Messy Genetic Algorithms for Subset Feature Selection

D. Whitley, J. R. Beveridge, C. Guerra-Salcedo, C. Graves
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523 USA
(303) 491-5373
whitley, ross, guerra, gravesc@cs.colostate.edu

Abstract

Subset Feature Selection problems can have
several attributes which may make Messy Ge-
netic Algorithms an appropriate optimization
method. First, competitive solutions may of-
ten use only a small percentage of the total
available features; this can not only offer an
advantage to Messy Genetic Algorithms, it
may also cause difficulties for other types of
evolutionary algorithms. Second, the evalu-
ation of small blocks of features is naturally
decomposable. Thus, there is no difficulty
evaluating underspecified strings. A Messy
Genetic Algorithm yields new state of the
art results on difficult matching problems in
computer vision. We also apply variants of
the Fast Messy Genetic Algorithm to syn-
thethic test problems.

Keywords: messy genetic algorithms, subset feature
selection, computer vision, geometric matching

1 Introduction

The subset feature selection problem occurs in several
domains, including machine learning and computer vi-
sion. In machine learning, many features may be avail-
able as potential inputs to a learning system. Learning
is often faster and potentially more robust if the set of
inputs can be reduced to a subset which captures all
or most of the information contained in the larger fea-
ture set. Applications are found in the construction of
decision trees (Bala et al. 1995) and neural networks
(Brill et al. 1992).

Messy Genetic Algorithms (Goldberg et al. 1989) are
well suited to some types of subset feature selection
problems. Messy Genetic Algorithms allow variable-

length strings that may be underspecified or overspec-
ified with respect to the problem being solved. A
messy gene is a pair: (GeneNumber, AlleleValue).
The messy chromosome is a collection of messy genes.
For example ((5,0)(2,1)(2,0)(1,0)) is a chromosome
with 3 genes. This chromosome is overspecified since
gene 2 has two different allele values: 0 and 1. A
messy chromosome may also be underspecified in that
not all chromosomes have allele values for all possi-
ble genes. In this case, genes 3 and 4 (and perhaps
others) are not represented. One difficulty with Messy
Genetic Algorithms is that relatively complex methods
for evaluating underspecified strings must be used.

When the Messy Genetic Algorithm is applied to sub-
set feature selection problems, it is sometimes conve-
nient to modify the algorithm. Rather than sampling
subsets of genes which may have allele value 0 or 1,
we can sample small subsets of features. In effect, we
only generate subsets of genes that have allele value 1.
All unspecified genes are assumed to have allele value
0. In this case, evaluation is simple.

In section 2, we present a subset feature selection ap-
plication in computer vision. The Messy Genetic Algo-
rithm produces an order of magnitude improvement in
performance in terms of time to solution when com-
pared to other genetic algorithms and to the previ-
ous best known search methods. Messy Genetic Algo-
rithms work well for this computer vision application
in part because the best solutions tend to use only a
small subset of available features. Hence solutions tend
to be “sparse” with the majority of bits being set to
zero; this causes serious problems for other algorithms
such as CHC (Eshelman 1991).

To further motivate the application of Messy Genetic
Algorithms to subset selection problems, in section 3
variants of the Fast Messy Genetic Algorithm (FMGA)
are applied to synthetic subset selection problems pre-
viously studied by Radcliffe and George (1993) and

Crawford et al. (1997); tests are also done using de-
ceptive trap functions (Deb and Goldberg 1993). Fi-
nally, we also apply the FMGA to a new, more dif-
ficult synthetic problem which has a sparse solution;
the performance of the FMGA is particular strong on
this problem.

The application of a Messy Genetic Algorithm to the
computer vision geometric matching problem and the
application of a variant of the Fast Messy Genetic
Algorithm to synthetic test problems suggests that
Messy Genetic Algorithms may be particularly well
suited to sparse subset feature selection problems.

2 The Geometric Matching Problem

Object recognition problems in computer vision can
be solved by finding a discrete correspondence map-
ping between an object model and a subset of image
features such that projected model features align with
corresponding image features. There are two interre-
lated parts to this problem: the correspondence prob-
lem and the pose problem. The correspondence prob-
lem involves correctly pairing features of the model
with a subset of features extracted from a 2D image.
The pose problem is to best estimate the 3D position
and orientation of the object relative to the camera.

