Proceedings of ACDM 2000
PEDC, Unviersity of Plymouth, UK

Evolving genetic algorithm for Job Shop Scheduling problems

James C. Werner
Mehmet E. Aydin
Terence C. Fogarty

School of Computing, Information Systems and Mathematics

South Bank University

103 Borough Road

London SE1 0AA, UK
{wernerjc,aydinme, fogartt @sbu.ac.uk

ABSTRACT

This paper addresses an attempt to evolve genetic
algorithms by a particular genetic programming method
to makeit able to solve the classical Job Shop Scheduling
problem (JSSP), which is a type of very well known
hard combinatorial optimisation problems. The aim is to
look for a better GA such that solves JSSP with
preferable scores. This looking up procedure is done by
evolving GA with GP. First we solve a set of job shop
scheduling benchmarks by using a conventional GA and
then an association of GP to evolve a GA. The instance
of JSSP tackled are availablein OR literature.

INTRODUCTION

Scheduling, especialy job shop scheduling, has been

studying for along time. Because of its NP-Hard nature,
there has not been found a global problem solver for this
kind of problems. Recently, some meta-heuristics like
Simulated Anneding (SA), Taboo Search (TS), and
Genetic Algorithms (GA) have been implemented as
pure methods and hybrid of different method, where the

hybrid methods are superi or over pure ones. The main
problem is how to cope with local minima within a
reasonable time. Among them, GA has been studied and

implemented to like the other problems with moderate
score of success. The problem with GA is how to find the
most effective types and order of operatorsto evolve the
solutions space, where one operator may be successful

for one type of problem with a certain order and may not
be so preferable for some other problems. Our am is to

make clear that if it is possible to evolve a GA by
Genetic Programming (GP) methods in such a way that

GP tries different crossover, mutation and selection
operatorsin various orders.

In the following three sections we give brief descriptions
of JSSP, GA, and how to apply GA to JSSP. After that,
the genetic control method, genetic programming to
evolve GA, and its application to JSSP is presented.
Then a comparison with a particular SA method is
explained and paper concluded.

JOB-SHOPSCHEDULING PROBLEM S (JSSP)

The JSSP consists of a number of machines, M, and a
number of jobs, J. Each job consists of M tasks, each of
fixed duration. Each task must be processed on a single
specified machine, and each job visits each machine
exactly once. There is a predefined ordering of the tasks
within ajob. A machine can process only one task at a
time. There are no set-up times, no release dates and no
due dates. The makespan is the time from the beginning
of thefirst task to start to the end of the last task to finish.
The a@m isto find start times for each task such that the
makespan is minimised. As a constraint problem, there
are M*J variables, each taking positive integer values.
The start time of t'" task of the j™" job will be denoted by
Xt, and the duration of that task by dj.. Each job
introduces a set of precedence constraints on the tasks
within that job: xjt + djt O X@+1) for t = 1to M-1. Each
machine imposes a set of resource constraints on the
tasks processed by that machine: Xj; + dit 0 Xq OF Xpq +
dog O %t. Theaimisto find vaues for the variables such
that no constraint is violated. By defining an objective
function on assignments (which simply takes the
maximum of Xj; + ¢, and attempting to minimise the
objective, we get a constraint optimisation problem. (See
for moreinformation [1] and [2]).

THE GENETIC ALGORITHM APPROACH.

The genetic algorithms (GA) mimic the evolution and
improvement of life through reproduction, where each
individual contributes with its own genetic information to
build up new ones adapted to the environment with
higher chances of survival. Thisis one of the main ideas
behind genetic algorithms and genetic programming
(Holland [5], Goldberg [6], and Koza [7]). Specidized
Markov Chains underline the theoretical basis of GA in
terms of change of states and search procedures [8]. Each
‘individual’ of a generation represents a feasible solution
as coded in a chromosome with distinct algorithms
/parameters to be evaluated by a fitness function. GA
operators are mutation (the change of a randomly chosen
bit of the

Initialisation

&

Evaluation [™| Convergence? * Pest
e b — [ndiwidual
_ Generatinn Mo

Mutation (4 Crossover

Selection

Fig. 1 Genetic agorithm: the sequence of operators and evaluation of each individual.

chromosome) and crossover (the exchange of
randomly chosen dlices of chromosome).

