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Abstract. We propose here a new approach to study co-evolution and

we apply it to the well-known iterated prisoner's dilemma. The original-

ity of our work is that it uses a simpli�ed version of the game, and thus,

restrict the search space of evolutionary dynamics. This allows to have

a look at the totality of the search space in permanence, and so, a com-

plete understanding of the phenomenon of co-evolution in process. The

paper includes a little game-theoretic introduction to iterated prisoner's
dilemma, a survey of previous works on evolution in this game and the

exposition of the questions that were still asked to us. We describe then

our special approach to the problem, using populations larger than the
search space, or even in�nite. The experimental results that we present

complete the actual knowledge of iterated prisoner's dilemma.

1 Introduction

In a symmetric two-players game, each one secretly chooses a decision among

the N available. The N � N -matrix � = [�ij] that de�nes the game, gives the

utility earned by each player consequently to these decisions : �ij is the result of

the player who chooses decision i while its opponent chooses decision j.

In the Prisoner's Dilemma (PD), there are two possible decisions (i.e. NPD =

2), number 1 being interpreted by \Defect" (D) and number 2 by \Cooper-

ate"(C). The utility matrix is given by the following table :

P / P                T / S 

S / T                R / RC

D

player 2

player 1
D                     C

(result of player 1 / result of player 2)

i.e. :

�PD =

�
P T

S R

�
;



where T > R > P > S. We see that for a very wide variety of parameters, PD

is a non-zero-sum game : a reward for a player does not enforce a cost for its

\opponent".

Player 1 may lead the following reasoning :

{ \If player 2 cooperates, then it is preferable to defect, because the Temp-

tation of defection T is greater than the Reward for mutual cooperation

R."

{ \If player 2 defects, then it is again better to defect, because the Penalty for

mutual defection P is greater than the Sucker's punishment S."

This may be represented by drawing two arrows on the table in the following

way :

P / P                T / S 

S / T                R / RC

D

player 2

player 1
D                     C

The same reasoning step can be applied to player 2, what leads to the drawing

of two symmetric arrows :

N P / P                T / S 

S / T                R / RC

D

player 2

player 1
D                     C

So, if both player follow the rational reasoning developed above, they both con-

clude that defection is the best alternative whatever the opponent's choice. It

results in the situation (D, D), convergence point of the arrows. This fact is

formalised by saying that (D, D) is a Nash equilibrium of the game:

De�nition1. (i; j) is a Nash equilibrium of game � i�. :

�ij � �i0j 8i0 6= i; and �ji � �j0i 8j0 6= j:

That is why this situation is marked with a N on the table.

So the defection is the natural choice of two rational, but not speculator

at all, agents. However this choice seems somehow non-optimal because both

players could obtain a greater gain by cooperating (R > P ). We will say that

(C, C) strictly dominates (D, D) :



De�nition2. (i; j) strictly dominates (i0; j0) in the game � i�. :

�ij > �i0j0; and �ji > �j0i0

All the dilemma lies in the fact that the Nash equilibrium of the game is strictly

dominated by a diametrically opposed situation 3 . For this reason, PD is called

a strong cooperation problem.

In PD, the players are supposed to meet only once 4 . In the Iterated Pris-

oner's Dilemma (IPD), the two same players are supposed to meet and play PD

several times successively. They are allowed to have their decision at the nth

meeting depend on all the past interactions with the same opponent, i.e. the

results of the n � 1 previous meetings. The aim of each one is to maximise the

summation over all iterations of his rewards 5.

The constraint T + S < 2R is imposed on the utility values. Its role is to

guarantee that two players that always cooperate will do better than two players

that have agreed to play (C, D) and (D, C) alternatively.

Theoretically, IPD is a two-player symmetric game exactly as PD was, we

note uIPD its utility matrix. In IPD, a decision is the choice of a strategy, i.e. of

a mapping from the set of all possible sequences of results { the \past histories"

{ into the set D, C. As we show below, there is a huge combinatorial explosion

of the decision space of IPD.