Given a pose algorithm which places the camera rela-
tive to the object for specific correspondences and an
objective function to measure the relative quality of al-
ternative correspondences, object recognition becomes
a combinatorial subset feature selection problem. A
variety of techniques have been suggested for search-
ing the correspondence space. Of these, perhaps the
best analyzed approach is tree search as formalized by
Grimson (1990). Unfortunately, Grimson has shown
that tree search requires exponential time to find an
acceptable match under many common circumstances.

Beveridge’s (1993; Beveridge and Riseman 1995) work
on object recognition shows local search in the form of
bit-climbing algorithms to be a powerful tool for find-
ing optimal matches between features on 3D geometric
object models and features in 2D images. These algo-
rithms excel on problems involving poor quality image
data and cluttered scenes.

An example problem involving 2D object models is
shown Figure 1. The line segments making up the
model are labeled with letters and are shown on the
left. Data line segments including three instances of
the “tree” are shown to the right. The model is over-
laid on top of the data in the best match position. In
matching, the model may be rotated, translated and
scaled so as to best fit the data.

EREEERES
.
.

FR[E
.

Figure 1: Example of a best match for one of the 48
test problems.

The set of pairs denoted by S is the cross product of
the model features M and data features D. The match
space C' includes all possible subsets of S. A bit string
of length [= |S| can encode a match ¢ = C using a
1 in the %" bit to indicate inclusion of the pair s; € c.
The correspondence matrix in Figure 1 indicates which
pairs of model and data segments are part of the best
match: the filled squares correspond to 1’s in the bit
encoding.

An objective function is defined over the correspon-
dence space. The best match ¢* minimizes:

E(¢") < E(¢) VeeC (1)
The match error, E, includes two terms: a fit error
and an omission error (Beveridge 1993). When E is
evaluated for a correspondence ¢, the best global 2D
similarity transformation from object model to data is
computed. The specific fit error minimized is the in-
tegrated, squared perpendicular distance between in-
finitely extended model lines and the data line seg-
ments; this allows matches to arbitrarily fragmented
data. The best fit for any ¢, neglecting undercon-
strained cases, is computed by solving a quadratic
polynomial. The omission part of E is computed by
transforming the model to the best-fit pose and mea-
suring how well the data covers the model.

Due to the manner in which F is computed, it is pos-
sible to rapidly compute a highly reliable estimate of
the AF associated with a single bit toggle. The details
of this incremental update procedure are explained by
Beveridge (1993:83). The partial evaluation is one or
two orders of magnitude faster than a full evaluation

of E and gives local search an inherent advantage over
genetic algorithms that make larger jumps in the rep-
resentation space.

2.1 A Modified Messy Genetic Algorithms

A Messy Genetic Algorithm typically has three
phases:

1. Initialization.

2. Primordial Phase.

3. Juxtapositional Phase.

During initialization, a population containing one copy
of all substrings of length & is created. The expecta-
tion is that recombination will find the proper build-
ing blocks and assemble them into good solutions.
Given a problem with size [and building block size
k, the initialization phase requires a population size of

))
[There are a total of (& > gene

combinations of size k, and for each gene combination
there are 2* different allele combinations.

popsize = 2¥

For the matching problem, it is not necessary to gen-
erate all possible substrings of size k. Only spatially
proximal triples of line segments are used. Let M be
the set of model lines and D the set of data line seg-
ments. For each model line m; € M, determine the
closest two neighbors m;; and m;s as defined by Eu-
clidean distance 6:

0 (mi,mil) <

< 6(mg,mg) Vmy € M — {m;}
6 (mi, miz) <

0
8 (mi,my) Ymy, € M —{m;,mu}
Also find the analogous nearest neighbors d;; and dj»
for each data line segment d; € D.

Given a matching problem between M and D, each
pair of segments (m;,d;) € S form two spatially prox-
imate triples f; and f>:

fi = ((mi,dj), (ma,dj1), (M2, dj2))
f2 = ((mi,d;), (ma,dj2), (M2, dj1))
(2)

Since each of the [pairs of model and data segments
in S leads to 2 triples, there are 2/ spatially proximate
triples.

A messy gene is a pair of model-data features s € S.
The modified initialization phase creates the 2[triples:
thus developing substrings of length & = 3 to seed
the initial population. This modified form of initial-
ization does not create all possible “building blocks”.
However, the spatial proximity heuristic creates a set
of building blocks that is likely to contain elements of
the optimal match. We then rely on later phases of the

Messy Genetic Algorithm to correctly assemble these
blocks.

