
ISBN 0-7803-3104-4

Messy Genetic Algorithm Based New Learning Method
for Structurally Optimised Neurofuzzy Controllers

M. Munir-ul M. Chowdhury
Centre for Systems and Control and

Dept. of Electronics and Electrical Engineering
University of Glasgow, Rankine Building,

Glasgow G12 8LT, U.K.
E-mail: chy@elec.gla.ac.uk

Yun Li
Centre for Systems and Control and

Dept. of Electronics and Electrical Engineering
University of Glasgow, Rankine Building,

Glasgow G12 8LT, U.K.
E-mail: Y.Li@elec.gla.ac.uk

Abstract - The success of a neurofuzzy control system solving
any given problem critically depends on the architecture of the
network. Various attempts have been made in optimising its
structure using genetic algorithm automated designs. In a
regular genetic algorithm, however, a difficulty exists which
lies in the encoding of the problem by highly fit gene
combinations of a fixed-length. For the structure of the
controller to be coded, the required linkage format is not exactly
known and the chance of obtaining such a linkage in a random
generation of coded chromosomes is slim. This paper presents
a new approach to structurally optimised designs of neurofuzzy
controllers. Here, we use messy genetic algorithms, whose main
characteristic is the variable length of chromosomes, to obtain
structurally optimised FLC. Structural optimisation is regarded
important before neural network based local learning is
switched into. The example of a cart-pole balancing problem
demonstrates that such an optimal design realises the potential
of nonlinear proportional plus derivative type FLC in dealing
with steady-state errors without the need of memberships or
rule dimensions of an integral term.

Keywords: Fuzzy Control, Neurofuzzy Control, Messy Genetic
Algorithms.

I. INTRODUCTION

By far the most successful application of fuzzy logic
(FL) [1] has been to systems and control, and this is
termed fuzzy logic control (FLC) [2]. It is very effective
for controlling complex and poorly defined systems as it
incorporates the knowledge of human experts to achieve
good control strategies. Once the controller structure is
determined, the key elements influencing the
performance of the FLC are the rules, scaling factors and
shapes of the membership functions (MFs) [3]. By
carefully choosing the parameters of the fuzzy controllers,
it is always possible to design a FLC that is suitable for
the non-linear system under consideration.

However, the main drawback in conventional
designs is their dependence on the human experience

and, in particular, that on the choice of the controller
structure. Other limitations of conventional FLC designs
are that they can be tedious, trial and error and
unadaptive. A number of hybrid techniques, such as
artificial neural networks (ANNs) and genetic algorithms
(GAs), have been employed to tackle some of these
problems in the past decade [3,4].

In this paper, a new approach to globally optimal
design of the NFCs is proposed based on messy genetic
algorithms (mGAs). Structural Optimisation is achieved
by the flexible encoding mechanism of the mGA, before
on-line adaptation using ANN learning. The layout of
the remainder of the paper is as follows. Section 2
outlines the type of neurofuzzy structure employed, while
section 3 gives an overview of mGA. The optimisation
and learning algorithm is described in Section 4. The
techniques are illustrated with an example in Section 5
and we conclude in Section 6.

II. NEUROFUZZY STRUCTURE

An ANN is a network of highly interconnected
elements, or neurons, which is structurally similar to the
biological nervous system in the brain, and thus enabling
the whole network to function in a similar manner to the
brain. The main feature of ANNs is their ability to learn
from examples. This is achieved by adjusting the
strengths, or weights, of the interconnections according to
some learning rule that can be supervised or
unsupervised. An important feature of an ANN is that it
is a universal model and also an integrated controller.
The network adapts to and represents the real world by
direct input/output (I/O) mapping. This is in common
with fuzzy logic [4]. It is thus natural and feasible to
map an FLC onto an ANN to form a neurofuzzy
controller (NFC) and exploit the adaptive capabilities
while inferencing by rules.

Of all the schemes used to integrate the learning
abilities of ANNs with FLC systems, the most widely

used is one in which the fuzzy system is installed in an
ANN architecture akin to a multilayered neural network.
Each node of the network performs a function such as to
make the entire network equivalent to the fuzzy system.
In this approach, the gradient descent method that is
similar to the backpropagation algorithm is used. Fig. 1
shows the structure of the neurofuzzy controller. This
NFC is essentially a connectionist model in the form of a
multilayered feedforward network.

