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Abstract

This paper describes the application of an
artificial immune system, (AIS), model to
a scheduling application, in which sudden
changes in the scheduling environment re-
quire the rapid production of new sched-
ules. The model operates in two phases:
In the first phase of the system, the im-
mune system analogy, in conjunction with
a genetic algorithm, (GA), is used to de-
tect common patterns amongst scheduling
sequences frequently used by a factory. In
phase II, some of the combinatoric features
of the natural immune system are modelled
in order to use the detected patterns to pro-
duce new schedules, either from scratch or
starting from a partially completed sched-
ule. The results are compared to those cal-
culated using an exhaustive search procedure
to generate patterns. The AIS/GA analogy
appears to be extremely promising, in that
schedules corresponding to situations previ-
ously encountered can easily be reconstruc-
ted, and also in that the patterns are shown
to incorporate sufficient information to po-
tentially construct schedules for previously
unencountered situations.

1 Introduction

In the context of information processing, the natural
immune system can be regarded as a highly parallel in-
telligent system, and yet has received relatively little
attention compared to genetic algorithms and neural
networks. In particular, its ability to perform pattern
recognition tasks, to memorise patterns that have been
seen previously, and to use combinatorics to construct

efficient pattern detectors make it particularly attract-
ive as a model for solving many real-world based prob-
lems. Some of the seminal work in this emerging field
is described in (Dasgupta, 1998). This paper describes
some of the key features of the way in which the bio-
logical immune system functions, and then illustrates
how several parallels can be drawn between it and a
real world scheduling problem, suggesting a possible
method of tackling the real-world problem using tech-
niques inspired by the natural immune system.

The biological immune system defends the body
against invading pathogens, (antigens), that may be
harmful by producing antibodies which recognise and
remove the invaders. Remarkably, despite the fact that
the body has fairly limited genetic resources, and there
are an almost infinite number of possible pathogens,
the immune system is able to react rapidly and ef-
ficiently to both those antigens it has previously en-
countered, as well as entirely new ones. The immune
system is responsible for continually monitoring the
body for unexpected changes, and then reacting in the
appropriate manner to counteract any ill-effects, mak-
ing use of both its long term memory abilities and its
capacity to generate new antibodies.

Now  consider a  manufacturing  scheduling
environment:- while a factory is running, many envir-
onmental changes occur which will result in modific-
ations having to be made to the factory scheduling
system in order to keep things running smoothly. The
nature of these changes is varied and covers an almost
unlimited range of possibilities. Some events occur
frequently and are predictable, whilst others are com-
pletely unpredictable. An efficient scheduling system
should be able to react quickly to such changes, and
either alter the current schedule or rapidly produce
a new schedule to take such changes into account, so
that manufacturing continues in an efficient manner.
Hence, a direct analogy can be drawn between the two
systems.



Although there have been numerous studies of the
application of genetic algorithms, (and other optim-
isation techniques) to the scheduling domain, (Back
et al., 1997), almost all have concentrated on produ-
cing a single schedule that is as close to optimal as pos-
sible, in the sense that one or more objectives are min-
imised. In the real-world however, such ideal schedules
often cannot be directly implemented if variations in
the environment in which the schedule was produced
for have occurred. Also, ‘optimal’ schedules are often
extremely fragile to slight perturbations in conditions,
which result in them being rendered useless by even
slight changes.

Analysis of data relating to scheduling problems sup-
plied by real companies reveals that although devi-
ations in the scheduling process often occur, the situ-
ations leading to the deviations are often predictable
and there are generally known methodologies for deal-
ing with them. An experienced scheduler can quickly
piece together a new schedule using prior knowledge
from past experiences, and it is rare to have to com-
pletely redesign a schedule. For instance, a num-
ber of typical scenarios can be imagined; certain ma-
chines commonly break down or require maintenance,
or parts required to complete some jobs often arrive
late from other parts of the factory. In such situations,
a scheduler often acquires some kind of knowledge of
how to cope with such situations by judicious schedul-
ing of other jobs, leading to good schedules.

