Faculty of Mathematical Sciences P.O. Box 217
7500 AE Enschede
The Netherlands

Universit Of Twente Phone: +31-53-4893400
y Fax: +31-53-4893114
University for Technical and Social Sciences Email: memo®@math.utwente.nl

MEMORANDUM NoO. 1579

Tabu search algorithms for

job-shop problems with
a single transport robot

J.L. HURINK AND S. Knust!

APRIL 2001

ISSN 0169-2690

IUniversitdt Osnabriick, Fachbereich Mathematik/Informatik, 49069 Osnabriick, Germany

Tabu Search Algorithms for Job-Shop
Problems with a Single Transport Robot

Johann Hurink
University of Twente, Faculty of Mathematical Sciences,
P.O. Box 217, 7500 AE Enschede, The Netherlands

J.L.Hurink@math.utwente.nl

Sigrid Knust *
Universitiat Osnabriick, Fachbereich Mathematik/Informatik,
49069 Osnabriick, Germany

sigrid@mathematik.uni-osnabrueck.de

March 2001

Abstract

We consider a generalized job-shop problem where the jobs additionally
have to be transported between the machines by a single transport robot.
Besides transportation times for the jobs, empty moving times for the
robot are taken into account. The objective is to determine a schedule
with minimal makespan.

We present local search algorithms for this problem where appropriate
neighborhood structures are defined using problem-specific properties. An
one-stage procedure is compared with a two-stage approach and a combi-
nation of both. Computational results are presented for test data arising
from job-shop benchmark instances enlarged by transportation and empty
moving times.

Keywords: scheduling, job-shop problem, robot, transportation, tabu

search
Subject Classification: 90B35

*supported by the Deutsche Forschungsgemeinschaft, Project ‘Komplexe Maschinen-Sche-
dulingprobleme’

1 Introduction

In this paper we consider a generalized job-shop scheduling problem where the jobs
additionally have to be transported between the machines by a single transport robot.
A job-shop problem with transportation times and a single robot is a gen-
eralization of the classical job-shop problem and may be formulated as follows: We
are given m machines and n jobs. Each job consists of a chain of operations which
have to be processed in this order. With each operation a dedicated machine is as-
sociated on which the operation has to be processed without preemption for a given
duration. Each machine can process at most one operation at a time. Additionally,
transportation times are considered. They occur if a job changes from one machine
to another and depend on the jobs and the machines between which the transport
takes place. We assume that all these transport operations have to be done by a
single transport robot which can handle at most one job at a time. Furthermore, we
assume that we have unlimited buffer space between the machines. The objective is
to determine a feasible schedule which minimizes the makespan, i.e. the completion
time of the operation processed last.

If for the robot only the given transportation times are important, we may consider
the robot as an additional “machine” which has to “process” all transport operations.
Therefore, in this case the problem is equivalent to a classical job-shop problem with
m + 1 machines. Since the robot has to process many more operations than the other
machines (each second operation of a job), it is also called a bottleneck machine.
However, in practice in addition to the transportation times also empty moving
times arise when the robot moves empty between two machines without carrying a
job. These empty moving times may be regarded as sequence-dependent setup times
on the robot and, thus, the empty moving times imply that the robot cannot be
treated in the same way as the other machines. Consequently, the job-shop problem
with transportation times and a single robot consists of scheduling a set of “classical”
machines and a special machine on which additionally sequence-dependent setup times
have to be taken into account.

In this paper we propose two different approaches to integrate a transportation stage
into procedures which schedule the machines. In an one-stage procedure we try to
deal with the problem on the whole and do not distinguish between the robot and
the machines. Another possibility is to apply a two-level approach, where on the
first level machine orders for the job-shop machines are fixed and on the second
level a corresponding robot order is constructed. For these two approaches and a
combination of both we present tabu search methods to calculate heuristic solutions
for the considered problem.

Whereas scheduling the machines in a classical job-shop has been studied over a long
period (for summaries, see e.g. Blazewicz et al. [2] or Jain & Meeran [9]), scheduling
problems with transportation aspects have received much attention in the literature
only in recent years (for a survey cf. Crama et al. [5]). Although there are many

differences between the various models, they all deal with the interaction between the
transportation routing and the classical job scheduling decisions.

For shop problems with transportation times, unlimited buffer space and a single
robot only few literature is available. Kise [11] proved that minimizing the makespan
in a two-machine flow-shop with constant transportation times and a single robot is
already NP-hard. Additional complexity results for such problems can be found in
Hurink & Knust [7]. King et al. [10] proposed a branch-and-bound algorithm for a
flow-shop environment with a single robot. Langston [15] derived some approximation
algorithms for a flexible flow-shop environment with two stages and interstage trans-
portation times. Bilge & Ulusoy [1] proposed a heuristic for simultaneously scheduling
the machines and vehicles in a flexible manufacturing system with job-shop structure.

The remainder of the paper is organized as follows. In Section 2 we give a formal defi-
nition of the considered scheduling problem and state some additional assumptions.
In Section 3 we extend the well-known disjunctive graph model to the situation with
one transport robot and derive some problem-specific properties which are the basis
for our local search procedures. An one-stage approach is proposed in Section 4, a
two-stage procedure and a combination of both are presented in Section 5. Finally,
computational results can be found in Section 6.

2 Problem formulation

In this section we present a formal definition of the considered problem and state some
additional assumptions. We are given m machines My, ..., M,, and n jobs Jy, ..., J,.
Each job J; consists of n; operations O;; (i = 1,...,n;) which have to be processed
in the order O; — Og; — ... — Oy, ;. Operation O;; has to be processed without
preemption on a dedicated machine p;; € {Mj, ..., M,,} for p;; > 0 time units. Each
machine can only process one operation at a time. Additionally, transportation
times are considered. They occur if a job changes from one machine to another, i.e.
if job J; is processed on machine M, and afterwards on machine M, a transportation
time ;5 arises. These transportation times may be job-dependent or job-independent
(tjm = tr). We assume that all transportations have to be done by a single transport
robot R which can handle at most one job at a time. The transportation times are
supposed to satisfy the following triangle inequality for all jobs J; and all machines
M, ks Ml, M, h-

tikn + tint = tikl- (1)

If this inequality does not hold, i.e. t;x, +1t;n < t;i for some indices j, k, h, [, we could
save time for the transport from M;, to M; by first transporting job J; from M, to M,
and then to M;. In practice, this situation is unlikely to occur, hence this assumption
is not a real restriction.