In this architecture xi is the input state vector.
Layers (1) to (3) represent the premise part and layers (4)
and (5) represent the consequent part of the rules. The
Mamdani min-max inferencing is used and so neurons
with (∧) indicate a min operation and (∨) indicate a
normalising operation. The node a(i) and b(i) are the
fuzzy sets of the inputs and d(i) the fuzzy sets of the
output. The defuzzification method used to obtain the
crisp output y is the centre of gravity (COG). Since the
network essentially represents a FLC mapping there are
restrictions on how much the network can be adjusted in
order to achieve the desired actions from the systems, e.g.
the number of layers cannot be altered since this has
direct relation to the inferencing mechanism. This limits
the structural optimisation to the type of activation
function of the neurons; the number of neurons per layer
and the necessary links between adjacent layers.

III. MESSY GENETIC ALGORITHMS

Genetic algorithms are loosely modelled on
processes that appear to be at work in biological evolution
and the working of the immune systems. Central to
evolutionary system is the idea of a population of

genotypes that are elements of high dimensional search
space. More generally, a genotype can be thought of as
an arrangement of genes, where each gene takes on
values from a suitably defined domain of values. Each
genotype encodes for typically one, but possibly a set of
candidate solutions, phenotypes, - in our case a class of
neuro-fuzzy architecture. The evolutionary process works
on a population of such genotypes, preferentially
selecting genotypes that code for high fitness phenotypes
and reproducing them. Genetic operators such as
mutation, crossover, inversion, etc., are used to introduce
variety into the population and to sample variants of
candidate solutions represented with in the current
population. Thus by survival of the fittest GA over
several generations, the population gradually evolves
towards genotypes that correspond to high fitness
phenotypes. A GA is a nondeterministic search algorithm
based on the ideas of genetics. GAs try to mimic the
Darwinian theory of natural selection and evolution,
tending to find optimal solutions to problems instead of
trying to solve them directly.

 GAs are global optimisation methods requiring no
derivative information and have been successfully applied
to many fuzzy control applications, but not without
objections. The problem arises with the encoding of the
problem parameters. In a regular GA, a coded
chromosome is in fixed length that highly fit allele
combinations are formed to obtain a convergence towards
global optima. Unfortunately the required linkage format
(or the structure of the controller to be coded) is not
exactly known and the chance of obtaining such a linkage
in a random generation of coded string is poor. Poor
linkage also means that the probability of disruption on
the building block by the genetic operators is much
higher [1]. Although inversion and reordering methods
can be used to adaptively search tight gene ordering,
these are too slow to be considered useful.

The new learning method proposed uses messy GA
[5,6]. The main difference between an mGA and a
regular GA is that the mGA uses varying string lengths;
the coding scheme considers both the allele positions and
values; the crossover operator is replaced by two new
operators called cut and splice; and it works in two
phases - primordial phase and juxtapositional phase.

A. Coding and Decoding

In this paper, efficient integer [3] (as opposed to
binary) coding is used in the mGA. Here, one parameter
uses one coding variable and hence dramatically reduces
the memory usage. This ensures that the string length is
kept to a minimal and speeds up evolutionary operations,
while also reducing the unnecessary inner-parameter
disruptions caused by crossover and mutation [3].

x1

x2

(1) (2) (3) (4)

a1

ai

b1

bj

�

�

∧

∧

c1

c2

cm
∧

�

�

�

∨

∨

∨

d1

�

�

d2

dn

∑
y

(5)

Fig. 1 Structure of an NFC

In the original mGA, each gene is a set of numbers
which indicates the gene’s index, and its value. For
example, the set (2,4) would correspond to the second
gene with value ‘4’. Another feature of mGA is that the
order of the string is irrelevant, i.e. the strings ((2,3) (3,1)
(1,3)) and ((3,1) (2,3) (1,3)) are identical. It is also
possible for a string to not have the full gene
complement. For example, for a three parameter problem
the strings ((1,1) (2,1)) and ((1,1) (2,1) (3,3) (2,2)) are
both valid. In the first case the string is said to be under-
specified because there is no gene 3, and in the second
case the string is said to be over-specified because gene 2
appears twice.

Over-specification is the easier of the two to handle,
we simply select conflicting genes on a first-come-first-
serve precedence rule. More often than not, a full gene
complement is required in order to evaluate the objective
function, hence the method for tackling under-
specification if important. Under-specification is handled
by making a simplifying assumption about the structure
of the fitness function. Templates are used to fill in the
unnamed genes with a locally optimal structure.
However, since information about locally optimal solution
is not usually known, a level-wise mGA is used. In level
one, the initial population is created to comprise of all
possible string length to a problem, and a random fixed
template is used to handle under-specification. In
successive levels, the local optimal solution to the
previous level is used as the template for the current
level.