It appears reasonable that in many real-life situations
a set of historical complete or partial schedules is avail-
able for use when trying to reschedule. Careful exam-
ination of this set of schedules reveals that various pat-
terns commonly occur in subsets of the schedules. For
instance, simply considering the order in which jobs
are processed on machines it becomes obvious that
there are particular groups of jobs (of varying size)
that tend to occur in close proximity or in some par-
ticular order in more than one schedule. For example,
common job sequences may be observed, such as “op-
eration always occurs directly before operation b”, or
“operations a,b,c tend to occur in a group in many
schedules, but in different permutations”.

Thus, if a set of common patterns or parts of schedules
could be built up using the knowledge encapsulated
in past schedules, then these patterns can be used as
‘building blocks’ when constructing a new schedule.

The ‘building block’ idea is also observed in the real
immune system, which builds antibodies to attack in-
vaders from a germ-line or ‘store’ of DNA building
blocks. The mammalian immune system has evolved
over thousands of generations during which time it has

been exposed to a diverse variety of pathogens in such
a way that the germ-line contains a small, but highly
efficient set of DNA blocks that can be used to generate
antibodies that recognise almost all known pathogens.
In a similar manner, in order to apply the analogy to
our scheduling environment, we wish to evolve a store
of schedule building blocks, that capture information
acquired through past experiences, and that can be
used to efficiently and rapidly construct new sched-
ules.

This paper describes a system we have designed called
PRAIS, (Pattern Recognising Artificial Immune
System), that is used to construct schedules using a
simple scheduling scenario — j jobs, each with dif-
ferent arrival dates, due-dates and processing times,
must be scheduled on a single machine, m. The ideal
arrival pattern, and hence optimal machine sequence
is supposedly fixed, however deviations in arrival dates
occur, resulting in alterations having to be made. The
job-sequence on the machine is an obvious candidate
for observing patterns, and hence this attribute is used
in this paper. Note however that there are other attrib-
utes of the system in which patterns may be observed,
for example distribution of idle times on machines.

2 An AIS Model for Pattern
Recognition in Scheduling

Previous work by (Forrest et al., 1993), and (Smith
et al., 1993), has shown that an immune system model
combined with a genetic algorithm can be used to
evolve a set of antibodies that recognise a range of di-
verse, binary antigen strings. This work showed that
an immune system model could both detect common
patterns (schemas in the binary case) in a noisy envir-
onment and also maintain diversity in that many types
of antibody evolved in niches, each niche responsible
for recognising a particular antigen. Moreover, they
showed that it was possible to control the evolution
of the antibodies to be either ‘specialist’ (i.e the an-
tibody only recognised a single specific antigen), or
‘generalist’ (i.e the antibody recognised a wide range
of antigens) by varying the parameters of the genetic
algorithm.

Forrest’s system contains almost all the features that
need to be realised in the scheduling domain, if we
consider an antigen to represent a sequence of jobs
on a particular machine, given a particular scenario,
and an antibody to represent a short sequence of jobs
that is common to more than one schedule. How-
ever, some modifications are required:- the proposed
sequence-recognising AIS should produce antibodies



antigens

Figure 1: A Population of Antibodies, showing how
they match 4 antigens A,B,C,D

that are in some ways a compromise between the ‘gen-
eralist” and ‘specialist’ antibodies described by Forrest.
For example, it is unlikely that a common sequence
of jobs will be observed in all schedules, and hence
the completely generalist antibody is unlikely to ex-
ist. However, it is important to find patterns that
are common to as many schedules as possible. We
term this the degree of overlap exhibited by the anti-
body population. Secondly, it is also advantageous to
maintain sub-populations of dissimilar antibodies that
match the same antigen, as a schedule may contain
several sequences, each of which is common to differ-
ent subset of the remaining schedules. This is referred
to as the degree of redundancy exhibited by the anti-
body population. At the other extreme, highly special-
ist antibodies that represent patterns occuring in only
one schedule are necessary to deal with the particular
conditions represented by the schedule, but are less
useful as a general building blocks for constructing a
schedule given any scenario. The ideal population will
therefore contain some niches of such antibodies. The
idea is illustrated in figure 1 which shows a population
of antibodies, (labelled z), and their ability to match
4 antigens, labelled A,B,C and D.

