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Abstract. This paper presents the integration between two types of

genetic algorithm: a multi-objective genetic algorithm (MOGA) and a

co-operative co-evolutionary genetic algorithm (CCGA). The resulting

algorithm is referred to as a multi-objective co-operative co-evolutionary

genetic algorithm or MOCCGA. The integration between the two algo-

rithms is carried out in order to improve the performance of the MOGA

by adding the co-operative co-evolutionary e�ect to the search mecha-

nisms employed by the MOGA. The MOCCGA is benchmarked against

the MOGA in six di�erent test cases. The test problems cover six di�er-

ent characteristics that can be found within multi-objective optimisation

problems: convex Pareto front, non-convex Pareto front, discrete Pareto

front, multi-modality, deceptive Pareto front and non-uniformity in the

solution distribution. The simulation results indicate that overall the

MOCCGA is superior to the MOGA in terms of the variety in solutions

generated and the closeness of solutions to the true Pareto-optimal solu-

tions. A simple parallel implementation of MOCCGA is described. With

an 8-node cluster, the speed up of 2.69 to 4.8 can be achieved for the

test problems.

1 Introduction

A genetic algorithm has been established as one of the most widely used tech-

nique for multi-objective optimisation. This is because the parallel search nature

of genetic algorithm makes the task of approximating Pareto front of optimal

solutions in one optimisation run becomes possible. From early developments in

the eighties (Scha�er, 1984; Fourman, 1985) to the introduction of a direct rela-

tionship between Pareto-optimality and a �tness function (Horn and Nafpliotis,

1993; Fonseca and Fleming, 1993), research interests in this branch of evolution-

ary computation remain strong. Regardless of the methodology employed, the

ultimate aim of multi-objective optimisation using a genetic algorithm remains

the same: to identify the solutions that approximate the true Pareto-optimal

solutions.

Various types of genetic algorithm are currently available for use in multi-

objective optimisation (Hajela and Lin, 1992; Horn and Nafpliotis, 1993; Fonseca
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and Fleming, 1993; Zitzler and Thiele, 1999). Although a number of applications

have been bene�ted from the use of such algorithms, as the search space or prob-

lem size increases, the performance of the algorithm always degrades. As a result,

the non-dominated solution set identi�ed by the algorithm may highly deviate

from the true Pareto front. In addition, the coverage of the Pareto front by the

solutions generated may also be a�ected. This is because the issue regarding

the relationship between the problem representation and the size of search space

has rarely been discussed in the context of algorithm development for use in

multi-objective optimisation. Nonetheless, various techniques for single-objective

optimisation using a genetic algorithm are available for solving the problem in-

duced by an increase in problem size. One possible technique involves an insertion

of a co-operative co-evolutionary e�ect into the search algorithm. A genetic al-

gorithm that exploited such strategy is known as a co-operative co-evolutionary

genetic algorithm or CCGA (Potter and De Jong, 1994). In contrast to other co-

evolutionary genetic algorithms where the co-evolutionary e�ect found among

sub-populations is the result of a competition for survival by the individuals,

the co-evolutionary e�ect in the CCGA is produced by a co-operation among all

species. In brief, a species member in the CCGA represents a part of the decision

variable set where all species will co-operatively produce complete solutions to

the problem. Each species member will then independently evolve using a stan-

dard genetic algorithm mechanism. By partitioning the problem in this manner,

the search space that each sub-population has to cover would signi�cantly re-

duce. Although the CCGA is originally developed for use in single-objective

optimisation, the co-operative co-evolutionary e�ect can also be embedded into

a genetic algorithm which is designed for multi-objective optimisation.

In this paper, the co-operative co-evolutionary e�ect as described by Pot-

ter and De Jong (1994) will be integrated into a genetic algorithm called a

multi-objective genetic algorithm or MOGA (Fonseca and Fleming, 1993). The

MOGA is chosen for this case because of its simplicity and the clear de�ni-

tion regarding the relationship between the Pareto-optimality level of a solution

and its corresponding �tness value. The modi�ed MOGA will be referred to as

a multi-objective co-operative co-evolutionary genetic algorithm or MOCCGA

throughout the paper. Note that the co-operative co-evolutionary e�ect can also

be integrated into other types of genetic algorithm that are designed for use in

multi-objective optimisation. In addition to the proposed integration between

two genetic algorithms, possible approach for parallel implementation of the de-

veloped algorithm will also be discussed in this paper.

