
Evolving genetic algorithm for Job Shop Scheduling problems

James C. Werner
Mehmet E. Aydin
Terence C. Fogarty

School of Computing, Information Systems and Mathematics
South Bank University
103 Borough Road
London SE1 0AA, UK
{wernerjc,aydinme, fogarttc}@sbu.ac.uk

ABSTRACT

This paper addresses an attempt to evolve genetic
algorithms by a particular genetic programming method
to make it able to solve the classical Job Shop Scheduling
problem (JSSP), which is a type of very well known
hard combinatorial optimisation problems. The aim is to
look for a better GA such that solves JSSP with
preferable scores. This looking up procedure is done by
evolving GA with GP. First we solve a set of job shop
scheduling benchmarks by using a conventional GA and
then an association of GP to evolve a GA. The instance
of JSSP tackled are available in OR literature.

INTRODUCTION

Scheduling, especially job shop scheduling, has been
studying for a long time. Because of its NP-Hard nature,
there has not been found a global problem solver for this
kind of problems. Recently, some meta-heuristics like
Simulated Annealing (SA), Taboo Search (TS), and
Genetic Algorithms (GA) have been implemented as
pure methods and hybrid of different method, where the
hybrid methods are superi or over pure ones. The main
problem is how to cope with local minima within a
reasonable time. Among them, GA has been studied and
implemented to like the other problems with moderate
score of success. The problem with GA is how to find the
most effective types and order of operators to evolve the
solutions space, where one operator may be successful
for one type of problem with a certain order and may not
be so preferable for some other problems. Our aim is to
make clear that if it is possible to evolve a GA by
Genetic Programming (GP) methods in such a way that
GP tries different crossover, mutation and selection
operators in various orders.

In the following three sections we give brief descriptions
of JSSP, GA, and how to apply GA to JSSP. After that,
the genetic control method, genetic programming to
evolve GA, and its application to JSSP is presented.
Then a comparison with a particular SA method is
explained and paper concluded.

JOB-SHOP SCHEDULING PROBLEMS (JSSP)

The JSSP consists of a number of machines, M, and a
number of jobs, J. Each job consists of M tasks, each of
fixed duration. Each task must be processed on a single
specified machine, and each job visits each machine
exactly once. There is a predefined ordering of the tasks
within a job. A machine can process only one task at a
time. There are no set-up times, no release dates and no
due dates. The makespan is the time from the beginning
of the first task to start to the end of the last task to finish.
The aim is to find start times for each task such that the
makespan is minimised. As a constraint problem, there
are M*J variables, each taking positive integer values.
The start time of tth task of the jth job will be denoted by
xjt, and the duration of that task by djt. Each job
introduces a set of precedence constraints on the tasks
within that job: xjt + d jt � xj(t+1) for t = 1 to M-1. Each
machine imposes a set of resource constraints on the
tasks processed by that machine: xjt + djt � xpq or xpq +
dpq � xjt. The aim is to find values for the variables such
that no constraint is violated. By defining an objective
function on assignments (which simply takes the
maximum of xjt + djt), and attempting to minimise the
objective, we get a constraint optimisation problem. (See
for more information [1] and [2]).

THE GENETIC ALGORITHM APPROACH.

The genetic algorithms (GA) mimic the evolution and
improvement of life through reproduction, where each
individual contributes with its own genetic information to
build up new ones adapted to the environment with
higher chances of survival. This is one of the main ideas
behind genetic algorithms and genetic programming
(Holland [5], Goldberg [6], and Koza [7]). Specialized
Markov Chains underline the theoretical basis of GA in
terms of change of states and search procedures [8]. Each
‘individual’ of a generation represents a feasible solution
as coded in a chromosome with distinct algorithms
/parameters to be evaluated by a fitness function. GA
operators are mutation (the change of a randomly chosen
bit of the

Proceedings of ACDM 2000
PEDC, Unviersity of Plymouth, UK

Fig. 1 Genetic algorithm: the sequence of operators and evaluation of each individual.

chromosome) and crossover (the exchange of
randomly chosen slices of chromosome).

Fig.1 shows a generic cycle of GA where the
best individuals are continuously being selected
and operated by crossover and mutation.
Following a number of generations, the
population converges to the solution that
performs better.

GA applications for JSSP have special
chromosome representation as well as genetic
operators to be applied to feasible schedules [4].
In our case, the chromosomes are coded as a list
of sets of numerical values for each particular
schedule. A generalisation of the GA is the
Genetic Programming (GP) algorithm where
each ‘individual’ in a generation represents, with
its chromosome, a feasible model solution, in our
case, a sequence of genetic operators that will
define one genetic algorithm. There are two
kinds of information defined for the GP
algorithm: terminals (variable values and random
numbers) and functions (mathematical functions
used in the generated model).