In a simplified primordial phase, the error E is com-
puted for each to the 2[triples. These triples are then
sorted, and some fraction of the best form the initial
population. In the experiments presented here, the top
50% of triples are used. This simple selection of the
better triples produces high quality building blocks.

During Juxtapostion, selection is used together with
two operators: cut and splice. Cut ’cuts’ the chro-
mosome at random position. Splice ’attaches’ two cut
chromosomes together. These two operators are the
equivalents of crossover in a traditional GA. It is here
that the Messy Genetic algorithm begins to construct
the match out of small building blocks that appear to
be good partial matches to some subset of features in
the model.

At some point, recombination will typically construct
enough of the match for local search to easily and
quickly fill out the rest. For this reason, a pass of
the bit-climbing algorithm described above is periodi-
cally applied to individuals from the population. The
frequency with which local search is run increases as
population size decreases.

To help drive the Messy Genetic Algorithm to a so-
lution, every three generations the least fit individual
in the population is dropped and the population size
correspondingly shrinks by one. Every f = %
generations, an individual is selected from the popula-
tion and local search is run using the selected match
as an initial state. If the result is better than the
worst currently in the population, then it is inserted
back into the population. This hybridization strategy
is similar to the one we previously used in conjunction
with CHC and Genitor (Whitley et al., 1995).

2.2 Results On Matching Problems

Figure 2 shows examples of 6 out of 48 test prob-
lems created from stick figure models. Model seg-
ments are randomly scaled and placed in the data
images and are potentially fragmented, skewed and
omitted. Random clutter and structured clutter are
added to the data. In 24 problems, 0, 10, 20 and
30 additional clutter segments are randomly placed
about the image for each model. In the other 24
problems, 0, 1, 2 and 3 additional more highly cor-
rupted model instances are added. This dataset and
local search results are available through our website:
http://www.cs.colostate.edu/~vision.

The CHC and Genitor algorithms have been shown to
perform poorly on this data; implementation details

!
//

) 5,
0
/7
AN
f///
\ /
>~
l /
A\T///\
ZAN
T~

_—

\' \ ~~ —1 |
) o~ — -
A R PN x
\ / /"\I/ /\\//§ I ~/
NI RS B /
/\/\ \\\ . \\
\ // N A N NIPAN \

N\

TN

Figure 2: Test suite with Random clutter. From left
to Tight, top row: box, telephone pole and dandelion.
Bottom row: deer, tree and leaf.

concerning these algorithms along with their perfor-
mance on the geometric matching problem are given
by Whitley et al. (1995). In contrast, this dataset of
geometric matching problems is readily solved using
bit-climbing algorithms (Beveridge et al., 1995). The
bit-climbing algorithm is enhanced by using a partial
restart mechanism after it becomes trapped in a lo-
cal optima. This local search algorithm with partial
restarts is the best known algorithm for solving these
geometric matching problems.

Hybridizing a steady state genetic algorithm (Genitor)
with the bit-climbing algorithm yields results roughly
comparable to those obtained using bit-climbing alone;
a hybrid algorithm that combined CHC with the bit-
climbing algorithm failed to yield competitive results
(Whitley et al., 1995). One of the main reasons that
CHC appears to work so poorly is that the solu-
tions are sparse—which conflicts with several aspects
of CHC’s basic search strategy.

The Messy Genetic Algorithm described above per-
forms much better than the random starts bit-climbing
algorithm. To be more precise, we have run many tri-
als of each algorithm in order to measure the prob-
ability P of finding the known best match in a sin-
gle execution of either local search or the Messy Ge-
netic Algorithm. Based upon these estimates of Ps,
the number of trials ¢, required to find an optimal
match with confidence (), is determined:

ts = |—10ng Qf—| Qf = I—Qs Pf = I—Ps (3)
For the Messy Genetic algorithm, the average ¢ over
the 48 problems is 2, the median is 1, the minimum is
1 and the maximum is 9. For local search, the average
ts is 111, the median is 42, the minimum is 5 and the
maximum is 998.

