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Abstract. This paper presents the integration between two types of
genetic algorithm: a multi-objective genetic algorithm (MOGA) and a
co-operative co-evolutionary genetic algorithm (CCGA). The resulting
algorithm is referred to as a multi-objective co-operative co-evolutionary
genetic algorithm or MOCCGA. The integration between the two algo-
rithms is carried out in order to improve the performance of the MOGA
by adding the co-operative co-evolutionary effect to the search mecha-
nisms employed by the MOGA. The MOCCGA is benchmarked against
the MOGA in six different test cases. The test problems cover six differ-
ent characteristics that can be found within multi-objective optimisation
problems: convex Pareto front, non-convex Pareto front, discrete Pareto
front, multi-modality, deceptive Pareto front and non-uniformity in the
solution distribution. The simulation results indicate that overall the
MOCCGA is superior to the MOGA in terms of the variety in solutions
generated and the closeness of solutions to the true Pareto-optimal solu-
tions. A simple parallel implementation of MOCCGA is described. With
an 8-node cluster, the speed up of 2.69 to 4.8 can be achieved for the
test problems.

1 Introduction

A genetic algorithm has been established as one of the most widely used tech-
nique for multi-objective optimisation. This is because the parallel search nature
of genetic algorithm makes the task of approximating Pareto front of optimal
solutions in one optimisation run becomes possible. From early developments in
the eighties (Schaffer, 1984; Fourman, 1985) to the introduction of a direct rela-
tionship between Pareto-optimality and a fitness function (Horn and Nafpliotis,
1993; Fonseca and Fleming, 1993), research interests in this branch of evolution-
ary computation remain strong. Regardless of the methodology employed, the
ultimate aim of multi-objective optimisation using a genetic algorithm remains
the same: to identify the solutions that approximate the true Pareto-optimal
solutions.

Various types of genetic algorithm are currently available for use in multi-
objective optimisation (Hajela and Lin, 1992; Horn and Nafpliotis, 1993; Fonseca



and Fleming, 1993; Zitzler and Thiele, 1999). Although a number of applications
have been benefited from the use of such algorithms, as the search space or prob-
lem size increases, the performance of the algorithm always degrades. As a result,
the non-dominated solution set identified by the algorithm may highly deviate
from the true Pareto front. In addition, the coverage of the Pareto front by the
solutions generated may also be affected. This is because the issue regarding
the relationship between the problem representation and the size of search space
has rarely been discussed in the context of algorithm development for use in
multi-objective optimisation. Nonetheless, various techniques for single-objective
optimisation using a genetic algorithm are available for solving the problem in-
duced by an increase in problem size. One possible technique involves an insertion
of a co-operative co-evolutionary effect into the search algorithm. A genetic al-
gorithm that exploited such strategy is known as a co-operative co-evolutionary
genetic algorithm or CCGA (Potter and De Jong, 1994). In contrast to other co-
evolutionary genetic algorithms where the co-evolutionary effect found among
sub-populations is the result of a competition for survival by the individuals,
the co-evolutionary effect in the CCGA is produced by a co-operation among all
species. In brief, a species member in the CCGA represents a part of the decision
variable set where all species will co-operatively produce complete solutions to
the problem. Each species member will then independently evolve using a stan-
dard genetic algorithm mechanism. By partitioning the problem in this manner,
the search space that each sub-population has to cover would significantly re-
duce. Although the CCGA is originally developed for use in single-objective
optimisation, the co-operative co-evolutionary effect can also be embedded into
a genetic algorithm which is designed for multi-objective optimisation.

In this paper, the co-operative co-evolutionary effect as described by Pot-
ter and De Jong (1994) will be integrated into a genetic algorithm called a
multi-objective genetic algorithm or MOGA (Fonseca and Fleming, 1993). The
MOGA is chosen for this case because of its simplicity and the clear defini-
tion regarding the relationship between the Pareto-optimality level of a solution
and its corresponding fitness value. The modified MOGA will be referred to as
a multi-objective co-operative co-evolutionary genetic algorithm or MOCCGA
throughout the paper. Note that the co-operative co-evolutionary effect can also
be integrated into other types of genetic algorithm that are designed for use in
multi-objective optimisation. In addition to the proposed integration between
two genetic algorithms, possible approach for parallel implementation of the de-
veloped algorithm will also be discussed in this paper.

The organisation of this paper is as follows. In section 2, the background
on the multi-objective genetic algorithm (MOGA) and the co-operative co-
evolutionary genetic algorithm (CCGA) will be discussed. The integration be-
tween the MOGA and the CCGA will be explained in section 3. In addition, the
test problems that will be used to assess the performance of the MOGA will also
be given in this section. In section 4, the benchmarking results and discussions
are given. Section 5 describes the parallel implementation of MOCCGA and its
test results. Finally, conclusions are drawn in section 6.



