A Simulator to Train for Finite State M achine Design

DomenicoPonta, GiulianoDonzellini
Department of Biophysical and Electronic Engineering, University of Genoa
ViaOperaPia 11A 1-16145 Genoa - Italy
Phone +39-10-3532759, fax +39-10-3532175
E-mail ponta@dibe.unige.itdonzie@dibe.unige.it

Abstract

The paper presents a general purpose simulator of
Finite Sate Machines (FSM), developed for training
purposes. Algorithms, represented graphically as
Algorithmic State Machine charts, can be drawn directly
on the computer screen, and directly tested in the state
and time domains without the necessity of synthesizing
the FSM logic circuits. The simulator facilitates the
transition from the pedagogical level of digital design, to
the professional one, characterized by the use of CAD
tools. It is currently used in introductory courses of
digital electronics for several EE curricula.

Introduction:
M achines

Teaching Finite State

In a sequential network, the output is a function
not only of the current inputs but also of a state that takes
into account the history of previous inputs. Modern
digital circuit design is essentially based on sequential
logica networks, and their study is the most relevant
issue in an introductory course on digital electronics. For
teaching this kind of design, a formal and systematic
approach is better than an intuitive one, because it
insures quality e repeatability of the results. All the
considerations that will be made in the following, refer to
a pedagogical scenario where the learners have no
previous introduction to digital electronics.

Design of digital systems is nowadays supported
by severa forma design methods, based essentially on
the use of circuit description languages (HDL, VHDL).
With these languages, sequential networks are conceived
and designed as Finite State Machines and described
with statements similar to the ones used by general
purpose software programming languages.

We are convinced, though, that a pedagogical
approach based on hardware description languages does
not provide to the students the right background for
developing their skills in digital circuits design. It is
necessary, to our opinion, to keep a closer relation
between the algorithm to be implemented and the FSM
that implementsit.

It is important, for example, to maintain, since the
very beginning of the pedagogical action, a strict
correlation between state sequences and time domain
behavior of input/output signal of the system under

consideration. A FSM state must be, more than an
abstract concept, an observable logical condition of a
network.

For such reason we believe it is still necessary to
represent the FSM algorithms with graphica methods
instead of moving up to atextual description language. In
our course (Digital Systems Electronics, first digita
design course of the curricula in Electronic Engineering
and Computer Science) we use the ASM (Algorithmic
State Machine) [1] method, applied to Moore and Meay
machines [2], as detailed in the following.

The use of a smulator especialy conceived for
pedagogical purposes has proven to be a useful support
for the course, even in the first lectures introducing the
fundamental concepts of FSM. In this paper we provide a
short functional description of SIMFSM, conceived and
developed within a more general strategy for using
computer-based learning tools in the field of digital
electronics [3]. The simulator is installed in the digital
electronics lab, where students can access it or make a
copy for personal use at home.

Learning to design a Finite State M achine

The simulator presented here is the final step of a
comprehensive computer-assisted methodology ~ for
teaching the design of Finite State Machines [4], founded
on “learning tools’ specifically developed for this
purpose usingAsymetrix ToolBook.

With the wuse of OpenScript, ToolBook
programming language, the FSM agorithm can be
simulated and associated to the ASM chart, that therefore
becomes “alive”. The animated chart alows the learner
to verify the evolution of the machine agorithm in the
domains of states and time by setting the proper inputs
and stimulating the FSM with clock and input signals.
Thelogica networks schematics are designed to respond
to input stimuli directly on the computer screen. Such
representation of FSM algorithms has been used
extensively in the course and has proved to be better than
the paper-based traditional one, helping the student to
understand the behavior of agiven ASM [5].

Nevertheless, understanding an algorithm does
not necessary mean to be able to develop one. A major
challenge is therefore introducing the learner to the
conception of the FSM algorithm. Development of this
skill, that relies heavily on the designer intuition and

experience, is helped by the availability of an open
simulation tool.

The first part of the academic course is targeted
toward building the student’s capability of applying the
ASM method to well-known sequential structures, such
as basic elements like flip-flops, registers, counters and
other simple devices. The student is therefore made
familiar with the design method and prepared for the
next phase where he will make an active use of the ASM,
designing non-standard digital structures described by a
set of specifications. This active phase, consisting in the
drawing of the ASM chart and its formal synthesis,
develops the student’ s design capabilities.

Because in the real world of digital design very
seldom a problem has a unique solution, the problem
arises of verifying the vaidity of the specific
implementation. There is no doubt that this essential part
of the design job is often neglected in the educational
environment, given the amount of time and energies
required. As a result, many design flaws escape the
student’ s attention.