10,000.00 4 s
< Local Search ®
1,000.00 {{= Messy GA 25
~—~~ R n
[2] OO
o =3
c 00 "
S 100.00 = ——
o T2 = L=
b X ad et L
~ 10.00 "on
g L eex et~ e
7 onowo® "
T 100 o =
Q:: <><><>e L -
0.10 |=u=
0.01 : : : : {
0 10 20 30 40 50
Problem Instances, Increasing LS Run-time Order

Figure 3: Comparison of run-times plotted on a log
scale.

An estimate of the time required to solve each problem
with 95% confidence is the average run-time per trial
times the number of trials t,. These run-times for a
Sparc 20 are shown in Figure 3. On average, the Messy
Genetic Algorithm is 5.9 times faster than local search.

The Messy Genetic Algorithm is doing better on the
harder problems. Divide the problems into the 24
solved quickly by local search and the 24 requiring the
most time. On the easier problems, the Messy Genetic
Algorithm runs on average 2.5 faster. In contrast, for
the harder 24 problems the Messy Genetic Algorithm
runs 9.4 times faster. Thus, for the most difficult prob-
lems the Messy Genetic Algorithm reduces the time to
solution by an order of magnitude.

Figure 4 illustrates a matching problem involving data
from a real image. There are 4 model line segments
and 443 data line segments, generating 1,772 possi-
ble pairs of segments. This problem is hard both be-
cause the search space is large, 217" matches, and
because the model interacts with other buildings and
road structures to produce false matches.

Local search finds the optimal match 12 times in
10,000 trials, yielding Ps = 0.0012 and t;, = 2,494.
To run 2,494 trials takes roughly 18 hours. In con-
trast, the Messy Genetic Algorithm finds the optimal
match in 10 out of 100 trials. The average time for
a trial of the Messy Genetic Algorithm to converge to
a solution is 38 seconds, and t; = 29. Hence, the
Messy Genetic Algorithm reliably solves this problem
in under 20 minutes.

We have also solved other large real world geometric
matching problems using line segments extracted from
photographs with up to 20,000 model line-data line
segment pairs.

(c) (d)

Figure 4: Real data example. a) aerial photograph, b)
Burns line segments [Burns et al., 1986], c¢) building
model, d) best match.

3 Fast Messy Genetic Algorithms

For the geometric matching problem we used a cus-
tomized version of the Messy Genetic Algorithm; we
now look at a relatively generic version of the MGA
and apply it to a set of synthetic test problems. The
Fast Messy Genetic Algorithm (FMGA) was designed
to cope with the problem of the large population
size used by the Messy GA (Goldberg et al. 1993;
Kargupta 1995). During the initialization phase the
FMGA uses ‘Probabilistically Complete Initialization.’
The initial chromosome length is set to I', k < I' < I
(e.g. 1" is I — k). The number of strings of size I’
choosen from strings of size [is:

(+)

The probability of randomly selecting a gene combi-
nation of size k in a string of length I’ with [genes is
given by Kargupta (1995):

(14)0(4)

Inverting this suggest that in strings created at ran-
dom of size I’, one string on average will have the
desired gene combination of size k. To include all
alleles combinations Goldberg et al., (1993) used the

population-sizing equation developed for simple GA’s
(Goldberg et al., 1992). The population sizing equa-
tion for FMGA'’s becomes:

(zl' >/< llf__lz >2c(a)62(m— 1)2*

where ¢(a) is the square of the ordinate of a normal
random deviate whose tail area is a. The parameter
(3% is the maximum signal-to-noise ratio and m is the
number of subfunctions to be solved (Kargupta 1995).

In order to evaluate the Fast Messy Genetic Algo-
rithm on existing test problems (and also, to make
our FMGA consistent with its original specification)
we retained the practice that genes with allele value ‘0’
can be included in chromosomes. We developed code
for the Fast Messy Genetic Algorithm based on Deb
and Goldberg’s (1991) Messy GA in C and Kargupta’s
(1995) thesis. Since we are ultimately interested in
subset selection problems, our initial evaluation tem-
plate fills all unspecified genes with value ‘0’.

A process of building block filtering takes place after
the probabilistically complete initialization. Building
block filtering is an iterative process that selects, fil-
ters and shrinks chromosomes. Selection is performed
in order to increase the number of chromosomes with
good evaluations. Selection has to assure competi-
tion between chromosomes that share genes in com-
mon (Kargupta 1995). After selection, a random gene
deletion takes place designed to reduce chromosome
size to building block size k. This is followed by the
juxtapositional phase, which is basically the same used
in the Messy Genetic Algorithm.

