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ABSTRACT
In this paper, a parallel implementation of a modular simulated annealing (MSA) algorithm, a
shortened simulated annealing (SA) algorithm, applied to classical job-shop scheduling (JSS)
problems is presented. The implementation has been done as a multiple island system suitable
to run on the Distributed Resource Machine (DRM) environment, which is a novel, scalable,
distributed virtual machine developed based on Java technology. The JSS problems tackled
are very well known difficult benchmarks, which are considered to measure the quality of
such systems. The support of the DRM environment was very effective with respect to
message passing, having collaboration with a remote machine.  The empirical results show
that the method proposed is quite successful compared to the ordinary MSA and other
systems described in literature.
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1. INTRODUCTION
SA is a stochastic heuristic algorithm in which the solutions are searched for in hill climbing
processes constantly commenced by random moves. Because of its ease of use, SA is an
extremely popular method for solving large-sized and practical problems like job-shop
scheduling, timetabling and travelling salesman. However, for various reasons, like many
other search algorithms, SA may become trapped by any local minima, which does not allow
moving up or down, or take a long time to find a reasonable solution, which sometimes makes
the method unpreferrable. For these reasons, many SA implementations have been done as
part of a hybrid method, [1][7][8][15]. In this work, we investigated a parallel version of
modular simulated annealing (MSA), a new SA algorithm that works like an evolutionary
process as an operator with a population of solutions [1]. In order to reach a better result by
SA algorithms, it is necessary to give sufficient time to SA. This makes the process longer
which could be much more time consuming, if SA works with a population.  Although MSA
manages to reach good result in a shorter time, it may require the longer time needed for very
hard problems. The idea of this work is to parallelise MSA to improve its performance in job
shop scheduling problems by partitioning a bigger population into small subparts each to be
operated by a separate MSA agent so that each individual takes more opportunities to be seen.
Ordinarily, SA is not so flexible as to be parallelised. But since MSA works with a population
of solutions, the parallelisation can be done via partitioning the population into sub-parts, so
as SA can be parallelised as multi-island models.

On the other side, we have tackled classical job shop scheduling problems known as static
scheduling too. The benchmark problems undertaken are very hard problems collected in the
OR library [4], a collection of benchmark problems for OR studies. The implementation has
been done as a multiple island model to run on distributed resource machine (DRM), which is



a novel scalable distributed problem-solving environment [6]. Each island has run a separate
MSA algorithm in parallel with other peers.

The organisation of the rest of the paper is as follows. We give an introduction to DRM
environment and then the classical job-shop scheduling problems in Section 2 and 3.
Afterwards, we briefly described MSA algorithm and the proposed parallel version of MSA in
Section 4 and 5. We discuss the empirical results yielded by parallel MSA comparing them
with those obtained from ordinary MSA in Section 6. The superiority of our results over the
other related works are discussed in Section 7. The paper finishes with the conclusion in
Section 8.

2. DISTRIBUTED RESOURCE MACHINE (DRM)
DRM is the framework of a distributed problem solving environment that is one of two main
part of DREAM [11] project [5] which deals with creating a multi island based evolutionary
computation environment running on a scalable network on Internet. The main idea is to have
a peer-to-peer network of nodes spreading on physically distributed computers. Each node has
incomplete knowledge of the rest of the network and works as the container of all the agents
running on that computer.  Since DRM is an autonomous agent environment, the applications
are implemented as multi agent systems. The environment has very good functionalities to
develop applications such that the agents would have good communication and limited
mobility. (See [6] for more information on DRM).

3. JOB SHOP SCHEDULING

Job Shop Scheduling (JSS) problems have been studied for a long time. It is difficult to reach
the optimal solution in a short time, since the problems have a very wide solution space and
there is no guarantee to reach a better state after a feasible state [2]).

