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Abstract. In order to sequence the tasks of a job shop problem (JSP) on
a number of machines related to the technological machine order of jobs,
a new representation technique — mathematically known as “permutation
with repetition” is presented. The main advantage of this single chromo-
some representation is — in analogy to the permutation scheme of the
traveling salesman problem (TSP) — that it cannot produce illegal sets
of operation sequences (infeasible symbolic solutions). As a consequence
of the representation scheme a new crossover operator preserving the ini-
tial scheme structure of permutations with repetition will be sketched.
Its behavior is similar to the well known Order-Crossover for simple per-
mutation schemes. Actually the GOX operator for permutations with
repetition arises from a Generalisation of OX. Computational experi-
ments show, that GOX passes the information from a couple of parent
solutions efficiently to offspring solutions. Together, the new representa-
tion and GOX support the cooperative aspect of the genetic search for
scheduling problems strongly.

1 Introduction

Since the publication of Davis paper in 1985 [3] a lot of research in the field of
production scheduling with Genetic Algorithms (GAs) has been done.

The main difficulty in this subject arises from the question of how to rep-
resent the problem in the algorithm, which is known to be most important for
genetic search. Some researchers approached the JSP from a TSP’s point of
view, e. g. Whitley/Starkweather [13]. Beside a fundamental obstacle — that will
be discussed and removed by this paper — two important advantages arise from
the connectivity of both problem areas. It allows to handle the JSP in a natural
way as an ordering problem and it enables the use of a wide range of genetic
operators, originally designed to tackle the TSP.

Within the last years other approaches with a stronger connection to schedul-
ing domains were developed. In particular hybrid algorithms, combining local ge-
netic search and scheduling heuristics, lead to (near-)optimal solutions for many
large-scale benchmark problems, see Nakano/Yamada [8][14], Dorndorf/Pesch
[4], Pesch [10], Storer/Wu/Vaccari [11]and Storer/Wu/Park [12].
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In order to compare a new TSP-oriented approach with these algorithms
the paper refers to a standard model of the general n-job, m-machine job shop
problem [5], denoted by

n/m/G/ % .

The parameter GG indicates that jobs are connected with technological pro-
duction rules, describing their processing order of machines. G is specified as a
matrix

T= [7;}1«”, Ti = (Mg, My,0) - Myyom))

of vectors 7;, representing a technological rule of job J;, which is a permuta-
tion of all (or a subset of all) machines. In case of a proper subset .J; is processed
by m; < m machines, thus the last m — m; components of vector 7; are defined
as “zero-machines” indicating no further treatment of the job J;. The operation
of J; which is processed by M; is denoted as O;; and its processing time as p;;.

The symbol “x” calls a performance-measure of optimization. In order to
compare computational results with results from literature, this paper discusses
the most common performance-measure — the minimum-makespan — denoted as
Cinaz. If C; denotes the completion time of J;, “x = C),4,” means to find a
schedule of all operations O;; that minimizes the completion time of the lat-
est job, i.e. the makespan of a whole production program. Apart from that,
the presented approach to job shop scheduling supports the handling of other
performance-measures by small modifications only.

Usually the process of solving the JSP is decomposed into a sequencing pro-
cess of operations on machines (according to the rules of 7) and a scheduling
process of specifying starting times for all operations. That is why solutions of
the JSP can be represented symbolically, e. g. this is done by specifying opera-
tion orders §; for each machine M;, by a single task sequence determining the
scheduling order of all operations or by a set of binary variables defining the
processing order of each of two operations on identical machines.

The difficulty of using any of these representations as a genetic coding scheme
arises from the fact, that syntactically valid instantiations (generated by genetic
operators) often get into conflict with the production rules of 7. In such a
situation a symbolic solution cannot be transferred to a schedule (the scheduling
process runs into a deadlock!), hence it is infeasible.

To overcome this situation, a new way to represent the JSP is presented in
section 2. Section 3 discusses the process of schedule-building. As a consequence
of the representation a new genetic operator is sketched in section 4. Section 5
reports computational results on the famous Muth-Thompson problems and 10
large-scale benchmark problems provided by Applegate and Cook. A comparison
with other GAs shows the new genetic search strategy to be a promising approach
for solving scheduling problems in general.



2 Genetic Representation of the JSP
(Permutations with Repetition)

If it is impossible to represent an optimization problem with standard coding
techniques (binary or permutation) in a way, that infeasible solutions cannot get
into the coding scheme, three types of remedy are distinguished in literature:

1. A detected infeasible genotype can be penalized with a relatively “bad”
fitness value to drive the individual out from the population.

2. A detected infeasible genotype can be transformed into a similar feasible
genotype by a small modification of the string representation.

