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abstract – Multi-objective formulations are a realistic models for many complex 

engineering optimization problems. Customized genetic algorithms have been 

demonstrated to be particularly effective to determine excellent solutions to these 

problems. In many real-life problems, objectives under consideration conflict with 

each other, and optimizing a particular solution with respect to a single objective 

can result in unacceptable results with respect to the other objectives. A 

reasonable solution to a multi-objective problem is to investigate a set of 

solutions, each of which satisfies the objectives at an acceptable level without 

being dominated by any other solution. In this paper, an overview and tutorial is 

presented describing genetic algorithms developed specifically for these problems 

with multiple objectives. They differ from traditional genetic algorithms by using 

specialized fitness functions, introducing methods to promote solution diversity, 

and other approaches. 

1. Introduction 

 The objective of this paper is present an overview and tutorial of multiple-objective 

optimization methods using genetic algorithms (GA). For multiple-objective problems, the 

objectives are generally conflicting, preventing simultaneous optimization of each objective. 

Many, or even most, real engineering problems actually do have multiple-objectives, i.e., 

minimize cost, maximize performance, maximize reliability, etc. These are difficult but realistic 

problems. GA are a popular meta-heuristic that is particularly well-suited for this class of 

problems. Traditional GA are customized to accommodate multi-objective problems by using 

specialized fitness functions, introducing methods to promote solution diversity, and other 

approaches. 

 There are two general approaches to multiple-objective optimization. One is to combine 

the individual objective functions into a single composite function. Determination of a single 
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objective is possible with methods such as utility theory, weighted sum method, etc., but the 

problem lies in the correct selection of the weights or utility functions to characterize the 

decision-makers preferences. In practice, it can be very difficult to precisely and accurately 

select these weights, even for someone very familiar with the problem domain. Unfortunately, 

small perturbations in the weights can lead to very different solutions. For this reason and others, 

decision-makers often prefer a set of promising solutions given the multiple objectives.   

 The second general approach is to determine an entire Pareto optimal solution set or a 

representative subset. A Pareto optimal set is a set of solutions that are nondominated with 

respect to each other. While moving from one Pareto solution to another, there is always a 

certain amount of sacrifice in one objective to achieve a certain amount of gain in the other. 

Pareto optimal solution sets are often preferred to single solutions because they can be practical 

when considering real-life problems, since the final solution of the decision maker is always a 

trade-off between crucial parameters. Pareto optimal sets can be of varied sizes, but the size of 

the Pareto set increases with the increase in the number of objectives. 

2. Multi-Objective Optimization Formulation 

A multi-objective decision problem is defined as follows: Given an n-dimensional 

decision variable vector x={x1,…,xn} in the solution space X, find a vector x* that minimizes a 

given set of K objective functions z(x*)={z1(x*),…,zK(x*)}. The solution space X is generally 

restricted by a series of constraints, such as gj(x*)=bj for j = 1, …, m, and bounds on the decision 

variables. 

In many real-life problems, objectives under consideration conflict with each other. 

Hence, optimizing x with respect to a single objective often results in unacceptable results with 

respect to the other objectives.  Therefore, a perfect multi-objective solution that simultaneously 

optimizes each objective function is almost impossible.  A reasonable solution to a multi-

objective problem is to investigate a set of solutions, each of which satisfies the objectives at an 

acceptable level without being dominated by any other solution. 

If all objective functions are for minimization, a feasible solution x is said to dominate 

another feasible solution y ( x y; ), if and only if, zi(x) ≤ zi(y) for i=1, …, K and zj(x) < zj(y) for 

least one objective function j.  A solution is said to be Pareto optimal if it is not dominated by 

any other solution in the solution space.  A Pareto optimal solution cannot be improved with 

respect to any objective without worsening at least one other objective.  The set of all feasible 
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non-dominated solutions in X is referred to as the Pareto optimal set, and for a given Pareto 

optimal set, the corresponding objective function values in the objective space is called the 

Pareto front. For many problems, the number of Pareto optimal solutions is enormous (maybe 

infinite).   

The ultimate goal of a multi-objective optimization algorithm is to identify solutions in 

the Pareto optimal set. However, identifying the entire Pareto optimal set, for many multi-

objective problems, is practically impossible due to its size. In addition, for many problems, 

especially for combinatorial optimization problems, proof of solution optimality is 

computationally infeasible. Therefore, a practical approach to multi-objective optimization is to 

investigate a set of solutions (the best-known Pareto set) that represent the Pareto optimal set as 

much as possible.  With these concerns in mind, a multi-objective optimization approach should 

achieve the following three conflicting goals:  

1. The best-known Pareto front should be as close possible as to the true Pareto front. Ideally, 

the best-known Pareto set should be a subset of the Pareto optimal set.  

