INFORMATION SCIENCES xx, 1-xx (1994) 1

Soft Computing Techniques for the Design of Mobile Robot Be-
haviours

FRANK HOFFMANN
Berkeley Initiative in Soft Computing (BISC)

Computer Science Division
University of California, Berkeley CA 94720
email: fhoffman@cs.berkeley.edu

ABSTRACT

This paper describes a design method for mobile robot behaviours that employs
a variety of soft computing techniques. Evolutionary algorithms are used to learn
a wall following behaviour implemented by means of fuzzy control rules. A messy
coding scheme for fuzzy rules is able to bound the size and complexity of the rule
base, with the result, that the task of designing the fuzzy controller remains
tractable for the genetic algorithm. An evolutionary strategy tunes the scaling
factors for the controller’s input and output and optimizes the adjustment of the
sensors on the robot. A neural network analyzes the sensor data in order to
provide the robot with additional information on its environmental context.

Keywords: genetic algorithms, fuzzy control, mobile robot, soft computing

1. INTRODUCTION

Designing controllers for mobile robots by hand becomes a difficult task
as soon as the behaviour becomes more complex. In many applications
the robot’s environment changes with time in a way that is not predictable
by the designer in advance. In addition, the information available about
the environment is subject to imprecision, incompleteness and imperfection
due to the limited perceptual quality of the sensors. These problems limit
the utility of traditional model-based reasoning approaches for the design
of intelligent robots.

1.1. PBwvolutionary Computation

Evolutionary computation provides an alternative design method that
adapts the robot’s behaviour without requiring a precisely specified model
of the world. Its adaptive power enables the robot to deal with changes

© Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0020-0255/94/%6.00

in the environment and to acquire a robust behaviour tolerating noisy and
unreliable sensor information.

Evolutionary algorithms constitute a class of search and optimization
methods guided by the principles of natural evolution [15]. The major dis-
tinctions between the methods belonging to this class originate from the
genetic representation of a candidate solution to the optimization problem,
the genetic operators employed to generate new offspring and the selection
scheme used to determine the parents for reproduction. Genetic algorithms
normally work with binary strings and their progress is due to the harmo-
nized co-operation of selection and crossover in the evolutionary progress
[10]. In evolutionary strategies candidate solutions are directly represented
by real-valued vectors [2]. Individuals contain an additional vector of strat-
egy parameters that is subject to optimization as well. This self-adaptation
provides the evolutionary strategy with additional flexibility by tuning the
evolutionary process itself. Mutation is the most important search operator
in evolutionary strategies, whereas recombination plays only a minor role.
In genetic programming a population 1s comprised of computer programs
structured in a hierarchical composition of functions and terminals [17].

Evolutionary computation plays an important role in modeling and de-
signing artificial-life systems [19]. Essentially, artificial life and machine
learning understand evolutionary algorithms as an abstraction of natural
evolution in that they adapt a system to its environment. ”Evolutionary
robotics” is concerned with the design of systems with lifelike properties
by optimizing the robot’s controller with respect to some objectives. The
essential distinction of the proposed methods is the way in which the evo-
lutionary algorithm represents the controller in the genotype. A variety of
different methods, such as neural nets [20], tree-structured programs [21],
classifier systems [8], stimulus-response rules [11] and fuzzy control rules
[4][5][13][18] [25], are used for the implementation of the robotic behaviour.

1.2. Soft Computing

Fuzzy systems employ a mode of approximate reasoning, which allows
them to make decisions based on imprecise and incomplete information in
a way similar to human beings. A fuzzy system offers the advantage of
knowledge description by means of linguistic concepts without requiring
the complexity and precision of mathematical or logical models. Fuzzy
control provides a flexible tool to model the relationship between input
information and control output and is distinguished by its robustness with
respect to noise and variation of system parameters. Among many other
applications, fuzzy logic controllers (FLC) are applied to the control of

mobile robots [3][22][23]. Sensor inputs are mapped to control actions by
means of fuzzy rules constituting the robot’s behaviour.

Soft computing is concerned with the design of intelligent and robust
systems, which exploit the tolerance for imprecision inherent in many real
world problems[26]. In order to achieve this objective, soft computing sug-
gests a combination of fuzzy logic, neural networks, probabilistic reasoning
and genetic algorithms. Soft computing advocates that the integration of
these complementary methodologies, each of them adequate for its specific
domain of problems, results in more powerful hybrid methods than using
a single method exclusively.

Recently, numerous researchers explored the integration of evolutionary
algorithms with fuzzy systems in so-called genetic fuzzy systems[1][7][12][16][24].
The majority of publications are concerned with the automatic design or
optimization of fuzzy logic controllers either by adapting the fuzzy mem-
bership functions or by learning the fuzzy if-then rules. The first method
results in a self-tuning controller and is primarily useful in order to optimize
the performance of an already existing controller. The second approach is a
self-organizing process that learns the appropriate relation between control
input and output starting without any previous knowledge.