Although PRAIS is loosely based on the work of For-
rest and Smith, it contains several additions and modi-
fications, each of which is now described:

2.1 Antigen Representation

An antigen represents the sequence of jobs occurring
on a single machine m. In PRAIS, each antigen is
an integer string of length j, where j is the number of
jobs to be scheduled on the machine, and each element
ji of the string represents the identity of the ith job
to be scheduled. A collection of antigens that define a
particular scheduling environment is referred to as an
antigen universe.

2.2 Antibody Representation

An antibody is represented by a sequence of integers,
of length [, where [ < j. I is chosen to be significantly
less than j as it is expected that by using a shorter
antibody it will be easier to maintain a high degree
of match between antibody and antigen. Also, we ex-
pect that the common patterns will consist of short
sequences of jobs.

An antibody can also contain any number of wild-card
alleles, “*’, to facilitate incomplete matching. A wild-
card can match any job. This has the advantage that
if many of the common job-sequences are shorter than
the chosen antibody length [, a partially matching an-
tibody will have high fitness. Also, it may be possible
to observe patterns of the form ‘a**b’, i.e where the
common jobs are not consecutive.

An initial antibody population is generated completely
at random, with the caveat that an antibody is not
allowed to contain duplicate jobs.

2.3 Fitness Function

(Smith et al., 1993), introduce the emergent fitness
sharing function, a modified version of which is de-
scribed below, in which the degree of generalisation or
specialisation exhibited by the evolved antibodies can
be controlled by altering the parameter o, the size of
the antibody population. In order to encourage the
degree of overlap and redundancy exhibited by the an-
tibodies, we have modified steps (1) and (3) of the
original fitness function, by introducing the parameter
7, the antigen sample size. (The original function is
obtained by setting 7 to 1).

1. Choose a sample of antigens of size T at random
and without replacement.

2. Choose a sample of size o of the antibody popu-
lation, at random and without replacement.

3. Each antibody in the sample is matched against
each of the chosen antigens. A match-score is as-
signed to the antibody equal to the sum of the
result of applying match-function M to the anti-
body with each of the antigens.

4. The antibody in the sample with the highest
match score has its match score added to its fit-
ness. The fitness of all other antibodies remains
unchanged.

5. Repeat from step (1) for typically three times the
number of antigens.



antigen Match-Score
34678 0
34678 0
antibody 34678 10
34678 15
34678 0

Figure 2: Possible alignments of an antibody with an
antigen, and the resulting match-score of 15

2.4 The Match Function

An antibody is matched against an antigen by align-
ing the two strings. If the antibody is shorter than the
antigen, then a match-score is calculated for every pos-
sible alignment position, and the highest score found
is returned. A possible alignment is any alignment in
which every gene of the antibody is aligned with every
gene of the antigen. This is illustrated in figure 2.

The match-score is calculated by counting the number
of matches between antigen and antibody genes in the
alignment. An exact match contributes a score of 5,
whereas a wild card match contributes a score of 1.
This prevents the evolution of antibodies containing
all wild-card genes. The reason for allowing multiple
binding-sites between antigen and antibody is that a
job-sequence described by the antibody may occur at
any position in an antigen. This is also a feature ob-
served in the biological immune system, where both
antibody and antigen have multiple binding sites.