2. Solutions in the best-known Pareto set should be uniformly distributed and diverse over of 

the Pareto front in order to provide the decision maker a true picture of trade-offs.  

3. In addition, the best-known Pareto front should capture the whole spectrum of the Pareto 

front. This requires investigating solutions at the extreme ends of the objective function 

space.  

This paper presents common approaches used in multi-objective genetic algorithms to 

attain these three conflicting goals while solving a multi-objective optimization problem.   

3. Genetic Algorithms 

The concept of genetic algorithms (GA) was developed by Holland and his colleagues in 

the 1960s and 1970s [18]. GA is inspired by the evolutionist theory explaining the origin of 

species.  In nature, weak and unfit species within their environment are faced with extinction by 

natural selection. The strong ones have greater opportunity to pass their genes to future 

generations via reproduction.  In the long run, species carrying the correct combination in their 

genes become dominant in their population.  Sometimes, during the slow process of evolution, 

random changes may occur in genes.  If these changes provide additional advantages in the 

challenge for survival, new species evolve from the old ones.  Unsuccessful changes are 

eliminated by natural selection.  
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In GA terminology, a solution vector x∈X is called an individual or a chromosome.  

Chromosomes are made of discrete units called genes. Each gene controls one or more features 

of the chromosome. In the original implementation of GA by Holland, genes are assumed to be 

binary numbers. In later implementations, more varied gene types have been introduced. 

Normally, a chromosome corresponds to a unique solution x in the solution space. This requires 

a mapping mechanism between the solution space and the chromosomes.  This mapping is called 

an encoding.  In fact, GA works on the encoding of a problem, not on the problem itself. 

GA operates with a collection of chromosomes, called a population.  The population is 

normally randomly initialized.  As the search evolves, the population includes fitter and fitter 

solutions, and eventually it converges, meaning that it is dominated by a single solution.  Holland 

also presented a proof of convergence (the schema theorem) to the global optimum where 

chromosomes are binary vectors.  

GA use two operators to generate new solutions from existing ones: crossover and 

mutation. The crossover operator is the most important operator of GA. In crossover, generally 

two chromosomes, called parents, are combined together to form new chromosomes, called 

offspring. The parents are selected among existing chromosomes in the population with 

preference towards fitness so that offspring is expected to inherit good genes which make the 

parents fitter. By iteratively applying the crossover operator, genes of good chromosomes are 

expected to appear more frequently in the population, eventually leading to convergence to an 

overall good solution.  

The mutation operator introduces random changes into characteristics of chromosomes.  

Mutation is generally applied at the gene level.  In typical GA implementations, the mutation rate 

(probability of changing the properties of a gene) is very small, typically less than 1%. 

Therefore, the new chromosome produced by mutation will not be very different from the 

original one.  Mutation plays a critical role in GA. As discussed earlier, crossover leads the 

population to converge by making the chromosomes in the population alike.  Mutation 

reintroduces genetic diversity back into the population and assists the search escape from local 

optima. 

Reproduction involves selection of chromosomes for the next generation. In the most 

general case, the fitness of an individual determines the probability of its survival for the next 

generation.  There are different selection procedures in GA depending on how the fitness values 
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are used.  Proportional selection, ranking, and tournament selection are the most popular 

selection procedures. The procedure of a generic GA is given as follows:  

Step 1. Set t =1. Randomly generate N solutions to form the first population, P1. Evaluate 

the fitness of solutions in P1.  

Step 2. Crossover: Generate an offspring population Qt as follows.  

2.1. Choose two solutions x and y from Pt based on the fitness values. 

2.2. Using a crossover operator, generate offspring and add them to Qt. 

Step 3. Mutation: Mutate each solution x∈Qt with a predefined mutation rate. 

Step 4. Fitness Assignment: Evaluate and assign a fitness value to each solution x∈Qt 

based its objective function value and infeasibility.  

Step 5.  Selection: Select N solutions from Qt based on their fitness and assigned them 

Pt+1. 

Step 6. If the stopping criterion is satisfied, terminate the search and return the current 

population, else, set t=t+1 go to Step 2. 

4. Multi-objective Genetic Algorithms  

Being a population based approach, GA are well suited to solve multi-objective 

optimization problems.  A generic single-objective GA can be easily modified to find a set of 

multiple non-dominated solutions in a single run. The ability of GA to simultaneously search 

different regions of a solution space makes it possible to find a diverse set of solutions for 

difficult problems with non-convex, discontinuous, and multi-modal solutions spaces. The 

crossover operator of GA may exploit structures of good solutions with respect to different 

objectives to create new non-dominated solutions in unexplored parts of the Pareto front.  In 

addition, most multi-objective GA do not require the user to prioritize, scale, or weigh 

objectives. Therefore, GA has been the most popular heuristic approach to multi-objective design 

and optimization problems. Jones et al. [25] reported that 90% of the approaches to multi-

objective optimization aimed to approximate the true Pareto front for the underlying problem. A 

majority of these used a meta-heuristic technique, and 70% of all meta-heuristics approaches 

were based on evolutionary approaches.   

