
Job Shop Scheduling using the Clonal
Selection Principle

Carlos A. Coello Coello1, Daniel Cortés Rivera2 and Nareli Cruz Cortés3

CINVESTAV-IPN (Evolutionary Computation Group)
Depto. de Ingeniería Eléctrica, Sección de Computación
Av. IPN No. 2508, Col. San Pedro Zacatenco
México, D. F. 07300, MEXICO
1ccoello@cs.cinvestav.mx
2dcortes@computacion.cs.cinvestav.mx
3nareli@computacion.cs.cinvestav.mx

Abstract
In this paper, we propose an algorithm based on an artificial immune system to
solve job shop scheduling problems. The approach uses clonal selection,
hypermutations and a mechanism that explores the vicinity of a reference solution.
It also uses a decoding strategy based on a search that tries to eliminate gaps in a
schedule as to improve the solutions found so far. The proposed approach is
compared with respect to three other heuristics using a standard benchmark
available in the specialized literature. The results indicate that the proposed
approach is very competitive with respect to the others against which it was
compared. Our approach not only improves the overall results obtained by the
other heuristics, but it also significantly reduces the CPU time required by at least
one of them.

Introduction
The purpose of scheduling is to allocate a set of (limited) resources to tasks over
time [1]. Scheduling has been a very active research area during several years, both
in the operations research and in the computer science literature [2,3] with
applications in several disciplines. Research on scheduling basically focuses on
finding ways of assigning tasks (or jobs) to machines (i.e., the resources) such that
certain criteria are met and certain objective (or objectives) function is optimized.
A wide variety of scheduling problems (e.g., job shop, flowshop, production, etc.)
have been tackled with diverse heuristics such as evolutionary algorithms [3,4,5],
tabu search [6], and simulated annealing [7], among others. Note, however, that the
use of artificial immune systems for the solution of scheduling problems of any
type has been scarce (see for example [8,9]).
This paper extends our previous proposal of a new approach based on an artificial
immune system (basically on the clonal selection principle) to solve job scheduling
problems, which was introduced in [10]. Three are the main changes with respect
to our previous proposal are the following: (1) we no longer use a library of
antibodies, (2) we introduced two new domain-specific mutation operators, and (3)
we use a new backtracking mechanism. As we will see later on, these changes
introduce important improvements in our algorithm with respect to the original
version. The proposed approach is compared with respect to GRASP (Greedy
Randomized Adaptive Search Procedure), a Hybrid Genetic Algorithm (in which

local search is used), a Parallel Genetic Algorithm and our previous AIS [10] in
several test problems taken from the specialized literature. Our results indicate that
the proposed approach is a viable alternative for solving efficiently job shop
scheduling problems and it also improves on our previous version reported in [10].

Statement of the Problem
In this paper, we will be dealing with the Job Shop Scheduling Problem (JSSP), in
which the general objective is to minimize the time taken to finish the last job
available (makespan). In other words, the goal is to find a schedule that has the
minimum duration required to complete all the jobs [2]. More formally, we can say

that in the JSSP, we have a set of n jobs { }
1j j n

J
≤ ≤

, that have to be processed by

a set of m machines{ }1r r m
M

≤ ≤
. Each job has a sequence that depends on the

existing precedence constraints. The processing of a job jJ in a machine rM is

called operation jrO . The operation jrO requires the exclusive use of rM for an

uninterrupted period of time jrp (this is the processing time). A schedule is then a

set of duration times for each operation { }
1 ,1jr j n r m

c
≤ ≤ ≤ ≤

 that satisfies the

previously indicated conditions. The total duration time required to complete all
the jobs (makespan) will be called L . The goal is then to minimizeL .