2.5 Parameters and Operators

A genetic algorithm based on GENESIS, (Grefen-
stette, 1984), is used to evolve the antibody popula-
tion. Reproduction of antibodies takes place via one
of three crossover operators. The operator chosen de-
pends on the relationship between the two parent an-
tibodies:

Order-Based Crossover (OX) — if the parents
are permutations of each other, then use a

permutation crossover operator — OX, (Davis,
1985).
2pt-Crossover — if the parents do not have any

genes in common, (excluding wild cards) and the
parents differ outside of a randomly chosen cross-
segment, use 2pt crossover.

Overlap-Crossover — used if one parent “overlaps”
the other, as shown in figure 3. In this case, align
the parents so that the matching regions line up,

123456 123459
345987
123456
— 916342
976342

Figure 3: Overlap Crossover

and then read from the left most position. If only
one parent has a gene at a position, use that in
the child, if both parents have a gene at the po-
sition, select randomly from either parent. Con-
tinue reading from left to right until the child is
of the required length. In figure 3, matching re-
gions are underlined and shown in bold, and genes
which can be chosen from either parent are shown
in italics.

A mutation operator is applied to each child antibody
that randomly mutates each gene with probability 1/1.

All reported experiments were performed using a pop-
ulation of size 100, with the length of each antibody in
the population equal to 5 jobs. Each experiment was
run for 250 generations and was repeated 10 times.
The mutation rate in each case was 1/l = 0.2. The
crossover rate was set to 0.7. Details of the settings
for 0 and 7 are described in the relevant subsections.

2.6 Test Data

10 test-scenarios were generated from a base problem
which contained 15 jobs. Each job had a different
arrival-date, due-date and processing time, and the
alm is to minimise T},,,, the maximal tardiness of a
job. The test-scenarios were produced by applying a
mutation operator with probability 0.2 to each of the
arrival dates given in the base problem. The mutation
operator randomly changed the arrival date, with the
caveat that the new arrival-date was still at least p;
days before the expected due-date, where p; was the
processing time of the job.

Satisfactory schedules were then found for each of the
10 scenarios, using a genetic algorithm described in
(Fang et al., 1993), and the resulting job-sequences
noted, and used as antigens. The 10 antigens define a
universe denoted U(0.2).



3 Experimental Results

This section contains the results of a series of exper-
iments performed using PRAIS on the test data de-
scribed above. Due to space limitations, we report res-
ults here only for experiments using antibodies of size
5, i.e 1/3 the length of the antigen string. Also, we
only give results for recognising patterns on one of the
5 machines, although experiments were performed for
all 5 machines and will be reported in detail in forth-
coming work. Experiments were performed to identify
good settings for three main parameters; the antibody
sample size o, the antigen sample size 7, and the length
of the antibody I.

To simplify reporting of results in the following sec-
tions, we introduce an additional concept of binding
— an antibody and antigen are said to bind if the
number of non wild-card positions in which the an-
tigen and antibody agree is greater than or equal to
some threshold value t,,.

3.1 Coverage of Antigen Universe by
Antibody Population

Table 1 shows the average number of antigens (from
the universe containing 10 antigens) that were not
bound by any antibody, for match-thresholds t,, ran-
ging from 2 to 5. Experiments were performed over a
range of values for ¢ and 7, the size of the antibody
and antigen samples respectively.

For certain combinations of values of (t,,,0,7), a large
number of antigens are not bound by antibodies. This
is particularly noticeable as the size of 7 increases.
At high values of 7, antibodies that achieve a high
match-score with more than one antigen are rewarded
most highly by the fitness function. However, in many
antigen-universes, it may be impossible to detect com-
mon patterns between certain subsets of antigen, and
hence the completely generalist antibody may not ex-
ist. Examining the antigen universe for the machine in
question indicates that this is indeed the case — if sub-
sets of 8 antigens are selected for instance, no common
schemas or patterns may be found. Similarly, low val-
ues of o also encourage generalist antibodies to evolve,
so we may expect poor performance if the value of o
is too low.