   The first multi-objective GA, called Vector Evaluated Genetic Algorithms (or VEGA), 

was proposed by Schaffer [44]. Afterward, several major multi-objective evolutionary algorithms 

were developed such as Multi-objective Genetic Algorithm (MOGA) [13], Niched Pareto 
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Genetic Algorithm [19], Random Weighted Genetic Algorithm (RWGA)[39], Nondominated 

Sorting Genetic Algorithm (NSGA) [45],  Strength Pareto Evolutionary Algorithm (SPEA) [55], 

Pareto-Archived Evolution Strategy (PAES) [27], Fast Non-dominated Sorting Genetic 

Algorithm (NSGA-II) [9], Multi-objective Evolutionary Algorithm (MEA) [42], Rank-Density 

Based Genetic Algorithm (RDGA) [32]. Note that although there are many variations of multi-

objective GA in the literature, these cited GA are well-known and credible algorithms that have 

been used in many applications and their performances were tested in several comparative 

studies.  

Several survey papers [1-3, 12, 14, 22, 51, 54, 55] have been published on evolutionary 

multi-objective optimization. Coello Coello lists more than 1800 references in his website [4]. 

Most survey papers on multi-objective evolutionary approaches introduce and compare different 

algorithms. This paper takes a different course and focuses on important issues while designing a 

multi-objective GA and describes common techniques used in multi-objective GA to attain the 

three goals in multi-objective optimization.   

4.1. Fitness Functions 

4.1.1. Weighted Sum Approaches. 

The classical approach to solve a multi-objective optimization problem is to assign a 

weight wi to each normalized objective function ( )iz′ x  so that the problem is converted to a 

single objective problem with a scalar objective function as follows:  

 1 1 2 2min ( ) ( ) ( )k kz w z w z w z′ ′ ′= + + +x x x…     (1) 

 

where ( )iz′ x  is the normalized objective function, ( )iz x  and 1iw =∑ . This approach is called a 

priori approach since the user is expected to provide the weights. Solving a problem with the 

objective function (1) for a given weight vector 1 2{ , , , }kw w w=w …  yields a single solution, and 

if multiple solutions are desired, the problem should be solved multiple times with different 

weight combinations. The main difficulty with this approach is selecting a weight vector for each 

run. To automate this process, Hajela and Lin [17] proposed the weight-based genetic algorithm 

for multi-objective optimization (WBGA-MO). In the WBGA-MO, each solution xi in the 

population uses a different weight vector 1 2{ , , , }kw w w=iw …  in the calculation of objective 

function (1). The weight vector iw  is embedded within the chromosome of solution xi. 
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Therefore, multiple solutions can be simultaneously searched in a single run. In addition, weight 

vectors can be adjusted to promote diversity of the population.   

Other researchers [39, 40] have proposed a multi-objective genetic algorithm based on a 

weighted sum of multiple objective functions where a normalized weight vector wi is randomly 

generated for each solution xi during the selection phase at each generation. This approach aims 

to stipulate multiple search directions in a single run without using any additional parameters.  

The main advantage of the weighted sum approach is a straightforward implementation. 

Since a single objective is used in fitness assignment, a single objective GA can be used with 

minimum modifications.  In addition, this approach is computationally very efficient.  The main 

disadvantage of this approach is that not all Pareto-optimal solutions can be investigated when 

the true Pareto front is non-convex.  Therefore, the multi-objective genetic algorithms based on 

the weighed sum approach have difficulty in finding solutions uniformly distributed over a non-

convex trade-off surface [54]. 

4.1.2. Altering Objective Functions. 

As mentioned earlier, the VEGA [44] is the first GA used to approximate the Pareto 

optimal set by a set of non-dominated solutions. In the VEGA, population Pt is randomly divided 

into K equal sized sub-populations; P1, P2, ..., PK. Then, each solution in subpopulation Pi is 

assigned a fitness value based on objective function zi. Solutions are selected from these 

subpopulations using proportional selection for crossover and mutation. Crossover and mutation 

are performed on the new population in the same way with the single objective GA. A similar 

approach is to use only a single objective function which is randomly determined each time in 

the selection phase [31].       

These approaches are easy to implement and computationally as efficient as a single-

objective GA. The major drawback of objective switching is that the population tends to 

converge to solutions which are very superior in one objective, but very poor at others.     