In addition to the transportation times we consider empty moving times t;;. While
the transportation times arise when a job is transported from one machine to another,

the empty moving times ¢}, arise when the robot moves empty from machine Mj to
M; without carrying a job. For these times we assume

the =0, b+ 2t and ¢, < rjnzl{l {tjn}- (2)

The first assumption means that no empty moving times have to be considered if
the robot waits at a machine for the next transport. The second condition is again
a triangle inequality and the third states that moving empty between two machines
does not take longer than moving a job between the same two machines. In practical
situations these assumptions are satisfied in most cases.

As in classical shop problems we assume that sufficient buffer space exists between
the machines. This means that each machine M} has an unlimited output buffer
where jobs processed on M, and waiting for the robot may be stored. The jobs are
automatically transferred into this buffer and no further times for this transfer are
considered. Additionally, each machine M; has an unlimited input buffer where jobs
which have been transported and await processing on M; may be stored.

All data p;j,tjp,t), are assumed to be non-negative integers. The objective is to
determine a feasible schedule which minimizes the makespan Cy.x = mrélx{C’j}, where
J:

C; denotes the completion time of the last operation O,, ; of job J;.

3 The disjunctive graph model

In this section the well-known disjunctive graph model for the classical job-shop prob-
lem developed by Roy & Sussmann [18] is extended to the job-shop problem with
transportation times and a single robot. Since the classical disjunctive graph model
already deals with all conflicts regarding the job-shop machines, we only have to in-
corporate the scheduling of the robot into the model. This is done by introducing
transport operations as additional vertices in the disjunctive graph and requiring that
these operations have to be processed by the robot. Furthermore, the empty moving
times are modeled as sequence-dependent setup times.

For each job J; (j =1,...,n) we introduce n; — 1 so-called transport operations
Ti; (i =1,...,n; — 1) with precedences O;; — T;; — O;4+1;. The processing time
of Tj; is equal to the transportation time of job J; from machine p;; to py1 5, i-e.
p(T3j) = tjm, when p;; = My, piv1; = M;. The robot may be considered as an
additional “machine” which has to process all these transport operations. To construct
a feasible schedule we have to determine feasible starting times for all operations O;;
on the machines My, ..., M, and for all transport operations 7;; on the robot.

In the disjunctive graph model schedules are represented by orders for all operations
processed on the same machine and an order for all transport operations on the robot.

Let Gy (k,l =1,...,m) be the set of all transport operations with the same transport
routing, i.e. we have

7-'2_] c le lf and Only lf :u’lj = Mk, /’Ll'+1,j = Ml-

Then the disjunctive graph G = (V,C U Dy, U Dg) is defined as follows.

o The set of vertices V := {O;; | j =1,....,n50 = 1,....n;} U{T}; | j =
L,...,n;i=1,...,n; —1}U{0, *} represents all operations and transport oper-
ations of the jobs and two dummy nodes 0 and *. The source 0 and the sink *
are used to define the start and the end of the operations. The operations O;;
are weighted with their processing times p;;, the transport operations 7;; with
their transportation times p(7;;), and the weights of the dummy nodes are 0.

e The set of directed arcs C' represents all precedence constraints — and is called
the set of conjunctions. We have arcs O;; — T;; — O;y1,; for all jobs j =
1,...,nand ¢ = 1,...,n; — 1, weighted with 0. Additionally, there are arcs
between the source and all first operations O;; and between all last operations
On,;,; and the sink.

e The set of undirected edges D), consists of all pairs of operations which have
to be processed on the same machine and are not linked by a directed path of
conjunctions. These pairs are called machine disjunctions. An edge O;; —
Ouw € Dy with p;; = piy = My, represents the two possible orders in which the
operations O;; and O,, may be processed on M}, and is weighted with 0.

e The set of undirected edges Dpg consists of all pairs of transport operations
which are not linked by a directed path of conjunctions and are called robot
disjunctions. An edge T;; — T\, € Dp represents the two possible orders in
which the transport operations T;; and T, may be processed on the robot and
is weighted with the pair (t};,t;,) of empty moving times, when T;; € Gy, Ty €
Gig.

To solve the scheduling problem we have to turn all undirected arcs in Dj; U Dy into
directed ones. Concerning an edge in Dg weighted with a pair of transportation times,
at this point the directed arc gets the corresponding unique weight. If we orient an
edge T;; — Ty, with T;; € Gui, Toyy € Gy in the direction T;; — T, it gets the weight
ti1> and if we orient it in the other direction, it gets the weight ¢;,. Disjunctions which
have been directed are called fixed.

We call a set Sy, of fixed machine disjunctions a machine selection, a set of fixed
robot disjunctions Si a robot selection and their union S = S); U S a selection.
A selection S is called complete if

e all disjunctions in Djy; U Dy have been fixed, and

e the resulting graph G(S) = (V,C U Sy U Sg) is acyclic.

5

Given a complete selection S we may construct a corresponding feasible schedule by
defining the starting times of all operations as follows. For each node u € V' let £(u)
be the length of a longest path from 0 to w, where the length of a path is defined
as the sum of the weights of all nodes and arcs on the path, node u excluded. We
consider the schedule where each operation w is started at time ¢(u). Obviously,
this schedule is feasible. Furthermore, for this selection no operation can be started
before time ¢(u), i.e. no operation can be shifted to the left without changing the
orders defined by S. On the other hand, each feasible schedule defines an order of
all operations processed on the same machine and an order on the robot. These
orders induce a complete selection and the corresponding schedule is not worse if the
objective function is regular. Hence, in the set of schedules represented by complete
selections an optimal solution always exists. The completion time Ciay(S) of the
schedule corresponding to a selection S is given by the length of a longest path from
0 to * in the acyclic graph G(S). Such a path is also called a critical path.