1.3. Bwolutionary Design of Mobile Robot Behaviours

Promising results have been achieved by employing evolutionary meth-
ods to develop rule based behaviours for mobile robots. A significant part of
the engineering task of designing an intelligent robot is delegated to the evo-
lutionary algorithm, which explores alternative behaviours and optimizes
the controller’s parameters. BONARINI ET AL. proposed an automatic
design method called S-ELF (Symbolic Evolutionary Learning of Fuzzy
Rules) to learn basic robotic behaviours and to coordinate their activation
[4. Dorico ET AL. employed a learning classifier system to adapt be-
havioural patterns of a mobile robot such as light following, searching food
and avoiding predators [8]. TUNSTEL ET AL. used genetic programming
to learn fuzzy control rules for mobile robot path tracking[25]. BRAUNST-
INGL ET AL. optimized a fuzzy controller for a wall following behaviour of
a mobile robot by means of a genetic algorithm [5]. GREFENSTETTE ET
AL. applied their genetic learning system SAMUEL to a collision avoidance
and navigation task for mobile robots [11]. LEITCH proposed a genetic al-
gorithm based on a context dependent coding scheme in order to learn a
fuzzy controller for a mobile robot given the tasks of wall following, turning
in a corridor and parallel parking [18].

' genetic algorithm ! _ ' performance
| + :<__flt_n9§3_____, evaluation 1
1 evolutionary ! ' insimulated :
1 1 1
n _s_tr_a_tle_g_y _____ FTTT 1 environments ! |
optimisation 1 : learning e mmm e oo ' obotic |
. 1 . . .
of scaling i, of fuzzy optimisation of | behaviour
. . 1
factors KI KO | 1 rule base sensor orientation 1 |
! 1
— .
1
1
1

Yy
linguistic Yariables control :
[9 *] action mobile robot --
(_if-then rules) &
knowledge base ! tuning of sensors
, weight
fuzzy controller vfactor o
distance
. . memory
information + -
preproccessing
) \ sensor measurements
environmental r
context neural network |-

Fig. 1. System architecture

2. System Architecture

Following the guideline of soft computing we integrated different method-
ologies into a hybrid system in order to design the robotic behaviour. Fig.1
shows the role of each of the soft computing partners, fuzzy control, genetic
algorithm, evolutionary strategy and neural network. The evolutionary
learning process marked by the dashed lines takes place in a simulation of
the robot and its environment. The solid lines represent the components of
the system that are transferred to the real robot after the learning phase
is concluded.

The behaviour of the mobile robot is implemented by means of fuzzy
control rules. Fuzzy controller employ a method of approximate reasoning
which allows them to find a suitable control action even if the information
about the environment is imprecise and incomplete. The relationship be-
tween perceived control input and desired control action is stored in the
knowledge base constituted by the linguistic variables and the fuzzy if-then
rules.

Based on the performance criteria specified by the human designer the
quality of a controller is evaluated by simulating the robotic behaviour in

Fig. 2. Mobile robot

a set of training environments. The purpose of the genetic algorithm is to
learn the fuzzy if-then rules that are suitable to perform the task of wall-
following. In addition, the evolutionary strategy tunes the scaling factors
of control input and output and optimizes the adjustment of the sensors
in order to achieve an optimal perception of the environment. The neural
network classifies the environmental context based on the measurements
provided by the ultrasonic sensors.

2.1. Mobile Robot

The mobile robot depicted in Fig. 2 is driven by two independent step-
ping motors which enable the controller to keep track of the robot’s posi-
tion. It perceives its environment by means of five ultrasonic sensors, each
of them covers an angular range of approximately £20°. The probability
of omitting an object increases at the borders of the perceptual field. The
orientation of the sensors on the robot is adjustable. An optimal percep-
tion of obstacles is achieved by a compromise between a sufficient overlap
of the individual sensors and a wide total field of vision. The robot is used
as a testbed for the evolutionary design method for fuzzy logic controllers
proposed in the following. The given task is to learn a wall following be-
haviour which includes to avoid collisions of the robot with the walls and
to perform an adequate turning manceuvre in dead-end situations.