4.1.3. Pareto-Ranking Approaches.     

Pareto-ranking approaches explicitly utilize the concept of Pareto dominance in 

evaluating fitness or assigning selection probability to solutions. The population is ranked 

according to a dominance rule, and then each solution is assigned a fitness value based on its 

rank in the population, not its actual objective function value.  Note that herein all objectives are 

assumed to be minimized. Therefore, a lower rank corresponds to a better solution in the 
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following discussions.      

The first Pareto ranking technique was proposed by Goldberg [15] as follows: 

Step 1. Set i=1 and TP=P 

Step 2. Identify non-dominated solutions  in TP and assigned them set to Fi. 

Step 3. Set TP = TP \ Fi. If TP=∅ go to Step 4, else set i=i+1 and go to Step 2. 

Step 4. For every solution x∈P at generation t, assign rank 1( , )r t i=x  if x∈Fi. 

In the procedure above, F1, F2, ... are called non-dominated fronts, and F1 is the Pareto 

front of population P. Fonseca and Fleming [13] used a slightly different rank assignment 

approach follows:  

2 ( , ) 1 ( , )r t nq t= +x x  

where ( , )nq tx  is the number of solutions dominating solution x at generation t. This ranking 

method penalizes solutions located in the regions of the objective function space which are 

dominated (covered) by densely populated sections of the Pareto front. For example, in Figure 1b 

solution i is dominated by solutions c, d and e. Therefore, it is assigned a rank of 4 although it is 

in the same front with solutions f, g and h which are dominated by only a single solution.  

The SPEA [55] uses a ranking procedure to assign better fitness values to non-dominated 

solutions at underrepresented regions of the objective space. In the SPEA, an external list E of a 

fixed size stores non-dominated solutions that have been investigated thus far during the search. 

For each solution y∈E, a strength value is defined as, 

 ( , )( , )
1P

np ts t
N

=
+

yy  

where ( , )np ty  is the number solutions that y dominates in P. The rank r(y,t) of a solution y∈E is 

assigned as 3( , ) ( , )r t s t=y y  and the rank of a solution x∈P is calculated as, 

 3
,

( , ) 1 ( , )
E

r t s t
∈

= + ∑
y y x

x y
;

 

 Figure 1c illustrates an example of the SPEA ranking method. In the former two methods, 

all non-dominated solutions are assigned a rank of 1. This method, however, favors solution a (in 

the figure) over the other non-dominated solutions since it covers the least number of solutions in 

the objective function space. Therefore, a wide, uniformly distributed set of non-dominated 

solutions is encouraged.   
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Accumulated ranking density strategy [32] also aims to penalize redundancy in the 

population due to overrepresentation. This ranking method is given as, 

4
,

( , ) 1 ( , )
P

r t r t
∈

= + ∑
y y x

x y
;

 

To calculate the rank of a solution x, the rank of the solutions dominating this solution 

must be calculated first. Figure 1d shows an example of this ranking method (based on r2). Using 

ranking method r4, solutions i, l and n are ranked higher than their counterparts at the same non-

dominated front since the portion of the trade-off surface covering them is crowded by three 

nearby solutions c, d and e.  

4.2. Diversity: Fitness Assignment, Fitness Sharing, and Niching. 

Maintaining a diverse population is an important consideration in multi-objective GA to 

obtain solutions uniformly distributed over the true Pareto font. Without taking any preventive 

measures, the population tends to form relatively few clusters in multi-objective GA. This 

phenomenon is called genetic drift, and several approaches are used to prevent genetic drift, as 

follows.  

4.2.1. Fitness Sharing    

Fitness sharing aims to encourage the search in unexplored sections of a Pareto front by 

artificially reducing fitness of solutions in densely populated areas. To achieve this goal, densely 

populated areas are identified and a fair penalty method is used to penalize the solutions located 

in such areas.    

The idea of fitness sharing was first proposed by Goldberg and Richardson [16] in the 

investigation of multiple local optima for multi-modal functions. Fonseca and Fleming [13] used 

this idea to penalize clustered solutions with the same rank as follows.  

Step 1. Calculate the Euclidean distance between every solution pair x and y in the 

normalized objective space between 0 and 1 as   

 
2

max min
1

( ) ( )( , )
K

k k

k k k

z zdz
z z=

 −
=  − 
∑ x yx y  (2) 

where max
kz  and min

kz  are the maximum and minimum value of the objective 

function ( )kz ⋅  observed so far during the search, respectively.  

Step 2. Based on these distances,  calculate a niche count for each solution x∈P as 
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 share

share
( , ) ( , )

( , )( , ) max ,0
P

r t r t

dnc t σ
σ∈

=

 −
=  

 
∑
y

y x

x yx  

where σshare is the niche size.   

Step 3. After calculating niche counts, the fitness of each solution is adjusted as follows: 

 ( , )( , )
( , )

f tf t
nc t

′ =
xx
x

 

In the procedure above, σshare defines a neighborhood of solutions in the objective space 

(Figure 1a). The solutions in the same neighborhood contribute to each other’s niche count. 