3. A non-standard representation can be designed, which avoids the coding
of infeasible solutions. If ordinary genetic operators destroy the scheme-
structure of the representation, new operators (at least a crossover) pre-
serving this structure, have to be developed.

The first alternative can be ruled out to handle the JSP. In general there
exist much more infeasible symbolic solutions than feasible ones. That is why it
is pointless to reject infeasible solutions.

Most of the so far known approaches to the JSP use the second alternative,
e. g. the decoding/encoding strategy from Davis, the local and global harmo-
nization of Nakano/Yamada or the Priority-rule based GA of Dorndorf/Pesch
are of this type.

WEell known examples for type 3 are the early applications of GAs to ordering
problems, in particular the TSP. The binary representations of this problem
led to difficulties which could be avoided by the use of a simple permutation
representation. As a consequence many permutation-crossover operators were
developed; for a comparison see Oliver/Smith/Holland [9].

This section presents a new genetic representation of the JSP, which follows
the third alternative. The representation is “complete” in the way, that it covers
all feasible solutions of a JSP but no infeasible one. It is based on a generalization
of the concept of permutation and therefore respects the main characteristic of
the JSP as a complex ordering problem.

A simple permutation is defined as an ordering of the elements of a finite
set I of size n. An ordering in which elements may appear more than once is
called permutation with repetition. The number of different permutations with
repetition that contain element ¢ € I exactly m; times is given by

(m1+m2+...mn)!
my!l-mal- .. .om,!

If m; = 1 for all i € I this number is equal to n!, which is just the number
of different simple permutations of size n.

In the standard job shop model n denotes the number of jobs J; under the
index set 1. If m; denotes the number of tasks of J;, a permutation with repetition
of three jobs that contains m; = 3,4, 3 tasks, is for example given by



(JlaJz;J21J1;J3;J1a‘]2a‘]3a‘]2a‘]3) .

Here J3 has to be processed on all machines whereas J; and Js have to be
processed only by three of them. To obtain a feasible solution, the permutation
with repetition is interpreted as a task sequence

(Tll ) T21; T22: T12: T31: T13: T23: T325 T24: TBS) .

Reading it from left to right hand side, a task 7j; of job J; has to be scheduled
on machine My, ;) as determined by the technological order 7;. The procedure
is controlled by counting-indices of the matrix 7 and a symbolic solution §.

Figure 1 illustrates the phenotype evaluation of the example above for three
jobs A, B and C in detail. The pseudo C-code shows the program of the whole
procedure. It is the only module of the GA that takes access to problem specific
data (7 and [p;;]) indicated by the dashed box.

In the sketched state 6 of 10 tasks are already scheduled. They are shown in
the gantt-chart (e). The chromosome (a) indicates the 7th task to be an operation
of job B. The counting-index T.next [B] identifies the task to be the third task
of B. According to table (b) it has to be processed on Ms. Hence — using the
denotation of section 1 — it leads to an operation Opgs. In the optional generated
symbolic solution § this would be the second operation of M3. After sequencing
the operation, a starting time has to be scheduled for Ops. The procedure uses
a semiactive schedule-builder, which starts each operation immediately after the
longer completion time of the last scheduled task of the same job or the same
machine. In the example Opgs starts immediately after Opgs, hence an idle time
of one unit results on Ms.

3 Schedule Building

The schedule-builder is a module of the evaluation procedure and should be
chosen with respect to the performance-measure of optimization. Most of the
important performance-measures of the JSP are regular measures, which means
that optimal solutions are always semiactive, see French [5]. That is why semiac-
tive scheduling allows to generate optimal solution from the new representation
for a wide range of performance-measures.

Computational experiments showed, that genetic optimization of the mini-
mum-makespan-JSP improves by the use of a more powerful schedule-builder,
in particular an active scheduler. This observation is in common with Dorn-
dorf/Pesch and Nakano/Yamada, who used the Giffler-Thompson algorithm [6]
as an active scheduling-procedure.

An active schedule-builder performs a kind of local-search, which can be
used to introduce heuristic-improvement into genetic search. This strategy, first
used by Nakano/Yamada, is called forcing. Forcing allows the schedule-builder
to modify a chromosome if a permissible left shift of a task is detected. An
active scheduler only performs the left shift to build up the solution (ganttchart).
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Fig. 1. Phenotype evaluation of a permutation with repetition.



Above that an active scheduler with forcing does the corresponding shift on the
evaluated chromosome.

To illustrate forcing the ganttchart (e) of figure 1 is used. The first task that
permits a left shift is the first operation of job C processed on M. The active
scheduler detects a shift, which permits O¢y to be placed before Opy. Forcing
causes the corresponding shift in the chromosome (a).

ABBA[C]A ... — AB[C]|BAA...