Garey and Johnson [11] showed that the JSSP is an NP-hard problem and within
its class it is indeed one of the least tractable problems [3]. Several enumerative
algorithms based on Branch & Bound have been applied to JSSP. However, due to
the high computational cost of these enumerative algorithms, some approximation
approaches have also been developed. The most popular practical algorithm to date
is the one based on priority rules and active schedule generation [12]. However,
other algorithms, such as an approach called shifting bottleneck (SB) have been
found to be very effective in practice [13]. The only other attempt to solve the
JSSP using an artificial immune system that we have found in the literature is the
proposal presented in [8,9] and our previous version of the algorithm presented
here [10] (whose differences with our current proposal have been previously
indicated). In [8,9], the authors use an artificial immune system in which an
antibody indirectly represents a schedule, and an antigen describes a set of
expected arrival dates for each job in the shop. The schedules are considered to be
dynamic in the sense that sudden changes in the environment require the
generation of new schedules. The proposed approach compared favorably with
respect to a genetic algorithm using problems taken from [14]. However, the
authors do not provide the problems used nor their results.

Description of our Approach
As indicated in [17], an artificial immune system is an adaptive system, inspired on
our immune system (its observed functions, principles and models), and intended
to be used as a problem-solving tool. Our approach is based on the clonal selection

principle, and can be seen as a variation of an specific artificial immune system
called CLONALG, which is has been successfully used for optimization [15].
CLONALG uses two populations: one of antigens and another one of antibodies.
When used for optimization, the main idea of CLONALG is to reproduce
individuals with a high affinity, then apply mutation (or blind variation) and select
the improved maturated progenies produced. Note that “affinity” in this case, is
defined in terms of better objective function values rather than in terms of
genotypic similarities (as, for example, in pattern recognition tasks), and the
number of clones is the same for each antibody. This implies that CLONALG does
not really use antigens when solving optimization problems, but, instead, the
closeness of each antibody to the global optimum (measured in relative terms with
respect to the set of solutions produced so far) defines the rate of hypermutation to
be used. It should also be noted that CLONALG does not use a mechanism that
allows a change of the reference solution as done with the approach reported in this
paper. In order to apply an artificial immune system to the JSSP, it is necessary to
use a special representation. In our case, each individual represents the sequence of
jobs processed by each of the machines. An antibody is then a string with the job
sequence processed by each of the machines (of length m n×). An antigen is
represented in the same way as an antibody. The representation adopted in this
work is the so-called permutations with repetitions proposed in [16] (see an
example in Table 1).

Job machine(time)
1 1(2) 2(2) 3(2) 4(2)
2 4(2) 3(2) 2(2) 1(2)
3 2(2) 1(2) 4(2) 3(2)
4 3(2) 4(2) 1(2) 2(2)
5 1(2) 2(2) 3(4) 4(1)
6 4(3) 2(3) 1(1) 3(1)

Table 1: A problem of size 6 x 4

Input data include the information regarding the machine in which each job must
be processed and the duration of this job in each machine. Gantt diagrams are a
convenient tool to visualize the solutions obtained for a JSSP. An example of a
Gantt diagram representing a solution to the 6 x 4 problem previously indicated
is shown in Step 1 of Figure 1 also requires some further explanation:

• The string at the bottom of Figure 1 corresponds to the solution that we
are going to decode.

• Step 1: This shows the decoding before reaching the second operation of
job 2.

• Step 2: This shows the way in which job 2 would be placed if a normal

decoding was adopted. Note that job 2 (2J) is shown to the extreme right

of machine 3 (3M).

• Step 3: Our approach performs a local search to try to find gaps in the
current schedule. Such gaps should comply with the precedence

constraints imposed by the problem. In this case, the figure shows job 2
placed on one of these gaps for machine 3.

• Step 4: In this case, we apply the same local search procedure (i.e.,
finding available gaps) for the other machines. This step shows the
optimum solution for this scheduling problem.

Our approach extends the algorithm (based on clonal selection theory) proposed in
[17] using a local search mechanism that consists of placing jobs in each of the
machines using the available time slots.

