteration ��� generates a sequence

of distinct points de�ning the orbit� or trajectory of x under f � Hence� the �forward� orbit of x

under f is the set ffm�x�j m � �g� For m � �� fm is the composition of f with itself m times�

f� is de�ned to be the identity map on A�

A point x� � A is called a �xed point of f � if fm�x�� � x�� for all m � Z� A point x� � A is a

periodic point of f � if f q�x�� � x� for some q � �� The least such a value of q is called the period
of the point x� and the orbit of x�� The set fx�� f�x��� ���� f q���x��g is said to be a periodic orbit

of x� of period q� Notice that a �xed point is a periodic point of period one� and a periodic point

of f with period q is a �xed point of f q� If x� is a periodic point of period q for f � then so are

all of the other points in the orbit of x��

Fixed and periodic points can be classi�ed according to the behaviour of the orbits of points in

their vicinity� A �xed point x� is said to be asymptotically stable �or an attractive point of f�� if

there exists a neighborhood O�x�� of x�� such that limm�� fm�x��x�� for all x � O�x��� As m

increases� trajectories of points near to an asymptotically stable �xed point tend to it� The basin

of attraction of an attractive �xed point x� is the set fx � Aj limm�� fm�x��x�g�
A �xed point x� of f is asymptotically stable only if for each eigenvalue � of Df�x��� the

Jacobian of f at x�� j�j � � holds� The eigenvalues of Df�x�� govern whether or not the map f
in a vicinity of x� has contracting or expanding directions� Eigenvalues larger in absolute value

than one lead to expansion� whereas eigenvalues smaller than one lead to contraction� If all the

eigenvalues of Df�x�� are outside the unit circle� x� is a repulsive point� or repellor� All points from

a neighborhood of a repellor move away from it as m increases� or equivalently� move towards it as

�m decreases�� If some eigenvalues of Df�x�� are inside and some are outside the unit circle� x�

is said to be a saddle point� There is a set W s of points x such that the trajectory of x tends to

x� for m��� W s is called the stable invariant manifold of x�� Similarly� the unstable invariant

manifold of x�� W
u� is the set of points x such that the trajectory of x tends to x� for m� ���

�f�m � �f���m

�



Since any periodic point of period q can be thought of as a �xed point of f q� these remarks

apply to periodic points as well�

An absorbing set of a set B 	A under the map f is a set P such that for all x�B� there
exists m� � �� for which fm�x��P � for all m � m�� For a given x�B� the least such a value of
m� is called the absorption level of x in P under the map f � An absorption region of P under the

map f is de�ned as follows�

Af �P � � fx � Aj there exists m� � �� such that fm�x��P� for all m � m�g�

When A 	 
� or A 	 
�� it is useful to code with colors �or di�erent gray levels� the absorption

levels of points from Af �P � in P � We will refer to such a diagram as an absorption diagram of P

under the map f �

B	A is said to be positively invariant set of f if f�B�	B� i�e� trajectories of points from B

stay in B� Trivially� A is positively invariant set of f � but in an e�ort to understand the dynamics of

���� we are usually interested in �nding as minimal positively invariant set� as possible� If B is open

and	 f�B� � B then the set �B �
T
m�� f

m�B� is not only positively invariant� but also attracting�

meaning that there is a neighborhood of �B such that all orbits starting in that neighborhood

converge to �B� Attractive �xed points and periodic orbits are trivial examples of attractive sets�

Much more complicated attractive sets can be found in dynamical systems literature under the

name strange attractors
 ����� As in the case of an attractive �xed point� the basin of attraction of

an attractive set �B is the set of all points whose orbits converge to �B�

If B	A is positively invariant set of f then it is certainly an absorbing set of itself under f � B
may be an attracting set of f � or it may contain an attractive set of f�� or none of the two��

To learn more about the theory of DSs� see for example �����

�in sense of inclusion

�B denotes the closure of B
�Loosely speaking� strange attractors are attractive sets that are topologically distinct from �i�e� cannot be

transformed by a homeomorphism to� trivial attractive sets mentioned above�
�Note that this does not necessarily imply that B is part of basin of attraction of an attractive set contained in

B� Think of attractive periodic orbit inside B that encircles a repelling �xed point�

�Identity map constitutes a simple example

	



Figure �� RNN model used for learning FSMs�

� Recurrent Neural Network

The RNN presented in �gure � was shown to be able to learn mappings that can be described by

�nite state machines ����� A binary input vector I�t� � �I
�t�
� � ���� I

�t�
N � corresponds to the activations

of N input neurons� There are two types of hidden neurons in the network�

� K hidden nonrecurrent neurons H������HK � activations of which are denoted by H
�t�
j � j �

�� ����K�

� L hidden recurrent neurons S������SL� called state neurons� We refer to the activations of

state neurons by S
�t�
i � i � �� ���� L� The vector S�t� � �S

�t�
� � ���� S

�t�
L � is called the state of the

network�






Wiln� Qjln and Vmk are real�valued weights and g is a sigmoid function g�x� � ����� e
�x�� The

activations of hidden nonrecurrent neurons are determined by

H
�t�
j � g�

X
l�n

Qjln
S�t�l 
 I�t�n ��

The activations of state neurons at the next time step �t� �� are computed as follows�

S
�t���
i � g�

X
l�n

Wiln
S�t�l 
 I�t�n � � Si�S�t�� I�t��� ���

The output of the network at time t is the vector �O
�t�
� � ���� O

�t�
M � of activations ofM output neurons

O������OM � The network output is determined by

O�t�
m � g�

X
k

Vmk
H�t�
k � � Om�S

�t�� I�t��� ���

Network states are elements of the L�dimensional open interval ��� ��L� the internal region of

the L�dimensional hypercube�

A unary encoding of symbols of both the input and output alphabets is used with one input

and one output neuron for each input and output symbol respectively�

The bijection de�ning the encoding of N input symbols into N �dimensional binary vectors with

just one active bit is denoted by cI � Similarly� the bijection that de�nes the encoding of M output

symbols into M �dimensional one�active�bit binary vectors is denoted by cO�

The vector I�t� � �I
�t�
� � ���� I

�t�
N � � f�� �gN of activations of input neurons corresponds to the

input symbol c��I �I
�t�
� � ���� I

�t�
N ��

Activation of each output neuron is from the open interval ��� ��� A threshold � � ��� �� � is
introduced� such that any value from ����� is assumed to be an approximation of �� and any value

from ����� �� represents the value �� A mapping r � ��� ��� f�� ����g is de�ned as follows
�

r�x� �

�����
����
� if x � �����
� if x � ����� ��
�� otherwise�

	�� represents don�t know output of an output neuron






Interpretation of network output in terms of output symbols of the FSM it models is performed

via mapping D���

D�y�� ���� yM � �

�
c��O �y�� ���� yM � if yi � f�� �g� i � �� ����M

� otherwise�

If the output of the network� O�t� � �O
�t�
� � ���� O

�t�
M �� falls into ������ � �� � �� ���M � then it

corresponds to the output symbol

D�r�O
�t�
� �� ���� r�O

�t�
M �� � c��O �r�O

�t�
� �� ���� r�O

�t�
M �� � c��O �R�O

�t�
� � ���� O

�t�
M �� � c��O �R�O

�t����

where the map R is the component�wise application of the map r�

Each input word �a word over the input alphabet of the FSM used for training� is encoded into

