
Evolving genetic algorithm for Job Shop Scheduling problems 
 
James C. Werner 
Mehmet E. Aydin 
Terence C. Fogarty 
 
School of Computing, Information Systems and Mathematics 
South Bank University 
103 Borough Road 
London SE1 0AA, UK 
{wernerjc,aydinme, fogarttc}@sbu.ac.uk 

 
ABSTRACT 
 
This paper addresses an attempt to evolve genetic 
algorithms by a particular genetic programming method 
to make it able to solve the classical Job Shop Scheduling 
problem  (JSSP), which is a type of very well known 
hard combinatorial optimisation problems. The aim is to 
look for a better GA such that solves JSSP with 
preferable scores. This looking up procedure is done by 
evolving GA with GP. First we solve a set of job shop 
scheduling benchmarks by using a conventional GA and 
then an association of GP to evolve a GA. The instance 
of JSSP tackled are available in OR literature. 

 
INTRODUCTION 
 
Scheduling, especially job shop scheduling, has been 
studying for a long time. Because of its NP-Hard nature, 
there has not been found a global problem solver for this 
kind of problems. Recently, some meta-heuristics like 
Simulated Annealing (SA), Taboo Search (TS), and 
Genetic Algorithms (GA) have been implemented as 
pure methods and hybrid of different method, where the 
hybrid methods are superi or over pure ones. The main 
problem is how to cope with local minima within a 
reasonable time. Among them, GA has been studied and 
implemented to like the other problems with moderate 
score of success. The problem with GA is how to find the 
most effective types and order of operators to evolve the 
solutions space, where one operator may be successful 
for one type of problem with a certain order and may not 
be so preferable for some other problems. Our aim is to 
make clear that if it is possible to evolve a GA by 
Genetic Programming (GP) methods in such a way that 
GP tries different crossover, mutation and selection 
operators in various orders.  
 
In the following three sections we give brief descriptions 
of JSSP, GA, and how to apply GA to JSSP. After that, 
the genetic control method, genetic programming to 
evolve GA, and its application to JSSP is presented.   
Then a comparison with a particular SA method is 
explained and paper concluded.   

JOB-SHOP SCHEDULING PROBLEMS (JSSP) 
 
The JSSP consists of a number of machines, M, and a 
number of jobs, J. Each job consists of M tasks, each of 
fixed duration. Each task must be processed on a single 
specified machine, and each job visits each machine 
exactly once. There is a predefined ordering of the tasks 
within a job. A machine can process only one task at a 
time. There are no set-up times, no release dates and no 
due dates. The makespan is the time from the beginning 
of the first task to start to the end of the last task to finish. 
The aim is to find start times for each task such that the 
makespan is minimised. As a constraint problem, there 
are M*J variables, each taking positive integer values. 
The start time of  tth task of the jth job will be denoted by 
xjt, and the duration of that task by djt. Each job 
introduces a set of precedence constraints on the tasks 
within that job: xjt + d jt � xj(t+1)   for t = 1 to M-1. Each 
machine imposes a set of resource constraints on the 
tasks processed by that machine:  xjt + djt � xpq  or xpq + 
dpq � xjt.  The aim is to find values for the variables such 
that no constraint is violated. By defining an objective 
function on assignments (which simply takes the 
maximum of xjt + djt), and attempting to minimise the 
objective, we get a constraint optimisation problem.  (See 
for more information [1] and [2]). 
 
THE GENETIC ALGORITHM APPROACH. 
 
The genetic algorithms (GA) mimic the evolution and 
improvement of life through reproduction, where each 
individual contributes with its own genetic information to 
build up new ones adapted to the environment with 
higher chances of survival. This is one of the main ideas 
behind genetic algorithms and genetic programming 
(Holland [5], Goldberg [6], and Koza [7]). Specialized 
Markov Chains underline the theoretical basis of GA in 
terms of change of states and search procedures [8]. Each 
‘individual’ of a generation represents a feasible solution 
as coded in a chromosome with distinct algorithms 
/parameters to be evaluated by a fitness function. GA 
operators are mutation (the change of a randomly chosen 
bit of the 
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Fig. 1 Genetic algorithm: the sequence of operators and evaluation of each individual. 

 
chromosome) and crossover (the exchange of 
randomly chosen slices of chromosome). 
 
Fig.1 shows a generic cycle of GA where the 
best individuals are continuously being selected 
and operated by crossover and mutation. 
Following a number of generations, the 
population converges to the solution that 
performs better.  
 