2 Multi-objective Genetic Algorithm and Co-operative
Co-evolutionary Genetic Algorithm

Two types of genetic algorithm that will be integrated together are the multi-
objective genetic algorithm (MOGA) and the co-operative co-evolutionary ge-
netic algorithm (CCGA). A brief description of the algorithms follows.

2.1 Multi-objective Genetic Algorithm

The multi-objective genetic algorithm (MOGA) was first introduced by Fonseca
and Fleming (1993). The MOGA functions by seeking to optimise the compo-
nents of a vector-valued objective function. Unlike single-objective optimisation,
the solution to a multi-objective optimisation problem is a family of points known
as the Pareto-optimal set. Each point in the set is optimal in the sense that no
improvement can be achieved in one component of the objective vector that does
not lead to degradation in at least one of the remaining components. Given a set
of possible solutions, a candidate solution is said to be Pareto-optimal if there
are no other solutions in the solution set that can dominate the candidate solu-
tion. In other words, the candidate solution would be a non-dominated solution.
Assuming, without loss of generality, a minimisation problem, an n-dimensional
cost vector a is said to be dominating another n-dimensional cost vector b if,
and only if, a is partially less than b (a p < b), i.e.

ap<bseVi=l,....n:a;<bhAT=1,....n:0a; <b; (1)

By identifying the number of solutions in the solution set that dominate
the solution of interest, a rank value can be assigned to the solution. In other
words, the rank of a candidate solution is given by the number of solutions in
the solution set that dominate the candidate solution. After a rank has been
assigned to each solution, a fitness value can then be interpolated onto the solu-
tion where a genetic algorithm can subsequently be applied in the optimisation
procedure. Note that since the aim of a search by the MOGA is to locate Pareto-
optimal solutions, in essence the multi-objective optimisation problem has also
been treated as a multi-modal problem. Hence, the use of additional genetic
operators including the fitness sharing and mating restriction procedures is also
required. However, in addition to the usual application of the fitness sharing and
mating restriction procedures in the decision variable space (Fonseca and Flem-
ing, 1995), they can also be carried out in the objective value space (Fonseca and
Fleming, 1993). A comprehensive description of the MOGA which covers other
advanced topics including goal attainment and priority assignment strategies
can be found in Fonseca and Fleming (1998).

2.2 Co-operative Co-evolutionary Genetic Algorithm

The co-operative co-evolutionary genetic algorithm (CCGA) was first introduced
by Potter and De Jong (1994). The CCGA functions by introducing an explicit



notion of modularity to the optimisation process. This is done in order to provide
reasonable opportunity for complex solutions to evolve in the form of interacting
co-adapted sub-components. In brief, the CCGA explores the search space by
utilising a population which contains a number of species or sub-populations.
In contrast to other types of genetic algorithm, each species in the CCGA rep-
resents a variable or a part of the problem which is needed to be optimised. A
combination of an individual from each species will lead to a complete solution to
the problem where the fitness value of the complete solution can be found in the
usual way. This value of fitness will be assigned to the individual of interest that
participates in the formation of the solution. After the fitness values have been
assigned to all individuals, the evolution of each species is then commenced using
a standard genetic algorithm. Although the CCGA has been successfully used
in various applications, its performance can reduce in the circumstance where
there are high interdependencies between the optimisation function variables.
In order to solve this problem, Potter and De Jong (1994) have suggested that
the fitness of a species member should be obtained after combining it with the
current, best individuals or the randomly selected individuals from the remain-
ing species depending upon whether which combination yields a higher fitness
value. This helps to increase a chance for each individual to achieve a fitness
value which is appropriate to its contribution to the solution produced. A com-
prehensive description of the CCGA and the summary of its applications can be
found in Potter and De Jong (2000).

3 MOCCGA and Test Problems

By combining the MOGA and the CCGA together, the resulting algorithm can
be referred to as a multi-objective co-operative co-evolutionary genetic algorithm
or MOCCGA. Similar to the CCGA, each species in the MOCCGA represents
a decision variable or a part of the problem which is needed to be optimised.
However, instead of directly assigning a fitness value to the individual of interest
which participates in the construction of the complete solution, a rank value
will be determined first. Similar to the MOGA, the rank of each individual will
be obtained after comparing it with the remaining individuals from the same
species. Then a fitness value can be interpolated onto the individual where a
standard genetic algorithm can be applied within each sub-population. Note
that in this investigation, the fitness sharing strategy utilised in the MOCCGA
is similar to the one described in Fonseca and Fleming (1993) where the fitness
sharing is carried out in the objective space.