the input neurons one symbol per discrete time step t� yielding the corresponding output� as well

as the network new state�

Training is performed via optimization with respect to the error function

E �
�

�

X
m

�T �t�
m �O�t�

m �
��

where T
�t�
m �f�� �g is the desired response value for the m�th output neuron at the time step t� For

a more detailed explanation of the training procedure see �����

� RNN as a State Machine

In this section we assume that a RNN N of the type described above has learned to exactly mimic

the behaviour of a reduced� connected FSM M��X�Y�Q� �� �� so� it was trained with� It follows

that there exists a network state S�� for which network output will always be in ������������ ���M

upon presentation of any input word� and such that the following correspondence holds �time is set

to t � � ����

�w � x����xn�X�� ��qi� xi��D�R�O
�i���� for all i � �� ���� n� �	�

�
It is assumed that 	 does not belong to the set of output symbols of the FSM modeled by the RNN� 	 stands for

don�t know output of the net�
��In practical terms� during learning phase� the network is trained to respond to a special 
reset
 input symbol

� �� �� X� by changing its state to a state equivalent to s
� the initial state of M �more details in �
���� S
 is the

�next�state
 computed in the layer of recurrent state neurons when the symbol � is presented to the network input

after training process has been completed�

�



where

� q� � s��

� S��� � S��

� qi�� � ��qi� xi�� i � �� ���� n� �� and

� the network input I�i� at the time step i is the code cI�xi� of the i�th input symbol xi of the
input word w�

Automata theory provides us with the ability to connect structural and behavioural equivalence

of automata ����� In particular� it can be shown� that for any couple �M��M�� of connected FSMs

with equal input� as well as output sets it holds� if BM�
�BM�

� thenM� andM� are equivalent

and their reduced forms are isomorphic� To investigate the correspondence between N andM in

this context� we represent the network N as a SM �N ��X�Y � f�g� �S� �� 	� S��� where the maps 	
and � are de�ned as follows�

for any S��S�� ���� SL�� �S� and any x�X�

	�S� x��D�R�O��S� cI�x��� ����OM �S� cI�x�����

and

��S� x���S��S� cI�x��� ����SL�S� cI�x����

with Oi and Sj de�ned by ��� and ��� respectively�
From �	� it follows that

�w�X�� ���s�� w��	
��S�� w�� �
�

The set �S � ��� ��L of states of �N can be partitioned into the set of equivalence classes corre�

sponding to the equivalence relation E� �N � �N �� By presenting inputs to the network and considering
only the de�coded network outputs� it is impossible to distinguish between equivalent network states�

�S��E� �N � �N � is the set of all network states equivalent to S
�� Denote the set of network states

accessible from states from �S��E� �N � �N � by
�Sacc� Note that for every state S � �Sacc and for each

input word w � X�� 	��S�w� does not contain the don�t know symbol �� From �N � a reduced�
connected SM �N� � �X�Y� �Sacc�E� �N � �N �� ��� 	�� �S��E� �N � �N �� is constructed� where �� and 	� are

��



de�ned according to ��� and ��� respectively� and respectively restricted to �Sacc�E� �N � �N ��X� and

�Sacc�E� �N � �N ��X�� �N� has the same behaviour asM� It is easy to see that the number of states
of �N� is �nite and hence �N� is a FSM� It follows that �N� andM are isomorphic�

The set �q�E�M� �N � of all network states equivalent to the state q of M is denoted by �q�N �

States of a SM code the information about �what has happened so far in the course of input word

processing�� From that point of view� all network states from �q�N code the same information� the

information that is coded by the state q ofM�
So far we have dealt with the existence issues concerning nonempty regions of network states

equivalent to states of the FSM the network is capable to exactly mimic� For a �constructive�

approach to determination of �q�N � the regions N y
x of network state space are identi�ed� for which

the network N gives the �decoded� output y provided the code of the input symbol x is presented

at network input� In particular� N y
x � fS � �Sj	�S� x� � yg� Note that for each x � X and y � Y �

N y
x is an open set� For a given input word w � x�x����xn � X�� the set of all network states

N ���q�w�
w originating the output equal to ���q� w� is

N ���q�w�
w � N ��q�x��

x�
�
�

n�
i��

��xi�� � ��� � �x� � �x�����N ��q�x�x����xi�
xi

�

	
� �
�

where

�x�S����S� x�� for each x�X� ���

By f���A�� where f is a map and A is a set� we denote the set of all points whose images under

f are in A� For any x � X� �x is continuous� and so is the composition �xm � ��� � �x� � �x� for any
word x�x����xm � X�� It follows that the sets N ���q�w�

w are open� However� the set

�q�N �
�

w�X�

N ���q�w�
w ����

of network states equivalent to the state q ofM is not necessarily open� since an in�nite� countable

intersection of open sets is not guaranteed to be open��� If �q�N is open� �q�N �� � implies there
exists a ��nite� length L of input words such that�� �q�N �

T
jwj	LN ���q�w�

w �

��The case when trajectories in the RNN state space may be corrupted by a noise is not discussed in this paper�

However� we note that if �q�N is not open� arbitrarily close to a state S��q�N there is a network state not equivalent

to the state q of M and an arbitrarily small perturbation of S may cause failure in the RNN modeling of M�

��jwj denotes length of the word w� i�e� the number of symbols contained in w

��



From �
� and ���� it follows that if there is an x�loop in a state q of M producing an output

symbol y� then

�x��q�N � 	 �q�N 	
�
i��

�� ix�
���N y

x �� ����

As in section �� � ix is the composition of �x with itself i times� �
�
x is de�ned to be the identity map�

Analogically� if there is an x�cycle of length m passing through states q�� ���� qm with outputs

yi � ��qi� x�� i � �� ����m� then

�q��N 	
m�
j��

�� j��x ���



��
i��

�� imx �
���N yj

x �

�
A � ����

Similar bounds can be found for �q��N � ���� �qm�N � in particular

�mx ��qj�N � 	 �qj�N 	
�
i��

�� imx �
���N yj

x �� j � �� ����m� ����

Some researchers attempted to extract learned automaton from a trained recurrent network

��
�� �
�� ��
�� ����� Extraction procedures rely on the assumption that equivalent network states

are grouped together in well�separated regions in the recurrent neurons� activation space� After

training� the network state space is partitioned into clusters using some clustering tool and for each

q � Q� the region �q�N is approximated by �possibly� several of such obtained clusters� For example�

in ��
� the network state neurons� activation space is divided into several equal hypercubes� When

the number of hypercubes is su ciently high� each hypercube is believed to contain only mutually

equal states� After training� Ti!no and !Sajda ���� present a large number of input words to the

network input� All states the network passes through during the presentation are saved� Then

the clustering of those states is performed using Kohonen map with �star� topology of neural �eld

consisting of several �branches� of neurons connected to one �central� neuron� Such a topology

helped to reduce great sensitivity to initial conditions found in vector�coding algorithms using

independent cluster centers� while avoiding time consuming approximation of input space topology

typical of classical regular�grid topologies of Kohonen Map ����� Other approaches to RNN state

space clustering are discussed in �����

Having approximated the regions �q�N � the automaton �N� is constructed via determining arcs in

the corresponding transition diagram� followed by non�determinism eliminating and minimization

procedures�

��



All ideas presented in this section stem from the assumption� that the network N exactly mimics
the FSMM it was trained with� However� it is possible that a correct automaton is extracted from

trained RNN even though the network is known to generalize poorly on long� unseen input words