GA applications for JSSP have special 
chromosome representation as well as genetic 
operators to be applied to feasible schedules [4]. 
In our case, the chromosomes are coded as a list 
of sets of numerical values for each particular 
schedule.  A generalisation of the GA is the 
Genetic Programming (GP) algorithm where 
each ‘individual’ in a generation represents, with 
its chromosome, a feasible model solution, in our 
case, a sequence of genetic operators that will 
define one genetic algorithm. There are two 
kinds of information defined for the GP 
algorithm: terminals (variable values and random 
numbers) and functions (mathematical functions 
used in the generated model). 
 
GENETIC ALGORITHMS IN JSSP  
 
We have generated schedules in a particular way 
in which the chromosome will be feasible after 
performing genetic operators. The decision 
management in JSSP distributes the jobs for each 
machine, selecting sometimes one task among 
the other alternatives so as to have a better 
fitness. We code a chromosome with M*J values 
between 0 and 1, one for each decision, which 
points for the job in the requestin g jobs list that 
win the right to use the machine. Fig. 2 shows an 
example of chromosome coding based in 
decision process. 
 
This approach allows using the same traditional 
GA operators to solve the problem because the 
chromosome contains a sequence of numb ers, all 
representing feasible schedules. Two fitness 

functions can be applied to evaluate a solution: 
the makespan and the total idle time. The main 
problems with this approach are as follows:- 
§ the disruptive effect of crossover operator,  
§ the precocious convergence to some local 

minima that blinds the system to find the 
global one,  

§ eventually raising the inability of genetic 
operators to permute the solutions in a 
reasonable time,  

§ the lack of hill climbing in GA. 
 
The total size of the population is 100 
individuals and the number of generations is 
number machines*number job *10, the crossover 
probability is 80% and mutation probability is 
25%, and each decision is coded as 8 bits. The 
increase of population size does not change the 
results too much, but increase the processing 
time. For example, in LA20 problem using 
makespan fitness, the final result was 959 time 
units after 35 generations of 900 individuals (no 
better solution was founded until 149,500 
generations) and 979 time units with 100 
individuals.  Table 1 shows the results for both 
fitness functions at columns “GA makespan” and 
“GA Idle time”. 
 
GENETIC PROGRAMMING 
GENERATING GENETIC ALGORITHMS – 
THE GENETIC CONTROL APPROACH 
 
We used GP to obtain what genetic operators and 
in which order would be applied to solve the 
problem. Fig 3 shows the algorithm and the 
relation between GP and GA. The possible 
operators are: usual crossover, usual mutation, 
extend the limits for some decisions by 10% in 
schedule generation, narrow the limits for some 
decisions by 10% in schedule generation, 
exchange of some region of one parent 
chromosome, exchange of the remainder 
chromosome of one parent chromosome. In this 
case, we are evolving the genetic algorithm with 
genetic programming. Table 1 presents the  



  
 

 
Job Tasks 
0 1 0 2 
1 0 1 2 
2 2 1 0 
3 1 2 0  

 
Job Tasks 
0 1 0 2 
1 1 2  
2 2 1 0 
3 1 2 0  

 
Job Tasks 
0 1 0 2 
1 1 2  
2 2 1 0 
3 2 0   

 
Decision 1: machine 0 receives 
job 1, any value of the 
chromosome (only one 
candidate). 

 
Decision 2: machine 1 could 
receive jobs 0, 1 or 3. If 
chromosome value is 0.7, job 3 
begins  

 
Decision 3: Machine 2 is required 
by jobs 2 and 3. If chromosome 
>0.5 then job 3 executes, 
otherwise job 2. 

Fig. 2 Decisions sequence in JSSP. 
 
 
results for both fitness functions at columns “GC 
makespan” and “GC idle time”, where GP 
parameters are 50 individuals and 50 generations 
and GA parameters are 900 individuals, 100 
generations, crossover and mutation probability 
50%, and each decision is coded in 4 bits. 
 
 
RESULTS AND ANALYSIS 
 
We have obtained many results for a set of 
benchmark problems for both conventional and 
evolved GA applications. In order to measure 
our efficiency we compare our results with an 
instance of SA used for the same benchmarks. 
This SA approach is called as modular simulated 
annealing (MSA) algorithm, which is a multi-
start SA algorithm employed with a population 
rather then an individual. The details of this 
method is given in [10] and [3]. The idea of that 
work was to evolve a population of solutions by 
applying a modular SA constantly to selected 
solutions.  Table 1 shows the results of MSA in 
column “MSA”. 
 