Since empty moving times only occur between transport operations which are pro-
cessed consecutively on the robot, all transitive arcs corresponding to fixed robot dis-
junctions must not be taken into account in the longest path calculations. But, due
to our assumptions on transport and empty moving times we can show that paths
consisting of transitive arcs are not longer than paths consisting of non-transitive
arcs, i.e. the transitive arcs do not change the longest path lengths. Let u,v,w be
three transport operations where the corresponding robot disjunctions are directed
to u — v — w. Assuming that operation v belongs to job j, we have the following
situation:

Due to the assumptions (2) for the empty moving times we have
n
ton <t +thy ity <ty + Tlnzlfl {taay + ty, < Loy + Ljga + 1y, (3)

i.e. the transitive arc u — w is not longer than the path u — v — w consisting of non-
transitive arcs. By transitivity the same property also holds for all paths consisting
of more than three transport operations, which shows that transitive arcs do not have
to be removed from the disjunctive graph.

The job-shop problem with a single robot may also be considered as a special case
of the job-shop problem with sequence-dependent setup times. A generalization of
this problem, namely the general-shop problem with sequence-dependent setup times,
has been considered by Brucker & Thiele [4] and Kiisters [13]. In this extension of
the general-shop problem the set of operations is partitioned into ¢ disjoint groups

Gi,...,G,. If on a machine an operation from group G, is processed immediately after
an operation from group Gy, a setup time sz, occurs between these two operations.

In our situation changeover times occur between successive transport operations 7;; on
the robot (corresponding to the empty moving times). No setup times arise between
the ordinary operations O;;. Thus, an instance of the job-shop problem with m
machines and one robot can be transformed into an m 4 1 machine instance of the
job-shop problem with setup times where the transport operations are partitioned
into m? groups G}, according to their machine routings.

M1 R R M3
@ Tll 021 T21 Q?;l

- (T3, t3)

°) &

(=)
SN
) =
&)

S

O3 T3 Oa3 Ths 633
M, R M, R M;

(&

Figure 1: Disjunctive graph for a job-shop with a single robot and n = 3 jobs

M, R My R M
@ T @ Ty \Qi’)l

NG
/ | 4/
32 31
/ M, R M3
o 2o
“ty
tha
Org——Ths 09— Tos|—0s5
My R My R M;

Figure 2: A complete selection

Example: We consider an instance of the job-shop problem with a single robot,
m = 4 machines, n = 3 jobs, 8 “ordinary” operations and 5 transport operations. The

7

My | On Oa3

My O O12

Ms O O3 Os3
M, O13

R Thy | o Tis|tho| Tip |ts| Tor |t [Ths

Figure 3: A corresponding schedule

corresponding disjunctive graph can be found in Figure 1. All transport operations
which do not belong to the same job are linked by a robot disjunction weighted with
the corresponding empty moving times. For example, the disjunction between the
transport operations Ty € Ga3 and Ths € Gz is weighted with the pair (t5,,t5,), the
disjunction between T1; € G2 and T3 € Gy is weighted with (t,,), = 0). In Figure
2 a complete selection is shown in which the machine disjunctions are oriented into
011 - 023 on Ml, into 021 - 012 on MQ, into 022 — 031 - 033 on M3, and the
robot sequence is given by T1; — Ti3 — 115 — 151 — T53. A corresponding schedule
can be found in Figure 3. a

In the following we derive some problem-specific properties which are useful to define
appropriate neighborhoods for local search algorithms. We represent feasible solutions
by complete selections S = Sy U Sk in the disjunctive graph where all machine and
robot disjunctions are fixed such that the resulting graph G(5) = (V,.5) is acyclic. We
consider the situation in which a complete selection S with makespan Ci,.x(S) is given
and we want to improve this solution. In order to define appropriate neighborhood
structures we use a so-called block approach. Such an approach was first proposed for
the single-machine problem 1|7;| Lyax (Grabowski et al. [6]). Later it was successfully
adapted to some other scheduling problems (like the job-shop, flow-shop or general-
shop problem, cf. Brucker et al. [3], Nowicki & Smutnicki [17], Brucker & Thiele [4]).
With the definition of blocks it can be stated that only certain changes of a selection
S may have a chance to improve the current makespan Ci,.x(S) and in the search
process only such solutions will be considered as candidates for neighbored solutions.

Let P be a critical path in G(S). A sequence uy,...,u; of at least two successive
nodes (i.e. k> 1) on P* is called

¢ a machine-block if the operations of the sequence are processed consecutively
on the same machine, and enlarging the subsequence by one operation leads to
a subsequence which does not fulfill this property,

e a robot-block if the sequence consists of transport operations which are pro-
cessed consecutively on the robot without idle times (empty moving times are no

idle times), no conjunction exists between consecutive operations and enlarging
the subsequence by one operation would violate one of the previous properties.

¢ ¢
In the example above Pls = (013 — T3 —> Ty =5 Ty — Oz — Os3) is a critical

path with the machine-block (Os;,Os3) on Mj and the robot-block (713, T12,751).

Another critical path is Py = (Oy1 — Tiy — Og1 — O — Tl Lo, T51 — O3z1 — Os3)
with the machine-blocks (Og1,012) on My, (Os1,033) on Mz and the robot-block
(Tha, Toy).

The following theorem is the basis for defining suitable neighborhoods on the set of
selections. It can easily be proved by combining the corresponding proofs for the
classical job-shop problem (cf. Brucker et al. [3]) and the situation on the robot (cf.
Hurink & Knust [8]). Note that for the condition on the robot the triangle inequality
(3) for the empty moving times is necessary.

Theorem 1: Let S be a complete selection with makespan Cp.x(.S) and let P?S be
a critical path in G(5). If another complete selection S with Cipax(S") < Chax(S)
exists, then in S’

e at least one operation of some machine-block B on P* has to be processed before
the first or after the last operation of B, or

e at least two transport operations of a robot-block on P° are processed in the
opposite order.