The organisation of this paper is as follows. In section 2, the background

on the multi-objective genetic algorithm (MOGA) and the co-operative co-

evolutionary genetic algorithm (CCGA) will be discussed. The integration be-

tween the MOGA and the CCGA will be explained in section 3. In addition, the

test problems that will be used to assess the performance of the MOGA will also

be given in this section. In section 4, the benchmarking results and discussions

are given. Section 5 describes the parallel implementation of MOCCGA and its

test results. Finally, conclusions are drawn in section 6.
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2 Multi-objective Genetic Algorithm and Co-operative

Co-evolutionary Genetic Algorithm

Two types of genetic algorithm that will be integrated together are the multi-

objective genetic algorithm (MOGA) and the co-operative co-evolutionary ge-

netic algorithm (CCGA). A brief description of the algorithms follows.

2.1 Multi-objective Genetic Algorithm

The multi-objective genetic algorithm (MOGA) was �rst introduced by Fonseca

and Fleming (1993). The MOGA functions by seeking to optimise the compo-

nents of a vector-valued objective function. Unlike single-objective optimisation,

the solution to a multi-objective optimisation problem is a family of points known

as the Pareto-optimal set. Each point in the set is optimal in the sense that no

improvement can be achieved in one component of the objective vector that does

not lead to degradation in at least one of the remaining components. Given a set

of possible solutions, a candidate solution is said to be Pareto-optimal if there

are no other solutions in the solution set that can dominate the candidate solu-

tion. In other words, the candidate solution would be a non-dominated solution.

Assuming, without loss of generality, a minimisation problem, an n-dimensional

cost vector a is said to be dominating another n-dimensional cost vector b if,

and only if, a is partially less than b (a p < b), i.e.

a p < b$ 8i = 1; : : : ; n : ai � bi ^ 9i = 1; : : : ; n : ai < bi (1)

By identifying the number of solutions in the solution set that dominate

the solution of interest, a rank value can be assigned to the solution. In other

words, the rank of a candidate solution is given by the number of solutions in

the solution set that dominate the candidate solution. After a rank has been

assigned to each solution, a �tness value can then be interpolated onto the solu-

tion where a genetic algorithm can subsequently be applied in the optimisation

procedure. Note that since the aim of a search by the MOGA is to locate Pareto-

optimal solutions, in essence the multi-objective optimisation problem has also

been treated as a multi-modal problem. Hence, the use of additional genetic

operators including the �tness sharing and mating restriction procedures is also

required. However, in addition to the usual application of the �tness sharing and

mating restriction procedures in the decision variable space (Fonseca and Flem-

ing, 1995), they can also be carried out in the objective value space (Fonseca and

Fleming, 1993). A comprehensive description of the MOGA which covers other

advanced topics including goal attainment and priority assignment strategies

can be found in Fonseca and Fleming (1998).

2.2 Co-operative Co-evolutionary Genetic Algorithm

The co-operative co-evolutionary genetic algorithm (CCGA) was �rst introduced

by Potter and De Jong (1994). The CCGA functions by introducing an explicit
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notion of modularity to the optimisation process. This is done in order to provide

reasonable opportunity for complex solutions to evolve in the form of interacting

co-adapted sub-components. In brief, the CCGA explores the search space by

utilising a population which contains a number of species or sub-populations.

In contrast to other types of genetic algorithm, each species in the CCGA rep-

resents a variable or a part of the problem which is needed to be optimised. A

combination of an individual from each species will lead to a complete solution to

the problem where the �tness value of the complete solution can be found in the

usual way. This value of �tness will be assigned to the individual of interest that

participates in the formation of the solution. After the �tness values have been

assigned to all individuals, the evolution of each species is then commenced using

a standard genetic algorithm. Although the CCGA has been successfully used

in various applications, its performance can reduce in the circumstance where

there are high interdependencies between the optimisation function variables.

In order to solve this problem, Potter and De Jong (1994) have suggested that

the �tness of a species member should be obtained after combining it with the

current best individuals or the randomly selected individuals from the remain-

ing species depending upon whether which combination yields a higher �tness

value. This helps to increase a chance for each individual to achieve a �tness

value which is appropriate to its contribution to the solution produced. A com-

prehensive description of the CCGA and the summary of its applications can be

found in Potter and De Jong (2000).

3 MOCCGA and Test Problems

By combining the MOGA and the CCGA together, the resulting algorithm can

be referred to as a multi-objective co-operative co-evolutionary genetic algorithm

or MOCCGA. Similar to the CCGA, each species in the MOCCGA represents

a decision variable or a part of the problem which is needed to be optimised.

However, instead of directly assigning a �tness value to the individual of interest

which participates in the construction of the complete solution, a rank value

will be determined �rst. Similar to the MOGA, the rank of each individual will

be obtained after comparing it with the remaining individuals from the same

species. Then a �tness value can be interpolated onto the individual where a

standard genetic algorithm can be applied within each sub-population. Note

that in this investigation, the �tness sharing strategy utilised in the MOCCGA

is similar to the one described in Fonseca and Fleming (1993) where the �tness

sharing is carried out in the objective space.