Requiere: Input file (in the format adopted in [18]).
 Input parameters: #antigens, mutation rate, random seed (optional), degree of
freedom
 p - number of iterations

 i - counter

 Retrieval of problem (read file) and algorithm's parameters.
 Generate (randomly) an antigen (i.e., a sequence of jobs) and decode it.
 Generate (randomly) an antibody.

 repeat
 Decode the antibody.
 if (the (antibody - degree of freedom) is better than the antigen1) then
 Make the antigen1 the same as the antibody
 if (the antibody is better than the antigen2) then
 Make the antigen2 the same as the antibody
 end if
 end if
 Generate a clone of the antibody
 Mutate the clone generated
 Select the best antibody
 until i p>
 Report the best solution found, stored in antigen2

Algor ithm 1: Our AIS for job shop scheduling

Our approach is described in Algorithm 1. First, we generate the initial population.
What we do is to randomly generate an antibody and an antigen (it is important to
keep in mind that we use a special representation and that both the antibody and
the antigen have the same structure). To generate these two elements (antibody and
antigen), we adopt a string of length m n× , which is filled with m values ranging

from 0 to 1n− . Once we fill in the array, we perform a set of random
permutations in order to obtain the individual to start the search. At the next stage,
the main cycle of the algorithm is executed. Within this cycle, we first decode the
antibody (note that the antigen was decoded at a previous step).

Figure 1: The graphical representation of a solution to the 6 4× problem shown in Table
1 using a Gantt diagram. The string at the bottom of the figure indicates the antibody that we
are going to decode. See the text for an explanation of the different steps included.

The process required to decode an individual as to determine its fitness (i.e., the
makespan of the corresponding schedule) is the following:

1. We need to have in a matrix all the problem's data (i.e., the processing
order of each of the jobs to be handled by the machines available as well
as their processing times).

2. We read the string encoding a solution in order to identify each of the jobs
contained within (each job is represented by a number between 0 and m).

3. Once we know the corresponding job number, we keep a count of the
order of occurrence of each of the numbers as to identify the
corresponding job operations (i.e., if this is the first occurrence, then it
corresponds to the first job operation). We also determine the machine in
which each job is processed using the corresponding input matrix.

4. The following step is to place the operation in the schedule. In order to do
this, we use a structure that has been previously initialized and which
contains the schedule with the necessary information to accommodate the
operations without violating any of the constraints of the problem.

5. In order to place an operation in its corresponding place in the schedule,
we provide an example in Figure 1. In this figure we can see that the
operation is first placed in its corresponding machine (based on the input
matrix). After that, we try to locate a gap in the schedule in which we can
place this operation, avoiding to interfere with other operations and
avoiding to violate the existing constraints.

6. This process of finding gaps to place operations may cause that several
strings encoding different orderings can be decoded to the same solution.

7. The next step is to reorder the string encoding a solution such that the next
time that such string is decoded it becomes unnecessary to apply the
strategy previously described to find gaps. The ordering performed is
based on the order of appearance of each operation and considering each
machine from the first to the last. By adopting these criteria, we minimize
the amount of possible gaps available in the next iteration.

8. Once we have finished this ordering, we create a data structure that is very
important for the mutation operator. Such a data structure consists of
generating an ordering of the operations per machine such that it is easy to
know the position of each operation and the machine to which it belongs
without having to check this in an exhaustive manner.

9. We report the corresponding makespan.

The decoding process is the most expensive (computationally speaking) part of our
algorithm.

In the next stage of the algorithm, we compare the antigen with respect to the
antibody. Note that we do not adopt a phenotypic similarity metric as the affinity
measure. Instead, we use the makespan value as our affinity measure. During this
process, we use the best solution found so far as a reference for further search (this
is called antigen1 in Algorithm 1). Each time a better solution is found, it is used as
a new reference. In the original version of our algorithm [10], we used a single
antigen as a reference. However, we decided to keep a second antigen to allow