��
�� This is discussed in section 
�

��� Experiments

Number of experiments were performed in which RNNs with two or three state neurons were trained

simple FSMs� To show how the network learned to organize its state space in order to mimic a given

FSM� the regions corresponding to �q�N were detected� The network state space was �covered�

with a regular grid G of R � R points �R is of order of hundreds� and a �nite vocabulary " of

distinguishing sequences ofM was created� Regions �q�N were approximated by grouping together

those network states from the grid that� for each input word from the vocabulary� lead to equal

output strings� In other words� �q�N �
T
w�X� N ���q�w�

w were approximated by
T
w��N ���q�w�

w �G�
For example� in �gure � approximations of regions of equivalent network states corresponding to

states of a FSM shown in �gure � can be seen� Figure � should be compared with �gure � showing

activations of state neurons during presentation of training set to the RNN after training�

Generally� in our experiments� regions approximating �q�N were observed to be connected and

of �simple shape�� Further study needs to be devoted to that matter� However� at least empirically

and for simple tasks� our use of the Kohonen Map as a clustering tool ����� as well as the use of

simple clustering technique introduced in ��
� are supported�

� RNN as a Collection of Dynamical Systems

RNNs can be viewed as discrete�time DSs� Literature dealing with the relationship between RNNs

and DSs is quite rich� ����� ���� ��	�� �	�� �
� ����� ��	�� ����� ��	�� ����� ���� ����� for example� However�

as it has been already mentioned� the task of complete understanding of the global dynamical

behaviour of a given DS is not at all an easy one� In ��	� it is shown that networks with just two

recurrent neurons can exhibit chaos and hence the asymptotic network dynamical behaviour �on a

chaotic attractor� can be very complex�

In order to describe the behaviour of the RNN N by an iterative map� we con�ne ourselves

��



Figure �� FSMM used for training RNN� M��X�Y� S� fs� fo� s�� is represented as a directed graph

called the state transition diagram� The graph has node for each state� and every node has jXj
�jXj denotes the number of elements of a �nite set X � outgoing arcs labeled with xjy �x�X� y�Y �
according to the rule� The arc from the node labeled with s��S to the node labeled with s��S is
labeled with xjy if s� � fs�s�� x�� and y � fo�s�� x�� The node corresponding to the initial state

is indicated by an arrow labeled with START�

Figure �� Regions of equivalent network states� Capital letter inside each region indicates to which

state ofM the network states from that region are equivalent� � � ���� Two lines stemming from

the origin are the lines �a�s�� � ��� and �a�s�� � ���� between them is the region Pa������ �see
section 	��

��



Figure �� Activations of state neurons when training set is presented to the network after training

process has �nished �weights are frozen��

to only one input symbol x from the input alphabet of the FSM used for training N � the code of
which is repeatedly presented to the network input� The evolution of the network is described in

terms of trajectories fS� �x�S�� ��x�S�� ���g in ��� ��L� The iterative map �x � ��� ��
L � ��� ��L is

de�ned in ����

As in the previous section� here we also assume that a RNN N exactly mimics the behaviour of

a reduced� connected FSMM��X�Y�Q� �� �� so�� In this section we deal with the problem of how

certain features of M found in its STD �such as loops and cycles� induce some speci�c features

�such as attractive points and periodic orbits� of network global dynamical behaviour�

Assume that there is an x�loop in a state q ofM and ��q� x� � y� Then according to ����� �q�N

is a positively invariant set of �x and hence an absorbing set of itself under �x� From �
� it follows

that� under �x� �q�N is an absorbing set of all sets �p�N such that q is x�accessible from p� If there

is an open set B such that B 	 �q�N and �x�B� � B� or �q�N 	 B and �x�B� � �q�N � then there
is an attractive set

T
m�� f

m�B� of �x in �q�N that constitutes a stable network representation of

the x�loop in a state q ofM�
Similarly� assume that there is an x�cycle � of length m passing through states q�� ���� qm with

outputs yj � ��qj� x�� j � �� ����m� Then according to ����� �qj�N are positively invariant sets of �
m
x

and
Sm
j���qj�N is positively invariant set of �x� A statement concerning the existence of attractive

sets of �mx inside �qj�N �or an attractive set of �x inside
Sm
j���qj�N � can be made analogically to

��



the statement above� Considering �
� it can be seen that under �x�
S
q���q�N is an absorbing set

of itself and all sets �p�N such that � is x�accessible from p�

Observation � formulates these ideas in a more compact form�

Observation �� Assume that a RNN N exactly mimics the behaviour of a reduced� connected FSM

M��X�Y�Q� �� �� so�� Then

� if there is an x�loop in a state q of M� then �q�N 	 N ��q�x�
x is positively invariant set of �x

and �� S
q�Acc�x�p��p�N 	 A�x ��q�N ��

� if there is an x�cycle � of length m passing through states q�� ���� qm of M� then �qj�N � j �

�� ����m are positively invariant sets of �mx and
Sm
j���qj�N is positively invariant set of �x�

�q��N � ���� �qm�N are periodically visited in the process of iteration of �x� and
S
�
Acc�x�p��p�N 	

A�x


S
q���q�N

�
�

When there was an x�loop in a state q ofM in all our experiments an attractive �xed point S� of

�x �near� a vertex v � f�� �gL was detected �see subsection Experiments bellow�� If S� � �q�N � S�
constitutes a plausible network representation of the x�loop� If furthermore S� is the only attractive

set of �x inside �q�N � then
S
q�Acc�x�p��p�N is a subset of its basin of attraction�

For each input symbol x ofM and each vertex v � �v�� ���� vL� � f�� �gL de�ne the set �	

Px�v �
�
s � 
Lj �x�s�i � �

�
if vi � �� �x�s�i 


�

�
if vi � �� i � �� ���� L

�
�

Hyperplanes �x�s�i � ��� separate 
L into �L partitions Px�v� The map �x is transformed to

the map ��x by multiplying weights Wiln by a scalar � 
 �� i�e� ��x �s� � �x��s�� � is also called

the neuron gain� The following Lemma was proved by Li ��
�� It is stated for maps �x and

accommodated with our notation� It tells us under what conditions one may expect an attractive

�xed point of ��x to exist �near� a vertex v � f�� �gL�

Lemma �� �Li� ����� Suppose that for some input symbol x of M there exists a vertex v �
Px�v � �x�Px�v�� Then there exists a neuron gain �� such that for all � 
 �� there is an attractive