GENETIC ALGORITHMS IN JSSP

We have generated schedules in a particular way
in which the chromosome will be feasible after
performing genetic operators. The decision
management in JSSP distributes the jobs for each
machine, selecting sometimes one task among
the other alternatives so as to have a better
fitness. We code a chromosome with M*J values
between 0 and 1, one for each decision, which
points for the job in the requestin g jobs list that
win the right to use the machine. Fig. 2 shows an
example of chromosome coding based in
decision process.

This approach allows using the same traditional
GA operators to solve the problem because the
chromosome contains a sequence of numb ers, all
representing feasible schedules. Two fitness

functions can be applied to evaluate a solution:
the makespan and the total idle time. The main
problems with this approach are as follows:-
§ the disruptive effect of crossover operator,
§ the precocious convergence to some local

minima that blinds the system to find the
global one,

§ eventually raising the inability of genetic
operators to permute the solutions in a
reasonable time,

§ the lack of hill climbing in GA.

The total size of the population is 100
individuals and the number of generations is
number machines*number job *10, the crossover
probability is 80% and mutation probability is
25%, and each decision is coded as 8 bits. The
increase of population size does not change the
results too much, but increase the processing
time. For example, in LA20 problem using
makespan fitness, the final result was 959 time
units after 35 generations of 900 individuals (no
better solution was founded until 149,500
generations) and 979 time units with 100
individuals. Table 1 shows the results for both
fitness functions at columns “GA makespan” and
“GA Idle time”.

GENETIC PROGRAMMING
GENERATING GENETIC ALGORITHMS –
THE GENETIC CONTROL APPROACH

We used GP to obtain what genetic operators and
in which order would be applied to solve the
problem. Fig 3 shows the algorithm and the
relation between GP and GA. The possible
operators are: usual crossover, usual mutation,
extend the limits for some decisions by 10% in
schedule generation, narrow the limits for some
decisions by 10% in schedule generation,
exchange of some region of one parent
chromosome, exchange of the remainder
chromosome of one parent chromosome. In this
case, we are evolving the genetic algorithm with
genetic programming. Table 1 presents the

Job Tasks
0 1 0 2
1 0 1 2
2 2 1 0
3 1 2 0

Job Tasks
0 1 0 2
1 1 2
2 2 1 0
3 1 2 0

Job Tasks
0 1 0 2
1 1 2
2 2 1 0
3 2 0

Decision 1: machine 0 receives
job 1, any value of the
chromosome (only one
candidate).

Decision 2: machine 1 could
receive jobs 0, 1 or 3. If
chromosome value is 0.7, job 3
begins

Decision 3: Machine 2 is required
by jobs 2 and 3. If chromosome
>0.5 then job 3 executes,
otherwise job 2.

Fig. 2 Decisions sequence in JSSP.

results for both fitness functions at columns “GC
makespan” and “GC idle time”, where GP
parameters are 50 individuals and 50 generations
and GA parameters are 900 individuals, 100
generations, crossover and mutation probability
50%, and each decision is coded in 4 bits.

RESULTS AND ANALYSIS

We have obtained many results for a set of
benchmark problems for both conventional and
evolved GA applications. In order to measure
our efficiency we compare our results with an
instance of SA used for the same benchmarks.
This SA approach is called as modular simulated
annealing (MSA) algorithm, which is a multi-
start SA algorithm employed with a population
rather then an individual. The details of this
method is given in [10] and [3]. The idea of that
work was to evolve a population of solutions by
applying a modular SA constantly to selected
solutions. Table 1 shows the results of MSA in
column “MSA”.

Table 1 shows the results of several problems of
OR literature available in internet [9]. The
columns “Time” contains the makespan and “%”
contains the percentage of the optimal value
(column “Opt.”).

Fig. 4 shows the percentage of error for GA, GC
and MSA against the number of decisions, sorted
by the %error. The number of decisions defines
the solution space size and is not related with the
complexity problem. A little problem can be
more complex than a big one. The problem size
and complexity, as shows the increase of % error

affect all approaches, where it is more effective
on GA than MSA due to the possibility of MSA
performs climbing hill, while genetic operators
produces a disruptive effect in the solution. The
processing time exponentially increases
generating GA by GP because of the increasing
the number of evaluation. The idle time and
makespan are equivalent approaches for fitness
function. The decision point-of-view for
chromosome coding allows the construction of
only feasible solutions, with the increase of
processing efficiency.

Begin
ð Initialise the population of GP,

Repeat for each individual of GP:
• pick two individuals with Roulette
search,
• crossover and mutation operators
• evaluate fitness for each individual

applying the
 GA coded in individual chromosome:
Repeat for 100 generations:
• Initialise the population
• Execute GA operators and
obtain children
• Evaluate the children;
The best GA and its final fitness are
used by GP;

End.

Fig. 3 Genetic control algorithm.

Table 1: results obtained from Genetic algorithms, Genertic Control and Simulating annealing.
GA makespan GA Idle time GC makespan GC Idle time MSA

Dec.