4 An one-stage approach

In this section we present an one-stage tabu search approach for the job-shop problem
with a single transport robot. The search space of the tabu search algorithm is the
set of all complete selections and in each iteration a neighbored solution is generated
either by moving an operation on a machine or by moving a transport operation on
the robot to another position. In the following we define suitable neighborhoods and
describe some further elements of the tabu search approach.

The definition of a suitable neighborhood should be based on Theorem 1, where
necessary conditions for an improving solution are given. Both conditions stated in
Theorem 1 indicate that orders of operations from blocks on a critical path have to be
changed. Thus, a first neighborhood N; may be defined as for the job-shop problem
by interchanging neighbored operations on a critical path (cf. van Laarhoven et al.
[14]). This neighborhood considers also the interchange of neighbored operations
in the inner part of machine-blocks although due to Theorem 1 such moves cannot
result in improving solutions. However, A has the nice (theoretical) property that
it is weakly connected, i.e. from an arbitrary selection it is possible to reach a

globally optimal selection via a sequence of steps in N;. To prove this, we first derive
a property of neighbored operations within blocks on a critical path.

Lemma 1: Let ¢ and j be two neighbored operations (ordinary or transport) within
a block of a critical path belonging to a complete selection S. Then, in G(S), besides
the arc (7, j) no further path exists from i to j.

Proof: Assume that in G(S) a path P = (i, uq, ..., ug, 7); k > 1 with length ¢ exists.

Case 1: i and j belong to a machine-block.
Since all vertices are weighted with processing times greater than zero, we get

which contradicts the fact that (i,) is an arc of a critical path in G(S).

Case 2: i and j belong to a robot-block.

In this case i and j are two transport operations which are processed consecutively
by the robot. Thus, since S is a feasible selection, the path P contains no further
transport operations. As a consequence, all vertices uy,...,u; have to belong to
operations which are processed on the same machine (say M) and, thus, transport
operation ¢ has to be a transport to machine M; and transport operation j has to
be a transport away from machine M;. This implies that the length ¢’ of the path
consisting only of the arc (7, j) is equal to ¢’ = p; + t}, = p; due to t;; = 0. Thus,

E Z Di + Puq > E,
which contradicts the fact that (7,) is an arc of a critical path in G(S). O

Using this lemma we can prove

Theorem 2: Neighborhood N is weakly connected.

Proof: Let S be an arbitrary non-optimal complete selection and S* an optimal
selection. Due to Theorem 1 we know that in S for at least two operations of a
block (machine-block or robot-block) on a critical path in G(S) the corresponding
disjunction is fixed in the opposite direction compared with S*. Consequently, also
two neighbored operations of a block with this property exist. Since by Lemma 1 their
exchange leads to a feasible selection, by one step in N; we can achieve a solution
which has one more disjunction fixed in the same way as in S*. Iteratively applying

this step leads to a globally optimal solution by a sequence of steps in neighborhood
N, 1- O

Theorem 2 gives a nice theoretical result for neighborhood N/, but first computational

tests have shown that on the one hand, this neighborhood does not give us enough
possibilities to change a solution and to reach different regions of the search space

10

fast enough. On the other hand, as already mentioned, N; contains superfluous in-
terchanges of neighbored operations in the inner part of machine-blocks which cannot
lead to an improvement of the current solution due to Theorem 1.

Since for the classical job-shop problem shifts have been successful to achieve diver-
sification in the search process, we also will develop a neighborhood based on shift
operators. For a given selection S = Sy; U Sk and a critical path P° neighborhood
N, contains all feasible selections S” = S}, U S which can be constructed as follows:

e in S, one operation (different from the first one) of a machine-block B on P*
is moved before all other operations in B, or one operation (different from the
last one) of a machine-block B on P* is moved after all other operations in B,
or

e in S, an operation on a position k < f';ﬂ] of a robot-block B on P* is moved
before the operation on position j € {1,...,k—1,|B|—k+2,...,|B|+ 1} of B,
or in S% an operation on a position k > f%} of a robot-block B on P* is moved
before the operation on position j € {1,...,|B|—k+1,k+2,...,|B|+ 1} of B.

(Here | B| denotes the number of operations in B and moving an operation before posi-
tion | B|+1 of B means moving it after B.) For example, for the block B = (1,2, 3,4, 5)
we allow the moves (2,3,4,5,1), (2,1,3,4,5), (1,3,4,2,5), (1,3,4,5,2), (3,1,2,4,5),
(1,3,2,4,5), (1,2,4,3,5), (1,2,4,5,3), (4,1,2,3,5), (1,4,2,3,5), (1,2,3,5,4), and
(5,1,2,3,4). In Brucker & Thiele [4] these moves are defined with the concept of
so-called extra-blocks and it is proved that neighborhood A5 covers the conditions of
Theorem 1 in an appropriate way.

Preliminary computational tests have shown that the navigation behavior of the new
neighborhood is better than that of N;. Furthermore, enlarging neighborhood N5 by
some additional operators which make the neighborhood weakly connected did not
improve the quality of the results but only increased the computational times.

To use neighborhood AN, in a tabu search approach, we still have to define which
information is stored in a tabu list. The goal of using a tabu list is to avoid coming
back to a solution which has already been visited in previous iterations. If in some
iteration we leave a complete selection S by moving an ordinary (transport) operation
u to some other position, we store u together with its machine (robot) predecessor
and successor and the makespan Cp.x(S) of the solution S. A solution S’ is defined
to be tabu if Ciax(5’) equals the makespan of an element in the tabu list and if the
triple of operations stored in this element of the tabu list is scheduled in S’ in the
same way as indicated in the entry of the tabu list. We use a static tabu list, i.e. the
length of the tabu list is hold constant during the whole search process. Since the
objective values are already taken into account in the attributes of the solutions, no
additional aspiration criteria are used.