2.2. Neural Network

The purpose of the feed-forward neural network shown in Fig. 3 is to clas-
sify different environmental situations such as dead-ends, corners and walls.

output
neurons

hidden
neurons

input

N
neurons e . .'.°O

d,(0).....d,(t-3) |d2(t),...,d2(t-3) || | O Yy Ui | O

~ - - -
~_ =~

- ~ ~ - 1. ~ - - . g .
sensor 1 sensor 2 sensor 5 steering orientation

Fig. 3. Neural network for the classification of the environmental context

The neural network incorporates previous sensor data and steering angles in
its analysis, since the environmental context of the robot can not be inferred
solely from the current set of sonar measurements. The neural network ob-
tains the last four distance measurements d;(t),...,d;(t—3),{i=1,...,5}
of the five sensors si,...,ss as input. If an object closer than 1.5bm is
detected by the sensor s; at time t — n, the input d;(t — n) becomes 1, oth-
erwise it 18 0. Additional input neurons contain the four previous steering
angles of the robot ¢(¢),...¢(t — 3), and the orientation of the sensors ¢
as depicted in Fig. 8. The input is mapped to three output neurons, which
become active, if an obstacle appears to the left, in front of or to the right
of the robot. The network is able to distinguish among eight different ba-
sic situations, starting with no obstacle detected at all and ending with a
dead-end in which case all three output neurons become active at the same
time. The network was trained with the back-propagation algorithm using
a training set of 4000 input-output pairs generated by means of a simplified
sensor model.

2.8. Fuzzy Controller

Compared to optical sensors, sonar distance information is much more
afflicted with incompleteness and imprecision because of the physical char-

; distance variables

! — — I
| o
151 > ! S NI steering
sensor 1 S Ll R d, N4 K, -d2>: fuzzy |
2) £ logic angle
sensor 2 [t | > > c g
's3 8| 93 |5 [Kid3 il controller]
sensor 31 |7 g, 5 [k, g ! I
4 < e >: . ..
sensor 4 S 5 dg = K, dg . Ilngmstlc P |2 Ko W
5) c | [variables =
sensor 5 | = = > BBl e
L— | — | 7]
|_ 1 :::::::::::::::::::::| —
| --: feed- obstacle left - rljrezf))gse a
| I -~
R forward | obstaclein front! i
| neural obstacle right "~
' | network 9 !

\— context variables

Fig. 4. Control scheme of the mobile robot

acteristics of ultrasonic signals and varying reflection properties for different
kinds of objects. A sensor sometimes fails to detect an object, especially
if 1t is located at the borders of its perceptual field. Even if the sensor
information is correct, a single set of sonar measurements does not reveal
enough information to determine the entire state of the environment. As
a result, former controllers turned out to be unable to detect dead-ends in
a reliable way [13]. In order to cope with real world situations the agent
has to exhibit more than a purely reactive behaviour based on the current
sensor stimuli. The agent requires some kind of memory to take previous
sensor information into account for its decision making on the next control
action.

Fig. 4 shows the control scheme of the mobile robot of which behaviour is
implemented by means of fuzzy control rules. The fuzzy controller employs
five distance variables dy, . . ., ds containing preprocessed distance informa-
tion which takes previous sensor measurements into account. Ultrasonic
data is afflicted with a large amount of uncertainty. For example echo
signals are not detected by the sonar receiver if they are not reflected per-
pendicular to the object. As a result, a single sonar measurement may fail
to reveal the presence of an object that was detected by the same sensor
one time step ago. Due to multiple reflections sonar sensors sometimes
overestimate the true distance to an object. In our case the obstacles are
static and the robot moves at a relatively slow speed. Therefore, the crisp

value of each distance variable d; is computed as a weighted average over
previous sensor values s;(f) neglecting those measurements that received
no echo signal.

di:Zanei(t—n)si(t_n)/zanei(t_n) (1)

where ¢;(t) € {0,1} is 1 if the sensor s; received an echo, at time ¢ and
0 if no signal was detected. The weight factor a € [0, 1] determines the
significance allocated to previous sensor measurements. The optimal value
of o is a compromise between compensating the impact of incorrect sensor
data and exploiting the most up-to-date information.

Each distance variable is subdivided into four trapezoidal fuzzy sets and
an additional fuzzy term in case no echo signal is detected by the sensor.
As depicted in Fig. 7?7 the distance variables are scaled by a common gain
factor K1 before they are provided as input to the controller. The steering
angle 1 serves as the control output. It is inverse proportional to the
turning radius and defines the way in which the robot moves in the next
timestep. The crisp value of ¢ is also multiplied by an output gain factor
Ko. An evolutionary strategy is employed in order to find the optimal
values for the real valued parameters o, K7, Ko.

In addition to the distance variables the controller obtains supplemen-
tary information on the environmental situation provided by the three out-
put neurons of the neural network depicted in Fig. 3. The fuzzy controller
uses these context vartables in order to define situation dependent con-
straints on the rule antecedents. The idea is, that each behaviour has its
own domain of applicability and that the corresponding rule is only acti-
vated in the appropriate context [22]. For example, the rules to execute a
turning manceuvre are only applied in a dead-end situation. Each of the
three context variables contains two linguistic terms, corresponding to a
firing and non-firing output neuron.