After the juxtaposition phase begins, the best chromo-
some found so far is used as a template for evaluation,
thus supplying additional gene values which are not
specified by the chromosome which is being evaluated.

The advantage of the FMGA is the relatively small
population size compared with Messy GA. Still, for
hard problems the size of the initial population is on
the order of thousands and it remains unchanged dur-
ing all phases of the FMGA (Kargupta 1995).

3.1 Block Insertion Fast Messy Genetic
Algorithm (BIF-MGA)

We developed a modification on the final phase of the
Fast Messy Genetic Algorithm that introduces more
variability to individuals.

1. After the initial phase, the chromosome length is
k. The chromosome length is increased to approx-
imately ! by using cut and splice multiple times

during the juxtapositional phase. Splice is done
with probability 1.0 and cut with probability 0.03
(Kargupta 1995).

2. After most chromosomes have grown to length [
or more, not all members in the population have
the same length. In order to regularize the length
of all individuals, a new length [,, is fixed to be
0.75 I. For each individual with length I;, if [; >
ln, l; is reduced to [,, by randomly deleting genes.
Otherwise no gene deletion is performed.

3. A procedure called Block Insertion redefines the
chromosome by inserting new fixed-size messy
gene blocks. Each messy-gene block has the fol-
lowing characteristics:

(a) The block length is /3.

(b) The gene numbering is continuous starting at
1/3 * Random(0,2) with randomly-generated
allele values.

(c) Let I; be the individual length, if I; > [/3
then the block is inserted at the beginning
of the chromosome by changing the first {/3
messy genes and leaving I;—(1/3) messy genes
without change. If I; < [/3 then [; messy
genes taken from the block completely re-
places the chromosome.

4. Another juxapositional phase of cut and splice is
applied to again increased chromosome length to
greater than [.

These changes were made via empirical experimenta-
tion in an effort to reduce the population size required
by the FMGA. The population size of the BIF-MGA
was not larger than 100 for all of our experiments.

4 Test Results

We tested the BIF-MGA on several problems with dif-
ferent degrees of complexity. Results were compared
against both CHC and the standard FMGA.

4.1 Some Existing Test Problems

Experiments used the following test problems.

a) Trap Functions with [; bits which are replicated
n times as defined by Kargupta (1995). The basic trap
function is defined as follows :

f(m):{lj if o =1

[; —1—wu otherwise

where u is the number of ‘1’ bits. Experiments were
conducted using two versions of the problem; I; = 3,

Problem Algorithm Best Function
Opt Used Result | Evaluations

Trap CHC 90 19442
90 3-bit 90 | FMGA¥* 90 256500
BIF-MGA 90 95863

Trap CHC 87 1500000
100 5-bit | 100 | FMGA¥* 100 1005000
BIF-MGA 100 852000

Subset CHC 60 1301
120-60-1 60 FMGA 60 55252
BIF-MGA 60 22726

Subset CHC 60 566980
120-60-4 60 FMGA 56 735015
BIF-MGA 60 314952

Table 1: Tests results for different problems using
CHC, FMGA and BIF-MGA. For FMGA* the re-
sults are taken from Kargupta (1995). CHC, FMGA
and BIF-MGA results are averages of ten independent
runs. Opt gives the optimal solution.

n = 30 and l; = 5, n = 20. Messy genetic algorithms
are particular well suited to this kind of decomposable
problems. Results are shown in table 1.

b) Subset selection problems defined by Radcliffe
and George (1993) and used by Crawford et al. (1997).
A subset of s elements has to be selected among ¢
elements. Within the subset there are g groups of k
elements. For our experiments k is the same in all g
groups. Experiments were conducted for non-epistatic
120-60-1 and epistatic 120-60-4 problems, where ¢ =
120 and s = 60; k& = 1 (or 4) indicates the degree
of epistasis. Radcliffe and George defined two other
more difficult epistatic problem, but their algorithms
also failed to solve the 120-60-4 problem. Our results
are shown in table 1.

The performance of the BIF-MGA on the epistatic
version of the subset selection problem 120-60-4 was
better than CHC. The population size for the FMGA
for the 120-60-1 problem was 2500 and no mutation
was used. For the 120-60-4 problem the FMGA used
a population of 3500, again with no mutation.