First computational tests with neighborhood A, indicated that it is very time-consu-
ming to determine the best non-tabu neighbor in each iteration. This is caused by

11

the fact that the size of the neighborhood of a solution is rather large and that
the evaluation of each neighbor needs a recalculation of the makespan (longest path
calculation). Thus, in order to reduce this large computational effort for one iteration
of the tabu search procedure, we use lower bound calculations. More precisely, for each
neighbor of the current solution we first determine an easily calculable lower bound
for the makespan and only if this lower bound is below the value of the best neighbor
found so far, we evaluate the makespan of the neighbor exactly. Incorporating these
bounds leads to a significant reduction of the computational times. The whole tabu
search process is stopped after a certain number of non-improving iterations.

To start the tabu search procedure, a first solution is constructed using a priority
rule based heuristic given in Brucker & Thiele [4] where the robot is considered as
an additional machine and the empty moving times are regarded as setup times.
Additional details of the tabu search implementation are given in connection with the
presentation of computational results in Section 6.

5 A two-stage approach

In this section we present another local search algorithm which is based on Theorem
1, but which tries to deal with the different situations on the machines and the robot
more individually. This algorithm is organized in two stages. While in in the outer
stage an operation on a machine is moved to another position, in the inner stage the
robot is optimized according to the new machine selection. In order to obtain a good
robot solution we use a tabu search procedure of Hurink & Knust [8] as a subroutine.

In the one-stage approach of the previous section in each iteration a neighbored so-
lution S’ is constructed by either changing the machine selection Sy, or the robot
selection Sg (but not both). Since the robot corresponds to a bottleneck machine,
the old robot selection Sk may be a bad solution for the new machine selection S,
or Sk is even infeasible w.r.t. S}, (i.e. G(S’) contains a cycle). To overcome this
disadvantage, in an alternative approach we proceed in two stages, i.e. we define
a neighborhood where after changing the machine selection the robot selection is
adapted before the makespan of the new solution is determined. This means that in
the second stage the situation for the robot has to be considered where all machine
orders are fixed. We are interested in a robot order respecting all precedences induced
by the fixed machine orders and having a minimal makespan among all robot orders
which are compatible with the given machine selection.

The resulting robot problem may be described as follows: The robot has to perform
all transportations which have durations equal to the corresponding transportation
times. Due to the given orders of operations belonging to the same job, precedence
constraints (in form of chains) are induced between the transport operations belonging
to the same job. Since each job has to be processed on a machine between two con-
secutive transportations, time-lags (equal to the corresponding processing time) are

12

associated with these precedences. In the same way precedences (and associated time-
lags) between transport operations belonging to different jobs are induced by the fixed
orders on the machines. Besides these precedences also the empty moving times of the
robot have to be considered. When the robot has finished the transportation of a job,
it may have to move empty to another machine where it takes the next job. The cor-
responding empty moving times in between may be regarded as sequence-dependent
setup times. Furthermore, the given job and machine orders for the operations of the
jobs result in earliest possible starting times (release dates) for the transport opera-
tions, which have to be respected in all feasible schedules of the robot. Finally, the
completion time of the last transport operation in a schedule of the robot (makespan
of the robot) does not coincide with the makespan of the complete job-shop schedule
since after each transport operation of a job this job has to be scheduled at least on
one further machine. Thus, for each transport operation j we have besides a process-
ing time p; a so-called tail ¢; which corresponds to the minimal time period after the
completion time of this operation before the complete job-shop schedule is finished.
Thus, in the well-known «|3|y-notation the single-machine problem for the robot can
be denoted by 1 | prec(l;;),rj, sij | max{C; + g;}, where prec (l;;) indicates arbitrary
non-negative finish-start time-lags l;; > 0, s;; stands for sequence-dependent setup
times, 7; for release dates (heads), and C; + ¢; denotes for each job the sum of its
completion time and its tail. Since this problem generalizes the traveling salesman
problem with time windows, it is strongly NP-hard.

If we take the example from Section 3 with the machine selection from Figure 2, we
get a situation for the robot as presented in Figure 4. Besides the chain precedences of
the jobs we get a conjunction 71 — Tio weighted with the time-lag po; + p12 induced
by the machine orientation Oy; — O15. Between all transport operations which are
not linked by a conjunction, a disjunction weighted with the corresponding pair of
empty moving times exists (in Figure 4 for clarity only the disjunction Ti; — T3 is
shown).

D21
T 15
P11 P21 + P12 P31 + P33
Tiy P22 + P31 + P33
P13 _< /247 0)
D23
T3 T3

Figure 4: The robot problem for a fixed machine selection

13

In Hurink & Knust [8] an effective tabu search procedure for the robot problem is
presented. According to Theorem 1 the neighborhood of a robot selection consists
of selections in which the order of critical operations in a robot-block is changed.
More specifically, the neighborhood is defined by three types of operators: either two
adjacent transport operations of a block are interchanged, the first block operation is
shifted to the right or an internal block operation is shifted to the end of the block.
Although a neighbored selection differs only slightly from the current selection, the
starting times for all transport operations which appear after the shifted operation
have to be recalculated to determine the makespan of a neighbored solution. Due
to the time-lags such a calculation is very time-consuming and it is not efficient to
evaluate all neighbors exactly. Thus, not the correct objective values are calculated
for all neighbors, but approximate values are used (for details see [8]).

Based on such a hierarchical decomposition of the considered problem a neighborhood
may also be defined in a hierarchical way where first the machine selection is changed
and then the robot selection is adapted. For a given selection S = Sy, U Sk neighbor-
hood N3 contains all feasible selections S’ = S}, U S which can be constructed as
follows:

e in S, one operation (different from the first one) of a machine-block B on P*
is moved before all other operations in B, or one operation (different from the
last one) of a machine-block B on P? is moved after all other operations in B,
and

e S, is obtained from Sg by calculating a heuristic solution for the robot problem
associated with the new machine selection S);.