good (but not the best) solutions to be used as references as well (this is called
antigen2 in Algorithm 1). What we do is to keep a second solution that is one or
two units away (in terms of makespan value) from the best solution found so far
and we also use it as a reference. This second antigen serves as some sort of
backtracking mechanism of the algorithm that allows it to escape from local
optima. By using this second antigen, we were able to obtain significant gains in
terms of computational time. Once we finish the verification stage in which we
check if any of our two antigens (or both) have been improved, the following stage
is the cloning of the antibody. This cloning stage consists of copying the antibody a
certain number of times without doing any changes to its structure. The number of
clones to be produced was varied from 1 to 10 depending on the complexity of the
problem tackled. Note however, that if many clones are adopted, the improvement
gained is only marginal and the high computational cost increase makes this option
unattractive. Thus, we adopted values of either 1 or close to 1 for the number of
clones to be produced. Once the clones are available, each of them is mutated in
such a way that they suffer a slight variation in in their structure. The algorithm has
two types of mutation operators available, and the one to be used is selected with a
50% probability. The similarities and differences between these two mutation
operators (which we will call Mutation-A and Mutation-B) are the following:

• In both cases, the mutation operator is applied by using ()flip pm at

each string location.1

• In both cases, the mutation rate is a function of the antibodies length and it
is defined such that 1 mutation takes place for each string (i.e., antibody).

• In both cases, the operator locates an operation, then finds another
operation of another job and then swaps the positions of the 2 operations.

• In order to have a quick indexing of the positions of each operation, we
use the data structure previously created for the current antibody.

• The only difference between the two mutation operators is that in the case
of Mutation-A, we find the first operation and then locate the other
operation with which it will swap places. However, if there are other
operations of the same job before the current operation, we traverse them
all. As a consequence, we not only change those operations, but we also
produce more changes to the schedule.

• In the case of Mutation-B, we only locate two operations and swap their
locations without any further exploration.

These are all the processes performed by our algorithm. Once it reaches its
convergence criterion (a maximum number of iterations), the algorithm reports the
best solution found during the process, which is stored in one of the two reference
antigens (in antigen2). The algorithm then reports the full schedule with all the
detailed information regarding the ordering of the machines and the initial and
termination times for each of the available operations.

1 The function ()flip pm returns TRUE with a probability pm.

Comparison of Results
We compare our Artificial Immune System (AIS) with respect to 3 different
approaches: a Hybrid Genetic Algorithm (HGA) reported in [19], a GRASP
approach [20], and a Parallel Genetic Algorithm (PGA) [21]. We chose these
references for two main reasons: (1) they provide enough information (e.g.,
numerical results) as to allow a comparison; (2) these algorithms have been found
to be very powerful in the job shop scheduling problem studied in this paper. Note
that the test problems adopted were taken from the OR-Library [18]. Additionally,
we also compared results with respect to our previous AIS [10]. All our tests were
performed on a PC with an Intel Pentium 4 running at 2.6 GHz with 512 MB of
RAM and using Red Hat Linux 9.0. Our approach was implemented in C++ and
was compiled using the GNU g++ compiler.

deviation Deviation
AIS

Improvement

HGA 0.42% 0.18% 0.23%
GRASP 0.47% 0.18% 0.28%

PGA 0.93% 0.18% 0.74%

Table 2: Comparison of results between our Artificial Immune System (AIS) and three
other algorithms: Greedy Randomized Adaptive Search Procedure (GRASP) [20], the
Hybrid Genetic Algorithm (HGA) [19], and the Parallel Genetic Algorithm (GA) [21].

Table 2 shows the overall comparison of results. In the first column, we show the
algorithm with respect to which we are comparing our results. In the second
column, we show the average deviation of the best results obtained by each
algorithm with respect to the best known solution for the 43 test problems adopted
in our study. In the third column, we show the average deviation of our AIS with
respect to the best known solution for the 43 test problems adopted in our study.
The last column indicates the improvement achieved by our AIS with respect to
each of the other algorithms compared. From Table 2, we can see that our approach
was able to improve on the overall results produced by the 3 other techniques. The
most remarkable improvement produced was with respect to the PGA [21].

AIS
Win Tie Lose

HGA 3 32 8
GRASP 3 30 10

PGA 0 23 17

Table 3: Overall performance of our AIS with respect to the 3 other algorithms against
which it was compared. The column labeled Win shows the number of problems in which
each algorithm beat our AIS. The column labeled Tie indicates ties between our AIS and the
other algorithms. Finally, the column labeled Lose indicates the number of problems in
which each algorithm lost with respect to our AIS.

