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Abstract. This paper presents the usage of a multi-objective genetic algorithm
to a set of engineering design problems. The studied problems span from de-
tailed design of a hydraulic pump to more comprehensive system design. Fur-
thermore, the problems are modeled using dynamic simulation models, re-
sponse surfaces based on FE—models as well as static equations. The proposed
method is simple and straight forward and it does not require any problem spe-
cific parameter tuning. The studied problems have all been successfully solved
with the same algorithm without any problem specific parameter tuning. The
resulting Pareto frontiers have proven very illustrative and supportive for the
decision-maker.

1. Introduction

Many real-world engineering design problems involve simultaneous optimization of
several conflicting objectives. In many cases, multiple objective problems are aggre-
gated into one single overall objective function. However, design engineers are often
interested in identifying a Pareto optimal set of alternatives when exploring a design
space. Pareto optimality is defined as a set where every element is a problem solution
for which no other solutions can be better in all design attributes. For the two-
dimensional case, the Pareto front is a curve that clearly illustrates the trade-off be-
tween the objectives.

The objective of this paper is to present a multi-objective genetic algorithm and
describe how it has been applied to a variety of real world applications, without any
problem specific parameter tuning. The paper begins by discussing engineering de-
sign and its similarities to an ordinary optimization process. We go on to discuss
genetic algorithms in general and a multi-objective genetic algorithm (MOGA)in
particular. Thereafter, a set of different design problems are studied with the help of
the proposed optimization strategy. These problems include design of a hydraulic
actuation systems, detail design of a hydraulic pump, a crashworthiness design prob-
lem as well as the problem of determining which functionality to include in a mecha-
tronic system. Finally the results are summarized in the conclusions.



1.1. Optimization and engineering design

Engineering design is a special form of problem solving where a set of frequently
unclear objectives has to be balanced without violating any given constraints. Fur-
thermore, the design process is an iterative process as have been stated by several
authors, e.g. Ulrich and Eppinger [18] and Roosenburg and Eekels [15]. According to
Roosenburg and Eekels, the iterative part consists of analysis, synthesis, simulation,
evaluation and decision. For each provisional design the expected properties are com-
pared to the criteria. If the design does not meet the criteria it is modified and evalu-
ated again in the search for the best possible design. From this it could be seen that
design is essentially an optimization process, as stated already in 1967 by Simon [17].
Therefore, it seems natural to look upon a design problem as an optimization
problem. By employing modern modeling, simulation and optimization techniques,
vast improvements could be achieved in design. However, there will always be parts
of the design process that require human or inquantifiable judgment that is not suited
for automation with any optimization strategy.

Figure 1 below depicts a system design process from [1] where modeling, simula-
tion and optimization are introduced to support and speed up the design process. In
the proposed system design process, the iterative part of the design process is formal-
ized and partly automated with the help of an optimization algorithm.
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Fig. 1. System design process.

The 'problem definition' in Figure 1 results in a requirements list which is used in
order to generate different solution principles/concepts. Once the concepts have
reached a sufficient degree of refinement, modeling and simulation are employed in
order to predict the properties of particular system solutions. Each solution is evalu-
ated with the help of an objective function, which acts as a figure of merit. Optimiza-
tion is then employed in order to automate the evaluation of system solutions and to
generate new system proposals. The process continues until the optimization is con-
verged and a set of optimal systems are found. One part of the optimization is the
evaluation of design proposals. The second part is the generation of new, and hope-
fully better designs. Thus, optimization consists of both analysis (evaluation) and
synthesis (generation of new solutions).

Often the first optimization run does not result in the final design. If the optimiza-
tion does not converge to a desired system, the concept has to be modified or the
problem reformulated, which results in new objectives. In Figure 1 this is visualized



by the two outer loops back to 'generation of solution principles' and 'problem defini-
tion' respectively.

Naturally the activity 'generation of solution principles' produces a number of con-
ceivable concepts, which each one is optimized. Thus each concept is brought to
maximum performance; optimization thereby provides a solid basis for concept selec-
tion. This will be illustrated in a study of hydraulic actuation systems.

One essential aspect of using modeling and simulation is to understand the system
we are designing. The other aspect is to understand our expectations on the system,
and our priorities among the objectives. Both aspects are equally important. It is es-
sential to engineering design to manage the dialog between specification and proto-
type. Often simulations confirm that what we wish for is unrealistic or ill conceived.
Conversely, they can also reveal that our whishes are not imaginative enough.