In order to assess the performance of the MOCCGA, the MOCCGA will
be benchmarked against the MOGA in six optimisation test cases. These six
test problems are developed by Zitzler et al. (2000) for use in multi-objective
optimisation benchmarking. The problems are minimisation problems with m
decision variables and two objectives. Brief descriptions of the test problems are
summarised in Table 1. Each test problem represents different aspects of multi-



objective optimisation problems. The benchmarking results will be displayed and
discussed in the following section.

Table 1. Descriptions of the test problems.

Test Problem Characteristic

T Convex Pareto front

T Non-convex Pareto front

Ts Discrete Pareto front containing several non-contiguout convex parts
Ta Multi-modality

Ts Deceptive Pareto front

Ts Non-uniformity in the solution distribution in the search space

4 Benchmarking Results and Discussions
The MOCCGA will be benchmarked against the MOGA in six test cases de-

scribed in section 3. The common parameter settings for both the MOGA and
the MOCCGA are displayed in Table 2.

Table 2. Common parameter settings for both the MOGA and the MOCCGA.

Parameter Value

Selection method Stochastic universal sampling (Baker, 1989)
Crossover probability 0.7
Mutation probability 0.01

The parameter settings which vary from one test problem to the others are the
number of generations, the number of species (for the case of the MOCCGA), the
number of individuals and the length of binary chromosome. These parameters
are set to accommodate the size of search space in each problem. Although the
settings are different for each problem, the parameter values are chosen such that
the total numbers of objective evaluations are the same for both the MOGA and
the MOCCGA. Also recall that the objective values are evaluated twice for each
individual in the MOCCGA using the strategy based on the one described in
Potter and De Jong (1994).

In this investigation, each algorithm is run five times using different initial
populations. Then the search results from all runs are combined where the non-
dominated solutions are subsequently extracted from the overall results. The
non-dominated solutions located by the MOGA and the MOCCGA from all test
cases are displayed in Figures 1-3.
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Fig. 1. (a) Non-dominated solutions and the true Pareto front of the test problem 77,
(b) Non-dominated solutions and the true Pareto front of the test problem T5.
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Fig. 2. (a) Non-dominated solutions and the boundary for g(x) = 1 in the test problem
T3, (b) Non-dominated solutions and the true Pareto front of the test problem Tj.

Firstly, the range of variety in solutions found is considered. The MOCCGA
can identify the solutions which cover the whole Pareto front in the cases of 77,
T, and T4. In contrast, the MOGA can locate the solutions which indicate the
boundary of Pareto front only in the case of T5. From these observations, the
performances of the MOGA and MOCCGA are lowest with the problem that
has a discrete Pareto front (73) or a non-uniform distribution of solutions in
the search space and along the Pareto front (T3). This means that although the
co-operative co-evolutionary effect can help improving the performance of the
search algorithm in the context of the Pareto front coverage, this additional effect
is insufficient for the algorithm to cope with the discrete and non-uniformity
features of the optimisation problems.

Moving onto the consideration on the closeness of non-dominated solutions
to the true Pareto-optimal solutions. The MOCCGA has proven to be highly
efficient in all test problems. In particular, most of solutions identified by the
MOCCGA in the test problems T4, Ts, T3, Ty and T dominate the correspond-
ing solutions identified by the MOGA. The only test problem at which the
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Fig. 3. (a) Non-dominated solutions and the true Pareto front of the test problem T5,
(b) Non-dominated solutions and the true Pareto front of the test problem Ts.

MOGA can identify non-dominated solutions that are reasonably close to the
true Pareto-optimal solutions is the problem T5. Moreover, the non-dominated
solutions identified by the MOCCGA in the cases of 15 and Tg are also the
true Pareto-optimal solutions. In overall, the introduction of co-operative co-
evolutionary effect can improve the genetic algorithm performance in terms of
the Pareto front coverage and the number of solutions found which are close to
the true Pareto-optimal solutions.

5 Parallel Implementation of MOCCGA

Genetic algorithms inherit a high degree of parallelism. A large portion of tasks
that operated on a population of individuals can be performed without depen-
dency. Examples of parallel tasks in GAs include objective function evaluations
and genetic operators. Parallel computing can improve the performance of GAs
in two ways, increasing population size to solve complex problem or reducing
computation time. Many parallel implementations of GAs have been purposed.
Some of the parallel GAs can be found in Spiessens and Manderick (1991) and
Gorges-Scheleuter (1990).