In Table 3, we show the overall performance of our AIS with respect to the 3 other
algorithms against which it was compared. Results indicate that the HGA beat our

AIS in 3 problems and it lost in 8. In the remainder (32 problems), they tied.
GRASP beat our AIS in 3 problems and lost in 10. The worst contender was the
PGA, which was not able to beat our AIS in any problem and lost in 17 problems.

Table 4 summarizes the results obtained by each of the 4 approaches compared in
the 43 test problems taken from the OR-Library [18]. We use boldface to indicate
both the best known results and when an algorithm reached such result. Note that
the number of evaluations performed is only reported for our two AIS and for
GRASP. The reason is that we only found such information available for GRASP.
We can clearly see that our AIS obtained competitive results with respect to the
other approaches compared. Furthermore, the number of evaluations performed by
our AIS was significant lower than those performed by GRASP.2 Some remarkable
examples are the following:

• FT10: In this problem, GRASP found the best known solution, but it
required 2.5 million evaluations. Our AIS found a solution which is only
1% away from the best known solution and it only required 250,000
evaluations. Note that in our original AIS produced a poorer solution than
the new version, and it required 20 million evaluations.

• LA28: In this problem, the best solution found by GRASP is slightly
worse than the best solution found by our AIS (1225 vs. 1216). However,
our AIS required 1 million evaluations whereas GRASP required 20
million iterations. Note that the original version of our AIS found a worse
solution using 5 million evaluations.

• LA16: Both GRASP and our AIS reached the best known solution.
However, GRASP required 1.3 million evaluations and our approach
required only 10,000 evaluations. Note that the original version of our
AIS required 2 million evaluations to reach this solution.

As can be seen in Table 4, the new version of the algorithm presents a significant
improvement with respect to the original version reported in [10], both in terms of
the quality of the solutions obtained as in terms of the computational efforts
required to obtain them.

Instance
Size

(m x n)
BKS HGA AIS

Evals
AIS

oAIS Evals
oAIS

GRASP
Iters.

GRASP
PGA

FT06 6 x 6 55 55 55 0.0001 55 0.001 55 0.00001 55
FT10 10 x 10 930 930 936 0.25 941 20 930 2.5 936
FT20 20 x 5 1165 1165 1165 0.5 - - 1165 4.5 1177
LA01 10 x 5 666 666 666 0.001 666 0.01 666 0.0001 666
LA02 10 x 5 655 655 655 0.01 655 0.01 655 0.004 666

2 In fact, what we report as the number of evaluations for GRASP is actually the number of
iterations performed by the algorithm. Since at each iteration, GRASP performs several
evaluations of the objective function, the real number of evaluations is much higher than
those reported in Table 4.