B. mGA Operators

To handle strings of variable length, the standard
crossover operator is no longer suitable. Instead it is
replaced by two new operators called cut and splice, Fig.
2. The cut operator splits a string at a randomly chosen
position with cutting probability Pc=(λ-1)Pκ, where Pκ is
the gene-wise cutting probability and λ is the string
length. The splice operator concatenates two strings in a
randomly chosen order with a fixed probability Ps. The
difference between these operators and the crossover
operator is that for crossover, the crossover point has to

be at the same position for both parents.
Fig. 3 illustrates the pseudo code for messy genetic

algorithms. The selection mechanism is as in regular GA
but executed in primordial and juxtapositional phases.
During the primordial phase, the population is first
initialised to contain the all possible building blocks of a
particular length, thereafter only the selection operator is
applied. This results in enriched population of building
blocks whose combination will create optimal or near
optimal strings. Also, during this phase, the population
size is reduced by halving the number of individuals at
specified intervals. The juxtapositional phase follows the
primordial phase, and here the GA invokes the cut, splice
and the other GA operators.

IV. STRUCTURE OPTIMISATION AND
LEARNING

The success of an NFC solving any given problem
critically depends on the architecture of the network. In
addition to influencing the quality and performance of the
controller, an inappropriate choice of architecture can
lead to slow or no convergence. NFC are typically
specified in terms of the topology, functions computed by
the neurons and the connection weights.

We start by initialising the NFC, that is by
identifying the inputs and outputs; defining an initial
number of neurons per layer; types of activation functions
(Gaussian, triangular, etc.) of each neuron and the links
between adjacent layers. The learning algorithm is based

Before Cut and Splice After cut and splice

1

23 4

12

3

4

Fig. 2: A messy Cut and Splice operation.

Void mGA
{

template = zeros;
for (level=1;level<max_level;level++)
{

eval(template,population);
while (primordial_phase)
{

select(population);
reduce_pop(population);

}
while (juxtaposition_phase)
{

select(population);
cut(population);
splice(population);
mutate(population);

}
template = best(population);

}
}

Figure 3. Messy GA Pseudo Code

on an adaptation of the backpropagation method which
mimic fuzzy inferencing and defuzzification. The
parameters to learn are the weights which relate to the
shape of the activation (or membership) functions. In our
case these are the centres and widths of the fuzzy sets.
On the first run we take our guestimated NFC and test it
against an error minimising function. If it is found that
the NFC structure needs adjustments then the process re-
enters the loop.

The relevant parts of the network requiring
optimisation are layers 1,2 and 4 as only these influence
the action of the controller. The other parts on the
network are kept constant. Each gene in the mGA is a
set of numbers which indicates the I/O index, the neuron
of the adjacent layer it connects to and the type of
activation of the neuron. Initially we assume a skew-
symmetric rule base but no knowledge of the rule base or
of the number of membership functions per input/output
variable. However we do know the numbers of input and
output variables. Consider a coded string as in Fig. 4.
Assuming there are 2 inputs and one output, then the
string ((1,1,2) (3,2,2) (3,0,1) (2,3,1)) would be interpreted
as:

Input 1 connects to the 1st neuron of layer 2 which has
activation of type 2.

Input 2 connects to the 3rd neuron of layer 2 which has
activation of type 1.

Output 1 connects to the 2nd neuron of layer 4 which has
activation of type 2.

This is an overspecified gene because reference to
the output is made twice and we handle this as before on
a first-come-first-served rule. The drawback with coding
is that occasionally we could end up with cases where
there are no premise or consequence parts (under-
specification). In such cases we discard the
corresponding connection. The initial template is a
mapping of a manually tuned rule base.

The activation functions correspond to the shape of
the membership functions which we limit to the two most
commonly used, viz. triangular and Gaussian simply for

the facts stated earlier. In this work, a Gaussian type
activation was set as type 1 and triangular activation was
set to type 2. After the topology of the network is
determined the weights are fine-tuned using the learning
algorithm.

V. A SIMPLE EXAMPLE

There are many practical engineering robot-arm like
applications, such as ballistics, cranes, space shuttle arm,
which depend on precision, stability and flexibility. A
good prototype is the highly non-linear inverted
pendulum on a cart model. The problem is to control the
motion of the cart along a horizontal line so that the pole
will not fall down and eventually stand vertical, Fig. 5.