3. Evolutionary Algorithm

Evolutionary algorithms process a population of competing candidate
solutions from one generation to the next [2][10][15]. Each individual is
represented by a set of parameters called a genotype. The algorithm eval-
uates the quality of an individual in regard to the optimization task by
means of a scalar fitness function. According to Darwin’s principle, highly
fit individuals obtain a better chance to reproduce offspring to the next
generation. Genetic operators such as crossover and mutation are applied

to the selected parents in order to generate new candidate solutions. As a
result of this evolutionary cycle of selection, crossover and mutation more
and more suitable solutions to the optimization problem emerge within the
population.

3.1. Messy Coding Scheme

The choice of an appropriate genetic representation of candidate solu-
tions plays a crucial role in the design of an evolutionary algorithm. In a
conventional coding scheme for fuzzy rule bases the chromosome contains
one output term for every possible combination of statements in the an-
tecedent. The number of rules and thereby the size of the chromosome
increase rapidly with the number of input variables, with the result that
the evolutionary optimization becomes less and less feasible.

CHOWDURY ET AL. proposed a messy genetic algorithm which opti-
mizes the structure of a neuro-fuzzy controller [6]. LEITCH developed a
context dependent coding scheme for fuzzy logic controllers in which the
meaning of a gene is not determined by its absolute position but depends
on the surrounding genes [18]. This paper presents a new messy coding
scheme for fuzzy rules and rule base. The coding is able to bound the size
and complexity of the rule base, especially for a larger number of input vari-
ables. Therefore, the genetic algorithm is able to maintain the efficiency,
robustness and comprehensiveness of the fuzzy controller. A fuzzy rule base
is constituted by a smaller number of fuzzy rules, which correspondingly
encompass larger regions of input space. Due to the more compact genetic
representation, the task of designing the fuzzy controller remains tractable
for the genetic algorithm.

The proposed coding scheme imitates the genetic representation used in
messy genetic algorithms proposed by GOLDBERG ET AL.[9]. The mean-
ing of a gene is part of its coding instead of being defined by its position
within the chromosome. This property enables the formation of chromo-
somes with variable length in which genes can be arranged in any order.
A messy genetic algorithm has more freedom to generate efficient building
blocks, since the coding scheme considers both the allele value and its po-
sition. Adapting the gene ordering enables the genetic algorithm to find
the optimal linkage format, by minimizing the defining length of highly fit
schemata.

First of all, the linguistic variables and terms are numbered by integers
without distinguishing between input and output variables. In the example
depicted in Fig. 5, the input variables direction, distance and the output
variable steering are associated to the integers 1,2, 3 marked by the boxes

10

’ variable ’ linguistic terms

direction={left,ahead,right} distance={very near,near,medium,far }

0 7 3 3 D) N)]

1] 1] 3
steering = { sharp left, left, straight on, right, sharp right }

e B B2 B B

| clause |:(6/ariable)’| term |)

(,) —® direction is right
(’) ——— distance is very near

(% ’g) ———— steering is right

Fig. 5. Enumeration of input and output variables and their linguistic terms,
genetic representation of fuzzy statements

with rounded corners. Each variable is composed of several linguistic terms
which are numbered consecutively as well, marked by the rectangular boxes
in Fig. 5.

Fuzzy statements of the form wvariable is term constitute the basic ele-
ments of our coding scheme. In the genotype, a fuzzy statement is rep-
resented by a single gene build of two integer values. The first integer
value defines the fuzzy variable, the second value specifies the associated
linguistic term. For reasons of clarity the boxes in Fig. 5,6,7 are filled with
different patterns, whereby each pattern represents a specific variable or
rule. These patterns are not used in the actual coding, in which the mean-
ing of a gene is determined by the first integer value and the surrounding
genes. In the first example depicted in Fig. 5 the gene (1,3) encodes the
fuzzy statement direction is right, in which the integer 1 defines direction
as the variable, and the value 3 represents the associated linguistic term
right.

Chromosomes encoding fuzzy rules, are formed by any arbitrary se-
quence of statement genes as shown in Fig. 6. The first example with
the three integer pairs (2,1),(3,1), (1,3) contains exactly one gene for ev-
ery variable and represents the fuzzy rule if direction is right and distance
1s very near then steering is sharp left. This rule might also be encoded by
the sequence (3,1)(1,3)(2, 1) build from the same basic genes arranged in
a different order.