4 Crossover for Permutations with Repetition

Crossover can be regarded as the backbone of genetic search. It intends to inherit
nearly half of the information of two parent solutions to one or more offspring
solutions. Provided that the parents keep different aspects of high quality solu-
tions, crossover induces a good chance to find still better offspring.

In order to design a crossover for permutations with repetition it is impor-
tant to focus on two properties of the new operator. First it has to respect the
repetition-structure of a certain permutation. Secondly it has to preserve the
coded characteristics of solutions as far as possible to guarantee the inheritance-
feature. Because the assignment of jobs to machines happens during the pheno-
type evaluation, the second property cannot be realized by a simple transmission
of subsequences from parent-chromosomes to offspring alone. As an additional
desirable feature the crossover operator should enable inheritance of counting-
indices of genes within subsequences whenever possible.

For the first reason the new operator was modeled on the Order-Crossover
(OX) for simple permutation schemes [9]. OX is known to transmit the relative
node positions of two permutations quite well to offspring. A straight-forward
Generalisation of OX to permutations with repetition allows the integration of
a technique, which includes the inheritance-feature into the operator GOX. To
illustrate GOX the chromosome of figure 1 is used. It functions as parentl in a
recombination process.

Parentl: BABBCACCBA
Index: 1123122343

The index line shows a counter for the occurrence of all genes in the chro-
mosome. The second chromosome functions as donator (parent2) of a crossover-
string. To determine the crossover-string an offset position is randomly chosen
within the donator chromosome. Implanting a crossover-string into the receiver
chromosome (parentl) requires a preparation which usually causes some loss of
information. Therefore the length of the crossover-string is randomly chosen in
between one half and one third of the total length of a chromosome. For that
both parents can inherit nearly the same amount of information to the offspring.
The determined crossover-string either lies inside the donator chromosome or it
is wrapped around.

If the crossover-string lies inside the donator chromosome its indices have to
be calculated.



Parent2: ABBACABCBC
Index: 2133

Afterwards all genes in the receiver that occur in the crossover-string with
the same index are marked. To determine a position where to implant the string,
a method known from OX is used. The receiver chromosome gets a cut after that
gene, which is equal to the first gene (and its index) of the crossover-string. Now
the string can be implanted into parentl’s chromosome.

Parentl: B AB[BJ[C|[A]ACABCCBI[A]

Index: 112 3 1 2 234 3

After deleting the marked genes in parentl, a new offspring chromosome
results. Using this technique it may happen that the indices of some genes get
displaced. Imagine a constellation in which gene “C” occurs two times before the
chromosome of parent] is cut after the second A-gene. Now the C-gene from the
crossover-string cannot be realized with index 1 in the offspring, actually it will
get the index 2. Hence GOX introduces an implicit mutation into the offspring
chromosome. But the choice of the crossover-cut takes care of this to be rare. In
our example the information of both parents is totally inherited to the offspring.

Offspring: BABACABCCB
Index: 1122133234

If the crossover-string wraps around the boundary points of the donator
chromosome the whole procedure is simplified very much. Again the indices of
all genes in the chosen string have to be calculated.

Parent2: ABBACABCBC
Index: 11 4 3

After marking the genes of the crossover-string in parentl, it gets implanted
into the receiver chromosome at the same position as it has in the donator

chromosome.
Parent1: B..BBCAC..A
Index: 1 23122 3 4 3

This guarantees the indices of the implanted string to remain valid in the new
chromosome, which is easy to verify after deleting the marked genes in parentl.

Offspring: ABBBCACABC
Index: 1123122343

Choosing the crossover-cut in case of an inner crossover-string in the same
way, 1. e. keeping the donator position of the string with respect to the receiver,
will usually lead to a higher rate of implicit mutations. Computational exper-
iments with an operator of this kind showed a weaker performance than the
presented GOX operator.

As we remarked GOX arises from a generalization of the OX operator. That
is why the application of GOX to simple permutations (all counting-indices are
1) generates the same offspring than OX does.
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Fig. 2. Distribution of 100 solutions of the Muth-Thompson benchmarks.

5 Computational Results

The described representation and GOX were embedded into a distributed gene-
tic optimization environment called Parnet. The distribution model of Par-
net bases on “isolation-by-distance” within a structured population (for de-
tails see Bierwirth/Kopfer/Mattfeld/Utecht [2]). In this population model in-
dividuals reside on a ring. Mate-selection is done by neighborhood ranking and
offspring-acceptance is done locally. The recombination strategy works as fol-
lows: Crossover via GOX is only performed if the integer valued fitness of mating
individuals differs, otherwise a position-based mutation takes place.

The derived Generalized-Permutation GA (GP-GA) was tested on a suite
of 12 well-known benchmark problems provided by Applegate and Cook [1].
In all runs the population size was set to 100. Selection is done by the rank-
ing scheme “40%, 30%, 20%, 10%” in a 4-element neighborhood. The accepted
worsening of offspring was set to 1%. Fitness evaluation of solutions is done via
active scheduling plus forcing as sketched in section 3. For the moderate Muth-
Thompson problems termination was set to 100 generations and for ten larger
problems it was set 150 generations.