3.2 Number of Antibody Niches Discovered

Recall that the purpose of PRAIS is to evolve a col-
lection of diverse antibodies, each of which repres-
ents some commonly occurring pattern in the antigen-
universe. The more unique patterns, i.e antibody

tm =1 =4 T=8

o o o
5 10 | 30 5 10 | 30 5 10 | 30
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87 (71|52 | 78| 73]|63]| 86| 81|82
9.7 195|881 95|95 |87 97|96 | 9.5
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Table 1: Average number of antigens (out of a possible
10) not bound by any antibody

Antibody Sample | Antigen Sample Size, T
Size, o 2 4 6 8

5 23.8 | 23.7 | 20.0 | 17.7

10 38.6 | 28.0 | 24.5 | 20.5

30 58.4 | 444 | 249 | 39.7

Table 2: The Number of Antibody Niches in the Final
Population when t,, > 2

niches, we are able to detect, then the more useful
the antibodies will be as building blocks for construct-
ing new schedules. Therefore, the final population of
antibodies is examined to determine the exact number
of distinct antibody niches in which the antibodies in
the niche bind to antigen for a variety of values of t,,.

Table 2 shows the results obtained by summing the
number of binding niches found when t,, > 2. It is
clear that number of niches decreases as 7 is increased,
and increases as ¢ increases. This is unsurprising, due
to the same arguments outlined in section 3.1.

When the number of niches is low, each niche must
contain a large number of identical antibodies. This
may ultimately be useful in the final schedule construc-
tion phase. If we consider the number of copies of an
antibody in the population as analogous to a “con-
centration”, then this concentration can be used as a
measure of probability of picking the antibody when
trying to reconstruct a schedule. This has strong par-
allels with the real immune system in which the con-
centration of an antibody that can bind successfully to
an invading pathogen rapidly increases after the initial
recognition phase, (Roitt et al., 1998).

3.3 Degree of overlap exhibited by the
antibody population.

The two previous sections have shown that it is pos-
sible to evolve a set of unique antibodies, and also that
those antibodies tend to bind to at least 1 antigen.

In order to quantify the degree of overlap exhibited
by the antibody population, we record the number of
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different antigens bound by each antibody in the pop-
ulation. As noted previously, the most useful set of
antibodies will contain antibodies that have a high de-
gree of general characteristics, i.e. each antibody binds
to more than one antigen. Figure 4 shows the number
of antibodies that bind to n antigens, where n takes
values between 1 and 10. The diagram contrasts the
results obtained when t,, = 2, using a fixed antibody
sample size 0 = 30 and various values of 7. Clearly,
more antigens are bound at high values of 7, as expec-
ted.

It is interesting to observe how the number of antibod-
ies binding to more than 1 antigen increases as the GA
runs. Figures 5 illustrates the idea for ¢, = 2, in which
the antibody length [ is varied from 2 to 5. When the
match-threshold is equal to the antibody length, there
is a rapid increase in the number of matching antibod-
ies in the ¢,, = 2 case after which the number remains
relatively constant. For values of ¢,, < [, there is a
immediate increase at the the start of each run to a
level which is maintained throughout the remainder of
the experiment. The initial rise is more pronounced
when t,, is significantly less than .

4 Reconstructing Schedules from the
Antibody Population

The natural immune system employs a set of com-
binatoric mechanisms in order to construct antibodies

(or pattern detectors) from a germ-line or library of
DNA chunks. Assuming that the germ-line contains
n DNA chunks, and that a minimum of s chunks are
required to construct an antibody, then there are at
least C = () possible combinations. In the case of
the scheduling system, each of the n chunks of DNA
can be considered analogous to a partial sequence of
jobs, or more precisely, to one of the antibodies output
from PRAIS. For a scenario in which j jobs need to
be scheduled on a single machine, then examining all
possible sequences of these jobs results in j! possible
schedules. We postulate that C, the number of valid
schedules in C' is < j! for two reasons:

1. Many of the theoretical () schedules will con-
tain multiple instances of jobs or missing jobs,
and hence the schedules are illegal and can be
discarded.