�xed point of ��x in Px�v � �x�Px�v��
��recall that A�x ��q�N � is the absorbing region of �q�N under map �x
���x�s�i denotes the i�th component of �x�s�� When viewed as an iterative map� �x operates on ��� ��L� but here

we allow s � �L�

�	



It was also shown that as � tends to in�nity� the attractive �xed point tends to the vertex v� For

two recurrent neurons� under certain conditions on weights Wiln� this is made more speci�c in the

next section �Corollary ���

Theorem �� In addition to the assumptions in Observation �� assume there is an x�loop in a

state q of M� Suppose there is a vertex v � f�� �gL such that �q�N 	 Px�v and v � �x��q�N ��

Then there exists a neuron gain �� such that for all � 
 �� there exists an attractive �xed point

S� � Px�v � �x�Px�v� of ��x �

Proof� From

�x��q�N � 	 �q�N 	 Px�v and �x��q�N � 	 �x�Px�v�

it follows that �x��q�N � 	 Px�v � �x�Px�v�� Hence

v � �x��q�N � 	 Px�v � �x�Px�v��

Employing Lemma �� the result follows immediately� �

Loosely speaking� Theorem � says that if arbitrarily close to a vertex v � f�� �gL there is a network
state from �x��q�N � 	 �q�N 	 Px�v� i�e� if network states that are equivalent to the state q of M
in which there is an x�loop are �accumulated� around the vertex v within Px�v� then if the weights
are �large enough�� so that �� � �� an attractive �xed point of �x exists in a neighborhood of v

��gures � and ���

As mentioned in the introduction� the approach presented in �	� addresses representational issues

concerning recurrent neural networks trained to act as regular language recognizers� Recurrent

neural networks are assumed to operate in a noisy environment� Such an assumption can be

supported by an argument that in any system implemented on a digital computer there is a �nite

amount of noise due to round�o� errors and �we are only interested in solutions wich work in spite

of round�o� errors� �	�� Orbits of points under a map f and attractive sets of f are substituted

for by the notions of ��pseudo�orbit of points under f and ��pseudo�attractor of f � These concepts

correspond to the idea that instead of the precise trajectory of a point under a map we should

consider each sequence of points �pseudotrajectory� having the distance from the precise trajectory

less than � 
 �� It is proved that when there is a loop in the reduced acceptor of a regular language

�




also recognized by the network� then there must be an ��pseudo�attractor �and hence an attractor�

of the corresponding map in the network state space� The network accepts and rejects a string

of symbols if ��pseudo�orbits driven by the string end in subregions denoted by accept and reject

regions respectively� It is assumed that the accept and reject regions are closed in the network state

space�

��� Experiments

To see how loops and cycles of a FSM M are transformed into global dynamical properties of a

RNN N that is able to exactly mimicM� the following experiments were performed�
Consider again the FSM M presented in �gure �� In �gure � it can be seen how the RNN

N with two state neurons organizes its state space� ��� ���� into three distinct� connected regions

�A�N � �B�N � and �C�N � corresponding to states A� B� and C respectively� It was observed
�
 that

trajectories starting in �A�N converged to a single attractive point placed inside �A�N � The same

applies to the state C� and its corresponding region �C�N � So the a�loops in the states A and C

induce attractive points of �a placed inside the corresponding regions of equivalent RNN states�

Actually� this represents the only RNN stable representation of loops inM we have observed during

our simulations�

�A�N and �C�N are absorbing sets of themselves under the map �a� Since the state C is a�

accessible from B� �C�N is an absorbing set of �B�N under �a� Absorption diagrams of �A�N and

�C�N under �a together with the attractive points are presented in �gure ��

If we presented M only with input symbol b� we would end up either in a b�cycle of length

two involving states A and B� or in a b�loop in the state C� When� during the experiments� we

started in a state from �C�N � and presented to the network input only the code of the symbol b�

the trajectory converged to an attractive point inside �C�N � An absorption diagram of �C�N under

�b together with the attractive point can be seen in �gure 	�

On the other hand� when started in a state from �A�N � the trajectory jumped between the sets

�A�N and �B�N converging to a periodic orbit of length two� Again� this was observed to be the

typical stable RNN representation of a cycle corresponding to an input symbol of M� The states
��As before� during the simulations� the network state space was �covered
 with a regular grid of points and only

the orbits starting from these points were taken into account�

�




Figure �� Absorption diagrams of �A�N and �C�N under the map �a� Network states lying in the

lightest region need one or no iteration step under the map Ga to get to their absorption set� The

more iteration steps are needed� the darker the region is� with the exception of the region �close

to� the �border line� between the two absorption diagrams� The region is light so that the border

contours are clearly visible� The �gure should be compared with the �gure in the previous section

showing �A�N and �C�N � Note the two attractive points of �a placed inside �A�N and �C�N induced

by a�loops in states A and C respectively�

��



Figure 	� Absorption diagram of �C�N under the map �b� Network states from the two white

regions do not belong to the absorption region of �C�N � The �gure should be compared with the

�gure in the previous section showing �C�N � Note the attractive point of �b placed inside �C�N

induced by the b�loop in the state C� as well as� two periodic points of �b placed inside �A�N and

�B�N constituting an attractive periodic orbit of period two� The orbit is induced by the b�cycle

fA�Bg�

constituting the orbit can be seen in �gure 	�

In the second experiment� a FSMM shown in �gure 
 was used to generate the training set for a

RNN N with three state neurons� The a�cycle fA�B�C�D�Eg of length �ve induced an attractive
periodic orbit of �a of period �ve� Projections of the orbit to a two�dimensional subspace ��� ��

�

of the network state space can be seen in �gures 
� �� ��� To illustrate the convergence of orbits�

the orbits were plotted after 	�� ���� and ��� pre�iterations ��gures 
� �� and �� respectively�� No

plotting occurred during the pre�iterations�

� RNN with Two State Neurons

Usually� studies of the asymptotic behaviour of recurrent neural networks assume some form of

structure in the weight matrix describing connectivity pattern among recurrent neurons� For ex�

ample� symmetric connectivity and absence of self�interactions enabled Hop�eld ���� to interpret

the network as a physical system having energy minima in attractive �xed points of the network�

These rather strict conditions were weakened in �
�� where a more easily satis�ed conditions are

��



Figure 
� FSMM whose state transition diagram contains cycle of length �ve�

Figure 
�

Figure ��

��



Figure ���

formulated� Blum and Wang ��� globally analyze networks with nonsymmetrical connectivity pat�

terns of special types� In case of two recurrent neurons with sigmoidal activation function g� they

give results for weight matrices with diagonal elements equal to zero��� Recently� Jin� Niki�ruk

and Gupta ���� reported new results on the absolute stability for a rather general class of recur�

rent neural networks� Conditions under which all �xed points of the network are attractive were

determined by the weight matrix of the network�

The purpose of this section is to investigate the position and stability types of �xed points of

maps �x under certain assumptions concerning the signs and magnitudes of weights Wiln� The

iterative map under consideration can be written as follows�

�un��� vn��� � �g�
un � �vn�� g��un � �vn��� ����

where �un� vn����� ��� is the state of recurrent network with two state neurons at the time step n�
and 
� � and �� � are positive and negative real coe cients respectively� Thus we investigate the

case when the two recurrent neurons are self�exciting �
� � 
 ��� with the tendency to inhibit each

other ��� � � ���

For c 
 �� de�ne

��c� �
�

�

r
�� �

c

In the following it will be shown how the network state space ��� ��� can be partitioned into regions