In order to assess the performance of the MOCCGA, the MOCCGA will

be benchmarked against the MOGA in six optimisation test cases. These six

test problems are developed by Zitzler et al. (2000) for use in multi-objective

optimisation benchmarking. The problems are minimisation problems with m

decision variables and two objectives. Brief descriptions of the test problems are

summarised in Table 1. Each test problem represents di�erent aspects of multi-
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objective optimisation problems. The benchmarking results will be displayed and

discussed in the following section.

Table 1. Descriptions of the test problems.

Test Problem Characteristic

T1 Convex Pareto front

T2 Non-convex Pareto front

T3 Discrete Pareto front containing several non-contiguout convex parts

T4 Multi-modality

T5 Deceptive Pareto front

T6 Non-uniformity in the solution distribution in the search space

4 Benchmarking Results and Discussions

The MOCCGA will be benchmarked against the MOGA in six test cases de-

scribed in section 3. The common parameter settings for both the MOGA and

the MOCCGA are displayed in Table 2.

Table 2. Common parameter settings for both the MOGA and the MOCCGA.

Parameter Value

Selection method Stochastic universal sampling (Baker, 1989)

Crossover probability 0.7

Mutation probability 0.01

The parameter settings which vary from one test problem to the others are the

number of generations, the number of species (for the case of the MOCCGA), the

number of individuals and the length of binary chromosome. These parameters

are set to accommodate the size of search space in each problem. Although the

settings are di�erent for each problem, the parameter values are chosen such that

the total numbers of objective evaluations are the same for both the MOGA and

the MOCCGA. Also recall that the objective values are evaluated twice for each

individual in the MOCCGA using the strategy based on the one described in

Potter and De Jong (1994).

In this investigation, each algorithm is run �ve times using di�erent initial

populations. Then the search results from all runs are combined where the non-

dominated solutions are subsequently extracted from the overall results. The

non-dominated solutions located by the MOGA and the MOCCGA from all test

cases are displayed in Figures 1-3.
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Fig. 1. (a) Non-dominated solutions and the true Pareto front of the test problem T1,

(b) Non-dominated solutions and the true Pareto front of the test problem T2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

2.5

Objective 1

O
bj

ec
tiv

e 
2

MOCCGA  
MOGA    
g(x) = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Objective 1

O
bj

ec
tiv

e 
2

MOCCGA      
MOGA        
Pareto front

(a) (b)

Fig. 2. (a) Non-dominated solutions and the boundary for g(x) = 1 in the test problem

T3, (b) Non-dominated solutions and the true Pareto front of the test problem T4.

Firstly, the range of variety in solutions found is considered. The MOCCGA

can identify the solutions which cover the whole Pareto front in the cases of T1,

T2 and T4. In contrast, the MOGA can locate the solutions which indicate the

boundary of Pareto front only in the case of T5. From these observations, the

performances of the MOGA and MOCCGA are lowest with the problem that

has a discrete Pareto front (T3) or a non-uniform distribution of solutions in

the search space and along the Pareto front (T6). This means that although the

co-operative co-evolutionary e�ect can help improving the performance of the

search algorithm in the context of the Pareto front coverage, this additional e�ect

is insuÆcient for the algorithm to cope with the discrete and non-uniformity

features of the optimisation problems.

Moving onto the consideration on the closeness of non-dominated solutions

to the true Pareto-optimal solutions. The MOCCGA has proven to be highly

eÆcient in all test problems. In particular, most of solutions identi�ed by the

MOCCGA in the test problems T1, T2, T3, T4 and T6 dominate the correspond-

ing solutions identi�ed by the MOGA. The only test problem at which the
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Fig. 3. (a) Non-dominated solutions and the true Pareto front of the test problem T5,

(b) Non-dominated solutions and the true Pareto front of the test problem T6.

MOGA can identify non-dominated solutions that are reasonably close to the

true Pareto-optimal solutions is the problem T5. Moreover, the non-dominated

solutions identi�ed by the MOCCGA in the cases of T2 and T6 are also the

true Pareto-optimal solutions. In overall, the introduction of co-operative co-

evolutionary e�ect can improve the genetic algorithm performance in terms of

the Pareto front coverage and the number of solutions found which are close to

the true Pareto-optimal solutions.

5 Parallel Implementation of MOCCGA

Genetic algorithms inherit a high degree of parallelism. A large portion of tasks

that operated on a population of individuals can be performed without depen-

dency. Examples of parallel tasks in GAs include objective function evaluations

and genetic operators. Parallel computing can improve the performance of GAs

in two ways, increasing population size to solve complex problem or reducing

computation time. Many parallel implementations of GAs have been purposed.

Some of the parallel GAs can be found in Spiessens and Manderick (1991) and

Gorges-Scheleuter (1990).

In parallel GAs, the entire population is partitioned into sub-populations.

