A New Learning Method for the Design of Hierarchical Fuzzy Controllers
Using Messy Genetic Algorithms

Frank Hoffmann, Gerd Pfister
University of Kiel
Institute of Applied Physics
24098 Kiel, Germany
Email: hoefi@ang-physik.uni-kiel.de

Abstract

An automatic design method for fuzzy controllers
with a hierarchical prioritized structure is proposed.
A messy genetic algorithm is used to learn different
types of behaviour which are represented by a hi-
erarchical set of fuzzy rules. We demonstrate that
messy genetic algorithms are well suited to the task
of learning because they allow a flexible representa-
tion of the hierarchical prioritized structure.Finally
we have applied the method to the problem of con-
trolling a physical autonomous vehicle; which given
the task of reaching a given location while avoiding
obstacles on the way.

1. Introduction

There is a great deal of current interest in develop-
ing the design of fuzzy logic controllers using genetic
algorithms [1][2][3]. The learning method described
in this paper uses only an objective function, which
evaluates the performance of a fuzzy controller. Our
method differs from other approaches in two special
ways. First of all a hierarchical prioritized struc-
ture is used to represent the rules [4]. As in fuzzy
classifier systems the rule base 1s constructed from
general rules, and specialized ones dealing with
exceptional situations. Secondly we use a messy
genetic algorithm [5] which process the variable-
length strings, in contrast to standard genetic al-
gorithms which work with a fixed length coding
scheme. Messy genetic algorithms therefore allow
a flexible representation of fuzzy rules in the con-
trollers rulebase. We demonstrate an application of
our method in teaching a controller for a behaviour-
based autonomous agent [6].

2. Messy GA

Genetic algorithms are optimisation methods which
are used to process a population of strings by ap-
plying genetic operators such as selection, recombi-

nation and mutation. Solutions of the optimisation
space are coded as fixed-length, fixed-locus strings
defined over an alphabet of alternatives at each po-
sition. The goodness of fit of an individual is calcu-
lated by a scalar objective function which evaluates
the quality of solutions coded by strings. GAs are
particularly well suited for nonlinear fitness func-
tions with many local maxima, where the overall
fitness can not be decomposed into contributions
from single genes.

In classical genetic algorithms the meaning of
a gene is completely defined by its position within
the string. Using fixed-length strings ensures that
each gene occurs exactly once in the string and is al-
ways located at the same position. In messy genetic
algorithms each gene 1s tagged with an additional
number. Each genel is a pair of a number deter-
mining its meaning and the value itself. For ex-
ample the binary string (1001) translates to ((1,1)
(2,0) (3,0) (4,1)) in a messy GA. The genes in a
messy string can be permutated in any way, with-
out altering their meaning. The two strings ((1,1)
(2,0) (3,0) (4,1)) and ((3.0) (1,1) (4.1) (2,0))
are equivalent. Messy strings are not restricted to
contain a full gene complement, and the same gene
can occur more than once in a string. The strings
((2,0) (1,0) (4,1)) and ((4,0) (3.0) (4,1) (1,1)
(2,1)) are both valid although in the first example
gene number 3 is missed, and in the second one the
gene with number 4 1s present twice.

While the selection mechanism remains un-
changed, the crossover operator is replaced with
two simpler operators: splice and cut. A schematic
diagram of the cut and splice operator are dis-
played in Fig.1. The cut operator simply cuts the
string in two parts at randomly chosen position.
The splice operator concatenates two strings, which
could have been previously cut, in a randomly cho-
sen order. When the cut and splice operators are
applied simultaneously to two parent strings they
alt in a similar way to the ordinary crossover oper-
ator. In messy GAs the positions of cuts in strings,

(3)](1,0){(30) 1) (1,0

cut '
(41)|(2.0) 3,0)

1)

[EYIeE)

splice
1(41)|(2.0) 3.0 (3.0)| (2.1)](1,0)]

Figure 1: Schematic of cut and splice operators

which are to be joined can be chosen independently,
whereas in classical GAs the crossover points must
coincide.

3. Hierarchical Fuzzy Controller

A fuzzy controller is composed of a set of rules of
which each suggest a certain control output when a
given input condition is matched. The knowledge
of a fuzzy system 1s stored in the rule base in which
rule j is of the form:

if X1 = A(le) and X2 = A(27j2) and ...
...and X, = A(n,jn) then YV = B(ju)

where the X; are fuzzy input variables and the A; ;)
is the jth fuzzy set of the ith variable. Y is the fuzzy
output variable with fuzzy sets B(;). The number
of clauses n occuring in the conditional step can
differ from rule to rule, because some of the input
variables can be omitted. This means that the out-
put suggested by this rule is not effected by these
specific input variables. One can regard a fuzzy
controller as a representation of a control function
y = f(x) mapping an input state vector z to a con-
trol output y. Each rule suggests a control action
which can be applied to those inputs which fall in
the region of input space covered by the fuzzy sets
in the condition part.