Therefore, a solution in a crowded neighborhood will have a higher niche count reducing the 

probability of selecting that solution as a parent.  As a result, niching limits the proliferation of 

solutions in one particular neighborhood of the objective function space.  

Another alternative is to use the Hamming distance (the distance in the decision variable 

space) between two solutions x and y which is defined as  

 2

1

1( , ) ( )
M

i i
i

dx x y
M =

= −∑x y  (3) 

in the calculation of niche count.  Equation (3) is a measure of structural differences between two 

solutions. Two solutions might be very close in the objective function space while they have very 

different structural features.  Therefore, fitness sharing based on the objective function space 

may reduce diversity in the decision variable space.  However, Deb and Goldberg [8] reported 

that fitness sharing on the objective function space usually performs better than one based on the 

decision variable space.  

One of the disadvantages of the fitness sharing based on niche count is that the user has 

to select a new parameter σshare. To address this problem, Deb and Goldberg [8] and Fonseca and 

Fleming [13] developed systematic approaches to estimate and dynamically update σshare. 

Another disadvantage of niching is computational effort to calculate niche counts. However, 

benefits of fitness sharing surpass the burden of extra computational effort in many applications.  

Miller and Shaw [36] proposed a dynamic niche sharing approach to increase effectiveness of 

computing niche counts.  

4.2.2. Crowding Distance 

Crowding distance approaches aim to obtain a uniform spread of solutions along the best-
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known Pareto front without using a fitness sharing parameter. For example, the NSGA-II  [9] use 

a crowding distance method as follows (Figure 2b): 

Step 1. Rank the population and identify non-dominated fronts F1, F2, ..., FR. For each 

front j=1, ..., R repeat Steps 2 and 3. 

Step 2. For each objective function k, sort the solutions in Fj in the ascending order. Let 

l=|Fj| and [ , ]i kx  represent the ith solution in the sorted list with respect to the 

objective function k. Assign [1, ]( )k kcd = ∞x  and [ , ]( )k l kcd = ∞x , and for i=2, ..., l 

assign  

 [ 1, ] [ 1, ]
[ , ] max min

( ) ( )
( )

k
k i k k i k

k i k
k k

z z
cd

z z
+ −−

=
−

x x
x  

Step 3.  To find the total crowding distance cd(x) of a solution x, sum the solution 

crowding distances with respect to each objective, i.e., ( ) ( )kk
cd cd=∑x x . 

The main advantage of the crowding approach described above is that a measure of 

population density around a solution is computed without requiring a user-defined parameter. In 

the NSGA-II, this crowding distance measure is used as a tie-breaker as in the selection phase 

that follows. Randomly select two solutions x and y; if the solutions are in the same non-

dominated front, the solution with a higher crowding distance wins. Otherwise, the solution with 

the lowest rank is selected.  

4.2.3. Cell-Based Density  

In this approach [26, 27, 32, 53], the objective space is divided into K-dimensional cells 

(see Figure 2c). The number of solutions in each cell is defined as the density of the cell, and the 

density of a solution is equal to the density of the cell in which the solution is located.  This 

density information is used to achieve diversity similarly to the fitness sharing approach. For 

example, in the PAES [26, 27], between two non-dominated solutions, the one with a lower 

density is preferable.  

Lu and Yen [32, 53] developed an efficient approach to identify a solution’s cell in case 

of dynamic cell dimensions. In this approach, the width of a cell along the kth objective 

dimension is  max min( ) /k k kz z n−  where nk is the number cells dedicated the kth objective dimension 

and max
kz  and min

kz  are the maximum and minimum values of the objective function k so far in the 

search, respectively. Therefore, cell boundaries are updated when a new maximum or minimum 



 12

objective function value is discovered.   

The main advantage of the cell based density approach is that a global density map of the 

objective function space is obtained as a result of the density calculation. The search can be 

encouraged toward sparsely inhabited regions of the objective function space based on this map. 

The RDGA [32] uses a method based on this global density map to push solutions out of high 

density areas to low density areas.   

4.3. Elitisim  

Elitism in the context of single-objective GA means that the best solution found so far 

during the search has immunity against selection and always survives in the next generation.  In 

this respect, all non-dominated solutions discovered by a multi-objective GA are considered as 

elite solutions. However, implementation of elitism in multi-objective optimization is not as 

straightforward as in single objective optimization mainly due to the large number of possible 

elitist solutions. Earlier multi-objective GA did not use elitism. However, most recent multi-

objective GA and their variations use elitism. As discussed in [6, 47, 55], multi-objective GA 

using elitist strategies tend to outperform their non-elitist counterparts. Multi-objective GA use 

two strategies to implement elitism [22]: (i) maintaining elitist solutions in the population, and 

(ii) storing elitist solutions in an external secondary list and reintroducing them to the population.   