11

(@,1H& B (@ [&)
(8.BD|@ B [@)

if direction isright and distance is very near
then steering is sharp left

&.8)|@,H)
if distanceis far then steering is straight on

@.,1h|®,8)|@,1D|(@,[2)

if direction is left and (distance is very near or distance is near)
then steering is sharp right

Fig. 6. Genetic representation of fuzzy rules

In a messy coding scheme, the size of a chromosome is variable, with
the result that a chromosome might contain multiple duplicates of the same
gene having different allelic values. In case the chromosome is lacking a spe-
cific gene, the messy genetic algorithm has to deal with incomplete genetic
information when generating the phenotype. The chromosome (3,3)(1,4)
is an example of such an underspecification, since it contains no gene for the
variable direction with an integer 2 in the first position. In this situation,
the coding scheme considers direction as a do-not-care variable of which
the corresponding fuzzy statement is omitted in the antecedent. More gen-
eral rules with shorter antecedents like if distance is far then steering is
stratght on encompass larger regions of input space. Using these type of
compact, general rules enables the genetic algorithm to reduce the size and
complexity of the rule base. Fuzzy rules which are lacking a conclusion
to the output variable become meaningless. Therefore, the operators for
the initialization and the recombination of rule genes are slightly modified
in order to guarantee, that each rule chromosome contains at least one
statement gene for the output variable.

In a messy coding scheme the dual problem to underspecification is
overspecification, which arises whenever multiple genes for with conflicting
linguistic terms for the same variable occur in the chromosome. In the
last example in Fig. 6, the chromosome (2,1)(3,5)(1, 1)(2, 2) possesses two
conflicting genes (2,1), (2,2) for the input variable distance. Both of their

12

direction

Fig. 7. Genetic representation of the fuzzy rule base

corresponding statements distance is very near and distance is near are
comprised in the conclusion of the rule by combining them with a fuzzy
OR operation.

Finally, the chromosome representing the entire rule base is formed by
a set of rule genes as depicted in Fig. 7. Due to the flexible genetic repre-
sentation of antecedents, some of the rules encompass more than one entry
of the rule matrix or even correspond to entire rows or columns, which is
helpful to reduce the overall number of rules. It can be easily understood,
that such a compact representation of the rule matrix becomes even more
efficient in case of more than only two input variables. For example, the
fuzzy controller for the mobile robot depicted in Fig. 4 employs eight input
variables resulting in a total of number 25.000 entries in the rule matrix.
Normally, the rule bases adapted by means of the messy coding scheme
manage the control task with less than 200 rules.

The coding scheme for the entire rule base requires no additional enu-
meration of genes since the order of rules does not matter. Nevertheless,
the twin problems of over- and underspecification emerge for the rule base
coding as well. The chromosome is overspecified if several rules with dif-

13

ferent conclusions apply to the same input situation. A fuzzy controller
that employs the usual inference scheme computes the control output from
the interpolation of the control actions suggested by the firing rules. The
decision making of the fuzzy controllers presented in this paper is modified
in a way that rules with more specialized antecedents receive priority to
general rules with only a few input statements. The conclusion suggested
by a general rule is ignored in favour to the output of a more complex
rule that becomes active at the same time. The usual inference mecha-
nism 1s employed in case of a conflict among rules having the same level of
complexity.

Underspecification occurs, if none of the rules match the encountered
control situation. In this case, a rule generation process is put into op-
eration, which inserts a new rule gene of which antecedent matches the
current input. During the initialization of the population the new rule ac-
quires a randomly chosen control action. In later generations the rule base
is completed by copying the gene from another member of the population
that possesses the missing rule and achieved a high fitness on the same
training situation. The gene segment of the new rule is inserted into the
chromosome next to the gene of the rule that became active in the pre-
vious control step. This mechanism ensures that the genes of rules which
are activated one after another in time are adjacent in the chromosome.
The result is a tight linkage among genes which are assumed to have high
epistasis, since the overall performance of the controller strongly depends
on the co-operation of rules adjacent in the rule matrix.

In addition to a modified coding scheme, messy genetic algorithms also
employ different genetic operators for recombination [9]. The usual crossover
operator is replaced by cut and splice operations. Cut and splice operators
are applied on the level of rules, as well as on the level of the rule base.

Cut and splice operations on the rule level modify the rule antecedent
by incorporating new or deleting existent input statements inherited from
the parents. A matching procedure compares the statement genes of the
two parent rules, so that only rules bearing a minimal resemblance in their
antecedent and conclusion part are mated. The offspring rule might become
more specific than its parents if it inherits new input variables. On the
other hand a rule might become more general if it inherits an additional
statement corresponding to an already present input variable, or looses
an input variable in its antecedent. Sometimes, cut and splice result in
an offspring containing no gene for the output variable. In this case, the
chromosome is "repaired” by subsequently adding the missing gene from
one of the parents.

Cut and splice operations are also applied on the rule base level, on
which they recombine entire sets of fuzzy rules. The idea is, that two par-

14

ents which have already adapted suitable control rules for different regions
of input space transmit their complementary knowledge to the common
offspring. After the recombination, the offspring is subject to a rule base
completion procedure which prevents the loss of important parent rules.