Fig.1 shows a generic cycle of GA where the
best individuals are continuously being selected
and operated by crossover and mutation.
Following a number of generations, the
population converges to the solution that
performs better.

GA applications for JSSP have specia
chromosome representation as well as genetic

operators to be applied to feasible schedules [4].

In our case, the chromosomes are coded as a list
of sets of numerical values for each particular

schedule. A generalisation of the GA is the

Genetic Programming (GP) dgorithm where
each ‘individual’ in a generation represents, with
its chromosome, a feasible model solution, in our
case, a sequence of genetic operators that will

define one genetic algorithm. There are two
kinds of information defined for the GP
agorithm: terminals (variable values and random
numbers) and functions (mathematical functions
used in the generated model).

GENETIC ALGORITHMSIN JSSP

We have generated schedulesin a particular way
in which the chromosome will be feasible after
performing genetic operators. The decision
management in JSSP distributes the jobs for each
machine, selecting sometimes one task among
the other alternatives so as to have a better
fitness. We code a chromosome with M* J values
between 0 and 1, one for each decision, which
points for the job in the requesting jobs list that
win the right to use the machine. Fig. 2 shows an
example of chromosome coding based in
decision process.

This approach allows using the same traditional
GA operators to solve the problem because the
chromosome contains a sequence of numbers, all
representing feasible schedules. Two fitness

functions can be applied to evaluate a solution:

the makespan and the totd idle time. The main

problems with this approach are as follows:-

= thedisruptive effect of crossover operator,

= the precocious convergence to some local
minima that blinds the system to find the
global one,

= eventudly raising the inability of genetic
operators to permute the solutions in a
reasonable time,

= thelack of hill climbingin GA.

The total size of the population is 100
individuals and the number of generations is
number machines* number job * 10, the crossover
probability is 80% and mutation probability is
25%, and each decision is coded as 8 bits. The
increase of population size does not change the
results too much, but increase the processing
time. For example, in LA20 problem using
makespan fitness, the fina result was 959 time
units after 35 generations of 900 individuals (no
better solution was founded until 149,500
generations) and 979 time units with 100
individuals. Table 1 shows the results for both
fitness functions at columns “GA makespan” and
“GA Idletime”.

GENETIC PROGRAMMING
GENERATING GENETIC ALGORITHMS—
THE GENETIC CONTROL APPROACH

We used GP to obtain what genetic operators and
in which order would be applied to solve the
problem. Fig 3 shows the algorithm and the
relation between GP and GA. The possible
operators are: usual crossover, usual mutation,
extend the limits for some decisions by 10% in
schedule generation, narrow the limits for some
decisons by 10% in schedule generation,
exchange of some region of one parent
chromosome, exchange of the remainder
chromosome of one parent chromosome. In this
case, we are evolving the genetic algorithm with
genetic programming. Table 1 presentsthe

Job Tasks Job asks Job Tasks
0 1 0 2 0 1 0 2 0 1 0 2
1 0 1 2 1 1 2 1 1 2
2 2 1 0 2 2 1 0 2 2 1 0
3 1 2 0 3 1 2 0 3 2 0

Decision 1: machine O receives
job 1, any value of the
chromosome (only one

candidate). begins

Decision 2: machine 1 could
receivejobsO, 1 or 3. If
chromosomevaueis0.7, job 3

Decision 3: Machine 2 isrequired
by jobs 2 and 3. If chromosome
>0.5then job 3 executes,
otherwisejob 2.