��In such a case the recurrent network is shown to have only one �xed point and no �genuine
 periodic orbits �of

period greater than one�

��
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Theorem �� Suppose 
 
 �� � � �� � � �� � 
 �� 
 
 j�j� � 
 j�j� Then the following can be said

about the �xed points of 	�
��

� attractive and repulsive points can lie only in
S
i�I R

A
i and

S
i�I R

R
i respectively� I is the

index set I � f��� ��� ��� ��g� If maxf
�� � ��� ��
 � ��g � ��� there are no repellors�

� all �xed points in
S
i�I R

S
i are saddle points���

Proof� Any �xed point �u� v� of ���� satis�es

�u� v� � �g�
u � �v�� g��u � �v��� ����

Jacobian J�u� v� of ���� in �u� v� is given by



B� 
G��u� v� �G��u� v�

�G��u� v� �G��u� v�

�
CA �

where G��u� v� � g��
u� �v� and G��u� v� � g���u� �v�� Since g��p� � g�p���� g�p��� considering

���� we have

�G��u� v�� G��u� v�� � �u��� u�� v�� � v�� � ��u� v�� ��	�

The eigenvalues of J are�


���� �

G� � �G� �

p
D

�
�

where D � �
G� � �G��
� � �G�G����

D is always positive and so is 
G� � �G�� It follows that to identify possible values of G� and

G� so that j����j � �� it is su cient to solve the inequality 
G� � �G� �
p
D � �� or equivalently

�� 
G� � �G� 

p
D� ��
�

Consider onlyG�� G� such that 
G���G� � �� that is� �G�� G�� lies under the line � � 
G���G� � ��

All �G�� G�� above � lead to at least one eigenvalue of J greater than �� Squaring both sides of

��
� we arrive at

�
� � ���G�G� � 
G� � �G� 
 ��� ��
�

��Note that this does not exclude the existence of saddle �xed points in other regions�

�	to simplify the notation� the identi�cation �u� v� of a �xed point in which ���� is linearized is omitted

��



P
1/δ

1/α

A

C(0,0)

ρ

κ

κ

G
1

2G

1/4

1/4

Figure ���

The �border� curve � � �
� � ���G�G� � 
G� � �G� � �� in �G�� G���space is a hyperbola

G� � ��G�� � A�� �B��G� � C��� where

A �
�

� � ��
	

� C �
�


� ��



� and B � C � �


�

Since � � � � ���
 � � and � � 
 � ���� � 
� it follows that A 
 ���� C 
 ��
 and B 
 ��

����
� � �� ���� � ��� and �G�� G�� satisfying ��
� lie under the �left branch� and above the �right

branch� of � �see �gure ���� It is easy to see that since we are con�ned to the space below the line

�� only �G�� G�� under the left branch of � will be considered� Indeed� � is a decreasing line going

through �C�P � and A� P � ��A� ���� 
 �� so it never intersects the right branch of ��
A necessary �not su cient� condition for a �xed point �u� v� of ���� to be attractive is that the

corresponding �G�� G�� � ��u� v� � ��� ����� lies in ��� ��
� � ��� ����� where the map � is de�ned
by ��	�� For each �G�� G�� � ��� ����� � under �� there are four preimages

�u� v� � ����G�� G�� �

��
�

�
��

�
�

G�

�
�
�

�
��

�
�

G�

���
� ����

��



The set of preimages of ��� ��
� � ��� ���� is the set Si�I R
A
i � I � f��� ��� ��� ��g�

A �xed point �u� v� of ���� is a saddle if j��j � � and j��j � �� 
 �� Since 
� 
 ���

� �
q
�
G� � �G��� � �G�G��
� � ��� �

p
D � 
G� � �G��

It follows that if 
G� � �G� � �� i�e� �G�� G�� lies under the line �� � � 
G� � �G� �
p
D � �

holds and � � �� � �� For �G�� G�� above the line �� i�e� 
G� � �G� 
 �� we solve the inequality


G� � �G� � � �
p
D� that leads to the �border� curve G� � ��G�� we have already described�

This time� only �G�� G�� �between� the two branches of hyperbola � are considered�

It can be seen that in all �xed points �u� v� of ���� with

��u� v� �
�
��
�

�

�
�
�
��min

�
A�
�

�

��
�
�
��min

�
C�
�

�

��
�
�
��
�

�

�
�

the eigenvalue �� 
 � is less than �� This is certainly true for all �u� v� such that ��u� v� �
��� ���� � ��� ���� � ��� ��
� � ��� ����� In particular� the preimages of �G�� G�� � ���
� ���� �
��� ���� � ��� ��
� � ����� ���� under � de�ne the region Si�I R

S
i where only saddle �xed points of

���� can lie�

Fixed points �u� v� whose images under � lie above the right branch of � are repellors� No

�G�� G�� can lie in that region� if C�A 
 ���� that is� if ��
� �� � �� and 
�� � �� � ��� which is

equivalent to maxf
�� � ��� ��
 � ��g � ��� �

The conditionmaxf
������ ��
���g � �� implies that when self�excitations of recurrent neurons

are not signi�cantly higher than their mutual inhibition� there are no repulsive �xed points of �����

As self�excitations 
 and � grow� stable �xed points of ���� move closer towards f�� �g�� More
precisely�

Corollary �� Same assumptions as in Theorem 
� All attractive �xed points of 	�
� lie in the

��neighborhood of vertices of unit square� where

� �
q
���� ���
��� � ������������

�

The tendency of attractive �xed points in discrete�time RNNs with exclusively self�exciting recur�

rent neurons to move towards saturation values as neural gain grows is also discussed in �����

�	



So far� we have con�ned the areas of the network state space ��� ��� where �under some assump�

tions on weights� �xed points of ���� of particular stability types can lie� In the following� it will

be shown that those regions correspond to monotonicity intervals of functions de�ning �xed points

of ����� The reasoning about the stability type of a �xed point can be based on the knowledge of

where the functions intersect�

Recall that any �xed point �u�� v�� of ���� satis�es

�u�� v�� � �g�
u� � �v��� g��u� � �v����

or equivalently� �v�� v�� lies on the intersection of two curves v � f	���u�� u � f
���v�� where

fc��c� � ��� �� � 
�
fc��c���� � �

c�
c�
��

�

c�
ln

�

�� �
� ����

lim���� fc��c���� ��� lim���� fc��c���� � ����� fc��c� is convex and concave on ��� ���� and ����� ��

respectively� If c� � �� fc��c� is nonincreasing� otherwise it is decreasing on ��� ������c���� ���� �
��c��� �� and increasing on ���� ���c��� ��� ���c���� Graph of fc��c���� is presented in �gure ���
The �bended� graph of fc��c� for c� 
 � gives rise to a potentially complicated intersection

pattern of f	���u� and f
���v�� In the following� we shall consider only the case c� 
 jc�j� since it
is su cient to explain some interesting features of training process observed in our experiments�

Note that c� 
 jc�j means that for both neurons� the self�excitation is higher than the inhibition
from the other neuron�

Lemma �� Assume 
 
 �� � � �� � � �� � 
 �� If 
 � j�j and � � j�j� then f	���u� and f
���v� do

not intersect in ��� ������

Proof� Assume that both f	���u� and f
���v� lie in ��� ����
�� otherwise the result follows trivially�

For u � ��� ����� both �ln�u��� � u���� and �
u�� are positive� It follows that in ��� ������

f	���u� lies above the line v�
u�j�j� Similarly� in ��� ����� � f
���v� lies above the line u� �v�j�j�
In terms of the co�ordinate system �u� v�� this can be restated as follows� in ��� ������ the graph

of f	�� lies above the line v�
u�j�j while the graph of f
�� lies bellow the line v� j�ju��� Since
j�j�� � � � 
�j�j� f	���u� and f
���v� do not intersect in ��� ����

�� �

�
note that since �� � and �� � are assumed to be positive and negative respectively� we have c� 	 � and c� 
 �

�
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The correspondence between regions RQ
i�j� i� j � �� �� Q � A�S�R� and the regions of monotonicity

of f	���u� and f
���v� enables us to interpret training process as a process of �shaping� f	�� and

f
�� so that the desired behaviour of ����� as prescribed by the training set� is achieved�

Denote the set f�u� f	���u��j u���� ������
��g of points lying on the ��rst decreasing branch�
of f	���u� by f

��
	��� Analogically� the set of points f�u� f	���u��j u � ���� � ��
�� ��g in the �sec�

ond decreasing branch� of f	���u� is denoted by f��	��� Finally� let f
�
	�� denote the set of points

f�u� f	���u��j u� ���� � ��
�� ��� � ��
��g on the increasing part of f	���u�� Similarly� f��
�� � f��
��
and f�
�� are used to denote the sets f�f
���v�� v�j v���� ���������g� f�f
���v�� v�j v����������� ��g
and f�f
���v�� v�j v����������� ��� ������g respectively� Using the Theorem � and Lemma � we
state the following corollary�

Corollary �� Same assumptions as in Theorem 
� Attractive �xed points of 	�
� can lie only on

the intersection of decreasing parts of f	�� and f
��� Whenever the increasing part of f	�� intersects

with a decreasing part of f
�� 	or vice�versa�� it corresponds to a saddle point of 	�
�� In particular�

all attractive �xed points of 	�
� are from f��	�� � f��
�� � f��	�� � f��
�� or f��	�� � f��
�� � Every point from

f�	�� � f��
�� or f��	�� � f�
�� is a saddle point of 	�
��

The usual scenario of creation of a new attractive �xed point of ���� is that typical of saddle�

node bifurcation in which a pair attractive � saddle �xed point is created� Attractive �xed points

disappear in a reverse manner� an attractive point coalesces with with a saddle and they are

annihilated� This is illustrated in �gure ��� f
���v� shown as dashed curve intersects f	���u� in

three points� By increasing �� f
�� bends further �solid curve� and intersects with f	�� in �ve

points��� Saddle and attractive points are marked with squares and circles respectively� Note that

as � increases attractive �xed points move closer to vertices f�� �g��
A similar approach to determining the number and stability types of �xed points of the under�

lying dynamical systems in continuous�time recurrent neural networks can be found in ����

��At the same time� j�j has to be also appropriately increased so as to compensate for the increase in � so that the

�bended
 part of f��� does not move radically to higher values of u�

��
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Figure ��� Geometrical illustration of saddle�node bifurcation in RNN with two state neurons�
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Figure ��� FSMM with four a�loops and �transition� input symbol b�

� Experiments 	 Learning loops of FSM

A RNN with two state neurons was trained with the FSM M presented in �gure ��� In each of

its four states there is an a�loop� Input symbol b causes subsequent transitions between states up

to the �trap� state D� Training set representing M was constructed as follows� Transitions to

states B�C and D from the initial state A are represented by one� two and three consecutive b�s

respectively� Apart from transition� each a�loop is represented by strings of consecutive a�s up to

length �� b�loop in the state D is represented by a string of � consecutive b�s� To each input string

w� its corresponding output string ���A�w� is determined�

During the training� after each epoch� attractive sets of �a were numerically detected� The

evolution of position and number of attractive �xed point�s� of �a in ��� ��
� can be seen in �gure �	�

��
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Figure �	� Evolution of position of attractive sets of �a during RNN training on FSMM �two state

neurons��

Near the points the corresponding epoch numbers are shown� At the beginning� there is only one

�xed point of �a� A bifurcation during the ��th epoch produces two attractive �xed points� Since

the ��
th epoch till the ���st epoch there are three attractive �xed points and two saddle points

of �a� These are determined by the intersection of the corresponding lines f	a��a and f
a��a � where


a� �a� �a and �a are coe cients of the map �a as in ����� The episode of existence of the attractive

�xed point f��	a��a �f��
a��a begins when f	a��a is �bended� enough so that f��
a��a intersects with both
increasing and decreasing parts f�	a��a and f

��
	a��a

respectively� At the same time� in order for the

intersection f��	a��a � f�
a��a to exist� f
a��a needs also to be su ciently �bended� ��gure �
�� The

degree to which f	a��a and f
a��a are �bended� is primarily controlled by 
a and �a respectively�

while the vertical positions of bended parts are mainly determined by respectively �a and �a� During

the ���nd epoch� the attractive �xed point f��	a��a � f��
a��a together with saddle point f��	a��a � f�
a��a
disappear because the increase in j�aj pushes the �bended� part of f
a��a inside the state space
��� ��� ��gure �
��

The training error was ���
� yet the only attractive sets of �a that were detected were two

attractive �xed points SA and SD near vertices ��� �� and ��� �� corresponding to a�loops in states

��
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a � 
�	�� �a � ����	� �a � ����
� �a � ���
�

��



A and D respectively� Starting in a small neighborhood of SA and SD� upon repeated presentation

of input a� the decoded network outputs are � and � with trajectories of �a approaching SA and

SD respectively� There is no stable representation of the a�loops in states B and C� i�e� there are

no positively invariant sets of �a leading to the network output � and � respectively when input a

is presented to the network�

However� the net is able to simulate the training set perfectly� It follows that after it is reset��

and presented with b� when �ve consecutive a�s arrive� the decoded output will be �ve consecutive

��s� Hence� the network must have developed a mechanism for acting as if the a�loops in B and C

were represented in a stable manner� at least for strings having no more than �ve consecutive a�s�

It turns out that the underlying mechanism for pretending that there are stable representations

of a�loops for short input strings involves a behaviour of trajectories starting �near� the stable

manifold W s of the saddle �xed point SS lying �between� attractive points SA and SD� with W
s

constituting the border of regions of attraction of SA and SD�

Consider a point S �near� W s� Due to the continuity of �a� the orbit of S under �a �rst moves

towards SS along W s and then away from SS along a branch of the unstable manifold W u of