The sub-population can consist of complete strings representing the whole deci-

sion variable sets or portion of strings. Each sub-population is processed by an

assigned processor. At each iteration, sub-populations interact with each other,

according to GAs, by exchanging information between processors. In multipro-

cessor systems, the cost of exchanging information is considered as an overhead.

The performance of parallel GAs is therefore limited by the amounts of infor-

mation that need to be exchanged between sub-populations. For this reason,

reducing information exchanges between processors is one approach of improv-

ing the performance of parallel GAs. In simple GAs, the algorithm has access

to all individuals of the population. However, the information of all individuals

is not required to maintain the performance of GAs. The parallel GAs can take
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advantage of this fact and exchange only a subset of available information. For

example, only the best individuals are exchanged between sub-populations. The

performance improvement is obtained not only by less communication overhead

but also high diversity of chromosome to avoid premature convergent. Hart, et

al. (1996) studied the e�ects of relaxed synchronization on parallel GAs in which

an improvement on execution time was shown. The e�ects of chromosome mi-

gration was investigated by Matsumura, et. al. (1997). Each processor executes

the genetic operations on a set of chromosome and exchange information to only

its neighbours based on di�erent network topologies.

As the price to performance ratio of computers has dropped in a rapid rate,

high performance computing platforms can be built by interconnecting a group

of PCs, so called a cluster. The clusters have been implemented widely and

their application domains have been extended into many new areas. Patrick, et.

al. (1997) has proposed a distributed genetic algorithm for cluster environment

in which a set of library functions for performing parallel genetic operations is

provided. However, the parallel implementation of MOCCGA requires di�erent

details. In MOCCGA, operations in ranking calculation, selection, and crossover

require information accesses within the same species. Information from di�erent

species is required only in the objective value calculation. Therefore partitioning

the MOCCGA based on species can reduce amounts of information exchange and

simplify the program coding. Figure 4 shows the problem partitioning based on

Single Program Multiple Processors paradigm. The parallel process starts from

a single node and creates parallel process on a set of computers. Each process

responsible for one species or a group of species. The information exchange as

well as synchronisation is carried out at the beginning of the objective calculation

stage.

In original MOCCGA, the �tness calculation strategy prevents communica-

tion reduction since �tness calculation for each species require the whole species

information in order to have a complete gene pool. The objective values are

calculated from two combinations; �rstly,the decision variable (after decode the

string) of individual in the current species is combined with the best decision

variable from other species, and secondly, the decision variable of the current

species is combined with the decision variable of individual from other species in

random. The objective values of both cases are then compared and the better one

is selected. The communication at the beginning of objective calculation involves

the broadcast of the best decision variable of individuals and the whole decision

variable of the species to all other processes. The communication performance

can be improved using divide and conquer approach in which log
2
P commu-

nication steps are adequate for P processes. The parallel version of MOCCGA

was developed using C language and MPI library. The performance results were

measured from a 8-node cluster. The number of test species is �xed to 32. An

individual is encoded as a binary of 10 bits. The stochastic universal sampling

was used in the selection process. The test problem T1 is selected in the test.

We have considered three problem sizes, small, medium, and large problem. The

test results are shown in Table 3
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Fig. 4. Implementation of parallel MOCCGA. The communication occurs before the

objective function calculation.

Table 3. Performance results of the parallel MOCCGA: The execution time is shown

in second. The number of individuals in small, medium, and large problems is equal to

100, 500, and 1000 individuals, respectively. The small, medium, and large problems

are processed, respectively, for 100, 20, and 10 generations. In Bcast, the standard

MPI bcast() library is used in the program. The divide and conquer broadcast using

send() and receive() is used in Log P results. The speedup results are calculated using

Bcast results.

Small Medium Large

Bcast Log P SpeedUp Bcast Log P SpeedUp Bcast Log P SpeedUp

1 53.83 59.05 1 299.55 331.95 1 721.48 754.92 1

2 32.16 34.14 1.6 194.53 205.49 1.5 490.72 529.50 1.4

4 19.17 19.15 2.7 129.12 128.31 2.3 355.32 352.28 2.0

8 11.90 10.41 4.8 89.99 86.55 3.3 268.61 260.54 2.69

The speed up of parallel MOCCGA is quite satisfactory. We considered two

approaches of broadcasting objectives value, using MPI Bcast function library

and customize decision value broadcast based on the divide and conquer tech-

nique. The results show slightly di�erent in performance. The custom broadcast

has better performance results for the 4 and 8 processors. The performance

improvement results from the parallelism in communication.

6 Conclusions

In this paper, the integration between two types of genetic algorithms are pre-

sented: a MOGA and a CCGA algorithm. The MOCCGA has been benchmarked

against the MOGA in six test cases. The search performance of the MOGA can

be improved by adding the co-operative co-evolutionary e�ect to the algorithm.

A parallel implementation of MOCCGA was described.
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