Table 1 shows the results of several problems of 
OR literature available in internet [9]. The 
columns “Time” contains the makespan and “%” 
contains the percentage of the optimal value 
(column “Opt.”). 
 
Fig. 4 shows the percentage of error for GA, GC 
and MSA against the number of decisions, sorted 
by the %error. The number of decisions defines 
the solution space size and is not related with the 
complexity problem. A little problem can be 
more complex than a big one. The problem size 
and complexity, as shows the increase of % error 

affect all approaches, where it is more effective 
on GA than MSA due to the possibility of MSA 
performs climbing hill, while genetic operators 
produces a disruptive effect in the solution. The 
processing time exponentially increases 
generating GA by GP because of the increasing 
the number of evaluation.  The idle time and 
makespan are equivalent approaches for fitness 
function. The decision point-of-view for 
chromosome coding allows the construction of 
only feasible solutions, with the increase of 
processing efficiency. 
 
 
Begin 
ð Initialise the population  of GP, 

Repeat for each individual of GP:  
• pick  two individuals with Roulette 
search, 
• crossover and mutation operators 
• evaluate fitness for each individual 

applying the 
 GA coded in individual chromosome: 
Repeat for 100 generations: 
• Initialise the population  
• Execute GA operators and 
obtain children 
• Evaluate the children; 
The best GA and its final fitness are 
used by GP; 

End. 
 

Fig. 3 Genetic control algorithm. 
  
 
 
 



Table 1: results obtained from Genetic algorithms, Genertic Control and Simulating annealing. 
# GA makespan GA Idle time GC makespan GC Idle time MSA 

 
Dec.  

Opt. 
Time % Time % Time % Time % Time  % 

ABZ5 100 1234 1313 6.4 1314 6.4 1253 1.5 1244 0.8 1234.4 0 

ABZ6 100 943 994 5.4 982 4.1 952 0.9 951 0.8 943.0  0 

LA18 100 848 940 10.8 897 5.7 877 3.4 861 1.5 848.0  0 

LA17 100 784 872 11.2 854 8.9 803 2.4 803 2.4 784.0  0 

LA20 100 902 979 8.5 1006 11.5 939 4.1 925 2.5 902.0  0 

LA16 100 945 1031 9.1 1036 9.6 979 3.9 978 3.4 945.0  0 

LA19 100 842 945 12.2 965 14.6 883 4.8 877 4.1 842.0  0 

ORB01 100 1059 1230 16.1 1229 16.0 1156 9.1 1118 5.5 1074.0 1.4 

LA25 150 977 1129 15.5 1207 23.5 1100 12.5 1042 6.6 977.8  0 

FT10 100 930 1032 10.9 1010 8.6 1017 9.3 1005 8.0 937.0  0.7 

LA24 150 935 1091 16.6 1083 15.8 1040 11.2 1013 8.3 939.6  0.4 

LA21 150 1046 1222 16.8 1260 20.4 1198 14.5 1164 11.2 1048.4 0.1 

LA27 200 1235 1507 22.0 1538 24.5 1445 17.0 1415 14.5 1245.4 0.8 

ABZ7 300 655 779 18.9 787 20.1 763 16.4 755 15.2 675.2  3.0 

LA38 225 1196 1476 23.4 1485 24.1 1407 17.0 1382 15.5 1214.6 1.5 

LA40 225 1222 1569 28.3 1540 26.0 1473 20.5 1426 16.6 1229.2 0.6 

LA29 200 1130 1422 25.8 1501 32.8 1391 23.0 1346 19.1 1182.6 4.6 

ABZ9 300 656 795 21.1 843 28.5 806 22.8 786 19.8 703.0  7.1 

ABZ8 300 638 823 28.9 827 29.6 810 26.9 779 22.1 687.2  7.6 

 
 
 

 
Fig. 4 Number of decisions against the percent 

error for each example. 
 
 
 
CONCLUSION. 
 
Algorithms generated by GP are competitive 
with specifics techniques of optimisation in 
JSSP. The limitations are the susceptibility of 
solution space increase and hill climbing 
limitation. The introduction of SA in 
replacement operator gave to GA the possibility 
to do hill climbing [10 and 11] and obtain betters 
results. 
 

The next step of Evolvable Genetic Algorithms 
will be the study of other possible operators that 
improve the hill climbing freedom of GA and the 
study of conform transform that creates a mo re 
smooth and treatable landscape for JSSP 
problem. 
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