4.3.1. Strategies to Maintain Elitist Solutions in the Population 

Random selection does not ensure that a non-dominated solution will survive in the next 

generation.   A straightforward implementation of elitism in a multi-objective GA is to copy all 

non-dominated solution in population Pt  to population Pt+1, then fill the rest of Pt+1 by selecting 

from the remaining dominated solutions in Pt. This approach will not work when the total 

number of non-dominated parent and offspring solutions is larger than NP.  To address this 

problem, several approaches have been proposed.  

Konak and Smith [29, 30] proposed  a multi-objective GA with dynamic population size 

and a pure elitist strategy. In this multi-objective GA, the population includes only non-

dominated solutions. If the size of the population reaches an upper bound Nmax, Nmax-Nmin 

solutions are removed from the population giving consideration to maintaining the diversity of 

the current non-dominated front. To achieve this, the Pareto domination tournament selection  is 

used as follows [19].  Two solutions are randomly chosen and the solution with the higher niche 

count is removed since all solutions are non-dominated. A similar pure elitist multi-objective GA 
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with a dynamic population size has also been proposed [42].   

The NSGA-II uses a fixed population size of N. In generation t, an offspring population 

Qt of size N is created from parent population Pt and non-dominated fronts F1, F2, ..., FR are 

identified in the combined population Pt∪Qt. The next population Pt+1 is filled starting from 

solutions in F1, then F2, and so on as follows. Let k be the index of a non-dominated front Fk that 

|F1∪F2∪...∪Fk| ≤ N and |F1∪F2∪... ∪Fk ∪Fk+1| > N.  First, all solutions in fronts F1, F2, ..., Fk 

are copied to Pt+1, and then the least crowded (N-|Pt+1|) solutions in Fk+1 are added to Pt+1.  This 

approach makes sure that all non-dominated solutions (F1) are included in the next population if 

|F1|≤N, and otherwise the selection based on a crowding distance will promote diversity.  

4.3.2. Elitism with External Populations 

When an external list is used to store elitist solutions, several issues must be addressed. 

The first issue is which solutions are going to be stored in elitist list E. Most multi-objective GA 

store non-dominated solutions investigated so far during the search [55], and E is updated each 

time a new solution is created by removing elitist solutions dominated by the new solution or 

adding the new solution if it is not dominated by any existing elitist solution.  This is a 

computationally expensive operation. Several data structures were proposed to efficiently store, 

update, search in list E [11, 38].  Another issue is the size of list E. Since there might possibly 

exist a very large number of Pareto optimal solutions for a problem, the elitist list can grow 

extremely large. Therefore, pruning techniques were proposed to control the size of E.  For 

example, the SPEA uses the average linkage clustering method [37] to reduce the size of E to an 

upper limit N when the number of the non-dominated solutions exceeds N as follows. 

Step 1. Initially, assign each solution x∈E to a cluster ci, 1 2{ , , , }MC c c c= …  

Step 2. Calculate the distance between all pairs of  clusters ci and cj as follows 

  ,
,

1 ( , )
| | | |i j

i j

c c
c ci j

d d
c c ∈ ∈

=
⋅ ∑

x y
x y  

 Here, the distance ( , )d x y  can be calculated in the objective function space using 

equation (2)  or in the decision variable space using equation (3).   

Step 3. Merge the cluster pair ci and cj with the minimum distance among all clusters into 

a new cluster. 

Step 4. If |C| ≤ N, go to Step 5, else go to Step 2.  
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Step 5. For each cluster, determine a solution with the minimum average distance to all 

other solutions in the same cluster (called centroid solution). Keep the centroid 

solutions for every cluster and remove other solutions from E.    

The final issue is the selection of elitist solutions from E to be reintroduced to the 

population. In [32, 53, 55], solutions for Pt+1 are selected from the combined population of Pt and  

Et. To implement this strategy, population Pt and Et are combined together, a fitness value is 

assigned to each solution in the combined population Pt∪Et, and then, N solutions are selected 

for the next generation Pt+1 based on the assigned fitness values.  Another strategy is to reserve a 

room for n elitist solutions in the next population [20]. In this strategy, N - n solutions are 

selected from parents and newly created offspring and n solutions are selected from Et.    

4.4. Constraint Handling 

Most real-world optimization problems include constraints that must be satisfied.  Single-

objective GA use four different constraint handling strategy: (i) discarding infeasible solutions, 

(ii) reducing the fitness of infeasible solutions by using a penalty function, (iii) if possible, 

customizing genetic operators to always produce feasible solutions, and (iv) repairing infeasible 

solutions. Handling of constraints has not been adequately researched for multi-objective GA 

[23]. For instance, all major multi-objective GA assumed problems without any constraints. 