For instances with large transportation times it may happen that no machine-blocks
exist for a considered solution S and, thus, neighborhood Nj3(S) is empty. To improve
such a solution S, according to Theorem 1 some robot-block has to be destroyed. Since
in the outer stage of our hierarchical approach we only want to change the machine
selection, but not the robot selection, we allow some additional moves on the level
of the machine orders. For this purpose we do not only move critical operations
belonging to machine-blocks, but also single operations on the chosen critical path.
According to Theorem 1 interchanging a single critical operation (not belonging to a
machine-block) with its machine predecessor or successor cannot reduce the objective
value, but in combination with the change of the robot selection an improving solution
may be obtained (since time-lags in the robot problem are cancelled by moving critical
operations on the machines).

Thus, we enlarge N3(S) by all feasible selections S” = S}, U S}, where in S}, a single
critical operation on P is interchanged with its machine predecessor or successor, and

» s again a solution associated with the new machine selection Sj,. The resulting
neighborhood N is used in a tabu search algorithm, which will be described in more
detail next. As in the tabu search procedure from Section 4, we store attributes which
characterize visited solutions during the search process in a static tabu list. If in a

14

complete selection S" = S}, USy the machine selection S}, results from Sy, by moving
an operation u, we store the objective value Ci,.x(S) besides the triple consisting of u,
its old machine predecessor and successor in Sy;. A solution S is defined to be tabu if
Chax(S) equals the objective value of an element in the tabu list and the associated
triple of this element in the tabu list is reconstructed in S. Note that contrary to
the one-stage approach only machine operations are stored in the tabu list, the robot
sequence is implicitly taken into account by the Cy.c-value. Again, the whole search
process is stopped after a certain number of non-improving iterations.

During the search process we use two versions of the tabu search algorithm for the
robot problem. First we evaluate neighbored solutions in Ny(S) with a fast version.
Then we choose the best neighbored solution which is not tabu and try to improve
the corresponding robot selection within some more iterations of a second tabu search
version.

In order to obtain starting solutions for the two-stage tabu search procedure, we
use two modified versions of the priority-based heuristic from Brucker & Thiele [4].
Besides the one-stage version described in the previous section, we use a two-stage
version in which we first only calculate a machine selection Sj; and determine a
corresponding robot selection Sk by the robot tabu search algorithm afterwards.

Finally, we describe some combinations of the one-stage and the two-stage approach.
We combine these two approaches in order to intensify and diversify the search process.
In a first version we alternately apply the two algorithms allowing for each algorithm
a constant number of non-improving iterations. At first the algorithm starts with
the two-stage approach and stops after ¢ non-improving iterations. After that we
allow f * ¢ non-improving iterations of the one-stage approach, where the factor f
is a given constant. The algorithm continues changing between the two approaches
until no further improvement of the best known solution occurs in both methods. In a
second version we change the order of the two methods beginning with the one-stage
approach. We use the same strategy of organizing the number of iterations.

In a third version we do not have a constant factor f but keep it as a variable during
the search process. After each run of f % ¢ non-improving iterations of the one-stage
and ¢ non-improving iterations of the two-stage approach, we calculate a new value
for f by

itery

f=Cx

itery’

where itery (iter;) is the absolute number of iterations of the two-stage (one-stage)
approach from the last run and C'is a given constant. The idea of such a modified value
is that the algorithm tries to regulate the ratio between the number of iterations of the
two procedures by itself. For example, if itery is big (i.e. there were many improving
solutions in the last run of the two-stage approach), and iter; is small (i.e. there were
not many improving solutions in the last run of the one-stage approach), it could be
good to intensify the one-stage part in the search. To run this approach we only have
to specify the initial value f° of f and the value of C' which may be obtained after
testing the algorithm with different values.

15

6 Computational results

In this section we present some computational results for the described tabu search
algorithms. We implemented all procedures in C and tested them on a Sun Ultra
2 work station (167 MHz) with operating system Solaris 2.5 and 320 MB general
storage.

Since no test instances for the job-shop problem with transportation times were avail-
able from the literature, we modified m x n benchmark problems for the classical
job-shop problem, where m denotes the number of machines and n the number of
jobs. We used the well-known 6 x 6 and 10 x 10 instances P1 and P2 from Muth &
Thompson [16]. In both instances the number of operations per job is equal to the
number of machines (i.e. n; =m for j =1,...,n) and each job is processed on each
machine exactly once. The processing times of the operations in the instance P1 are
from the interval [1,10] and in P2 from the interval [1,100]. Various test instances
were obtained by adding transportation and empty moving times with different char-
acteristics.

For the transportation times ¢;;; we distinguished the following four cases: job- and
machine-dependent times t;;; randomly generated from the interval [1, 10] (adjusted in
such a way that the triangle inequality holds), job-independent transportation times
ti; analogously to the first case, job-independent transportation times ty; = D]k — |
with different values D (proportional to the distance between the corresponding ma-
chines when they are assumed to be ordered in a single line), and constant transporta-
tion times ¢ = 7. Analogously, we distinguished the following three cases for the
empty moving times: randomly generated values t};, values t;;, = d|k — l| depending
on the machine distances and constant times ¢, = t.

In this way we obtained several instances with 6-5 = 30 or 10-9 = 90 transport oper-
ations (arising from the 6 x 6 and 10 x 10 job-shop instances P1 and P2, respectively).
Since the processing times in instance P2 are very large (from the interval [1, 100]), the
time horizon for the modified instances is often also very large (Cyax € [1000, 3000]).
Therefore, we also generated some instances in which the processing times are scaled
by a factor 0 < f < 1, i.e. we replaced the processing times p;; by [f - pi;].

After some first computational tests with a large test set we tried identifying interest-
ing instances which are not easy to solve (i.e. for which priority rules do not produce
solution values with small deviations from lower bound values). In the following we
will only report results for these 30 instances (ten 6 x 6 instances with 30 transport
operations and twenty 10 x 10 instances with 90 transport operations).

In order to estimate the quality of the presented procedures we compared the results
of the one-stage procedure with the two-stage procedure and their combination. Fur-
thermore, we calculated lower bounds LB, for the instances using the techniques of
constraint propagation and linear programming (cf. Knust [12]). Unfortunately, for
the 10 x 10 instances the linear programming bounds could not be calculated, i.e. for

16

these instances we could compare our results only with relatively weak lower bounds
LBy (obtained with simple constraint propagation techniques).