Fig. 2 Decisions sequence in JSSP.

results for both fitness functions at columns“GC
makespan” and “GC idle timeg’, where GP
parameters are 50 individuals and 50 generations
and GA parameters are 900 individuas, 100
generations, crossover and mutation probability
50%, and each decision is coded in 4 hits.

RESULTSAND ANALYSS

We have obtained many results for a set of
benchmark problems for both conventional and
evolved GA applications. In order to measure
our efficiency we compare our results with an
instance of SA used for the same benchmarks.
This SA approach is called as nodular smulated
annealing (MSA) agorithm, which is a multi-
start SA agorithm employed with a population
rather then an individual. The details of this
method is given in [10] and [3]. The idea of that
work was to evolve a population of solutions by
applying a modular SA constantly to selected
solutions. Table 1 shows the results of MSA in
column “MSA”".

Table 1 shows the results of several problems of
OR literature available in internet [9]. The
columns “Time” contains the makespan and “ %"
contains the percentage of the optima value
(column “Opt.”).

Fig. 4 shows the percentage of error for GA, GC
and M SA against the number of decisions, sorted
by the %error. The number of decisions defines
the solution space size and is not related with the
complexity problem. A little problem can be
more complex than a big one. The problem size
and complexity, as shows the increase of % error

affect al approaches, where it is more effective
on GA than MSA due to the possibility of MSA
performs climbing hill, while genetic operators
produces a disruptive effect in the solution. The
processing time exponentiadly increases
generating GA by GP because of the increasing
the number of evaluation. The idle time and
makespan are equivalent approaches for fitness
function. The decision point-of-view for
chromosome coding allows the construction of
only feasible solutions, with the increase of
processing efficiency.

Begin
= Initialisethe population of GP,
Repeat for each individual of GP:
. pick two individuals with Roulette
search,
. crossover and mutation operators
evaluatefitnessfor each individual
applyingthe
GA coded inindividual chromosome;
Repeat for 100 generations:
Initialise the population
Execute GA operators and
obtain children
Evaluatethe children;
Thebest GA and itsfinal fitness are
used by GP;
End.

Fig. 3 Genetic control agorithm.

Table 1: results obtained from Genetic algorithms, Genertic Control and Simulating annealing.