2. Genetic algorithms

Genetic algorithms are modeled after mechanisms of natural selection. Each optimi-
zation parameter (x,) is encoded by a gene using an appropriate representation, such
as a real number or a string of bits. The corresponding genes for all parameters x;,..x,
form a chromosome capable of describing an individual design solution. A set of
chromosomes representing several individual design solutions comprise a population
where the most fit are selected to reproduce. Mating is performed using crossover to
combine genes from different parents to produce children. The children are inserted
into the population and the procedure starts over again, thus creating an artificial
Darwinian environment. For a general introduction to genetic algorithms, see work by
Goldberg [8].

Additionally, there are many different types of multi-objective genetic algorithms.
For a review of genetic algorithms applied to multi-objective optimization readers are
referred to work by Deb [6].

2.1. The proposed method

In this paper the multi-objective struggle genetic algorithm (MOSGA) [4] is used for
the Pareto optimization. MOSGA combines the struggle crowding genetic algorithm
presented by Grueninger and Wallace [10] with Pareto-based ranking as devised by
Fonseca and Fleming [7]. As there is no single objective function to determine the
fitness of the different individuals in a Pareto optimization, the ranking scheme pre-
sented by Fonseca and Fleming is employed, and the “degree of dominance” in at-
tribute space is used to rank the population. Each individual is given a rank based on
the number of individuals in the population that are preferred to it, i.e. for each indi-
vidual the algorithm loops through the whole population counting the number of
preferred individuals. “Preferred to” is implemented in a strict Pareto sense, but one
could also combine Pareto optimality with the satisfaction of objective goal levels, as
discussed in [7]. The principle of the MOSGA algorithm is outlined below.



Step 1: Initialize the population.

Step 2: Select individuals uniformly from population.

Step 3: Perform crossover and mutation to create a child.

Step 4: Calculate the rank of the new child.

Step 5: Find the individual in the entire population that is most similar to the
child. Replace that individual with the new child if the child's ranking is
better, or if the child dominates it.

Step 6: Update the ranking of the population if the child has been inserted.

Step 7: Perform steps 2-6 according to the population size.

Step 8: If the stop criterion is not met go to step 2 and start a new generation.

Step 5 implies that that the new child is only inserted into the population if it
dominates the most similar individual, or if it has a lower ranking, i.e. a lower “de-
gree of dominance”. Since the ranking of the population does not consider the pres-
ence of the new child it is possible for the child to dominate an individual and still
have the same ranking. This restricted replacement scheme counteracts genetic drifts
and is the only mechanism needed in order to preserve population diversity. Further-
more, it does not need any specific parameter tuning. The restricted replacement
strategy also constitutes an extreme form of elitism, as the only way of replacing a
non-dominated individual is to create a child that dominates it.

The similarity of two individuals is measured using a distance function. The
method has been tested with distance functions based upon the Euclidean distance in
both attribute and parameter space. A mixed distance function combining both the
attribute and parameter distance has been evaluated as well. The result presented in
this paper was obtained using an attribute based distance function. As can be seen
from the description of the method there are no algorithm parameters that have to be
set by the user. The inputs are only: population size, number of generations, genome
representation and crossover and mutation methods, as in every genetic algorithm.

3. Design examples

This section describes a set of engineering design problems which have been studied
with the proposed method. It shall be pointed out that each problem has been solved
without tuning any algorithm parameters. Real parameters are always real encoded
whereas for the combinatorial problem we use binary encoding. Furthermore blend
crossover has been used for both crossover and mutation of real encoding variables,
whereas one point crossover and flip mutation have been used for binary genomes.
All problems have been solved with a population size of 40 individuals which has
been run for 400 generations.

3.1. Hydraulic Actuation systems

The objects of study for this design problem are two different concepts of hydraulic
actuation systems. Both systems consist of a hydraulic cylinder that is connected to a



mass of 1000 kilograms. The objective is to follow a pulse in the position command
with a small control error and simultaneously obtain low energy consumption. Natu-
rally, these two objectives are in conflict with each other. The problem is thus to
minimize both the control error and the energy consumption from a Pareto optimal
perspective.

In the first more conventional system, the cylinder is controlled by a servo valve,
which is powered from a constant pressure system. In the second concept, the cylin-
der is controlled by a servo pump. Thus, the systems have different properties. The
valve concept has all that is required for a low control error, as the valve has a very
high bandwidth. On the other hand, the valve system is associated with higher losses,
as the valve constantly throttles fluid to the tank.