LA03 10 x 5 597 597 597 0.01 597 10 597 0.01 597
LA04 10 x 5 590 590 590 0.001 590 0.01 590 0.001 590
LA05 10 x 5 593 593 593 0.001 593 0.01 593 0.0001 593
LA06 15 x 5 926 926 926 0.001 926 0.01 926 0.0001 926
LA07 15 x 5 890 890 890 0.001 890 0.01 890 0.0001 890
LA08 15 x 5 863 863 863 0.001 863 0.01 863 0.0003 863
LA09 15 x 5 951 951 951 0.001 951 0.01 951 0.0001 951
LA10 15 x 5 958 958 958 0.001 958 2 958 0.0001 958
LA11 20 x 5 1222 1222 1222 0.001 - - 1222 0.0001 1222
LA12 20 x 5 1039 1039 1039 0.001 - - 1039 0.0001 1039
LA13 20 x 5 1150 1150 1150 0.001 - - 1150 0.0001 1150
LA14 20 x 5 1292 1292 1292 0.001 - - 1292 0.0001 1292
LA15 20 x 5 1207 1207 1207 0.001 - - 1207 0.0002 1207
LA16 10 x 10 945 945 945 0.01 945 2 945 1.3 977
LA17 10 x 10 784 784 784 0.01 785 2 784 0.02 787
LA18 10 x 10 848 848 848 0.01 848 2 848 0.05 848
LA19 10 x 10 842 842 842 0.01 848 10 842 0.02 857
LA20 10 x 10 902 907 907 0.25 907 5 902 17 910
LA21 15 x 10 1046 1046 1046 0.25 - - 1057 100 1047
LA22 15 x 10 927 935 927 0.25 - - 927 26 936
LA23 15 x 10 1032 1032 1032 0.25 - - 1032 0.01 1032
LA24 15 x 10 935 953 935 0.25 - - 954 125 955
LA25 15 x 10 977 986 979 0.25 1022 5 984 32 1004
LA26 20 x 10 1218 1218 1218 0.2 - - 1218 3.5 1218
LA27 20 x 10 1235 1256 1240 0.5 - - 1269 10.5 1260
LA28 20 x 10 1216 1232 1216 1 1277 5 1225 20 1241
LA29 20 x 10 1157 1196 1170 5 1248 6.4 1203 50 1190
LA30 20 x 10 1355 1355 1355 0.1 - - 1355 3 1356
LA31 30 x 10 1784 1784 1784 0.005 - - 1784 0.01 1784
LA32 30 x 10 1850 1850 1850 0.025 - - 1850 0.0001 1850
LA33 30 x 10 1719 1719 1719 0.025 - - 1719 0.001 1719
LA34 30 x 10 1721 1721 1721 0.01 - - 1721 0.05 1730
LA35 30 x 10 1888 1888 1888 0.05 1903 5 1888 0.01 1888
LA36 15 x 15 1268 1279 1281 0.5 1323 6.4 1287 51 1305
LA37 15 x 15 1397 1408 1408 0.5 - - 1410 20 1441
LA38 15 x 15 1196 1219 1204 0.5 1274 6.4 1218 20 1248
LA39 15 x 15 1233 1246 1249 0.5 1270 6.4 1248 6 1264
LA40 15 x 15 1222 1241 1228 2.5 1258 6.4 1244 2 1252

Table 4: Comparison of results between our artificial immune system (AIS), GRASP
(Greedy Randomized Adaptive Search Procedure) [20], HGA (Hybrid Genetic Algorithm)
[19], and PGA (Parallel Genetic Algorithm) [21]. oAIS refers to our original AIS, reported
in [10] and is included only to have a rough idea of the improvements achieved with the new

version. The number of evaluations reported is in millions. Only the number of evaluations
of GRASP and our two AIS versions are reported because this value was not available for
the other approaches. We show in boldface both the best known solution and the cases in
which an algorithm reached such value.

Conclusions and Future Work
We have introduced a new approach based on an artificial immune system to solve
job shop scheduling problems. The approach uses concepts from clonal selection
theory (extending ideas from CLONALG [15]), and adopts a permutation
representation that allows repetitions. The comparison of results indicated that the
proposed approach is highly competitive with respect to other heuristics, even
improving on their results in some cases. It also improves in the previous version
of the algorithm reported in [10]. In terms of computational efficiency, our
approach performs a number of evaluations that is considerably lower than those
performed by GRASP [21] while producing similar results.

As part of our future work, we intend to add a mechanism that avoids the
generation of duplicates (something that we do not have in the current version of
our algorithm). It is also desirable to find a set of parameters that can be fixed for a
larger family of problems as to eliminate the empirical fine-tuning that we
currently perform. Finally, we also plan to work on a multiobjective version of job
shop scheduling in which 3 objectives would be considered [3]: 1) makespan, 2)
mean flowtime and 3) mean tardiness. This would allow us to generate trade-offs
that the user could evaluate in order to decide what solution to choose.

Acknowledgments
The first author acknowledges support from CONACyT project No. 34201-A. The
second and third authors acknowledge support from CONACyT through a
scholarship to pursue graduate studies in Computer Science at the Sección de
Computación of the Electrical Engineering Department at CINVESTAV-IPN.