The first test of GP-GA was run for a total of 100 iterations on the Muth-
Thompson 10/10/G/Crpaz and 5/20/ G /Cpag problems. The 6/6/G/Cipag prob-

lem was always solved to optimality (Cpepy = 55) and is therefore not docu-



1963 Muth-Thompson  Test Problems 10x10  20x5

1991 Nakano/Yamada  Conventional GA 965 1215
1992 Yamada/Nakano  Giffler-Thompson GT-GA 930 1184
Dorndorf/Pesch Priority-Rule based P-GA 960 1249
Dorndorf/Pesch Shifting-Bottleneck SB-GA 938 1178
1993  Pesch Job-Pair based 2J-GA 937 1193
Pesch Job-Constraint propagation JC-GA 937 1175
Pesch Machine-Constraint propagation MC-GA 930 1165
Storer/Wu/Park  Problem-Space GA 954 1180
1994 Generalized-Permutation GP-GA 936 1181

Table 1. Comparison of results (makespan) on the Muth-Thompson problems.

Test Problems GP-GA Comparison

No. Size Known Best Average SB-GA 2J-GA JC-GA MC-GA P-GA
la26 *1218 1232 1252.5 1219 1445 1218 1218 1278
la27 20 1236 1269 1298.7 1272 1271 1268 1268 1378
la28 x *1216 1256 1271.9 1240 1271 1240 1234 1327
la29 10 1180 1233 1264.9 1204 1226 1209 1204 1336
1a30 *1355 1355 1365.0 1355 1359 1355 1355 1411
1a36 *1268 1315 1327.1 1317 1289 1311 1273 1373
1la37 15 1402 1447 1481.2 1484 1507 1454 1414 1489
la38 x 1201 1251 1287.3 1251 1325 1292 1204 1296
la39 15 *1233 1251 1286.8 1282 1287 1275 1233 1351
la40 *1222 1252 1271.1 1274 1301 1291 1242 1321
*optimal

Table 2. GP-GA results and comparison on 10 large-scale job shop problems.

mented. In all tests GP-GA were run for a total of 10.000 calls to the schedule-
builder. The best GP-GA solutions and a comparison to other approaches are
shown in table 1. As shown in figure 2, all generated solutions fall approximately
into an interval within a deviation of 1% to 7% from optimum, which is inside
the range of comparable GAs.

In order to explore how the Generalized-Permutation approach “scales up”
to larger problems, GP-GA were now run for a total of 25 iterations on five
20/10/G/Cmag and five 15/15/G/Cpqep benchmark problems. In each test run
GP-GA made a total of 15.000 calls to the schedule-builder. Computational
results appear in table 2. The column “Known” refers to the best-known or
optimal solutions of the ten problems. Seven values are taken from a recent paper
of Pesch [10]. Meanwhile 1a29 was solved by Tabu-Search with a makespan of
1180. This result was achieved by Taillard and is — as far as we know — still
unpublished. For 1a27 and 1a38 new best solutions were recently found by a GA.
This algorithm uses the Generalized-Permutation approach presented in this
paper. But in contrast to GP-GA it is hybridized by more powerful local-search
techniques [7].



Table 2 shows the best-of-all and the average makespan generated by GP-GA.
The average solutions of all problems are within 0.7% to 7.2% of the best-known
values whereas the best-found solutions differ by only 0% to 4.5%. Thus the al-
gorithm scales performance from previously treated moderate problems to larger
ones in a promising fashion. Notice that GP-GA results are achieved in combina-
tion with the relatively weak base heuristic of active scheduling. The comparison
in table 2 reports on the performance of five other GAs (Dorndorf/Pesch and
Pesch) in the same test-suite. At least SB-GA, JC-GA and MC-GA incorporate
stronger base-heuristics into genetic search than GP-GA does. Nevertheless; the
performance of GP-GA is still inside the range of SB-GA and JC-GA.

To summarize, the coding of scheduling applications by permutations with
repetition leads to efficient local genetic search. Apart from that, successful ge-
netic search in large-scale optimization still requires support from strong prob-
lem-specific heuristics.

6 Conclusion

This paper develops a genetic representation for scheduling problems, that is
closely related to recent GA applications to sequencing problems. Together
with a new crossover operator, our representation demonstrates sustained per-
formance on a platform of difficult benchmark problems. Without tuning and
weak hybridization only, the algorithm reaches a quality level of optimization
within the range of other GA approaches. But in contrast to these methods
the Generalized-Permutation approach offers a high-level of abstraction which
enables its diversification to a broad range of related problems.
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