Opt.
Time % Time % Time % Time % Time %

ABZ5 100 1234 1313 6.4 1314 6.4 1253 1.5 1244 0.8 1234.4 0

ABZ6 100 943 994 5.4 982 4.1 952 0.9 951 0.8 943.0 0

LA18 100 848 940 10.8 897 5.7 877 3.4 861 1.5 848.0 0

LA17 100 784 872 11.2 854 8.9 803 2.4 803 2.4 784.0 0

LA20 100 902 979 8.5 1006 11.5 939 4.1 925 2.5 902.0 0

LA16 100 945 1031 9.1 1036 9.6 979 3.9 978 3.4 945.0 0

LA19 100 842 945 12.2 965 14.6 883 4.8 877 4.1 842.0 0

ORB01 100 1059 1230 16.1 1229 16.0 1156 9.1 1118 5.5 1074.0 1.4

LA25 150 977 1129 15.5 1207 23.5 1100 12.5 1042 6.6 977.8 0

FT10 100 930 1032 10.9 1010 8.6 1017 9.3 1005 8.0 937.0 0.7

LA24 150 935 1091 16.6 1083 15.8 1040 11.2 1013 8.3 939.6 0.4

LA21 150 1046 1222 16.8 1260 20.4 1198 14.5 1164 11.2 1048.4 0.1

LA27 200 1235 1507 22.0 1538 24.5 1445 17.0 1415 14.5 1245.4 0.8

ABZ7 300 655 779 18.9 787 20.1 763 16.4 755 15.2 675.2 3.0

LA38 225 1196 1476 23.4 1485 24.1 1407 17.0 1382 15.5 1214.6 1.5

LA40 225 1222 1569 28.3 1540 26.0 1473 20.5 1426 16.6 1229.2 0.6

LA29 200 1130 1422 25.8 1501 32.8 1391 23.0 1346 19.1 1182.6 4.6

ABZ9 300 656 795 21.1 843 28.5 806 22.8 786 19.8 703.0 7.1

ABZ8 300 638 823 28.9 827 29.6 810 26.9 779 22.1 687.2 7.6

Fig. 4 Number of decisions against the percent

error for each example.

CONCLUSION.

Algorithms generated by GP are competitive
with specifics techniques of optimisation in
JSSP. The limitations are the susceptibility of
solution space increase and hill climbing
limitation. The introduction of SA in
replacement operator gave to GA the possibility
to do hill climbing [10 and 11] and obtain betters
results.

The next step of Evolvable Genetic Algorithms
will be the study of other possible operators that
improve the hill climbing freedom of GA and the
study of conform transform that creates a mo re
smooth and treatable landscape for JSSP
problem.

REFERENCES:

1. BAKER, K. R., 1974, Introduction to Sequencing

and Scheduling, John Wiley & Son.
2. BALAS, E., 1969, "Machine sequencing via

disjunctive graphs: an implicit enumeration
algorithm", Operations Research, 17, 941-957.

3. AYDIN M. E. AND FOGARTY, T. C., 2002,
“Simulated annealing with evolutionary processes
in job shop scheduling”, in Giannakoglou, K.,
Tsahalis, D., Periaux, J., Papailiou, K. and Fogarty,
T. C. (eds.) Evolutionary Methods for Design,
Optimisation and Control, (Proc. of EUROGEN
2001, Athens, 19-21 September) CIMNE,
Barcelona

4. VAZQUEZ,M.; WHITLEY, D., 2000, “A
comparison of Genetic Algorithms for the Static
Job Shop Scheduling Problem”, 6th Int. Conf.
Parallel Problem Solving from Nature – PPSN VI,
in Lectures notes in Computing Science vol. 1917,
pg. 303-312.

5. HOLLAND,J.H., 1992, “Adaptation in natural and
artificial systems: an introductory analysis with
applications to biology, control and artificial
intelligence.” Cambridge: Cambridge press.

GA

MSA

GC

6. GOLDBERG ,D.E., 1989, “Genetic Algorithms in
Search, Optimisation, and Machine Learning.”
Reading,Mass.: Addison-Whesley.

7. KOZA,J.R., 1992, “Genetic programming: On the
programming of computers by means of natural
selection.” Cambridge,Mass.: MIT Press.

8. RUDOLPH,G., 1994 “Convergence Analysis of
Canonical genetic algorithms.” IEEE Transactions
on Neural Networks, v.5, p.96.

9. Imperial College Management School: OR Library
http://www.ms.ic.ac.uk/info.html

10.AYDIN M. E. AND FOGARTY, T. C., 2002,
“Modular Simulated Annealing Algorithm for Job
Shop Scheduling running on Distributed Resource
Machine (DRM)” Submitted to “Parallel Problem
solving from Nature 2002” Granada, Spain Sept 7
to 11, 2002

11.AYDIN M. E. AND FOGARTY, T. C., 2002,
“Modular Simulated Annealing: an empirical
investigation with Job-Shop scheduling problems”
South Bank University internal report.