While constraint handling strategies (i), (iii), and (iv) are directly applicable in the multi-

objective case, implementation of penalty function strategies, which is by far the most frequently 

used constraint handling strategy in single-objective GA, is not straightforward in multi-

objective GA, mainly due to fact that fitness assignment is usually based on the non-dominance 

rank of a solution, not on its objective function values.   

Jimenez et al. [24] proposed a niched selection strategy to address infeasibility in multi-

objective problems as follows: 

Step 1. Randomly chose two solutions x and y from the population.  

Step 2. If one of the solutions is feasible and the other one is infeasible, the winner is the 

feasible solution, and stop. Otherwise, if both solutions are infeasible go to Step 3, 

else go to step 4. 

Step 3. In this case, solutions x and y are both infeasible. Then, select a random reference 

set C among infeasible solutions in the population. Compare solutions x and y to 

the solutions in reference set C with respect to their degree of infeasibility. In 
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order to achieve this, calculate a measure of infeasibility (e.g., the number of 

constraints violated or total constraint violation) for solutions x, y, and in set C. If 

one of solutions x and y is better and the other one is worse than the best solution 

in C, with respect to the calculated infeasibility measure, then the winner is the 

least infeasible solution. However, if there is a tie, that is both solutions x and y 

are either better or worse than the best solution in C, then their niche counts in the 

decision variable space (equation (3)) is used for selection. In this case, the 

solution with the lower niche count is the winner.  

Step 4. In this case, solutions x and y are both feasible. Then, select a random reference 

set C among feasible solutions in the population. Compare solutions x and y to the 

solutions in set C. If one of them is non-dominated in set C, and the other is 

dominated by at least one solution, the winner is the former. Otherwise, there is a 

tie between solutions x and y, and the niche count of the solutions are calculated 

in the decision variable space. The solution with the smaller niche count is the 

winner of the tournament selection.  

The procedure above is a comprehensive approach to deal with infeasibility while 

maintaining diversity and dominance of the population. Main disadvantages of this procedure are 

its computational complexity and additional parameters such as the size of reference set C and 

niche size.  Modifications are also possible. In Step 4, for example, the niche count of the 

solutions can be calculated in the objective function space instead of the decision variable space.  

In Step 3, the solution with the least infeasibility can be declared as the winner without 

comparing solutions x and y to a reference set C with respect to infeasibility. Such modifications 

can reduce the computational complexity of the procedure.     

Deb [9] proposed the constrain-domination concept and a binary tournament selection 

method based on it, called a constrained tournament method. A solution x is said to constrain-

dominate a solution y if either of the following cases are satisfied: 

Case 1:  Solution x is feasible and solution y is infeasible. 

Case 2:  Solutions x and y are both infeasible; however, solution x has a smaller constraint 

violation than y. 

Case 3:  Solutions x and y are both feasible, and solution x dominates solution y.  

In the constraint tournament method, first non-constrain-dominance fronts F1, F2, F3, ...., 
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FR are identified in a similar way defined in [15], but by using the constrain-domination criterion 

instead of the regular domination concept. Note that set F1 corresponds to the set of feasible non-

dominated solutions in the population and front Fi is more preferred than Fj for i<j. In the 

constraint tournament selection, two solutions x and y are randomly chosen from the population. 

Between x and y, the winner is the one in a more preferred non-constrain-dominance front. If 

solutions x and y are both in the same front, then the winner is decided based on niche counts or 

crowding distances of the solution. The main advantages of the constrained tournament method 

are that it requires fewer parameters and it can be easily integrated to multi-objective GA.  

4.5. Parallel and Hybrid  Multi-Objective GA 

All comparative studies on multi-objective GA agree that elitism and diversity 

preservation mechanisms improve performance of multi-objective GA. However, implementing   

elitism and diversity preservation strategies usually require substantial computational effort and 

computer memory. In addition, evaluation of objective functions may take considerable time in 

real-life problems. Therefore, researchers have been interested in reducing execution time and 

resource requirement of multi-objective GA using advanced data structures. One of the latest 

trends in this avenue is parallel and distributed processing. Several recent papers [5, 48-50] 

presented parallel implementation of multi-objective GA over multiple processors.  

Hybridization of GA with local search algorithms is frequently applied in single-

objective GAs.  This approach is usually referred to as a memetic algorithm. Generally, a local 

search algorithm proceeds as follows.  

Step 1. Start with an initial solutions x. 

Step 2. Generate a set of neighbor solutions around solution x using a simple perturbation 

rule. 

Step 3. If the best solution in the neighborhood set is better than x, replace x with this 

solution and go to Step 2, else stop. 