The different concepts have been modeled in the simulation package Hopsan [11].
The models of each component consist of a set of algebraic and differential equations
taking aspects such as friction, leakage and non-linearities into account. The system
models are depicted in Figure 2.

Fig. 2. Two different concepts of hydraulic actuation systems, left is the servo valve system
and right is the servo pump system.

The servo valve system consists of the mass and the hydraulic cylinder, the servo
valve and a p-controller that is controlling the motion. The servo valve is powered by
a constant pressure pump and an accumulator, which keeps the system pressure at a
constant level. The optimization parameters are the sizes of the cylinder, valve and
the pump, the pressure lever, the feedback gain and a leakage parameter that is neces-
sary to dampen the system. Thus, this problem consists of six optimization parameters
and two objectives.

The servo pump concept contains fewer components, the cylinder and the mass,
the controller and the pump. A second order low-pass filter is added in order to model
the dynamics of the pump. The servo pump system consists of only four optimization
parameters.

The optimization is based on component size selection rather then component de-
sign, i.e. it is assumed that each component is a predefined entity. As a consequence
of this assumption most component parameters are expressed as a function of the
component size. Both systems where optimized in order to simultaneously minimize



the control error f; and the energy consumption f5. The control error is obtained by
integrating the absolute value of the difference between reference and actual cylinder
position, whereas the energy consumption is calculated by integrating the product of
flow and the pressure difference over the pump.

As the Pareto optimization searches for all non-dominated individuals, the final
population will contain individuals with a very high control error, as they have low
energy consumption. It is possible to obtain an energy consumption close to zero if
the cylinder does not move at all. However, these solutions are not of interest, as we
want the system to follow the pulse. Therefore, a goal level for the control error is
introduced. The ranking scheme is modified so that solutions, which are bellow the
goal level for the control error are always preferred to solutions that are above it re-
gardless of their energy consumption, as described by Fonseca and Fleming in [7]. In
this manner, the population is focused on the relevant part of the Pareto front.

In order to achieve fast systems, and thereby low control errors, large pumps and
valves are chosen by the optimization strategy. A large pump delivers more fluid,
which enables higher speed of the cylinder. However, bigger components consume
more energy, which explains the shape of the Pareto fronts in Figure 3. This problem
has been analyzed in more detail in [2]. Furthermore, in [3] the problem was extended
to include a mixture of real parameters and selection of valves and cylinders from

catalogues.
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Fig. 3. Pareto front showing the trade-off between energy consumption and control error for
the two concepts. Furthermore, the graph on the right shows the simulation result for a slow
pulse response, whereas the graph on the left shows a fast pulse response.

In figure 3 the obtained Pareto fronts for the two concepts are plotted in the same
graph. In this manner, Pareto optimization constitutes an excellent support for con-
cept selection, as it brings forth the properties of the different concepts. It is evident



that the final design should preferably be on the overall Pareto front, which elucidates
when to change between concepts. This is a very illustrative way of presenting the
results from a multi-objective optimization. In this particular design example, the
servo pump system consumes less energy, and is preferred if a control error larger
then 0.05ms is acceptable. The servo valve system on the other hand, is fast but con-
sumes more energy. If lower control error then 0.05ms is desired, the final design
should preferably be a servo valve system.

3.2. Detail design of a hydraulic piston pump.

One of the most important origins of noise and vibrations in hydraulic systems is the
system pressure ripple. The system pressure ripple is a hydraulic response to intro-
duced flow pulsations, of which the hydrostatic pump is a major source. Conse-
quently, in order to lower the noise from hydraulic systems, the flow transients cre-
ated by the pump must be reduced. The pump flow ripple constitutes two principal
parts; the kinematic flow ripple, due to the limited number of pumping elements, and
the compressible flow ripple, due to the compressibility of the fluid. At high pressure
levels, the compressible flow ripple is normally the clearly dominating kind. How-
ever, with very small design modifications, the compressible flow ripple can be
changed considerably, both with regard to amplitude and frequency content. Perhaps
the most obvious measure to reduce the compressible flow transient is to equalize the
cylinder pressure to the supply port pressure before the cylinder is connected to the
supply port.

This is called pre-compression, and produces a rather satisfying flow ripple reduc-
tion if designed correctly. There are more refined ways of achieving this pressure
equalization, for example the pressure relief groove explained in [13] and the pre-
compression filter volume, see [14]. The exact design of these features can rather
easily be tuned to minimize flow ripple at a specific operational condition, i.e. a cer-
tain displacement angle, rotational speed and discharge and inlet pressure levels.
However, as the conditions are changed, the optimum drifts away, implying that a
pump optimised for a certain condition may give severe flow ripple at other condi-
tions. In this section a design feature called cross-angle, which reduces the pump's
sensitivity to variations in displacement angles is analysed.