Now we consider two rules where the first one de-
pends on a single input variable X alone. It be can
regarded as a rule of thumb as it covers a large re-
gion of input space. The second rule depends on all
of the input variables with the same fuzzy set A j
as the first one associated to Xj. It can be viewed
as an exceptational rule which applies in a small
number of situations. In the normal defuzzification
process the general rule will contribute with at least
the same amount to the output, as the highly spec-

ified one, even if the input matches completely the
remaining fuzzy sets. A human controller would
always favour the control action proposed by the
highly specific rule if it applies and would disre-
gard the general rule of thumb for this situation.
Yager [4] suggested a hierarchical prioritized struc-
ture (HPS) to overcome this problem. The overall
rulebase is organized in several levels of decreasing
priority. Rules with highly specific antecedents are
attached to the lowest level, while the higher levels
are containing rules with more general information.
If the input matches a rule in the lowest level, all
general rules in the lower priority levels are ignored.
For future reference we simply assume that as soon
as the degree of membership of any rule in a lower
level is different from zero, all rules in the next levels
are ignored. The level to which a rule is attached,
depends on the number of clauses in the conditional
part. In the highest level all rules only contain a sin-
gle variable in the antecedent part. Any rule consti-
tuted by two clauses is put into the next lower level
and so on. Finally the highest priority level con-
sists of rules with the maximum number of input
variables in their conditional part.

4. Coding of Fuzzy Rule Base

The coding scheme allows a representation of a
fuzzy rule base in a genetic string. Karr [1] sug-
gested a method in which the outputs of rules are
coded as integers and has successfully applied it to
design a fuzzy controller for a cart pole balancing
problem. The number of rules in the rule base is
fixed and increases algebraically with the number
of input variables. An earlier approach [7] demon-
strates that by using a hierarchical fuzzy controller
the number of rules can be reduced. A reordering
operator for the genetic algorithm has been pro-
posed to reduce the disruptive effect of crossover
when combining different rulebases. Leitch [2] sug-
gested a coding scheme for fuzzy rule bases with
a varying number of rules for which the position
and shape of the input sets are included in the
chromosomal representation. The strings are inter-
preted by a parser and contain additional codons
used as context switches to determine the context of
a section of code. The coding scheme that we have
adopted uses the capability of messy GAs to encode
information of variable structure and length. Our
fuzzy controller has both input and output vari-
ables, where the universe of discourse of each of the
variables 1s covered by fixed fuzzy sets given by the
designer in advance. The basic element of our cod-
ing is a fuzzy clause, which is represented as a pair
of integers. The first one determines the variable

. 1en.ee@.@8).as) [(13).42.64.0.1) [(B2.@4.@5)], ..

i \,

\.
\
\,
\

(13)]@.2[65wy
/ 7\“
i f [X1=A(1,3)] and [X3=A(35) t hen| Y=B(2) |

Figure 2: Coding scheme for the hierarchical fuzzy
controller

and the second one refers to the fuzzy set of this
variable. For example the clause (3,5) stands for
the fifth fuzzy set of the third variable. No dis-
tinction is made between input and output clauses.
Clauses are combined to constitute rules in a way
that input clauses form the condition part of a rule,
whereas output clauses form the consequence. The
coding scheme is best illustrated in the following ex-
ample. Assume our controller has three input vari-
ables (X1, X2, X3) and a single output variable Y.
The messy string ((1,3) (4,2) (3,5)) corresponds
to the following fuzzy rule

if Xy = A(173) and X3 = A(375) then Y = B(z)

Overspecification of messy strings can be handled
by using a first-come-first-served precedence, which
means that if the same variable occurs more than
once, only the left most occurrence is expressed in a
rule. For example in the messy string ((1,3) (4,2)
(3,5) (1,1)) (1,1) is be suppressed by the first
clause (1,3). Underspecification arises if for some
input variables no corresponding clause occurs in
the messy string. These variables are simply omit-
ted in the conditional part of the rule. In the above
example this is the case for the second variable for
which no clause is present in the string. A further
problem concerns the situation where messy strings
in which no clause corresponding to an output vari-
able appear. The simplest solution is to skip this
rule. We actually provide a repair mechanism which
inserts a randomly chosen clause, whenever there is
no output clause present. The rule strings them-
selves can be viewed as genes of an overall messy
string coding the complete rule base. In this sec-
ond hierarchy of messy coding the basic elements
are fuzzy rules. Depending on the number of input
clauses each rule is attached to one of the levels of
the fuzzy controller with a hierarchical priortized
structure. Underspecification occurs when none of
the rules in any of the levels matches the current in-
put state. In this situation a default control action
is assumed. If the messy coding contains two rules
with an identical conditional step which suggests