A local search algorithm is particularly effective in finding local optima if the solution 

space around the initial solution is convex. This is usually difficult to achieve using standard GA 

operators. In hybridization of multi-objective GA with local search algorithms, important issues 

are: (i) selecting a solution to apply the local search and (ii) identifying a solution in the 

neighborhood as the new best solution when multiple non-dominated local solutions exist. 

Several approaches have been proposed to address these two issues as follows.   
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 Paquete and Stutzle [41] described a bi-objective GA where a local search is used to 

generate initial solutions by optimizing only one single objective. Deb and Goel [7] applied a 

local search to only final solutions. In Ishibuchi and Murata’s approach [20], a local search 

procedure is applied to each offspring generated by crossover, using the same weight vector of 

the offspring’s parents to evaluate neighborhood solutions. Similarly, Ishibuchi [21] also used 

the weighted sum of the objective functions to evaluate solution during the local search. 

However, the local search is selectively applied to only promising solutions, and weights are also 

randomly generated, instead of using the parents’ weight vector.  Knowles and Corne [28] 

presented a memetic version of the PAES, called M-PAES. The PAES uses the dominance 

concept to evaluate solutions. Therefore, in M-PAES, a set of local non-dominated solutions is 

used as a comparison set for solutions investigated during the local search. When a new solution 

is created in the neighborhood, it is only compared with this local non-dominated set and 

necessary updates are performed. The local search is terminated after a maximum number of 

local solutions are investigated or a maximum number of local moves are performed without any 

improvement.  Tan et al. [46] proposed applying a local search procedure to only solutions that 

are located apart from others. In addition, the neighborhood size in the local search depends on 

the density or crowdedness of solutions. Being selective in applying a local search, this strategy 

is computationally efficient and also aims to main diversity.    

5. Multi-objective GA for Reliability Optimization 
Many engineering problems have multiple objectives, including engineering system 

design and reliability optimization. There have been several interesting and successful 

implementations of multi-objective GA for this class of problems. A few successful examples are 

described in the following paragraphs. 

Marseguerra, Zio and Podofillini [33] determine optimal surveillance test intervals using 

multi-objective GA with the goal of improving reliability and availability. Their research 

implemented a multi-objective GA which transparently and explicitly accounts for the 

uncertainties in the parameters. The objectives considered were the inverse of the expected 

system failure probability and the inverse of its variance. These are used to drive the genetic 

search toward solutions which are guaranteed to give optimal performance with high assurance, 

i.e., low estimation variance. They successfully applied their procedure to a complex system, a 

residual heat removal safety system for a boiling water reactor.  
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Martorell et al. [35] studied the selection of technical specifications and maintenance 

activities at nuclear power plants to increase reliability, availability and maintainability (RAM) 

of safety-related equipment. However, to improve RAM, additional limited resources (e.g. costs, 

task force, etc.) are required creating a multi-objective problem. They demonstrated the viability 

and significance of their proposed approach using multi-objective GA for an emergency diesel 

generator system. 

Additionally, Martorell et al. [34] considered the optimal allocation of more reliable 

equipment, testing and maintenance activities to assure high RAM levels for safety-related 

systems. For these problems, the decision-maker encounters a multi-objective optimization 

problem where the parameters of design, testing and maintenance are decision variables. 

Solutions were obtained by using both single-objective GA and multi-objective GA, which were 

demonstrated to solve the problem of testing and maintenance optimization based on 

unavailability and cost criteria.  

Sasaki and Gen [43] introduce a multi-objective problem which had fuzzy multiple 

objective functions and constraints with GUB (Generalized Upper Bounding) structure. They 

solved this problem by using a new hybridized GA. This approach leads to a flexible optimal 

system design by applying fuzzy goals and fuzzy constraints. A new chromosome representation 

was introduced in their work. To demonstrate the effectiveness of their method, a large-scale 

optimal system reliability design problem was analyzed. 

 Reliability allocation to minimize total plant costs, subject to an overall plant safety goal, 

is presented by Yang [52]. For their problem, design optimization is needed to improve the 

design, operation and safety of new and/or existing nuclear power plants. They presented an 

approach to determine the reliability characteristics of reactor systems, subsystems, major 

components and plant procedures that are consistent with a set of top-level performance goals. 

To optimize the reliability of the system, the cost for improving and/or degrading the reliability 

of the system are also included in the reliability allocation process creating a multi-objective 

problem. GA was applied to the reliability allocation problem of a typical pressurized water 

reactor.  

 Elegbede and Adjallah [10] present a methodology to optimize the availability and the 

cost of repairable parallel-series systems. It is a multi-objective combinatorial optimization, 

modeled with continuous and discrete variables. They transform the problem into a single 
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objective problem and used traditional GA. 
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Figure 1. Ranking methods used in multi-objective GA. 
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Figure 2. Diversity methods used in multi-objective GA. 
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