In parallel GAs, the entire population is partitioned into sub-populations.
The sub-population can consist of complete strings representing the whole deci-
sion variable sets or portion of strings. Each sub-population is processed by an
assigned processor. At each iteration, sub-populations interact with each other,
according to GAs, by exchanging information between processors. In multipro-
cessor systems, the cost of exchanging information is considered as an overhead.
The performance of parallel GAs is therefore limited by the amounts of infor-
mation that need to be exchanged between sub-populations. For this reason,
reducing information exchanges between processors is one approach of improv-
ing the performance of parallel GAs. In simple GAs, the algorithm has access
to all individuals of the population. However, the information of all individuals
is not required to maintain the performance of GAs. The parallel GAs can take



advantage of this fact and exchange only a subset of available information. For
example, only the best individuals are exchanged between sub-populations. The
performance improvement is obtained not only by less communication overhead
but also high diversity of chromosome to avoid premature convergent. Hart, et
al. (1996) studied the effects of relaxed synchronization on parallel GAs in which
an improvement on execution time was shown. The effects of chromosome mi-
gration was investigated by Matsumura, et. al. (1997). Each processor executes
the genetic operations on a set of chromosome and exchange information to only
its neighbours based on different network topologies.

As the price to performance ratio of computers has dropped in a rapid rate,
high performance computing platforms can be built by interconnecting a group
of PCs, so called a cluster. The clusters have been implemented widely and
their application domains have been extended into many new areas. Patrick, et.
al. (1997) has proposed a distributed genetic algorithm for cluster environment
in which a set of library functions for performing parallel genetic operations is
provided. However, the parallel implementation of MOCCGA requires different
details. In MOCCGA, operations in ranking calculation, selection, and crossover
require information accesses within the same species. Information from different
species is required only in the objective value calculation. Therefore partitioning
the MOCCGA based on species can reduce amounts of information exchange and
simplify the program coding. Figure 4 shows the problem partitioning based on
Single Program Multiple Processors paradigm. The parallel process starts from
a single node and creates parallel process on a set of computers. Each process
responsible for one species or a group of species. The information exchange as
well as synchronisation is carried out at the beginning of the objective calculation
stage.

In original MOCCGA, the fitness calculation strategy prevents communica-
tion reduction since fitness calculation for each species require the whole species
information in order to have a complete gene pool. The objective values are
calculated from two combinations; firstly,the decision variable (after decode the
string) of individual in the current species is combined with the best decision
variable from other species, and secondly, the decision variable of the current
species is combined with the decision variable of individual from other species in
random. The objective values of both cases are then compared and the better one
is selected. The communication at the beginning of objective calculation involves
the broadcast of the best decision variable of individuals and the whole decision
variable of the species to all other processes. The communication performance
can be improved using divide and conquer approach in which log, P commu-
nication steps are adequate for P processes. The parallel version of MOCCGA
was developed using C language and MPI library. The performance results were
measured from a 8-node cluster. The number of test species is fixed to 32. An
individual is encoded as a binary of 10 bits. The stochastic universal sampling
was used in the selection process. The test problem T} is selected in the test.
We have considered three problem sizes, small, medium, and large problem. The
test results are shown in Table 3
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Fig. 4. Implementation of parallel MOCCGA. The communication occurs before the
objective function calculation.

Table 3. Performance results of the parallel MOCCGA: The execution time is shown
in second. The number of individuals in small, medium, and large problems is equal to
100, 500, and 1000 individuals, respectively. The small, medium, and large problems
are processed, respectively, for 100, 20, and 10 generations. In Bcast, the standard
MPI_bcast() library is used in the program. The divide and conquer broadcast using
send() and receive() is used in Log_P results. The speedup results are calculated using
Bcast results.

Small Medium Large
Bcast Log-P SpeedUp Bcast Log_P SpeedUp Bcast Log_P SpeedUp

1 53.83 59.05 1 299.55 331.95 1 721.48 754.92 1

2 3216 3414 1.6 194.53205.49 1.5 490.72 529.50 1.4
4 19.17 19.15 2.7  129.12 128.31 2.3 355.32352.28 2.0
8 11.90 1041 438 89.99 86.55 3.3  268.61 260.54 2.69

The speed up of parallel MOCCGA is quite satisfactory. We considered two
approaches of broadcasting objectives value, using MPI_Bcast function library
and customize decision value broadcast based on the divide and conquer tech-
nique. The results show slightly different in performance. The custom broadcast
has better performance results for the 4 and 8 processors. The performance
improvement results from the parallelism in communication.

6 Conclusions

In this paper, the integration between two types of genetic algorithms are pre-
sented: a MOGA and a CCGA algorithm. The MOCCGA has been benchmarked
against the MOGA in six test cases. The search performance of the MOGA can
be improved by adding the co-operative co-evolutionary effect to the algorithm.
A parallel implementation of MOCCGA was described.
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