2. The n partial schedules encapsulate prior know-
ledge, and hence are guaranteed to be suitable
subsequences, i.e to be the most promising of the
l! possible subsequences.

For instance, for the example described in section 5.1,
in which 7 = 15,1 = 5, n = 58, and s = 3, then
j! = 1.3x10'2 and the lower bound on C is (538) =
30,856. C, of course is likely to be much less than C'.

4.1 CLARISA

A immune-system model to recombine artificial DNA
into antibodies in order to perform simple pattern re-
cognition tasks has previously been implemented by
the authors and is described in (Hart, 1998). This
system is dubbed CLARISA, !. Some modifications to
this basic system are made to make it suitable for re-
combining the antibodies from PRAIS into completed
schedules — the mechanisms used to combine the
DNA chunks to produce schedules are described be-
low. Three recombination mechanisms are employed,
each closely related to a feature observed in the nat-
ural immune system. Input to CLARIS A is thus a set
of antibodies, each of length [, and a partial schedule
of length [, < j which must be completed. If I, =0
then the schedule is constructed from the beginning.

Simple Recombination In this method, an anti-
body is selected at random from the subset Sy of the
PRAIS population which contains those antibodies
in which every job in the antibody has not yet been
scheduled in the partially completed schedule. The

!CLassification via ARtificial Immune

Analogy

System



new antibody is concatenated to the end of the partial
schedule.

Somatic Recombination In this method, an an-
tibody is selected from the subset S of antibodies,
where S consists of antibodies that overlap with the
current partially completed schedule. An overlap is
said to occur if the first n jobs in the antibody are
equal to the last n jobs in the partially complete sched-
ule, where n < [, and the remaining (I —n) jobs in the
antibody do not occur in the partial schedule. The
partial schedule is thus extended by (I —n) jobs.

Single Job Addition In order that a complete
schedule can be built when the antibody population
does not contain at least one instance of each of the j
jobs, a single job can be selected from the subset S3
of all jobs that do not occur in any of the antibodies
discovered by PRAIS, and added to the end of the
partial schedule.

CLARISA functions given a partially completed
schedule (which may be empty) and a set of antibod-
ies. Antibodies are added to the partial schedule until
it is either complete, or cannot be extended further
by iteratively selecting an antibody for recombination
with probability p, for simple recombination, ps, for
somatic recombination and p, for single job addition.

5 Antibody Generation by Exhaustive
Search Methods

Given any antigen of length j, all antibodies of
some predefined length [ containing at most w wild-
cards can be generated using an exhaustive procedure,
without having to resort to using a GA. For the prob-
lem described in which each universe consists of 10
antigens each containing 15 jobs, this is a tractable cal-
culation. Actually performing the calculation to find
all antibodies of length 5, that contain at most 3 wild-
cards, results in 423 unique antibodies being found.
If this is compared to the output from PRAIS, we
see from table 2 that the maximum number of unique
antibodies found in the experiments performed is 58.
Although the evolved antibodies appear to have good
properties in terms of antigen coverage, overlap and
redundancy, we must address the question of whether
the much reduced evolved set contains sufficient in-
formation to reconstruct good schedules.

5.1 Comparison of Results

The set of 58 antibodies evolved using PRAIS are
used as input to CLARISA, which generates 500

Accuracy of Schedule Reconstruction (%)

Length of Partial Schedule
718 9
PRAIS 30 | 70 80
Exhaustive | 60 | 60 60

Table 3: Percentage of the 10 schedules in the an-
tigen universe that are exactly reconstructed using
CLARISA

schedules using these antibodies. The generated sched-
ules are compared to each of the original 10 sched-
ules in the antigen universe that was used to evolve
the 58 antibodies. Table 3 shows the percentage of
the 10 original schedules that were exactly reconstruc-
ted by CLARIS A, and gives results for varying values
of [,,, the length of the partial schedule that must be
completed. The table compares the results generated
using the output from PRAIS to the results found
when the 423 exhaustively generated antibodies are
used instead. Each result is averaged over 10 runs
of CLARISA, using parameters p, = 0.5, ps, = 0.4,
pe = 0.1.