The cross-angle is a small (1-4°) fixed displacement angle around the axis perpen-
dicular to the trunnion axis, see [12]. In practice, the cross-angle results in that the
additional pre-compression required for achieving optimal pressure equalization is
obtained for a wide range of displacement angles.

The pump studied is a seven piston, 40 cm’, in-line axial piston pump at 1500 rpm
with discharge and inlet pressure levels at 250 and 2 bar respectively. The pump has
been studied using a very detailed simulation model developed in the HOPSAN simu-
lation environment [11]. The accuracy of the model has been experimentally verified
in for example work by Petterson [14]. In the model a large number of different states
are available, for example cylinder pressure, flow from each cylinder and piston
forces. In the previous design example the time resolution was in milliseconds, in this
example it is microseconds.



There are several objectives that have to be considered regarding the minimization
of pump related noise. Traditionally, the flow ripple peak-to-peak value has been the
obvious objective, which is justified since it correlates well to the system pressure
ripple amplitude. However, when running an optimisation, focusing solely on the
flow ripple, unreasonable cylinder pressure-peaks may occur. Since the cylinder pres-
sure is directly proportional to the piston forces, this will have a direct impact on the
excitation of the pump casting vibrations and thus noise, i.e. the maximal cylinder
pressure p,.. should be below a certain limit pj;,. In addition, it is important to avoid
cavitation in order to obtain low noise level and a long life of the pump, i.e the mini-
mal system pressure p,;, should be above a certain value p.,,. Thus, the optimisation
problem is defined as:

Minimize N2 (X) discharge flow ripple
Minimize f2 (X) inlet flow ripple
: o , 0y
Subjected to g, (X) = Poin (X) 2P, cavitation constraint
9, X) = Pinax (X) < Pum  Pressure-peak constraint
X

xl.l <x <x design parameter limits

For this application the cavitation and pressure-peak constraints are added to the
objective functions with the help of penalty functions. For each constraint, there is a
penalty function that equals to zero if the constraint is not violated. The penalty func-
tion then increases exponentially with the degree of constraint violation. The sum of
the penalty functions are finally added to both objectives. With this problem formula-
tion a set of non-dominated individuals that do not violate any constraints are identi-
fied as shown in Figure 4.

In order to assure a low noise level for a wide range of displacement angles, the
simulation model is executed at different displacement angles between zero and
maximum displacement for each optimisation iteration. The flow peak-to-peak values
for each displacement angle are summed to a total flow pulsation measure.

Furthermore, this problem has also been solved as a single objective problem, with

1 (x) as well as f) (x) as the single objective using the same constraint formula-

tion. It was then concluded that optimal discharge and inlet performance require dif-
ferent cross angles, as can also be seen in the Pareto front in Figure 4. The single
objective problem was solved using the Complex method, see Box [5]. The Complex
method is a non-gradient method that has been successfully used in other studies too;
see [1] and [12]. Solving the single objective problem yielded the same results as the
extreme values on the Pareto front. This is very encouraging since two different op-
timization methods have given the same optimal results, which increases the confi-
dence that the true optima has really been found. However, as always when using this
type of optimization methods, optimality of the final solutions can not be proven.
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Fig. 4. Pareto front showing the trade-off between optimal discharge and inlet performance.

The multi-objective genetic algorithm identifies the Pareto optimal front that visu-
alizes the trade-off between the two objectives, see Figure 4. Along the x-axis, the
mean discharge flow ripple amplitude from simulations at three different displace-
ments (Dp=100%, Dp=50% and Dp=0%) is displayed, whereas the inlet mean flow
ripple is displayed along the y-axis.

With a cross-angle of 1.7°, optimal discharge performance is obtained with mean
discharge flow ripple amplitude of approximately 7.1 1/min, while the inlet perform-
ance is rather poor with mean flow ripple amplitude of 13.7 I/min. A cross-angle of
2.5°, on the other hand, implies optimal inlet performance with mean flow ripple
amplitude of 11.2 1/min, while the discharge mean flow ripple is 8.8 I/min. By select-
ing a point in the middle of the curve, a fair compromise point where y = 2.1° is ob-
tained. By choosing this point instead of y = 1.7°, the mean inlet flow ripple is im-
proved with 1.9 /min (approximately 14% better), while the discharge flow ripple
becomes only 0.5 I/min worse (7.0% worse). If the compromise point is chosen in-
stead of y = 2.5°, the gain in discharge flow ripple is 1.2 I/min (approximately 14%
better) while the inlet flow ripple is deteriorated with only 0.5 1/min (4.4% worse).
Altogether, it can be seen that the total gain from choosing the compromise point
instead of the end-points is consequently higher than the loss.