In order to assure that the block insertition process is
not just a way of implementing high mutation rates,
we ran experiments using the FMGA while varying
gene and allele mutation probabilities from 0 to 1 by
0.1 increments for each parameter. In all cases, the
performance of BIF-MGA was better than FMGA.

4.2 The Sparse Subset Problem

We found the subset problems posed by Radcliffe et
al. (1993), including those studied by Crawford et
al. (1997), to be relatively easy to solve. A new syn-

Obj. Func. value

BIF-MGA
T

T T
BIF-MGA — |

80

L L L L L
800000 1e+06 1.2e+06 1.4e+06 1.6e+06

No. of evaluations

L L L
0 200000 400000 600000

Obj. Func. value

CHC popsize 50 1500000 trials FMGA popsize 3000
T T T T T

T
F cHC — |
240 FMGA -~

220 | B

T

200 |

g0 Lo ‘ ‘ ‘ ‘ ‘
0 200000 400000 600000 800000 1e+06
No. of evaluations

L L L
1.2e+06 1.4e+06 1.6e+06

Figure 5: Results for the 120-bit Sparse Subset Problem. On the left are results for BIF-MGA, and on the right
are the results for CHC and the standard FMGA. The optimal solution is 240.

thethic test propblem, the sparse subset problem was
developed with the following characteristics. Two 60-
bit blocks are composed of ten 6-bit subblocks. Each
subblock of 6 bits uses the following evaluation func-
tion based on the number of 1 bits in the subblock.

Count of 1 bits | Contribution to Fitness
six 20
five 15
four 12
three 9
two 6
one (except 000001) 3
000001 12

For each of the two blocks of 60 bits, if the num-
ber of ones exceeds 13 there will be a penalty of
—2 x ones(block) where ones(block) returns the num-
ber of ones in a block of 60 bits. Thus a maximum
value of 240 is achieved when every subblock of 6 bits
has the pattern 000001. Thus the solution is “sparse”.
Results for this problem using 10 random runs of BIF-
MGA and for CHC and FMGA are shown in Figure 5.
Gene and allele mutation was set at 0.10 for FMGA;
we in fact tested many different mutation levels, but
FMGA never was better than CHC. The BIF-MGA
solved the Sparse Subset Problem every time, while
the other algorithms never found an optimal solution.

4.3 Discussion of BIF-MGA

Clearly, the Block Insertion F-MGA (BIF-MGA) uses
some ad hoc mechanisms to improve the performance
of the FMGA. We initially conjectured that Block In-

sertion was just a form of mutation, but we failed to
replicate the performance of the BIF-MGA by using
mutation operators that randomly inserted new genes
and/or changed allele values. Also, the BIF-MGA was
not tuned for individual problems; rather it worked
well across all of the problems on which it was tested
without tuning. Note that Block Insertion is not used
until after the standard mechanism of the FMGA have
constructed strings that are largely of length [. It may
be that in these later stages of the Messy Genetic Al-
gorithm most of the work of putting together good
building blocks has been done and there is some ad-
vantage in now re-organizing chromosomes back into
some regular configuration. Certainly, this is one side
effect of the BIF-MGA and it would seem to be the
only side effect of the BIF-MGA that could not be em-
ulated via some form of mutation. More work needs
to be done to understand the impact of block insertion
on the Fast Messy Genetic Algorithm during the later
stages of search.

5 Conclusions

Messy Genetic Algorithms are extremely well suited to
the problem of geometric matching in computer vision.
The customized MGA we used for this problem yields
dramatic improvements over algorithms that have rep-
resented the state of the art for this set of test problems
over the past 5 years. On the synthetic subset selec-
tion problems, the Block Insertion Fast Messy Genetic
Algorithm performs well compared to CHC.

More work clearly needs to be done. The MGA applied

to the geometric matching problems was customized to
exploit the fact that this was a subset feature matching
problem; it also exploited domain specific features of
the geometric matching problem. However, the BIF-
MGA was applied in a relatively generic form to the
synthetic test functions. One question is how the MGA
can be specialized for subset feature selection problems
and still be applicable to a broad range of problems
within this problem class.

6 Acknowledgements

César Guerra-Salcedo is a visiting researcher at Col-
orado State University supported by CONACyT under
registro No. 68813 and by ITESM. This work was also
supported in part by NSF grant IRI-9503366.