SS gradually approaching one of the attractive points SA� SD� To which of the two points the

trajectory actually converges is determined by the �side� of W s on which the initial point S lies�

Assume that the trajectory of S converges to SA� If we slightly displace S into S
� on �the other

side� of the curveW s� trajectories trajectories of S and S� move towards SS close to each other� but

as they approach SS � the trajectory of S
� follows the other branch ofW u towards SD �see �gure ����

As we move starting point S towards SA and SD� the trajectories less and less follow the pattern

described above� move towards SA and SD in a straightforward manner
�� and approach a vicinity

of SA and SD respectively much faster than trajectories starting �near� W
s� Hence� the network is

able to �cheat� by pretending stable behaviour as described by the a�loop in the state B because

it takes advantage of di�erent convergence rates of orbits starting near W s and SD� The decoded

output of the net with input a and a state near SD is � �region D �� while for states involving �rst
several steps in trajectories starting near W s� the output is � �region B �� Analogical statement can

��with �possibly repeated� presentation of �reset
 input �
��Due to the coe�cients of �a� eigenvalues of its Jacobian in every point from ��� ��� are real thus implying an

absence of rotation in neighborhoods of �xed points�

��
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Figure ��� Illustration of a mechanism that enables RNN to �pretend� stable representation of

loops inM for short input strings�

be made about trajectories starting near SA andW
s� and regions A and C respectively� Most of the

time towards the end of learning session was spent on learning the output function 	a�S� � 	�S� a�

in closely neighboring regions of B and C so that the outputs for states from B and C are � and �
respectively �see �gures ��� ���� The map �� associated with the �reset� input symbol # has one

attractive �xed point in the region A� Under the �reset� map ��� trajectories of network states

S���� ��� quickly approach region A thus preparing ground for processing of a new input word�
The key role� however� is played by the transfer function �b� It simulates transition between

states with a�loops in M� Starting in S � A� �b�S� � B and ��b �S� � C lie near W s and the

behaviour of �a in B and C appears to be stable for several iterations� Upon repeated presentation

��
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Figure ��� The map �	a�� representing the output of the second output neuron that corresponds

to the output symbol �� Note the sharp activity change along border of regions of attraction of SA

and SD�
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Figure ��� The map �	a�� representing the output of the third output neuron that corresponds to

the output symbol �� A sharp activity change along border of regions of attraction of SA and SD

is clearly visible�
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of a� ��b �S� � D converges to SD with network output ��
The delicate role of �b responsible for transitions A � B � C � D with jumping on the

�appropriate� sides of W s while staying close to W s� together with di�erent convergence rates of

orbits under �a starting close to W
s and near SA� SD are principal tools enabling the net to behave

nicely for testing strings of smaller length� although it generalizes poorly on strings with many

consecutive a�s after b or bb� In particular� the outputs of the net for input strings ban and bbam

are consistent with training set for n � 
 and m � ��� As further a�s keep coming� trajectories of

�a move away from B and C towards SD and SA respectively�
To visualize the process of state degradation upon repeated presentation of input a a state

degradation diagram for input a is constructed as follows �Ma denotes the set of states of M in

which there is an a�loop��

� Construct a �nite vocabulary " of short distinguishing words for Ma� such that " does not

contain a word uaiv� i � �� where u is leading to a state of M in which there is an a�loop�

With each state q of Ma associate a minimal input word mq leading to q�

� For each i � f�� �� ���� Nmaxg

� For each w � "

� For each state q�Ma


 present the reset network with mqa
i and then


 present the network with w and check whether the net output equals ���q� w��
If not� check whether there is a state p ofM such that the network output equals

���p�w� � if so� draw an arrow in a diagram from q to p�

State degradation diagram for input a is presented in �gure ��� Note that when only short input

strings are presented to the network� and quantization of network state space individually captures

regions A�B� C�D a correct state transition diagram can be obtained� even though� on longer input
strings the net generalizes poorly�

When the network with three state neurons was trained with the FSM M� it generalized cor�
rectly over the training set by forming four attractive �xed points of �a corresponding to loops

in states A�B�C�D of M� The training process looked at from the point of view of asymptotic

�	
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Figure ��� State degradation diagram for input a� Nmax � ����

behaviour of �a is illustrated in �gure ��� Horizontal axis correspond to time �in epochs�� network

state space ��� ��� is orthogonally projected into ��dimensional space of activations of a couple of

state neurons� Bifurcations leading to formation of new attractive �xed points appeared during

the ��rd����th and the ���st epoch� If the network is able to exactly mimic the FSMM the state

degradation diagram for each input symbol has no arrows�

As another example� Consider a FSM M in �gure ��� It is a FSM taken from the database

of the International Symposium on Circuits and Systems �Portland� Oregon� ��
�� ���� In each of

its 
 states there is an a�loop with output � except for a�loops in states � and 
� The training

set consists of ���� training strings�� of input string length ���� and is ordered according to their

length starting with the shortest ones� The machine M is hard to learn because the training set

is very sparse in output symbols other than �� Training process is disrupted by a tendency to �nd

trivial solution represented by the automaton with only one state and loops for every input symbol

with the output �� An example of a part of the training set is given in table ��

After �� training epochs RNN with 	 state neurons is able to perform well on short test strings

�training error was ���	�� Generalization on long test strings was found to be poor� Part of the

problem was unstable network representation of a�loops inM� The state degradation diagram for
input a can be seen in �gure ��� a�loops in states ��	 and 
 are �well represented� by �xed points

S�� S
 and S� respectively in that when starting in a small neighborhood of Sq� q � �� 	� 
 � the

resulting output sequences of RNN for input words aiw� w � "� i � � equal ���q� aiw�� This is not
true of a�loops in states ����� and �� When the net is reset and presented with mq� q � �� �� �� � �

for i 
 Nq it does not emulate �
��q� aiw�� w � "� Sates � and � degradate to states � and �

respectively� In particular� N	 � 
 and N� � �� Both states � and � degradate to attractive

�xed point S� with N� � �
 and N� � ��� The network state S� does not represent any state

of M even for short input strings� Sj� j � �� �� 	� 
� are the only attractive sets of �a that were

detected� There are trajectories of �a starting near border of regions of attraction of S� and some