opt GA makespan GA Idietime GC makespan GCldletime MSA
Dec. " [Time %% Time % Time Y% Time Y% TTme Y%
ABz5 | 100 [1234 | 1313 6.4 | 1314 6.4 | 1253 15 1244 08 [12344 0O
ABZ6 | 100 943 994 5.4 982 4.1 952 0.9 951 0.8 | 943.0 0
LA18 100 848 940 10.8 897 5.7 877 3.4 861 15 848.0 0
LA17 | 100 784 872 11.2 | 854 8.9 803 2.4 803 2.4 | 784.0 0
LA20 | 100 | 902 | 979 85 | 1006 115 | 939 4.1 925 25 [9020 0
LA16 | 100 945 | 1031 9.1 | 1036 9.6 979 3.9 978 34 | 9450 0
LA19 | 100 842 945 12.2 | 965 14.6 | 883 4.8 877 41 | 8420 0
ORBO1| 100 | 1059 | 1230 161 | 1229 16.0 | 1156 9.1 1118 55 |10740 14
LA25 | 150 977 1129 155 | 1207 235 | 1100 125 | 1042 6.6 | 977.8 0
ET10 100 930 1032 10.9 1010 8.6 1017 9.3 1005 8.0 937.0 0.7
LA24 150 935 1091 16.6 1083 15.8 1040 11.2 1013 8.3 939.6 0.4
LA21 | 150 | 1046 | 1222 16.8 | 1260 20.4 | 1198 145 | 1164 11.2 | 10484 0.1
LA27 | 200 | 1235 | 1507 22.0 | 1538 245 | 1445 17.0 | 1415 145 [12454 08
ABZ7 | 300 655 779 18.9 | 787 20.1 | 763 16.4 | 755 152 | 6752 3.0
LA38 | 225 | 1196 | 1476 23.4 | 1485 241 | 1407 17.0 | 1382 155 | 12146 15
LA40 | 225 | 1222 | 1569 28.3 | 1540 26.0 | 1473 205 | 1426 16.6 | 12292 0.6
LA29 200 1130 1422 25.8 1501 32.8 1391 23.0 1346 19.1 | 11826 4.6
ABZ9 | 300 656 795 21.1 | 843 28.5 | 806 22.8 | 786 19.8 | 7030 7.1
ABZ8 | 300 638 823 289 | 827 29.6 | 810 26.9 | 779 22.1 | 6872 7.6
The next step of Evolvable Genetic Algorithms
GA e will be the study of other possible operators that
15 improve the hill climbing freedom of GA and the
i N \ R T) study of conform transform that creates a more
o \ \ ,;{\ ““j smooth and treatable landscape for JSSP
i \ A : "';’)&E / /-‘“c{, problem.
% 15 f}‘iﬁ f;»’*“/a—f MSA | REFERENCES
10 o f“il?’r."‘:" /-f
] i e 1. BAKER, K. R,, 1974, Introduction to Sequencing
H % e IET and Scheduling, John Wiley & Son.
O e e e s s g 2. BALAS, E., 1969, "Machine sequencing via
o R M L e isi i : i ici i
€ EE LS PSS dhuntie gophs an implict snumeration
Fig. 4 Number of decisions against the percent 3 AST r?tljll\é\te'\g anEneQ mgwli:t(acg/a\oﬁ;[i\gﬁ;y pﬁoggs%is
error for each example. in job shop scheduling”, in Giannakoglou, K.,
Tsahalis, D., Periaux, J., Papailiou, K. and Fogarty,
T. C. (eds.) Evolutionary Methods for Design,
Optimisation and Control, (Proc. of EUROGEN
CONCLUSION. 2001, Athens, 1921 September) CIMNE,

Algorithms generated by GP are competitive
with specifics techniques of optimisation in
JSSP. The limitations are the susceptibility of
solution space increase and hill climbing
limitation. The introduction of SA in
replacement operator gave to GA the possibility
to do hill climbing [10 and 11] and obtain betters
results.

Barcelona

4. VAZQUEZM.; WHITLEY,D., 2000, “A
comparison of Genetic Algorithms for the Static
Job Shop Scheduling Problem”, 6" Int. Conf.
Parallel Problem Solving from Nature —PPSN VI,
in Lectures notesin Computing Sciencevol. 1917,
pg. 303-312.

5. HoLLanb,J.H., 1992, “ Adaptation in natural and
artificial systems: an introductory analysiswith
applications to biology, control and artificial
intelligence.” Cambridge: Cambridge press.

9.

CoLDBERG,D.E., 1989, “ Genetic Algorithms in
Search, Optimisation, and Machine Learning.”
Reading,Mass.: Addison-Whesley.

Koza ,JR., 1992, “ Genetic programming: Onthe
programming of computers by means of natural
selection.” Cambridge,Mass.: MIT Press.
RuboLPH,G., 1994 “Convergence Analysis of
Canonical genetic algorithms.” |EEE Transactions
on Neural Networks, v.5, p.96.

Imperial College Management School: OR Library
http://www.ms.ic.ac.uk/info.html

10.AYDIN M. E. AND FOGARTY, T. C., 2002,

“Modular Simulated Annealing Algorithm for Job
Shop Scheduling running on Distributed Resource
Machine (DRM)” Submitted to “ Parallel Problem
solving from Nature 2002" Granada, Spain Sept 7
to 11, 2002

11.AYDIN M. E. AND FOGARTY, T. C, 2002,

“Modular Simulated Annealing: an empirical
investigation with Job-Shop scheduling problems’
South Bank University internal report.