References

1. M. Pinedo. Scheduling---Theory, Algorithms, and Systems. Prentice Hall,
Englewood Cliffs, 1995.

2. Kenneth R. Baker. Introduction to Sequencing and Scheduling. John
Wiley & Sons, New York, 1974.

3. Tapan P. Bagchi. Multiobjective Scheduling by Genetic Algorithms.
Kluwer Academic Publishers, New York, September 1999.

4. R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of job-shop
scheduling problems using genetic algorithms: I. Representation.
Computers and Industrial Engineering, 30:983--997, 1996.

5. R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of job-shop
scheduling problems using genetic algorithms: II. Hybrid genetic search
strategies. Computers and Industrial Engineering, 36(2):343--364, 1999.

6. J.W. Barnes and J.B. Chambers. Solving the Job Shop Scheduling
Problem using Taboo Search. IIE Transactions, 27(2):257--263, 1995.

7. Olivier Catoni. Solving Scheduling Problems by Simulated Annealing.
SIAM Journal on Control and Optimization, 36(5):1539--1575,
September 1998.

8. Emma Hart, Peter Ross, and J. Nelson. Producing robust schedules via an
artificial immune system. In Proceedings of ICEC'98, pp. 464--469,
Anchorage, Alaska, 1998. IEEE Press.

9. Emma Hart and Peter Ross. The Evolution and Analysis of a Potential
Antibody Library for Use in Job-Shop Scheduling. In David Corne et al.,
eds, New Ideas in Optimization, pp. 185—202, McGraw-Hill, 1999.

10. Carlos A. Coello Coello, Daniel Cortés Rivera, and Nareli Cruz Cortés.
Use of an Artificial Immune System for Job Shop Scheduling. In Jon
Timmis et al., eds, Proceedings of ICARIS'2003, pp. 1--10, September
2003. Springer-Verlag. Lecture Notes in Computer Science Vol. 2787.

11. David S. Johnson Michael R. Garey. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

12. Albert Jones and Luis C. Rabelo. Survey of Job Shop Scheduling
Techniques. National Institute of Standards and Technology, 1998.

13. J. Adams E. Balas and D. Zawack. The shifting bottleneck procedure for
job shop scheduling. Management Science, 34(3):391-401, 1988.

14. Thomas E. Morton and David W. Pentico. Heuristic Scheduling Systems:
With Applications to Production Systems and Project Management. John
Wiley & Sons, 1993.

15. Leandro Nunes de Castro and Fernando José Von Zuben. Learning and
Optimization Using the Clonal Selection Principle. IEEE Transactions on
Evolutionary Computation, 6(3):239--251, 2002.

16. Takeshi Yamada and Ryohei Nakano. Job-shop scheduling. In A.M.S.
Zalzala and P.J. Fleming, editors, Genetic Algorithms in Engineering
Systems, pp. 134--160. The Institution of Electrical Engineers, 1997.

17. Leandro Nunes de Castro and Jonathan Timmis. Artificial Immune
System: A New Computational Intelligence Approach. Springer Verlag,
Great Britain, September 2002. ISBN 1-8523-594-7.

18. J. E. Beasley. OR-Library: Distributing Test Problems by Electronic Mail.
Journal of the Operations Research Society, 41(11):1069--1072, 1990.

19. José Fernando Goncalves, Jorge José Mendes, and Mauricio G.C.
Resende. A Hybrid Genetic Algorithm for the Job Shop Scheduling
Problem. Technical Report TD-5EAL6J, AT&T Labs Research, 180 Park
Avenue, Florham Park, NJ 07932 USA, September 2002.

20. Renata M. Aiex, S. Binato, and Mauricio G.C. Resende. Parallel GRASP
with path-relinking for job shop scheduling. Parallel Computing,
29(4):393--430, 2003.

21. José Fernando Goncalves and N.C.Beirao. Um algoritmo genético
baseado em chaves aleatórias para sequenciamiento de operacoes. Revista
Associacão Portuguesa de Desenvolvimento e Investigacão Operacional,
19:123 -- 137, 1999. (in Portuguese).

