
A Genetic Algorithm with an incomplete representation for the Job Shop
Scheduling Problems

Y. Song†, JG. Hughes†, N. Azarmi‡ and C. Voudouris‡

† School of Info. & Soft. Eng., University of Ulster at Jordanstown, BT37 0QB
Email: (y.song, jg.hughes)@ulst.ac.uk , (nader.azarmi, chrisv)@bt.com

‡ BT Intelli gent System Research Group, pp12, MLB1, BT Labs, Ipswich, IP5 3RE

Abstract

Most of the GA approaches for job shop scheduling problem (JSSP) represent a
solution by a chromosome containing the sequence of all the operations and decode
the chromosome to a real schedule from the first gene to the last gene. There are two
common problems for this kind of GAs, namely, high redundancy at the tail of the
chromosome and littl e significance of rear genes on the overall schedule quality. GA-
operators (e.g. the 1-point, 2-point crossover, and some mutation operators, etc.)
applied on the real part of the chromosome (only involving the change of the real part
of a chromosome) are less likely to create good offsprings, i.e., most likely a waste of
evolution (time). In this paper, we propose a genetic algorithm with an incomplete
representation (the number of genes is less than the number of operations) and apply it
to the JSSPs. In our approach, the most important and the largest part of a schedule is
decoded from a chromosome and the rest of the schedule is completed by a simple
heuristic rule.

1. Introduction

The Job-shop scheduling problem (n/m/J/Cmax) is concerned with ordering n jobs on m
machines [7]: each job is composed of an ordered list of m operations and must be processed
during a uninterrupted time period of a given length on each of the m machines. The
objective is to minimise the makespan, i.e. the maximum of job completion times. Since the
publication of Davis’ paper in 1985 [5] a lot of research in the field of production scheduling
with GAs has been done. The main diff iculty in this subject arises from the question of how
to represent the problem in the algorithm, which is known to be most important for genetic
search [4]. So far, researchers have proposed many representation approaches together with
different kinds of GA operators to tackle the problems. A tutorial survey of the representation
approaches in the literature can be found in [6]. Among them, some of the most well -known
representation approaches are the priority rule-based representation [3], the random keys
representation [2], and the operation-based representation, such as [1, 4]. Some result
comparison of these approaches is given in [2].

The incomplete representation (IR) is mainly based on the operation-based representation.
The difference is that its chromosomes use fewer genes than those of the normal operation-
based representation. In IR-GA, the number of genes is less than the number of operations of
the JSSP, and the most important and the largest part of a schedule is decoded from a
chromosome and the rest of the schedule is completed by a simple heuristic rule (more
details and examples can be seen in the next section). The normal length (no. of total
operations) of the chromosome used in most GA approaches is reduced by 20-30% in our
approach. This looks like we are considering the original problem as a problem with a
smaller size compared with other complete-representation methods. Theoretically, this kind

of simpli fication may affect the optimal (or best) result of the GA approach when there is no
running time limit . In real world, optimal scheduling is not very important as most of the
real-word scheduling problems are too large to find their optimal solutions within reasonable
time and the dynamic nature of the problem makes frequent rescheduling necessary. In most
of the cases we need to find a good or near-optimal solution for a problem in a reasonable
time, i.e., to balance the computation time and solution quality. The proposed incomplete
representation is designed to find as good average result as the complete-representation with
less evolving generation and to be used in cases where fast approximate solutions are needed.

2. The incomplete representation (IP) for JSSP

In order to implement and test the IP approach, we used the GA encoding and decoding
approach proposed by Fang et al. [1]. In Fang's approach, a n-job and m-machine JSSP is
represented by a chromosome with a string containing n x m chunks which are large enough
to hold the largest job number for the problem. Each chunk is interpreted as the first
unscheduled operation of the job specified by the job number at the junk (if all operations of
the job have been scheduled, then interpreted it as the next job. See more details in [1]), and
the first unscheduled operation belonging to the job at each position in order is scheduled on
the designated machine at the earliest time it can be started. For example, following is a
typical chromosome for the 3x3 JSSP in table1:

Table 2 is a schedule decoded from the above chromosome and the last three genes have no
effects on the schedule. Any values for the last three genes will be decoded as the same
schedule as table 2. The greyed part of the chromosome completely decides the schedule.
There are a lot of chromosomes like this in the searching space, and most of them are not
good ones. In these cases, when GA operators are applied on the rear part, it is unlikely to
create new or better solutions. The IP-GA proposed in this paper is based on this observation.
Instead of searching a whole pattern as above, IP-GA searches for a pattern as the greyed part
of the chromosome and so use fewer genes than the complete representation. Figure 1 shows
the difference between the complete and the incomplete GA representation.

Table 1: a 3 job and 3 machine JSSP. Table 2: A schedule (solution) decoded from the
(Mi , n): stands for an operation to be typical chromosome for the sample problem.
 performed on machine i for n time units. The makespan is 20 (optimal).