We are given a set of jobs (J) to be processed on a set of machine (M) subject to a number of
technological constraints. Each job consists of m operations (Oj) that must be processed on a
particular specified machine and each job visits each machine exactly once. There is a
predefined restricted order for the operations of each job in which the operations are
processed after their predecessors (PJj) and before their successor (SJj). At the same time,
there is another order being built up among the operations of different jobs that must be
processed on particular machines: this is to put n operations in an order on each machine
during the scheduling time. Therefore, each operation processed on the Mi has a predecessor (
PMi ) and a successor (SMi), which are not restricted so as to optimise that order to have a
shorter schedule. A machine can process only one operation at a time. There are no set-up
times, no release dates and no due dates.

Each operation has a processing time (pij) on related machine starting on rij. The completion
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A job-shop scheduling problem can be represented by a disjunctive graph as given in Figure
1. The tasks are the nodes in the graph, each with a single attribute representing the duration.
Two dummy nodes are introduced: the start node and the end node, each with duration 0.
Each precedence constraint is represented by a directed arc, from a task to its successor.
Additional arcs are added from the start node to the first task in each job, and from the last
task in each job to the end node. Each resource constraint is represented by a bi-directional arc
(or disjunctive arc). Selecting one of the two directions for a disjunctive arc imposes an
ordering on the two tasks concerned. Selecting an orientation for every disjunctive arc such
that there are no cycles in the graph reduces the disjunctive resource constraints to precedence
constraints. Given a fully oriented graph, the minimum makespan for that graph can be found
by computing the longest path (given by double line in Figure 1) from start node to the end
node, where the length of an arc is equal to the duration of the task that starts the arc. The
scheduling problem thus reduces to one of finding orientations for all the disjunctive arcs such
that the least makespan can be obtained [3].  Local search methods can operate by changing
the orientation of some of the disjunctive arcs, and re-computing the minimum makespan. It
has been shown [3] that the makespan can only be reduced by changing the orientation of one
of the disjunctive arcs on the longest path.

Figure 1; a disjunctive graph for a 3x3 job-shop problems

4. MODULAR SIMULATED ANNEALING (MSA)

The modular simulated annealing (MSA) algorithm is the partitioning of the SA algorithm
into shorter slices to be implemented in various configurations together with different
methods and environments. The idea behind modular SA is to have a more uniform
distribution of random moves along the SA procedure. In fact, SA provides the solution
process by a logarithmic distribution of random moves such that each random move starts a
new hill climbing process to reach the global minimum. However, the logarithmic nature of
this distribution may not help to rescue the solution from local minimum as in the case, when
SA is applied to very difficult combinatorial optimisation problems like some of the hard
benchmark job shop scheduling problems tackled in this work. Such problems need more
random moves even in the latter part of the optimisation process. But the probability of
having a random move at that stage is so low as to make it longer to reach the global
optimum. On the other hand, modular SA algorithm takes such a short time that it can be
considered an operation when applied with a context of evolutionary processes, and it can be
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constantly applied to a particular solution as well as a population of solutions. Aydin and
Fogarty [1] have applied a modular SA to some job shop scheduling benchmarks that have
moderate difficulty. The idea of that work was to evolve a population of solutions by applying
a modular SA constantly to selected solutions.

A typical instance of modular SA algorithm is presented in Figure 2. In this case, the
algorithm is implemented to evolve a population of solutions running modular SA constantly
up to a predefined number of iterations. First of all, a population of solutions is randomly
initialised, and then, the number of iterations is set. After that, modular SA starts with a
highest temperature (100), which is being cooled by cooling coefficient (0.955) iteration by
iteration. When the temperature cooled to 0.01 short-term SA finishes with 200 iterations,
which are counted to completion. The selected and optimised solution obtained through a
modular SA is put back into the population. That is the end of one modular SA process. The
succeeding cycle of evolution starts by selecting another solution randomly from the
population. This process repeats until that total number of iterations is completed.