For i, =8 and [, =9, CLARIS A performs best when
using the 58 PRAIS antibodies, though note that
neither antibody input set is able to achieve 100% ac-
curacy of reconstruction. However, when [, = 7, (and
hence there are 8! = 40,320 possible combinations of
the remaining jobs to be scheduled), using the larger
number of antibodies generated by exhaustive search
results in higher accuracy of reconstruction.

5.2 Performance in Unseen Universes

The previous section described experiments that
showed that CLARIS A could be used to reconstruct
the antigens in the original universe, U(0.2). However,
in order to be most useful, the antibodies evolved by
PRAIS (or produced via exhaustive search) should be
useful for constructing new schedules for unforeseen
circumstances. Two more universes were generated
using the method described in section 2.6 by applying
mutation operators with probability 0.1 and 0.3 to the
original job arrival dates, to produce universe U(0.1)
and U(0.3) respectively. Each new universe contained
5 antigens, and satisfactory schedules were again found
using a GA as before. The antigens in each universe
were then compared to 3 sets of antibodies; those by
PRAIS for universe U(0.2), those found by exhaustive
search of U(0.2), and finally to those found by exhaust-
ive search that contained at most 3 wild cards. The
number of exact matches between the antibodies and



Table 4: The number of antibodies that can bind to
at least one antigen in each universe

Antibody Generation Method
PRAIS | Exhaustive | Reduced
Search E-Search @
Universe-0.1 10 65 40
Universe-0.3 19 70 43

“Antibodies generated by exhaustive search with at
most 3 wild cards

the antigens in each universe was computed in each
case, and the results are shown in table 4.

Table 4 shows that in each case, the antibodies de-
rived from universe U(0.2) are able to match antigens
in completely different universes. Thus, the implic-
ation is that CLARISA will provide a suitable tool
for recombining these antibodies into good schedules,
given some suitable choice of recombination paramet-
ers.

6 Conclusion

We have shown that an immune system metaphor can
be applied to a scheduling environment in order to rap-
idly produce schedules whenever environmental condi-
tions dictate that a change from the planned proced-
ure must occur. A GA combined with an Immune
System, (PRAIS), was used to produce a small but
efficient set of building blocks or antibodies from a set
of historical schedule data. By using two paramet-
ers in the GA fitness function, ¢ and 7, we demon-
strated that the evolution could be controlled, in or-
der to vary both the diversity of the antibodies pro-
duced, and the extent to coverage of the antigen uni-
verse. We then showed that the antibodies evolved
using PRAIS could be used to reconstruct the set of
original schedules in universe U(0.2) — i.e. the set of
schedules that the immune system had been exposed
to. Furthermore, we also showed that the antibod-
ies contained sufficient information to potentially be
able to construct other schedules in universes that the
immune system had not previously been exposed to.
The antibodies evolved by PRAIS were compared to
two much larger sets of antibodies produced via an ex-
haustive search of the antibody space. Although the
PRAIS set was much smaller, it performed extremely
well in comparison.

A second immune metaphor was used to implement
a system CLARISA that controlled the manner in
which the building blocks were used to produce sched-

ules. The results described do not represent an
exhaustive search of the parameters to CLARISA,
which has not yet been extensively calibrated, and
therefore may be considerably improved by judicious
choice of values for parameter settings and the length
of the input antibodies, and also by adding further re-
combination operators that allow mutation to occur.
However, the results show that even with large anti-
body sets, the recombination appears efficient. There
is an obvious trade-off between the number of antibod-
ies required to adequately represent possible antigen
universes, and the effort required to recombine them
into accurate schedules. Further work will investigate
the exact nature of this trade-off, using a variety of
test problems of different sizes, and also attempt to
calibrate the system more thoroughly.
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