Job
name

1st

operation
2nd

operation
3rd

 operation
J1 (M1 , 5) (M2 , 6) (M3 , 2)
J2 (M2 , 8) (M3 , 2) (M1 , 7)
J3 (M1 , 4) (M3 , 3) (M2 , 5)

 Figure 1. The difference of complete and incomplete GA representation

 …… …

 Fang’s complete GA representation (n x m genes)

 The incomplete GA representation (n-n1) x m genes n1 x m genes

3 2 3 1 2 1 2 1 3

M2

 M1

 0 2 4 6 8 10 12 14 16 18 20

 J 3 J 1 J 2

 J 2 J 3 J 1

J3 J2 J1
M3

The incomplete representation discards the n1 x m genes at the rear part of the chromosome
which are known having high redundancy and littl e significance. In the incomplete
representation, the first (n - n1) x m operations are decoded according to the chromosome and
the rest n1 x m operations are decoded by a simple heuristic rule. The heuristic rule used in
this approach selects the next activity (from those unscheduled by GA) with minimal latest
end time from those can be started first and have a minimal earliest start time. Initial
experimental result show that n1 / n should be less than 30% and the exact value should be
slightly varied with specific problems (n1/n is problem specific). The heuristic rule doesn't
take more time than the GA to decode the rest of the (n - n1) x m operations.

3. Initial Experimental Results

We have implemented the IP-GA in Visual C++ 5.0 and used Matthew’s GA-lib version 2.4
at http://lancet.mit.edu/galib-2.4/ as our starting point. For convenience of implementation
we used ILOG Solver 3.2 and ILOG Scheduler 2.2, which are both C++ libraries, to assist the
decoding process. However, ILOG libraries are not directly involved with problem solving
and have no effect on the final performance. The approach has been tested on the two
benchmark problems, FM20(20x5) and FM10(10x10) that can be obtained from the OR-
Library at http://mscmga.ms.ic.ac.uk/jeb/orlib/jobshopinfo.html. The GA operators and
parameters used in the experiment are described in table 3, and the GA-objective is the same
as makespan of the schedule, the maximum completion time of all the jobs. 100 runs have
been made for each of the test to get the average result and the initial population was
randomly created with random seed. Table 4 and table 5 give the results of our experiment.

 Table 3. GA operators and parameters used in the experiment

Basic GA Steady-State Crossover Rate 0.8
Scaling Method Linear Scaling Mutation Rate 0.005
Crossover Method 2-Point Crossover Replacement Rate 10%
Mutation Method Swap Mutation Selection Scheme Rank Selector

 Table 4. Average results on FM20 Table 5. Average results on FM10

(* n1/n: percentage of genes cut from the complete representation, p x g : population x generation)

In table 4, the best average results are obtained by n1/n = 20%. However, the results of
n1/n=30% is not as good as those of n1/n=0 (the complete representation, i.e. Fang’s basic
approach). This is probably because we cut the tail too much for this problem. In table 5,
there is a great improvement on average results by incomplete representation over complete
representation. The average results of incomplete representation with population x

1076.2 1050.3 1046.0 1035.5 1030.3 1019.1

1045.9 1024.2 1019.5 1013.1 1008.3 1001.5

100
x200

150
x300

200
x400

250
x500

300
x600

0%

20%

n1/n

 p x g
50

x100

1369.5 1333.4 1321.3 1303.24 1301.5 1295.6

1359.2 1327.1 1312.0 1303.0 1295.4 1288.3

50
x100

100
x20

0

150
x30

0

200
x400

250
x500

300
x600

0%

20%

30% 1376.2 1342.7 1326.0 1314.2 1306.0 1297.5

p x g

n1/n
 / n

*

*

generation of 50x100, 100x200 and 150x300, are comparable with those of complete
representation with population x generation of 150x300, 250x500 and 300x600 respectively.
In this case, the incomplete representation is much more eff icient than the complete
representation.

4. Conclusion

We propose a genetic algorithm with an incomplete representation and apply it to the job-
shop scheduling problems. Initial experimental results show that the incomplete
representation is promising and useful when GA is needed to find near-optimal or reasonable
solutions in a reasonable computation time. By cutting the genes with high redundancy and
littl e significance at the rear part of the chromosome, we believe GA could be more eff icient
because useless (most likely) GA operators applied on the rear part of the chromosome are
automatically avoided. However, this approach still need more tests on more benchmark
problems with different GA parameters and how to decide the exact n1/n (the radio of
discarded genes to the total number of genes in a complete representation) of the incomplete
GA representation for a particular problem is still unknown.

Acknowledgements

This work is partially supported by The Overseas Research Students Awards Scheme. The
authors would like to thank Matthew at MIT who made his GAlib available and J E Beasley
at Imperial College who maintains the OR-Library.

References

1. H. Fang, Peter Ross and Dave Corne. A promising genetic algorithm approach to job-shop
scheduling, rescheduling, and open-shop scheduling problems. Proc. Of the Fifth International
Conference on Genetic Algorithms, Urbana-Champaign, IL, USA, July 1993, pp.373-382.

2. B.Norman and J.Bean, Random keys genetic algorithm for job-shop scheduling, Engineering
Design & Automation Vol. 3, No. 2, pp.145-156, 1997.

3. U. Dorndorf and E. Pesch, Evolution based learning in a job-shop environment, Computers and
Operations Research, Vol. 22, pp.25-40, 1995.

4. C. Bierwirth, A generalized permutation approach to job-shop scheduling with genetic
algorithms. OR SPEKTRUM, Vol. 17, N0. 2-3, pp.87-92, 1995.

5. L. Davis, Job-shop scheduling with genetic algorithm., Proc. Of the 1st Int. Conf. On Genetic
Algorithms, Lawrence Erlbaum Associates (1985) pp. 136-140.

6. R. Cheng and M. Gen, A tutorial survey of job-shop scheduling problems using genetic
algorithms—I. Representation, Computers ind. Engng., Vol. 30, No. 4, pp. 983-997, 1996.

7. S. French, Sequencing and Scheduling, Halstead Press; 1982.