Preliminary computational tests showed that the quality of the different procedures
(varying the starting solutions, the tabu list lengths and the stopping criteria) differs
from instance to instance. Thus, for the final computational tests we decided to run
the procedures several times with different parameters. The one-stage and two-stage
procedures were executed 6 times, the combination 12 times (additionally varying 2
different values for the number ¢ of non-improving iterations). Additionally, for each
run a time-limit of 10 minutes was imposed. Concerning the combination of the one-
and the two-stage procedure the third version with a variable factor f outperformed
the two other versions with constant factors. After some preliminary tests we took
C' = 1000 and an initial value of f° = 30.

For each instance and each of the three approaches we determined the best value
U Bt and the average value UB® obtained in a test series with the specified number
of runs (6 and 12, respectively). For these heuristic solution values U B we determined
the relative deviation A(LB) = % from a lower bound value LB. In Tables 1
and 2 we report the average and maximal relative deviations A(LB),, and A(LB)az
(in %) as well as the average and maximal computational times (in minutes:seconds)

for the P1- and P2-instances, respectively.

UB%st | UB™ | time

one-stage A(LB))a 2.2 3.9 | 17
A(LB))maz | 6.1 7.5 || 2:57

fwo-stage A(LB))a 4.3 5.6 | 0:56
A(LB1)maz || 78 9.6 || 2:55
combination | 2(EB)a 3.9 5.0 | 1:46
A(LB1)maz || 78 8.7 | 5:30

Table 1: Results for the 10 Pl-instances

UB%st | UB™ | time

one-stage A(LBp) a 181 | 21.3 || 241
A(LBy)maz | 274 | 30.1 | 10:00
fwo-stage A(LBp) a 20.8 | 23.8 || 5:55
A(LBy)maz || 36.8 | 42.5 || 10:00
combination | 2(EB0)a 198 | 23.0 || 543
A(LBy)maz | 372 | 39.8 | 10:00

Table 2: Results for the 20 P2-instances

Table 1 shows that for the small instances the one-stage approach outperforms the
others. Good solutions can be obtained within small computational times. On the
other hand, Table 2 gives the impression that all three approaches do not differ a
lot concerning their quality and do not give very good results. However, we have to

17

take into account that the deviations given in Table 2 are based on the weak lower
bound LBy. For the Pl-instances the better bound LB; has an average deviation of
w%B{;BO = 7.8% from LBy. Thus, we may expect that for the larger P2-instances the
average optimal value deviates a lot from LB, and, therefore, we may argue that the
achieved quality is good and that again the one-stage approach outperforms the two

other approaches.

The results given in Tables 1 and 2 are obtained using a time-limit of 10 minutes.
Additional tests have shown that for the one-stage approach the results do not im-
prove a lot if larger computational times are allowed. On the other hand, since in
the two-stage method the effort of evaluating neighbored solutions is very high, in
the same amount of time much less solutions can be visited than in the one-stage
procedure. If we allow computational times up to one hour, the quality of the com-
bined approach improves a lot. The deviations of the best results (UB"!) reduce
to A(LBg)aw = 16.1% and A(LBg)mar = 34.0% and, thus, for longer computational
times the combined approach outperforms the one-stage approach.

Furthermore, a closer look at the individual results for the different instances shows
that the approaches behave quite differently for different instances. Table 3 contains
the following information:

> t;i: the sum of all transportation times of the transport operations,

e UBY: the best objective value obtained by a version of the priority-based heuris-
tic,

e UB°": the best objective value obtained within 10 minutes with the one-stage
approach,

e UB™?°: the best objective value obtained within 10 minutes with the two-stage
approach,

o UB%m: the best objective value obtained within 10 minutes with the combined

approach,

o U Bf(f,fb’;b: the best objective value obtained within one hour with the combined

approach,

e [B;: the lower bound obtained with constraint propagation and linear program-
ming,

e [By: the weak lower bound obtained only with constraint propagation.

A x indicates a best solution found within 10 minutes and a + indicates that the long
run with the combined approach gave a better solution than the best solution found
within 10 minutes with one of the three approaches.

18

Instance St | UBY || UBoe [uBte | uBgmy | B | LBy | LBy
Pt t),.1 124 | 137 || 134*| 137 | 137 - 133 | 126
P1_tjp th.2 18| 135 || 129%| 132 | 134 - 128 | 121
Pl tjt),.3 132 | 146 | 144 % | 146 | 144 *| - 142 | 134
P1.D1.d1 66 | 90| 87*| 88 88 - 82| 170
P1.D1.1 66 | 83| 81 *| 83 83 - 7| 70
P1.D2.d1 132 | 156 || 148 * | 155 | 153 - 147 | 134
P1.D3.d1 198 | 220 217 | 219 | 216 *| - 213 | 200
Pty)1 121 | 139 || 137*| 138 | 141 - 136 | 123
P1.T2.t1 60| 77| 7T4*| 76 (O 71| 63
P1.T3.40 9 | 94| 92%| 94 93 - 92 | 92
P2_D1.d1 223 [1088 | 1044 [1035 | 1013 *| 990 + ~| 880
P2.D1.40 223 | 1088 | 1042 | 1055 | 989 * | 989 ~| 880
P2_D1.t1 223 | 1088 | 1016 | 1021 | 995 * | 989 + ~| 880
P2_D2_d1 446 | 1123 | 1070 | 1064 | 1004 * | 993 + ~| 892
P2.D3.d1 669 | 1163 | 1070 * | 1084 | 1078 | 1072 ~| 906
P2.D5.t2 1115 | 1444 || 1325 * | 1390 | 1383 | 1371 —| 1167
P2.T1.#1 90 | 1092 || 1006 * | 1053 | 1022 | 1018 ~| 814
P2.T2.41 180 | 1094 || 1015 * [1058 | 1053 | 1030 ~| 880
P2.T5 12 450 | 1102 || 1102 | 1102 | 1090 * | 1020 + —| 898
P2t th,1 338 | 1101 || 1082 | 1066 * | 1089 | 1027 + —| 890
P2ty 4,2 333 | 1097 || 1035 * | 1063 | 1087 | 1033 + ~| 891
P2 tjp 1,3 208 | 1093 | 1039 * | 1065 | 1081 989 + ~| 888
P2.tjp th 4 368 | 1096 | 1045 * | 1070 | 1084 997 + ~| 893
P2ty ty 1 337 | 1098 | 1086 | 1090 | 1061 * | 1018 + ~| 888
P2ty t},.2 385 | 1102 || 1028 * | 1073 | 1058 | 1014 + ~| 896
P2f0.5.D1.dl | 223 | 600 | 555*| 578 | 562 558 —| 482
P2f0.5. D141 || 223 | 595 | 544 * | 559 | 551 542 —| 482
P2f0.5.D2.d1 || 446 | 689 | 633*| 680 | 674 666 —| 497
P2f0.5.D240 | 446 | 611 | 578 * | 603 | 595 595 ~ | 497
P2f0.5.D2¢1 | 446 | 635 | 613 *| 627 | 621 620 ~ | 497