Begin
� Initialise the population,

Repeat:
•  pick one completed schedule (old),
•  set the highest temperature (t=100),

repeat:-
� select a particular task, conduct a move by neighbourhood

function
� repair the  new schedule (new)
� if (new-old)<0 then replace old with new
� else

− generate a random number (r)
− if exp(-(new-old)/t)>r then replace old with new
− endif

� endif
� t=t*0.955

until t<0.01
•  put the schedule back into the population

Until pre-defined number of iterations
End.

Figure 2: An instance of modular simulated annealing algorithm for evolution of a population

5. A PARALLEL IMPLEMENTATION OF MSA

As it is well known, there are two main ways to implement a system as a parallel
computation. One is by partitioning a whole data set into subparts and running the same
algorithm on each of those subparts on multiple machines or processes. This could be called
as the physical parallelism. The second one is more complicated in which the parallelisation is
done on the algorithm itself rather then partitioning the data. That is called as the algorithmic
parallelism. Since it is difficult to parallelise an ordinary SA in the sense of algorithmic
parallelism, we have parallelised the system in the sense of physical parallelism.



As discussed in the previous section, MSA gives new opportunities to commence new
valuable hill climbing processes in which the considered particular solution may have chances
to change to better situation. Therefore, the more time to see a particular solution for MSA,
the easier to reach global optimum. However, operating on a single solution is not preferable
for MSA, because of the special local minimum of solutions. It is better to let MSA operate
on a population of solutions to utilise the diversity of population, which causes longer time.
These two constraints make MSA to work on a rather small-sized population. Unlike genetic
algorithms, we need to work on better-designed small-sized populations to have the
advantages of both the diversity of population and having more consideration by MSA run.
However, it is difficult to have a good spectrum of solutions in small sized populations. One
of the possible solutions for this can be the consideration of parallel computing opportunities.
The idea of this parallel application of MSA is to distribute a rather bigger-sized population
over more islands to create more opportunities for letting MSA manipulate solutions for more
times even within a shorter time.

The MSA algorithm has been implemented to run on Distributed Resource Machine (DRM)
[6], which is a virtual, scalable distributed environment based on Java technology. Since MSA
has a modular nature, we easily designed this implementation for running on DRM as a
multiple island framework. Problem solving with DRM requires partitioning of the problem
into subparts to be applied as a multi-island model. For this reason, we designed our islands
with repeated MSA algorithm and a small population of solutions where MSA operates on
that population to evolve it towards an optimum value. The population uses a simulated
annealing based replacement rule to promote new solutions over the old. The solution tackled
per iteration is selected randomly, operated by MSA algorithm once and then is assessed to be
replaced with its parent. One randomly selected solution attempts to migrate to another
randomly determined island by a predefined period. This cycle is repeated for a predefined
number of iterations.

In this application, we have a group of islands consisting of 5 islands each evolving a 10-sized
population for 2 million iteration and one of them is the root that performs collecting the bests
and providing the islands with relevant data to initiate their populations. The idea is presented
in Figure 3.

Figure 3; inter-islands relationships for parallel MSA

The islands communicate with one another by letting the solutions migrate from one to
another as well as reporting their bests to the Root Island at the end of every period. The
experiments are launched on DRM by creating the Root Island first on the root node.  The
Root Island creates other islands and randomly dispatches them on randomly selected living
nodes of DRM by providing them with completely different population, which is of size 10
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solutions. The whole size of population operated within an experiment is thus 50. By this
application, we have got more chances for each particular solution as well as a more divers
population, which provides different landscape of solutions to search on.

6. EMPIRICAL RESULTS

In order to illustrate the efficiency of parallel implementation of modular SA, we have done a
series of experiments of job shop scheduling problems. The problems tackled are very well
known difficult benchmarks, which have been solved by various researchers to show the
goodness of their methods. In Table 1, the results of both ordinary and parallel MSA
implementations are shown as the average value, standard deviations, best and worst values
and then the time taken per experiment in average. The optimal and/or lower bound of each
problem has been given in the second column adjacent to the problem names, where the
values given with asterisks (*) are for the optimum and the others are lower bounds.