As a result of a cut and splice operation, chromosomes might grow or
shrink in size which enables the genetic algorithm to adapt the number of
rules and the number of statements in the antecedent to the complexity
of the control problem. Instead of optimizing all entries of the entire rule
matrix at once, the genetic algorithm starts with a few general rules which
in the course of evolution are gradually refined and supplemented by more
specific rules. The cut and splice operators as well as the mutation operator
are described in more detail in [12].

3.2. Evolutionary Strategy

Evolutionary strategies are a class of evolutionary algorithms that op-
timize a vector of real-valued parameters, which makes them especially
useful for continuous optimization problems [2]. The real-valued represen-
tation of candidate solutions avoids additional multimodality of the fitness
landscape sometimes introduced by the conventional binary representation
used by genetic algorithms. The mutation operator in evolutionary strate-
gies adds a normally distributed random vector with zero mean to the
parameter vector of the candidate solution. Each individual contains an
additional vector of strategy parameters specifying the variance of the mu-
tation applied to the usual variables. These strategy parameters are subject
to mutation and recombination just as the usual parameters. This mecha-
nism of self-adaptation enables the evolutionary strategy to find those meta
parameters that have an advantageous impact on the evolutionary progress
of the object parameters. Due to these benefits evolutionary strategies are
preferable to genetic algorithms for problems in the domain of continuous
optimization.

The role of the evolutionary strategy in the overall system depicted in
Fig. 1 is to optimize four additional parameters of the controller and the
sensors. Each candidate solution embodies scaling factors for the input and
output, the orientation of the sensors and the weight factor determining
the impact of preceding sensor measurements on the distance variable.

This paragraph describes the idea of tuning the fuzzy sets in order to
optimize the performance of the controller, without relaxing the linguistic
interpretation of the fuzzy knowledge base too much. The membership
functions characterize the underlying fuzzy sets of linguistic terms. Nor-
mally, they are defined in advance in a way that reflects the designer’s

15

\
~ \\\“’/,’ -
7z
NI\
~

. /2d
Y

Fig. 8. Field of sonar perception for large (left) and small (right) value of 8

perception with regard to the dimensions of variables, e. g. near distance
or sharp left steering. Therefore, the designer is able to comprehend and to
interpret the rule base as automatically generated by the genetic algorithm.
On the other hand, an inappropriate definition of membership functions
may result in a suboptimal control behaviour. A reasonable compromise
between the clarity of fuzzy rules on one hand and an optimal approxima-
tion to the control task on the other hand can be achieved, by introducing
two linear scaling factors Ky, K¢ for input and output. The first one scales
the sensor input of all distance variables in common, while the second one
plays the role of an output gain applied to the steering angle as shown
in Fig. 1. The meaning of the linguistic terms is preserved, while at the
same time the evolutionary strategy is able to adjust the sensitivity of the
controller in regard to perceived objects and to tune the magnitude of the
control action.

In addition to the scaling factors, the evolutionary strategy optimizes the
orientation of the five sensors on the robot. Each ultrasonic sensor covers
an angle of vision of approximately +20°. The overall angle 8 depicted in
Fig. 8 determines the way in which the five sensors perceive objects in the
frontal half plane of the robot. A large value of § (Fig. 8 left) enables a
wide total field of perception, but allows only a minimal overlap among
the individual sensory fields. A small value of # (Fig. 8 right) guarantees
the reliable detection of objects even if they appear under a direction that
lies at the boundaries of two adjacent sensory fields, but offers a poor
total range of perception. The evolutionary strategy tunes the parameter
@ in order to achieve an optimal compromise between these two conflicting
objectives.

Finally, the fourth parameter a defines the weight given to previous sen-
sor measurements when comprised within the distance variable according

16

to Eq. 1. In case of a large value of « the controller becomes more robust
in regard to incorrect and imprecise sensor data, since the distance value
is based on an average over several measurements. A small value of o
improves the topicality of the distance information, so that the controller
responds faster to perceived changes of the environment. The task of the
evolutionary strategy is to find a value of « that suffices both objectives.

3.3. Fitness Evaluation

The evaluation of the control behaviour by means of a scalar fitness func-
tion depends on the objectives and constraints of the robotic application.
There are only a few examples [4][21], in which the real robot is used to
evaluate the controller. Often, online performance evaluation is too time
consuming or even becomes impossible in case a poor controller may cause
severe damage to the robot. Therefore, most of the approaches employ a
quantitative simulation model of the robot and its environment.

For practical reasons, the simulation of the robot is based on some ide-
alistic assumptions about its dynamics, environment and sensors, but still
bears sufficient resemblance to the real world, e. g. it models incomplete and
noisy distance measurements. The genetic algorithm benefits from the ro-
bustness of fuzzy control in respect to noise and imperfection, which allows
it to utilize a simplified model for the fitness evaluation of the controllers.
Previous experiments with the robot demonstrated that the controllers
adapted in the simulation achieve an identical performance in the physical
reality[13].