Typicaly, state and output races belong to this
category of unnoticed mistakes. In the traditional
teaching environment the only solution would be to
increase the interaction with the students and the time
spent assisting them. The large number of electronic
engineering students is often a very serious obstacle. The
use of the FSM simulator takes care of the non-creative
phases of design, making easier the verification of the
network behavior.

With the introduction of a general purpose
simulator the learners achieves a larger degree of
independence, because they are able to design and test
autonomously an unlimited number of networks of their
own conception and, most important, to verify the
correctness of their assumptions. On the same time, the
use of a digital simulator represents a significant step on
the way of getting acquainted with CAD techniques [6].
In our course the logic network simulator, conceived for
pedagogical applications, is designed to facilitate the
transition to a professional digital simulator, which is
achieved in the last phase of the learning process.

TheFinite State M achine Simulator

The fina stage of learning the FSM is achieved
with the use of a genera purpose Finite State Machine
simulator, a tool developed in Microsoft Visual Basic
with the purpose of alowing the transition from
understanding a given FSM to designing one according
to given specification. It represents also a transition from
an essentially pedagogical tool (the animated FSM) to a
quasi-professional design tool and, as such, a good
introduction to CAD methodologies.

The simulator needs to be easy and intuitive to
use, in line with the competence and ability that the
student is building day by day. A professional digital

simulator does not fit this necessity, because its many
options and advanced features, necessary for the activity
of the accomplished digital designer, are instead a serious
obstacle for the beginner student.

Our FSM simulator is written in Microsoft Visual
Basic and takes advantage of the Windows graphical
interface. It is made of three main integrated modules:
the graphic editor, the logic simulator and the map
synthesizer, that are described in the following sub-
sections.

ASM Chart Editor

The graphic editor alows the construction of the
FSM diagram, according to the rules of the ASM method
(Figures 1, 2). An ASM diagram describes the output
functions and the next-state functions of a state machine.
It is composed of three basic elements, the state
(rectangular box), the decision box (diamond) and the
conditional output box (rounded rectangle). An ASM
block is made of one state box, decision boxes and
conditional output boxes. It has one entrance, but may
have any number of exit paths, each of them connecting
to a state box.

Figure 1 ASM charts are drawn by dragging on the
screen and connecting together the building blocks.

The connection of several ASM blocks produces
the ASM chart that describes the FSM agorithm in a
way similar to the flow chart that is used for software
algorithms, with the fundamental difference that each
state block of the ASM represents a state of the machine,
while the concept of state is not applicable to flow charts.

Simulatore MSF - [FFSRL.MSF]

A

MSF asincrana

Ingressi: 5,R EN
Wariabili di stato: 1
Uscite: C1,Q0N

2 Proprieta

nessun oggetto
selezionato

Figure 2 The ASM chart of an asynchronous FSM, a
Latch-typeFlip-Flop.

The editing phase, in which the ASM diagram is
created, is assisted by atoolbox that contains the drawing
tools, a window that shows the properties of the objects
that have been selected and a syntactic/semantic corrector
that identifies the most common mistakes, such as the
diagram inconsistency, the duplication of names and
codes, and insufficient number of state variables. A
specific algorithm in charge of eliminating critical races
is available. The editor will provide defaults for
information not entered by the student, like names and
number of state variables, alowing to proceed in the
process. All logical expressions and variables names
entered in the ASM chart must be defined in this window
(Figure 3). Later modifications are possible. The
construction of the ASM chart is made by inserting the
appropriate blocks, using the mouse and toolbox's
buttons, and then interconnecting them. Captions and
comments can also be inserted. ASM charts drawn with
the editor can be exported and used in other applications.

Simulatore MSF - [SERIALE.M5F]

Ingressi: INDATA, RESTART
“ariabili di stato: 3
Uscite: OUTDATA, STROBE, ERROR, EQT

ER Proprieta

Ingresso:

INDATA
RESTART

Espressione:

INDATA

[Tipo:

R
oKXy Ox
®@0r 0

Figure 3 Definition of input and outputs: in the figure the
input INDATA is created on the ASM.

L ogic simulator

This section of SIMFSM simulates the agorithm
described by the ASM chart and presents it to the learner
as a sequence of states or a timing diagram of the FSM
state and output variables. The simulation is calculated
by software directly from the ASM chart. This is an
innovative feature, especially relevant in the pedagogical
context, because it allows the preliminary simulation of
the ASM chart, before going to the synthesis. The student
can study the state sequence without the complication of
the network synthesis, as it would be the case using a
professional digital simulator.

To emphasize the relation between a state diagram
symbology and time tracing, the current state and the
path to the next one are highlighted also in the window
containing the ASM chart (Figure 4). The resulting effect
of visual animation is especialy effective. The quality of
animation is enhanced by another feature, the low-speed
continuous clock generation. In such mode the learner
can interact with the machine in “real time” by
modifying the inputs while the algorithm is running.