The general considerations for both cases are as follows:-
� the algorithm has done 10 million moves at the end (each cycle of MSA takes 200

iterations that means the population has been operated 50000 times) ,
� the size of population is 50 (which means that each individual has been operated 1000

times),
� a solution to manipulate is selected randomly,
� the new results are replaced only if they satisfy a simulated annealing like stochastic rule.

The parallel implementation of MSA is a partitioned version of the ordinary one, cutting the
population into 5 parts and dispatching each to a particular parallel island. The islands have
done 2 million of iterations over the 10-sized population. Thus, each individual in this case
has got exactly the same number of manipulation as the individuals in the case of Ordinary
MSA. Since the MSA operates on an individual 200 times per cycle, each individual has been
seen and operated 1000 times. The migration is set up to a period, which is 100000, with a
low probability. That means that every 100000 iteration a randomly selected individual
attempts to migrate to another randomly defined island, if the random number generated is
greater then 0.50. Therefore, every island totally allows 10 individuals to migrate to another
island, and accepts in. Experiments have been repeated 5 times per problem.

Comparing both cases, we can easily see that there is statistically no difference between the
results of the parallel version and the ordinary one, apart from LA38.  Best and worst results
are very close to each other. On the other hand, the time taken is very different. The ordinary
case has taken more or less 4 times then the parallel one. This is the significant aspect of our
method. The worse results are caused by the low diversity of the population. We suspected
that, if we increase the diversity of island’s populations by changing the rate of migration, the
inter-population effect might make our method much better. In fact, we applied two more
strategies for migration beside the first one: one does not allow any migration at all, the other
works in such a way that every 100000 iterations the island allows an individual to migrate
with 0.75 migration rate. That changes the number of migrated individuals from 10 to 15 per
island. The results for all situations are shown in Figure 4 presenting % error between the
average of found values and optimal ones. On the horizontal axis, the benchmarks are given in
number representing ABZ7, ABZ8, ABZ9, LA21, LA24, LA25, LA27, LA29, LA38 and
LA40, respectively.   As it is, there is no significant difference among those three strategies. It
helps very little to keep the populations of islands diverse.



Table 1. Empirical results for both serial and parallel MSA implementations

Problem Ordinary MSA , Pop-50, 10 million
iterations

Parallel MSA, Pop- 50 (10 per Island),
10 million (2 per Island) iterations

Name Optimum Mean SD Best Worst Time Mean SD Best Worst Time
ABZ7    655 675.5 2.12 673 678 10542 675.2 2.8 672 678 1445.2
ABZ8    638 686.8 4.95 683 692 10491 687.2 4.9 681 692 1902.6
ABZ9    656 699 1.41 698 700 10465 703.0 2.9 699 706 1578.4
LA21 *1046 1049.4 2.88 1046 1051 5052 1048.4 2.7 1046 1053 838.2
LA24  *935 939.2 2.68 935 941 4933 939.6 1.5 938 941 570.2
LA25  *977 978.4 2.19 977 982 5161 977.8 1.8 977 981 1035.2
LA27 *1235 1244.4 4.56 1238 1250 6997 1245.4 3.9 1240 1250 982.0
LA29   1130 1177.4 7.54 1173 1188 6830 1182.6 6.1 1176 1190 1147.8
LA38 *1196 1201.8 3.77 1196 1204 7802 1214.6 3.0 1211 1219 1143.4
LA40 *1222 1230.8 3.03 1228 1235 7849 1229.2 2.68 1228 1234 1894.6

Figure 4; error percentage of found results respecting each migration rate.