Figures 5(a) and 5(b) show the simulated discharge and inlet flow peak-to-peak
value for different displacement angles, for ordinary pre-compression (y = 0°,), opti-
mal discharge performance, optimal inlet performance and the compromise point. The
diagrams constitute an illustrative way of describing the practical implication of the
trade-off between Pareto optimal solutions. As can be seen the compromise point is
just slightly worse then the individual optima in both objectives. However, the indi-
vidual optima are much worse in the other objective. This is evident in figure 5(b)
where the compromise solution (solid line) is close to the optimum for inlet perform-
ance, whereas the individual optimum for discharge performance has a very poor inlet
performance.
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Fig. 5. Flow ripple sensitivity to changes in displacement angle. Ordinary pre-compression
without any cross-angle (y=0°) is shown as the dashed line. Optimal discharge performance
(y=1.7°) is obtained as the dotted line, while optimal inlet performance (y=2.5°) is shown by
the dash-dotted line. The solid line represents the compromise solution (y=2.1°).

3.3. Crashworthiness design example

This section presents an example where the multi objective optimization technique
is used together with response surface methods in order to support crashworthiness
design. Here the conflicting objectives are exemplified by the desire to minimize the
intrusion into the passenger compartment area and simultaneously obtain low maxi-
mum acceleration during vehicle impact. These two objectives are naturally conflict-
ing, since low acceleration implies large intrusion.

The problem is solved by first creating quadratic response surfaces that captures
the global performance of the objectives using a D-optimal experimental design
setup. The crash behaviour of the vehicle is studied with a comprehensive FE model,
see [15]. The FE model of the vehicle was a sub-model of a complete FE vehicle
model consisting of 56.000 shell elements. The vehicle model impacts into a rigid
wall with an initial velocity of 30 miles per hour (56 km/h) and the impact is simu-
lated during 100 ms. The impact event is solved using the FE-code LS-DYNA in a
LINUX cluster. Sheet thicknesses of parts such as the crash-box, midrail-
closingplate, midrail-C-profile, rail-extension and the upper-rail, were used as design
parameters. The FE model is evaluated in a set of experimental design points in order
to establish quadratic response surfaces for both the intrusion and the acceleration.

Based on the two quadratic response surfaces a Pareto optimization was performed
using the multi objective genetic algorithm. The outcome of this optimization is the
Pareto front shown in Figure 6. By studying the trade-off among the Pareto optimal
solutions, the final design is chosen at a point where a fair compromise between in-
trusion and maximum acceleration is obtained.
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Fig. 6. Pareto front showing the trade-off between intrusion and maximum acceleration in the
crashworthiness design problem.

3.4. Optimization of the product specification for mechatronic systems

In this section a method is presented that supports the designer in determining which
functionality that should be implemented in a product and which should not. The
proposed method identifies the set of customer functions and technical implementa-
tions that maximize the possible product profit. The customer functions represent the
functionality of the product, and the technical implementations are the hardware and
software components needed to realize these functions. For industrial applications,
the numbers of possible combinations of customer functions and technical implemen-
tations are extremely large.

The purpose of the method is to maximize the possible profit by selecting the op-
timal functionality to be designed into a mechatronic product with an open architec-
ture. The profit consists of two parameters, value and cost, where the cost is sub-
tracted from the value. The value is the amount the customers are prepared to pay for
the set of customer functions in the product and the cost is the sum of the costs of
implementing the technical implementations needed to realize the customer functions
in the product. The assumption is that each customer function can be implemented
separately and adds customer value. This is not to say that the different customer
functions are independent since they can share technical implementations.

The customer functions are represented in the customer function vector (CF) and
the technical implementations in the technical implementation vector (TI). A cou-
pling vector cv; expresses which technical implementations are necessary in order to
realize the customer function CF;. Each element of the coupling vector could be either
one, representing that the corresponding technical implementation are needed, or zero



otherwise. The coupling vectors for all customer functions, CVi,i =1...m, make up
the coupling matrix CM. Thus the problem could be described according to equation

2

CF, - v, - || T]
CF=CM 1 ie| 7= )
CF, —-cv, — ||TI,

where m is the number of potential customer functions and »n the number of techni-
cal implementations. Each different combination of technical implementations yields
one possible solution to the problem, or one concept. For a problem with » technical
implementations there exist 2" different concepts. A particular concept X, is ex-
pressed by a vector X =[x,,x,,....x, ], Where x; can be either one if the technical

implementation T1; is in the concept or zero otherwise.