��input word w� corresponding output word ���q
� w�
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dddeadfdaeaafaaadddaddadfeeedeaeee� ��� ����������������������������������x

affedfeefaedeededfdefddaafeeeeeadd� ��� ����������������������������������x

dffdadedfadaddffeeafeafdffdffefaad� ��� ����������������������������������x

fdaadaafddafafdadfdffdeaffaaefeade� ��� ����������������������������������x

ddfaddadfaaddddeafdafdfaeedaedeeda� ��� ����������������������������������x

defadedefdeffdefdafdaaadeaeddaaefd� ��� ����������������������������������x

ddfedaaffdedeaeadeefdfefaadadeaaff� ��� ����������������������������������x

aafaaeefafeaffeeefeafaefeeadaefafa� ��� ����������������������������������x

dddeeafffafeaadaddfdffadfeafdddefd� ��� ����������������������������������x

fdaaddaadadffefaeadddfeddeafdddaea� ��� ����������������������������������x

dedaddadaafeaaddaafaaefaefdeeffafe� ��� ����������������������������������x

ddaeeafddfaaffffaeeefeadaefdfedfee� ��� ����������������������������������x

dddedeeafdfddfaeeaddafdfafadedfaaf� ��� ����������������������������������x

�

�

�

Table �� A part of the training set characterizing the FSMM� Output strings are sparse in output
symbols other than ��
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other attractive �xed point of �a that pass through the region assuming the role of state � of M
for short input strings� Then� further towards S�� they pass through the region of network states

that for short input strings seem to be equivalent to the state � ofM� �nally making their way to
a close neighborhood of S� and converge to it� A similar statement can be made about states �

and � ofM�


 Discussion

Two views on the relationship between a RNN and a FSMM such that the RNN exactly mimics

M were presented� First� the network was treated as a state machine� The notion of regions of

equivalent network states that are also equivalent to a state ofM link the �rst approach with the

second� dynamical systems� approach to the RNN�

Our experiments suggest that the most usual stable RNN N representations of loops and cycles

inM can be described as follows� An x�loop in a state q ofM induces an attractive �xed point of

�x inside �q�N � and an x�cycle fq�� ���� qmg ofM induces an attractive periodic orbit of period m of

�x periodically visiting �q��N � ���� �qm�N �

The present paper provides us with the opportunity to look at the learning process from the

point of view of bifurcation analysis� If the network is supposed to operate as a FSM� its state space

must have multiple attractor basins to store distinct internal states� The network solves the task

of FSM simulation by location of point and periodic attractors and the shaping of their respective

basins of attraction ���� Before training� the connection weights are set to small random values and

as a consequence� the network has only one attractor basin� This implies that the network must

undergo several bifurcations ����� This can have an undesirable e�ect on the training process� since

the gradient descent learning may get into trouble� At bifurcations points� the output of a network

can change discontinuously with the change of parameters and therefore convergence of gradient

descent algorithms is not guaranteed �����

In the following a possible application of these ideas to the problem of determination of the

complexity of language recognition by neural networks will be discussed brie$y�

Any FSM with binary output alphabet f�� �g can function as a recognizer of a regular language�
A word over the input alphabet belongs to the language only if the output symbol after presentation

��
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Figure ��� FSMM taken from the database of the International Symposium on Circuits and Sys�

tems �Portland� Oregon� ��
��� M is the reduced form of a machine de�ned in the �le bbara�kiss��

Inputs ��������� and ���� are represented as the input symbol a since� in every state� they
initiate the same transition with the same output� Inputs ��������� and ���� are represented

as input symbols d� e and f respectively� Outputs ��� �� and �� are coded as output symbols

�� � and � respectively�
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Figure ��� State degradation diagram for input a extended with network state S� not representing

any state of M� S� � ���
�� ����� ����� ����� ����� ������ S� � ����	� ���
� ����� ��

� ����� ������ S
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�� S� � ������ ���
� ����� ����� ����� ������ Nmax � ����

of word�s last symbol is �� Hence� the network output is used to decide whether a word does belong

to the language� or not� One of the most promising neural acceptors of regular languages ���� is the

second�order RNN introduced by Giles et al� ��
�� However� the practical aspects of the acceptance

issue are still unclear ����� The di culty of acceptance of a given language by a neural network �the

neural complexity of the language� can be quanti�ed by the minimal number of neurons needed

to recognize the language� In the context of mealy machines and threshold networks a similar

problem was attacked by Alon et al� ��� and Horne and Hush ����� An attempt to predict the

minimal second�order RNN size so that the network can learn to accept a given regular language

is presented in ����� The predicted numbers of neurons were shown to correlate well with the

experimental �ndings�

Essentially� a good starting point for the estimation of neural complexity of a given regular

language is the representation of the language with the reduced recognizer� The most usual� very

rough� approach to the neural complexity estimation takes into account only the number of states

of such a recognizer ����� What plays a principal role in making the internal structure of a regular

language rich is

��



� the number of input symbols of the recognizer

� the number of loops associated with each input symbol

� the number and corresponding lengths of cycles associated with each input symbol

� the relationship among loops and%or cycles �i�e� a x��cycle is passing through a state q in
which there exists a x��loop� etc��� ��

In every recognizer of a regular language� for each input symbol there exists at least one loop or a

cycle� During the training process� the weights of a network are modi�ed so that the corresponding

attractive sets evolve in dynamical systems de�ned by the iterative maps �x� A hint for a lower

bound on the minimal number of neurons can be obtained by exploring the possibilities of the

existence of attractive points and%or periodic orbits that are to be induced during the training

process� The expected relationship among their basins of attraction has to be taken into account

at the same time ����

As an example consider the FSMs M� and M� presented in �gures �	� and �
 respectively�

Apparently� the the internal structure of a regular language accepted by M� is �more complex�

than that of accepted byM�� In the latter case� only one attractive �xed point of �a is su cient

to represent the a�loop in the state E� The same applies to the b�loop in E� and the map �b� In the

former case� an attractive periodic orbit of period four of the map �a� and four attractive points of

the map �b have to be induced� Even though the FSMM� has only four states� the RNN needed

four state neurons to accomplish a successful learning� On the other hand� two state neurons were

su cient for the RNN to learn the FSMM��

A mechanism underlying generalization loss on longer input strings due to unstable represen�

tation of loops in a FSM to be learned was investigated� It was shown that even in such cases a

correct state transition diagram of the FSM can potentially be extracted even though the network

performs badly on longer input strings �as reported by Giles et al� ��
��� The state degradation

diagram for an input symbol x illustrates how regions of network state space� initially acting as if

they assumed the role of states of the FSM in which there is an x�loop� gradually degradate upon

repeated presentation of x� The degradation may lead to a network state not representing any state

of the FSM even for short input strings�

��



Figure �	� Acceptor of the language L � L� � L�� L� � fa� bgnb� n � f�� �� �� �� 	� ���g� L� �

fa� bgma� m � f�� �g�

Figure �
� Acceptor of the language L � L�
� � where L� � b�ab� � �b�a��b� � �b�a���
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Zeng et al� ���� and Das and Mozer ���� view the RNN state space quantization as an integral

part of the learning process in which the network is trained to mimic a �nite state machine� In

particular� in ���� state units� activation pattern is mapped at each time step to the nearest corner

of a hypercube as if state neurons had a hard threshold activation function� Das and Mozer ����

used a �soft� version of the gaussian mixture model�	 in a supervised mode as a clustering tool�

The mixture model parameters were adjusted so as to minimize the overall performance error of

the whole system �recurrent network � clustering tool�� Both Zeng et al�� and Das and Mozer

report better assymptotical behaviour for long� unseen test input strings� It would be interesting

to investigate such approaches to training RNN on �nite state problems as a form of �dynamical

self�reinforcement� learning encouraging bifurcations to attractive �xed points and periodic orbits

of the underlying dynamical systems�
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