7. RELATED WORKS

There are enormous studies done on classical job-shop scheduling problems. We have filtered
the most relevant ones in terms of publication date, the problems tackled, and the methods
employed to make comparison with our results where SA, GA and their combinations have
been considered. Wang & Zheng [15] developed a hybrid optimisation strategy by embedding
a SA into GA for job shop scheduling problems. The undertaken benchmarks in their paper
are moderately difficult problems on which our system very quickly find their optimum.
Steinhofel et al [13] discusses some parallel heuristics for simulated annealing-based
algorithms to be applied to job shop scheduling problems. They theoretically criticise the
calculation of longest path of schedules by clarifying the dependency on numbers of jobs and
machines in an algorithmic parallelism point of view.  This is an advanced version of their
previous work, which discusses two SA heuristics for job shop scheduling problems [14].
They presented computational results for very few benchmarks that are worse then ours with
respect to time.

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0 1 2 3 4 5 6 7 8 9 10

msa 1 msa 2 msa 3% Error

Problem



Table 2. Some experimental results from the literature to be compared to ours

Problem Satake et al. KTM Kolonko Parallel  MSA
Name Opt Mean Best Time Mean Best Time Mean Best Time Mean Best Time
ABZ7    655 684.8 679 5991.0 - - - - - - 675.2 672 1445.2
ABZ8    638 698.0 684 5905.4 - - - - - - 687.2 681 1902.6
ABZ9    656 706.6 698 5388.9 - - - - - - 703.0 699 1578.4
LA21 *1046 1062.0 1046 1516.1 1050.0 1047 1720.2 1051.0 1047 594.2 1048.4 1046 838.2
LA24  *935 949.0 936 1422.8 942.0 941 1170.4 940.4 938 569.6 939.6 938 570.2
LA25  *977 989.6 980 1605.0 980.5 979 1182.8 979.0 977 644.4 977.8 977 1035.2
LA27 *1235 1263.2 1248 3761.0 1247.3 1241 919.8 1244.8 1236 3650.6 1245.4 1240 982.0
LA29   1130 1196.4 1167 4028.6 1173.3 1165 3042.9 1169.2 1167 4496.0 1182.6 1176 1147.8
LA38 *1196 1218.4 1202 3004.0 1210.5 1202 3044.0 1202.4 1201 5049.4 1214.6 1211 1143.4
LA40 *1222 1243.0 1233 2812.2 1233.7 1228 6692.8 1228.6 1226 4544.0 1229.2 1228 1894.6

Table 2 shows some comparable results from different works, where our results are generally
better than them. Satake et al. [12] present a rescheduling based SA approach in their paper
with the results given in the second part of Table 2, running the experiments on an IBM-PC
Pentium 133 MHz., while KTM used SUN SPARC workstation 2 for a taboo search based
approach as reported by Satake et. al[12].  Our results are better then them with respect to the
length of schedules and CPU time. However, Kolonko [10] has better results herding from a
combined GA-SA system for the last four benchmarks respecting length of schedules, but not
respecting CPU time. Our CPU times are superior, but our computers may be better as well
(Pentium III). The main advantage of our method is to allow solving the problems in a
partitioned and distributed way. The results reported in this paper are gained by a system
consisting of 5 subsystem working distributedly and in parallel. If we increase the number of
subparts (islands), we will definitely get shorter schedules then we have so far.

8. CONCLUSION

In this paper, a parallel implementation of MSA algorithm, a shortened SA algorithm, applied
to classical job-shop scheduling problems has been presented. This parallel implementation
has been done by running the system on DRM environment as a multi island system. The
tackled JSS problems are very well known difficult benchmarks, which are considered to
measure the quality of such works. The support of DRM environment was very effective with
respect to message passing, having collaboration with a remote machine. The empirical
results show that the method proposed is quite successful comparing to the ordinary MSA and
some other works in literature. The only problem is the uncertainty in the size of populations,
and the possibility of shortening the process time of the method. These points are still not
clear and need to be investigated. In the future, these would be the main direction of this
research.
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