During the fitness evaluation, the fuzzy controllers are tested on the sim-
ulated robot, which is placed in several different kinds of corridors. LEITCH
suggested to evaluate the performance of the controllers on a variable set
of test cases , instead of using a static set of training situations [18]. A
second, simultaneous genetic algorithm adapts the set of training environ-
ments to the performance of the current population of controllers, so that
the learning is based on the competition of two evolutionary processes.
The robustness of the adapted robotic behaviour is improved, because the
controllers are tested preferably on those environments that turned out to
be difficult for previous generations [14].

The training environments are formed by a combination of dead-ends,
straight segments and branchings at a right angle finally leading to an exit
of the corridor. In order to find its way out of the corridor, the robot has to
distinguish among these different types of segments. In each environment
the robot is started two times heading towards opposite initial directions.
Fig. 9 shows a training situation in which the robot collides with the lower

17

\
t=0 as”
! d=d
! C
\ =
t=te |
P %,
£~) 2
S =
'S =
e

Fig. 9. Fitness evaluation of controllers, ¢. : time until collision, d. : absolute
distance from start point until collision

right corner because the controller failed to initiate a left turn in time. A
simulated run of the robot either stops if it collides with a wall or if a max-
imum evaluation time is exceeded. The fitness obtained by the controller
for a single run is proportional to the time ¢. the robot travels without
having a collision. The most simple obstacle avoidance behaviour is to
turn the robot on the spot. In order to elude the evolution of this trivial,
but inadequate control strategy, the fitness is multiplied by the absolute
distance d. the robot covered from the starting point. The total fitness

F=> tixd (2)
E;

assigned to a controller is computed from the sum of fitness values achieved
in separate environments ;.

Fig. 10 shows a simulation of the robot behaviour adapted by means of
the proposed method. The robot is initially heading towards the dead-end
situation. Due to the additional context information provided by the neural
network the controller is able to perceive the dead-end. The controller
initiates a turning manceuvre which lasts until the robot is heading away
from the dead-end. Afterwards, the normal wall following behaviour guides
the robot to the exit of the corridor by keeping a safe distance to the left
wall.

18

Fig. 10. Simulated run of the robot controlled by the evolutionary designed fuzzy
rule base

4. Conclusions

This paper presented a soft computing approach for the design of mo-
bile robot behaviours which combines evolutionary algorithms, fuzzy con-
trol and neural networks into a hybrid system. A wall following behaviour
is implemented and adapted by means of a genetic fuzzy system. The
proposed messy coding scheme enables the formation of fuzzy rules with
antecedents of variable size and structure. As a result, the chromosomal
representation of the rule base becomes more flexible and compact, which
significantly reduces the complexity of the design task for the genetic algo-
rithm. An evolutionary strategy optimizes additional continuous parame-

19

ters of the controller and the robot. By tuning the scaling factors of the
input and output the evolutionary strategy optimizes the performance of
the controller, without relaxing the linguistic meaning of the fuzzy sets.
The evolutionary strategy adapts the adjustment of the sensors, in order
to achieve an optimal perception of the environment. A neural network
analyzes the current as well as past sensor data in order to classify the en-
vironmental situation. This additional information provided by the neural
network is used by the controller in order to impose context dependent con-
straints on the activation of fuzzy rules for specific manceuvres. A short
term memory stores previous sensor measurements which the controller
takes into account for the computation of distance information. These two
extensions to the former purely reactive control behaviour [13] enable the
controller to detect dead-end situations and to execute a suitable turning
manceuvre of the robot.

Acknowledgements

Thanks to Gerd Pfister and Oliver Malki from the Institut fir Ange-
wandte Physik of the University of Kiel for their supporting work on the
mechanics, sensors, electronics and control software of the mobile robot.
This work was funded by the MURI (ARO DAAH04-96-1-0341) and BISC
program of UC Berkeley.

REFERENCES

1. Th. Back, F. Kursawe, ” Evolutionary Algorithms for Fuzzy Logic: A Brief
Overview”, Fifth International Conference IPMU: Information Processing
and Management of Uncertainty in Knowledge-Based Systems, pp. 659-
664, (1996).

2. Th. Back, H. P. Schwefel, ”Evolution Strategies I: Variants and their com-
putational implementation”, ”Evolution Strategies 11: Theoretical aspects
and implementation”, Genetic Algorithms in Fngineering and Computer
Science, Ed. G. Winter, J. Perieaux, M. Gala, P. Cuesta, pp. 111-126,
pp. 127-140, John Wiley & Sons, (1995).

3. H. R. Beom, H. S. Cho, ” A Sensor-Based Navigation for A Mobile Robot
Using Fuzzy Logic and Reinforcement Learning”, IEFE Transactions on
SMC, vol. 25, no. 3, pp. 464-477, (1995).