References

[Bala et al., 1995] Bala, J., Jong, K. D., Huang, J.,
Vafaie, H., and Wechsler, H. (1995). Hybrid Learn-
ing Using Genetic Algorithms and Decision Trees
for Pattern Classification. In 14th Int. Joint Conf.
on Artificial Intelligence (IJCAI).

[Beveridge, 1993] Beveridge, J. R. (1993). Local
Search Algorithms for Geometric Object Recogni-
tion: Optimal Correspondence and Pose. PhD the-
sis, University of Massachusetts at Amherst.

[Beveridge and Riseman, 1995] Beveridge, J. R. and
Riseman, E. M. (1995). Optimal Geometric Model
Matching Under Full 3D Perspective. Computer
Vision and Image Understanding, 61(3):351 — 364.
(short version in IEEE Second CAD-Based Vision
Workshop).

[Beveridge et al., 1995] Beveridge, J. R., Riseman,
E. M., and Graves, C. (1995). Demonstrating
polynomial run-time growth for local search match-
ing. In Proceedings: International Symposium on
Computer Vision, pages 533 — 538, Coral Gables,
Florida. IEEE PAMI TC, IEEE Computer Society
Press.

[Brill et al., 1992] Brill, F., Brown, D., and Martin,
W. (1992). Fast genetic selection of features for
neural network classifiers. IEEFE Trans. on Neural
Networks, 3(2):324-328.

[Burns et al., 1986] Burns, J. B., Hanson, A. R., and
Riseman, E. M. (1986). Extracting straight lines.
IEEE Trans. on Pattern Analysis and Machine In-
telligence, PAMI-8(4):425 — 456.

[Deb and Goldberg, 1993] Deb, K. and Goldberg, D.
(1993). Analyzing Deception in Trap Functions. In
Whitley, L. D., editor, FOGA - 2, pages 93-108.
Morgan Kaufmann.

[Deb and Goldberg, 1991] Deb, K. and Goldberg,
D. E. (1991). mga in ¢: A messy genetic algorithm
in c. Technical report, Department of General Engi-
neering University of Illinois at Urbana-Champaign.

[Eshelman, 1991] Eshelman, L. (1991). The CHC
Adaptive Search Algorithm. How to Have Safe
Search When Engaging in Nontraditional Genetic
Recombination. In Rawlins, G., editor, FOGA -1,
pages 265-283. Morgan Kaufmann.

[Goldberg et al., 1989] Goldberg, D., Korb, B., and
Deb, K. (1989). Messy Genetic Algorithms: Motiva-
tion, Analysis, and First Results. Complex Systems,
4:415-444.

[Goldberg et al., 1992] Goldberg, D. E., Deb, K., and
Clark, J. H. (1992). Genetic algorithms, noise, and
the sizing of populations. Complex Systems.

[Goldberg et al., 1993] Goldberg, D. E., Deb, K., Kar-
gupta, H., and Harik, G. (1993). Rapid, accurate
optimization of difficult problems using fast messy
genetic algorithms. In Forrest, S., editor, Proc. of
the 5th Int’l. Conf. on GAs, pages 56—64. Morgan
Kauffman.

[Grimson, 1990] Grimson, W. E. L. (1990). Object
Recognition by Computer: The Role of Geometric
Constraints. MIT Press, Cambridge, MA.

[Kargupta, 1995] Kargupta, H. (1995). SEARCH,
Polynomial Complezity, And The Fast Messy Ge-
netic Algorithm. PhD thesis, Department of Com-
puter Science University of Illinois at Urbana Cham-

paign.

[Kelly D. Crawford and Schoenefeld, 1997]
Kelly D. Crawford, Cory J. Hoelting, R. L. W. and
Schoenefeld, D. A. (1997). A study of fixed-length
subset recombination. In Belew, R. and Vose, M.,
editors, FOGA - j. Morgan Kaufmann.

[Radcliffe and George, 1993] Radcliffe, N. J. and
George, F. A. W. (1993). A study in set recombi-
nation. In Forrest, S., editor, Proc. of the 5th Int’l.
Conf. on GAs, pages 23-30. Morgan Kauffman.

[Whitley et al., 1995] Whitley, D., Beveridge, R.,
Graves, C., and Mathias, K. (1995). Test driv-
ing three 1995 genetic algorithms: New test func-
tions and geometric matching. Journal of Heuris-
tics, 1(1):77 — 104.