Table 3: Individual results for all 30 instances

Since the differences between the results of the different approaches are often quite
large and since no tendency for a real best method can be given, in practice one should
decide to use not only one of the presented approaches, but one should choose two
different approaches to calculate solutions. Based on our test results, a combination
of the one-stage approach with a short computational time and the combined method
with a longer computational time seems to be the best.

Summarizing, we can state that the presented approaches are able to produce solutions

19

of a high quality for the tested instances. The deviations of the best solution values
obtained in any version of the tests are A(LBj)q, = 2.1%, A(LB1)mae = 6.1% for the
Pl-instances and A(LBg)a = 14.7%, A(LBo)maz = 27.4% for the P2-instances.

7 Concluding remarks

We developed different tabu search approaches for a generalization of the job-shop
problem where additionally transportation aspects are taken into account. The ap-
proaches differ in the way the transportation is treated. For the one-stage approach
the complete problem is transformed into a job-shop problem with sequence-dependent
setup times, where the transportation leads to an additional machine. The tabu search
method treats all machines (inclusive the “transportation” machine) in the same way.
The two-stage approach distinguishes between transportation on the robot and pro-
cessing on the machines. In the outer stage sequences on the machines are fixed and
based on this schedule in the second stage a transport schedule is calculated. In both
stages tabu search is used to determine the solutions.

The computational results show that both approaches are able to produce good solu-
tions within reasonable time. However, if only short computational times are available,
the one-stage approach outperforms the two-stage approach. For longer computational
times a combination of both methods is most successful. Furthermore, the tests have
shown that the success of the methods may differ from instance to instance and, thus,
in practice all methods may be worthwhile to be used.

For further research it would be interesting to develop some acceleration techniques
for the two-stage approach and some methods which are able to produce stronger
lower bounds for large instances.

References

[1] Bilge, U., Ulusoy, G. [1995] A time window approach to simultaneous schedul-
ing of machines and material handling system in an FMS, Operations Research
43, 1058-1070.

2] Blazewicz, J., Domschke, W., Pesch, E. [1996] The job shop scheduling
problem: conventional and new solution techniques, European Journal of Oper-
ational Research 93, 1-33.

(3] Brucker, P., Jurisch, B., Sievers, B. [1994] A branch & bound algorithm
for the job-shop problem, Discrete Applied Mathematics 49, 107-127.

[4] Brucker, P., Thiele, O. [1996] A branch & bound method for the general-shop
problem with sequence dependent setup-times, OR Spektrum 18, 145-161.

20

[5]

(6]

[10]

[11]

[12]

[13]

Crama, Y., Kats, V., Klundert, J. van de, Levner, E. [2000] Cyclic
scheduling in robotic flowshops, Annals of Operations Research 96, 97-124.

Grabowski, J., Nowicki, E. Zdrzalka, S. [1986] A block approach for sin-
gle machine scheduling with release dates and due dates, European Journal of
Operational Research 26, 278-285.

Hurink, J., Knust, S. [1998] Flow-shop problems with transportation times
and a single robot, to appear in Discrete Applied Mathematics.

Hurink, J., Knust, S. [1999] A tabu search algorithm for scheduling a single
robot in a job-shop environment, to appear in Discrete Applied Mathematics.

Jain, A.S., Meeran, S. [1999] Deterministic job-shop scheduling: past, present
and future, European Journal of Operational Research 113, 390-434.

King, R.E., Hodgson, T., Chafee, F.W. [1993] Robot task scheduling in a
flexible manufacturing cell, IIE Transactions 25, 80-87.

Kise, H. [1991] On an automated two-machine flowshop scheduling problem
with infinite buffer, Journal of the Oper. Res. Soc. Japan 34, 354-361.

Knust, S. [1999] Shop-scheduling problems with transportation, Ph.D. thesis,
Fachbereich Mathematik /Informatik Universitdt Osnabriick.

Kiisters, K. [1997] Tabu-Suche fiir General-Shop Probleme mit gruppen-
abhéngigen Riistzeiten, Diplomarbeit, Fachbereich Mathematik/Informatik, Uni-
versitdt Osnabriick.

Laarhoven, P.J.M. van, Aarts, E.H.L., Lenstra, J.K. [1992] Job shop
scheduling by simulated annealing, Operations Research 40, 113-125.

Langston, M.A. [1987] Interstage transportation planning in the deterministic
flow-shop environment, Operations Research 35, 556-564.

Muth, J.F., Thompson, G.L. [1963] Industrial Scheduling, Englewood Cliffs,
N.J., Prentice Hall.

Nowicki, E., Smutnicki, C. [1996] A fast tabu search algorithm for the job
shop problem, Management Science 42, 797-813.

Roy, B., Sussmann, B. [1964] Les problemes d’ordonnancement avec con-
straintes disjonctives, Note DS no. 9 bis, SEMA, Paris.

21