= Simulatore MSF ﬂ!
File Modifica Opzioni Finestra 2

=] FFJKMS.MSF -

=] Sintesi - [FFJKMS.MSF] -]~

+
VARIABIIDISTATO I

o) x o) x on

3]

5 T | S IS S A
= [3 IR
% | rroninie 0 I s N ey WY o B
= E3 B — ™
5 [——— | M
—puNTER M ol : L
T @ GN | D f

ISR e FFJKMS HEF . | - E

Figure 4 The time-domain behavior of a JK Master Save
Flip Flop. In the background, the windows with the ASM
chart and its synthesis.

The simulator, therefore, fulfills the pedagogical
need to demonstrate to the learner the relations between
state sequence and time evolution (Figure 5), one of the
most difficult issues to master for the beginner student.

Simulatore MSF

Sintesi - [FFJKMS.MSF]

VARIABILI DI STATO

N DR
: |)
Towu] [|
imulazione - [FRJIKM[*.M5F] |~

sh sc [sc |sd|sa|[sa sb sc sd | sall

(=S

LLJW
|

« +)

o =

aN

&g
Sintesi - TIMER.N

b
[FFSRL.MSF] [FroKms wsr

I
1 N
:

il
ja=

Figure 5 Sate and time domains windows presented in
the same screen.

FSM synthesis

Derivation of next state equations directly from
the ASM diagram is a standard procedure similar to the
synthesis of a combinational network from truth table.
The logic synthesizer(Figure 4, background) provides
next state and output Karnaugh maps (K-maps) and
equations from the FSM diagrams. The student has the
choice to fill the K-maps manually, deriving the next
state equations from the ASM chart, or to get them filled
by the synthesizer. In any case, the simulator knows the
solution and is therefore able to check step-by-step the
validity of the Boolean expressions entered in the K-
maps. The student then proceeds to derive the minimized
expressions of next state and output equations. Boolean
equations can be exported, to be used externally.

The synthesizer allows to choose the desired flip-
flop type for the state register, to allow the student to
compare the resulting synthesis. The module can update
the maps if the ASM chart is modified. A context-
sensitive Help guides the learner through all simulator
operations.

Evaluation and conclusions

An objective evaluation of the effectiveness of
SIMFSM as learning tool goes beyond our possibilities.
The same problem is common to most, if not al, attempts
to introduce CBL in the field of engineering education,
especialy when, as it is in our case, CBL is tested in
parallel with traditional education.

A possible empirical measure of validation could
be found by identifying the effectiveness of a product
with the extent of its use. Under this point of view, we
can state without doubts that the simulator has been so
far the single most successful piece of our courseware for
digital electronics. Students use it not only to design new
state machines, but also to check the correctness of their

work and exercises. The editor has become a common
tool for drawing ASM charts.

A major limitation of SIMFSM is its “closeness’,
i.e. the impossibility of adding external components to
the FSM or to embed the simulated FSM in a more
general digital systems. This limitation is being removed
by a current project that integrates into a single tool,
SYSSIM (system simulator), the three existing tools
SIMFSM, a digital simulator and a microprocessor
emulator.

Link:
Finite State M achine Simulator

Acknowledgments

The ASM chart editor and simulator have been
developed by Fabio Terrile and the synthesis and
minimisation algorithms by ClaudicCastellini.

References

1. Clare, C.R. “Designing Logic Systems using State
Machines’, MacGraw-Hill, 1973.

2. Tinder, R.F., Digital Engineering Design, Prentice-
Hall International, 1991.

3. Ponta, D., Donzellini, G., “Learning Electronics with
Hypermedia and Computer Tools’. Proceedings of
CALISCE ‘94, International Conference on Computer
Aided Learning and Instruction in Science and
Engineering. Telecom Paris, France, 1994.

4 Ponta D., Donzdlini G., Hypertext and Computer
Tools for Teaching Finite State Machines, Proceedings of
Hypermedia in Vaasa ‘94 Conference on Computers and
Hypermedia in Engineering Education, M. Linna and P.
Ruotsala editors,Vaasa, Finland, June 8-11, 1994.

5. Schank, R.C., “Active Learning through Multimedia’,
|IEEE MultiMedia, Spring 1994, pp.69-78, 1994.

6. Ponta, G. Donzellini, G. Parodi, An Integrated
Computer-Based Course bridges the gap between design
theory and professional CAD for digital electronic
systems, proceedings of IFIP WG 3.4 International
Working Conference,Soest, Germany, 12-17 July 1993