In order to calculate the value for a specific concept, the customer functions that
are possible to realize with the concept’s technical implementations have to be found.
The function realization vector, W, represents this. W is calculated according to
equation (3).

W

T
, where W, (X) = \‘ﬂJ 3)

W(X)= 1oy,

w,

m

The notation |_aJ denotes the largest integer less than or equal to a. ev, X" repre-

sents the number of the necessary technical implementations for customer function i
that are included in concept X. This number is divided by the sum of all functions
needed in order to implement customer function i, i.e. 1T.cvl_T , where 17 is a vector of

ones. If X contains all functions needed by CF; this quotient equals 1, otherwise it is
lees then one. Thus equation (3) returns 1 only for the customer functions that are
implemented by X. The total value, of a concept is calculated by summing up the
customer value for each customer function realized by concept X.

The cost of implementing each technical implementation is represented by the im-
plementation cost vector IC, IC’ = [icl,icz,,,,,,icn] , where each implantation cost,

ic,, is made up of the development, material and production cost. The total cost, c, for

the concept is thus simply obtained by multiplying X and IC.

In this simplified model the profit, p, for the company is expressed as the value the
customer is prepared to pay for a particular concept minus the cost of developing and
producing it. The problem could thus be described as to find the concept X that
maximizes the profit p(X) without exceeding the development budget. The objec-

tives are then to maximize the profit and simultaneously minimize the cost, see equa-
tion (4).
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The method has been evaluated on an industrial case study of active safety system
performed at Volvo Cars. The size of the problem is rather impressive, with 51 cus-
tomer functions and 46 technical implementations, there are 7-10"* different possible
solutions to the problem. The resulting Pareto front is shown in figure 7. As can be
seen it is possible to increase the profit by increasing the development budget. In
reality there is however always a restriction on the development budget. Thus this
type of optimization could be used as an argument when negotiating the development
budget.

Based on this case study the proposed method shows a substantial profit potential
compared to the methods presently used, see Figure 7. The method used today is
experts choosing the concepts they “believe in”, using the same data but disregarding
the sharing of technical implementations by customer functions. This is necessary
because it is impossible to grasp all the feasible combinations. The experts might
however take other issues into account which are not accounted for in this simple
model.

Figure 8 shows the optimal set of customer functions that should be implemented
in the product depending on the development budget. As can be seen the number of
functions increase as the budget is enlarged. For a more detailed description of this
application readers are referred to [9].

—e— Proposed method
: —=— Traditional method

Devélopment Icost

Fig. 7. Pareto fronts obtained by the proposed method, above, and the traditional method,
below. As can be seen the profit could be increased by increasing the development budget. An
interesting result is that the experts keep selecting functions even when the profit decreases.



Fig. 8. Visualization of the combinations of customer functions which yield the highest profit
for different development budgets. As can be seen the number of functions increases as the
budget increases. Due to confidentiality, the names of the functions can not be shown.

4. Discussion and conclusion

This paper has shown how a simple MOGA could be used to support engineering
design. The MOGA used in this paper seems very robust and it requires few algo-
rithm specific parameters. The method has been applied to a wide range of engineer-
ing optimization problems spanning from detailed design via more comprehensive
system design to overall determination of the product specification. The intention of
the paper has been to exemplify how a simple MOGA could solve a set of very dif-
ferent real world problems without any problem specific parameter tuning. For a
more detailed discussion of the problems studied, the reader is referred to the refer-
ences listed. Numerical properties of the proposed MOGA could be found in refer-
ence [4].

It has also been shown how Pareto optimization could be a useful tool for concept
selection. From an engineering perspective the goal of the optimization is not only
finding “the optimal” solution, but gaining insight about the properties of the system
being designed and the behavior of the system model. Another important lesson is
defining the objectives, which forces the designer to make clear what is desired of the
system and then to challenge the preferences of the decision-maker by visualizing the
trade-off between the objectives. Therefore, what is crucial for a method that should
be applied to engineering design optimization is that it is simple and yet robust, and
that it could search vast design spaces and produce near optimal solutions that covers
the whole Pareto front. The proposed multi-objective genetic algorithm is a good
example of such a method.
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