conflicting control output again a first-come-first-
served precedence mechanism is used to overcome
the overspecification problem. The complete coding
scheme is illustrated in Fig.2. The cut and splice
operators essential for the messy genetic algorithm
are applied to both levels of the code. On the lower
level in which rules are constituted by clauses cut-
ting and splicing leads to new more or less com-
plex rules. On this level rules compete among each
other, where those that provide good control actions
for some input are favoured. During learning the al-
gorithm must search for those combinations of input
clauses that cover the part of input space in which
the control action can actually be usefully applied.
At a higher level rules have to cooperate to solve the
common control task. A control action proposed by
a single rule can be useful for some input states of
the dynamical system. Different rules for different
parts of the input space are necessary to success-
fully control the system in all possible situations.
Cooperation among rules also emerges, when a less
specific rule is covered by a highly specific one on a
lower level. The individual fitness of a rule highly
depends on the context in which it is used. This
nonlinear dependency among the rules is known as
epistasis. The GA has to learn which rules are gen-
erally useful, and afterwards which combination of
rules is able to cooperate successfully.

5. Learning Behaviour

The interest of designing behaviour-based au-
tonomous agents has grown in the last few years
[6]. Robots which are capable of learning can re-
act more flexible when confrontated with new situ-
ations. They can adapt their behaviour to changing
circumstances like noisy sensor data or incomplete
information about the environment.

A hierarchical fuzzy controller was designed
with the above described methodology for an au-
tonomous agent. The aim was to get the vehicle
(Fig.3) to reach given locations in indoor environ-
ments. Obstacles like walls or objects need to be
recognized and collisions are to be avoided.

Input variables for the agent are distances in for-
ward direction to obstacles obtained from five ultra-
sonic sensors. Further input variables are distance
and relative orientation of vehicle to the goal the
vehicle should reach. Steering angle is used as out-
put variable from which actual velocities of wheels
are calculated.

The autonomous agent has to learn two types of
behaviour in order to avoid collisons and reach the
goalpoint. Whenever an obstacle lies in the path
the agent must make an evasive manouevre. If no

Figure 3: Autonomous robot

obstacles are located near the vehicle it can switch
safely to goal point behaviour. The environments
in which learning takes place are closed rectangle
rooms in which obstacles are located. The environ-
ments differ in size and position of the rectangles,
as well as the locations of starting and goal point,
and the initial orientation of the vehicle. The fit-
ness function describes the performance of the agent
with respect to a given task. An agent achieves a
good fitness, if the vehicle reaches the goal point
without collision with one of the obstacles. Agents
are favoured that take short paths. Each agent is
tested for a set of environments. When using a fixed
test set the GA tends to learn the geometry of the
environments, instead of the general control task.
The agents performed well in those environments
presented during the evolution process, but showed
poor performance for unseen positions of obstacles
and goals. This problem can be partially allevi-
ated by creating new test sets after some genera-
tions have passed in the evolution process. Adding
noise in the simulation of sensors will also increase
the robustness of the controllers. Leitch [2] has
suggested to using another GA to evolve the test
sets themselves. The fitness of an environment is
the inverse of the product of agents fitnesses tested
against it. During evolution more test sets arise and
the ability of the controllers to cope with more dif-
ficult situations increases. The controller obtained
from the simulation has been transfered to the real
autonomous vehicle. Fig.4 shows a typical run of
the robot in our floor, driving round a corner and
passing two gaps.

6. Conclusion

Our paper describes a design method for hierarchi-
cal fuzzy rule bases using genetic algorithms. We

Figure 4: Run of the autonomous vehicle

presented a new coding scheme using messy strings
which allows a natural representation of fuzzy rule-
bases with a hierarchical priortized structure. It
has been demonstrated that an autonomous agent
1s able to learn simple reactive behaviours for a cer-
tain class of environments and tasks.

References

[1] C. L. Karr, ”Design of a Cart-Pole Balancing
Fuzzy Logic Controller using a Genetic Algo-
rithm” SPIE Conf. on Applications of Artifi-
ctal Intelligence, Bellingham, WA | 1991

[2] Donald Leitch, Penelope Probert, ”New Tech-
niques for Genetic Development of Fuzzy Con-
trollers” | submitted to IEEE Trans. on Syst.,
Man and Cybern.

[3] J.L. Castro, M. Delgado and F. Herrera, ”A
Learning Method of Fuzzy Reasoning by Ge-
netic Algorithms”, FEUFIT 93, Aachen 1993,
vol. 2, pp. 804-809

[4] Ronald R. Yager, ”On a Hierarchical Struc-
ture for Fuzzy Modeling and Control”, IEEE
Trans. Syst., Man and Cybern., vol. 23, no. 4,
pp. 1189-1197,1993

[6] David E. Goldberg, Bradley Korb, Kalyanmoy
Deb, ”Messy Genetic Algorithms Motivation,
Analysis and First Results”, Complex Systems
vol. 3, pp. 493-530, 1989

[6] Rodney A. Brooks, "Intelligence Without Rea-
son”, A.I. Memo No. 1293, MIT, April 1991

[7] F. Hoffmann, G. Pfister, ” Automatic Design of
Hierarchical Fuzzy controller Using Genetic Al-

gorithms” , EUFIT 94, Aachen, Germany 1994