The overall control objective or the composite cost
function to minimise is described by:

T fs
ji

+
==
∑∑

11

4 250 epochs initial conditions

(1
)

where Ts is the settling time (defined as the time by which
the pendulum must remain stable to ±3o to the vertical)
and set at 5 seconds, and f is a penalty function defined as
the amount the pendulum is away from the vertical. The
four initial conditions were used to generalise the
solution.

A symmetrical fuzzy rule-base with five fuzzy sets
per input/output variable was initially generated for
starting the mGA. Fig. 6 shows the resulting structurally
optimised neurofuzzy network. Fig 7 illustrates the
response of the pendulum for various initial conditions
outside the ones used for optimisation for the best final
solution. The simulation was also carried out using
regular GA and the responses for both the regular GA
and mGA optimisation are superimposed to present a
comparison. We can see that with the mGA
optimisation the pendulum settles to the vertical position
very quickly and that the controller robustly offers zero

((1,1,2) (3,2,2) (3,0,1) (2,3,1))

… … …

Fig 4. Coding of fuzzy rule base: a sample gene

θ, ω

F x, vk

j

i

Fig 5. Schematic of the cart-pole model.

steady state errors even for critical initial conditions.
However, the regular GA does not reach vertical position,
although it does settle down to within the specified error
margin in a shorter time.

VI. CONCLUSION

A new and efficient method of globally and
structurally optimising neurofuzzy controllers using
messy genetic algorithms has been presented. Structural
optimisation is regarded important before ANN based on-

line local learning is attempted or switched into. The test
results show that the flexible structure of this method
provides a means of obtaining a more accurate
neurofuzzy controller. Its ability in structural
optimisation releases the potential of the nonlinear
proportional plus derivative FLC in dealing with steady
state errors without an integral term.

An interesting test would be to compare the
flexibility of mGAs with other flexible methods such as
the genetic programming (GP) [9]. It is expected that a
mGA is to yield more logic and faster combinations than
GP.

ACKNOWLEDGEMENT

The authors wish to acknowledge the Engineering &
Physical Sciences Research Council of the UK for
assisting in the funding for this work.

REFERENCES

[1] L.A. Zadeh, “Fuzzy Sets”, Information and Control, 8, 1965, pp.
338-353.

[2] E.H. Mamdani, “Applications of Fuzzy Algorithms for Simple
Dynamic Plant”, Proceedings of the IEEE, 122(12), 1974, pp. 1585-
1588.

[3] Y. Li, and K.C. Ng, “A uniform approach to model-based fuzzy
control system design and structural optimisation”, Genetic
Algorithms and Soft Computing, F. Herrera and J.L. Verdegay (Eds.),
Physica-Verlag Series “Studies in Fuzziness”, 8, 1996, pp. 129-151.

[4] H. Takagi, and M. Lee, “Integrating design stages of fuzzy systems
using genetic algorithms”. Proceedings of the Second IEEE
International Conference on fuzzy Systems, 1993, pp. 612-617.

[5] D.E. Goldberg, et al. “Messy genetic algorithms: motivation, analysis,
and first results.” Complex Systems, 3, 1989, pp. 493-530.

[6] D.E. Goldberg, et al. “Messy genetic Algorithms Revisited: Studies in
Mixed Size and Scale”, Complex Systems, 4, 1990, pp. 415-444.

[7] C. Karr, “Genetic Algorithms for fuzzy controllers”, AI Expert, 2,
1991, pp. 27-33.

[8] K. Kropp. “Optimization of fuzzy logic controller inference rules
using genetic algorithms”. Proceedings of the EUFIT’93, Aachem,
1993, pp. 1090-1096.

[9] G.J. Gray, Y. Li, D.J. Murray-Smith and K.C. Sharman, “Structural
System Identification Using Genetic Programming and a Block
Diagram Oriented Simulation Tool”, Electronics Letters, 32(15), 18
July 1996.

-0.504

0.465

1.571

0.446

-1.071

0.13

-0.424

0.385

1.525

6.268

5.84

1.69

-5

1.274

-1.806

7.866

12.74

31

12.74

-33.55

60

0

Fuzzy Inference

Angular
velocity

Angle

Left
medium

Left
small

Right
small

Right
medium

negetive
medium

negetive
small

positive
small

positive
medium

Negitive

Zero

Positive

Force

∑

Fig 6. Optimised Neurofuzzy Network

Figure 7. Response of inverted pendulum to various initial conditions.