4. A. Bonarini, F. Basso, ”Learning Behaviours implemented as Fuzzy Logic
Controllers for Autonomous Agents”, 2. Online Workshop on Fuvolutionary
Computation, (1996).

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22

. R. Braunstingl, J. Mujika, J. P. Uribe, ”A Wall Following Robot With a
Fuzzy Logic Controller Optimized by a Genetic Algorithm”, Proc. FUZZ-
IEEE’95, vol. V, pp.77-82, Yokohama, Japan (1995).

. M. Munir-ul M. Chowdury, Yun Li, "Messy Genetic Algorithm Based

New Learning Method for Structurally Optimised Neurofuzzy Controllers”,

IEEE Int. Conf. Industrial Technology, Shanghai, China (1996).

O. Cordon, F. Herrera, ”A General Study on Genetic Fuzzy Systems”,

Genetic Algorithms in Fngineering and Computer Science, pp. 33-57, John

Wiley & Sons, (1995).

M. Dorigo, U. Schnepf, ” Genetics-Based Machine Learning and Behaviour-

Based Robotics: A New Synthesis”, ITEEFE Trans. on SMC, vol. 23, no. 1,

pp. 141-154, (1993).

. D. E. Goldberg, B. Korb, K. Deb, ”Messy Genetic Algorithms Motivation,

Analysis, and First Results”, Complex Systems, vol. 3, pp. 493-530, (1989).

D. E. Goldberg, Genetic Algorithms in Search, Optimisation and Machine

Learning, Reading Massachusetts: Addison-Wesley, (1989).

J. J. Grefenstette, A. C. Schultz, ” An Evolutionary Approach to Learning

in Robots”, Machine Learning Workshop on Robot Learning, (1994).

F. Hoffmann, G. Pfister, ”Learning of a Fuzzy Control Rule Base Us-

ing Messy Genetic Algorithms”, Genetic Algorithms and Soft Computing,

Ed. F. Herrera, J. L. Verdegay, Physica-Verlag, (1996).

F. Hoffmann, O. Malki, G. Pfister, ” Evolutionary Algorithms for Learning

of Mobile Robot Controllers”, Proc. EUFIT 96, vol. 11, pp. 1105-1109,

(1996).

F. Hoffmann, G. Pfister, ”Evolutionary Design of a Fuzzy Control Rule

Base for a Mobile Robot”, to appear in International Journal of Approxi-

mate Reasoning

J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press,

Cambridge, MA, (1992).

C. L. Karr, ”Design of a Cart-Pole Balancing Fuzzy Logic Controller using

a Genetic Algorithm” SPIE Conf. on Applications of Artificial Intelligence,

Bellingham, WA, (1991).

J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable

Programs, MIT Press, Cambridge MA, (1994).

Donald D. Leitch A New Genetic Algorithm for the Evolution of Fuzzy

Systems, PhD thesis, University of Oxford, (1995).

M. Mitchell, S. Forrest, ” Genetic Algorithms and Artificial Life”, Artificial

Life 1 (3), pp. 267-289, (1994).

S. Nolfi, D. Floreano, O. Miglino, F. Mondada, "How to Evolve Au-

tonomous Robots: Different Approaches in FEvolutionary Robotics”,

Proc. of the 4. Int. Workshop on the Synth. and Sim. of Living Sys. ,

MIT Press, (1994)

P. Nordin, W. Banzhaf, ”Genetic Programming Controlling a Miniature

Robot”, AAAT Fall Symposium on Genetic Programming, (1995).

. A. Saffiotti, E. H. Ruspini, K. Konolige, ”Using Fuzzy Logic for Mobile

23.

24.

25.

26.

21

Robot Control”, Handbook of Fuzzy Sets and Possibility Theory, Kluwer
Academic, (1997).

H. Surmann, J. Huser, L. Peters, ”A Fuzzy System for Indoor Mobile
Robot Navigation” Fourth IFEE Int. Conf. on Fuzzy Systems, pp. 83-88,
(1995)

H. Takagi, M. Lee, ”Integrating Design Stages Stages of Fuzzy Systems
using Genetic Algorithms”, Proc. of the Seond IFEE Int. Conf. on Fuzzy
Systems, pp. 612-617, (1993).

E. Tunstel, M. Jamshidi, ”On Genetic Programming of Fuzzy Rule-based
Systems for Intelligent Control”, Int. Journal of Int. Automation & Soft
Comp. , vol. 2, no. 2, (1996).

Lotfi A. Zadeh, " The Roles of Fuzzy Logic and Soft Computing in the Con-
ception, Design and Deployment of Intelligent Systems”, BT Technology
Journal, vol. 14, no. 4, (1996).