We call \length of the interactions" or \number of iterations" L, the number

of times that two same players play PD together. The number of di�erent possible

histories x(L) may be iterativelly calculated with the following formulas :

x(1) = 1; and x(L) = 4(L�1) + x(L� 1) 8L > 1:

The �rst one comes from the fact that, if L = 1, then IPD equals PD and

there is only one possible history, noted ; : \nothing has been played, the game

begins". After the �rst iteration, the game is already �nished.

The second formula uses the fact that the result of each iteration takes its

value in the set T;R; P; S. There exists so 4(L�1) di�erent possible histories of

exactly L � 1 iterations. The second term of r.h.s. comes from the fact that a

situation where less than L� 1 iterations have been played is a possible history

in a game of length L.

From the de�nition of a strategy as a mapping from a set of size x(L) into a

2-elements set, it results that the number of decisions of IPD is : NIPD = 2x(L).

3 in the sense that every player must change his decision to go from the dominated

situation to the dominating one.
4 this is equivalent to suppose that the players randomly change of opponent at each

turn and never know who they are playing with (anonymous game), or that the
players forget all their past experiences between two iterations, or also that they are

myopic and cannot anticipate farther than one time-step.
5 sometimes, it is the discounted cumulated reward (cf. Axelrod 1984) that is to max-
imise. In regard to the experimental aspect of our work, the non-discounted reward

is easier to handle. Moreover, the robustness of our results seems to indicate that

the use of discounted rewards would not a�ect a lot the behaviour of the model.



So it increases exponentially relatively to the exponential of L. For instance, if

L = 4, two players play only four times together but NIPD ' 4 1025. This number

is not computable and so, even with this very short length of interactions, the

combinatorial explosion of the search space is getting too much for us.

With the repetition of non-anonymous interactions, a lot of high-level con-

cepts as benevolence, malevolence, susceptibility and indulgence are introduced

into the game. In a lot of �elds as varied as sociology, psychology, international

politic and biology, IPD has proven to be a very useful and powerful model (cf.

Axelrod 1984 ; Baefsky and Berger 1974 ; Bethlehem 1975 ; Riker and Brams

1973 ; Schelling 1981). Lately works on IPD are almost all devoted to the emer-

gence of cooperation in an evolving population of players. Since his leading works

and the publication of his book \The Evolution of Cooperation" (1984), R. Axel-

rod's name is almost always associated with this �eld of study . In the following

section, we give a survey of his results and the most relevant of associated works.

2 Previous Works

The �rst topic presented in R. Axelrod 's book \The Evolution of Cooperation" is

the result of computer tournaments opposing several strategies for IPD proposed

by researchers from di�erent spheres. As it is well known, the winner of these

tournaments was the strategy \Tit for Tat" (TFT), that may be de�ned in the

following way : cooperate at the �rst iteration and after, always do whatever

your opponent did on the previous iteration. The author attributes this success

to following special properties of TFT :

benevolence : never to be the �rst to defect,

susceptibility : to punish a defection of the opponent by another defection,

indulgence : to forgive the opponent after having punished him.

The next step of Axelrod studies is the simulation of what should have hap-

pened if he had continued to organise tournaments. Assuming that :

{ no new strategy should have been invented and introduced into the tourna-

ments,

{ the representation of a strategy in a tournament (i.e. the percentage of people

using it) is proportional to its average score at the previous tournament6,

he leads computer simulations of tournaments. These experiments show that

TFT would have continued to dominate the tournaments, in percentage of rep-

resentation and in score, as long as the two hypothesis above are still respected.

After having veri�ed the superiority of TFT in the arti�cial environment

constituted by the set of strategies proposed by scientists, Axelrod leads a theo-

retical study of \evolutionary stability" to explain this result. For this purpose,

he de�nes the notion of collective stability in the following way :

6 in a way very similar to Genetic Algorithms'selection operator.



De�nition3. The decision i for game � is collectively stable i�. :

�ii � �ji 8j 6= i

So, a strategy i is collectively stable if (i; i) is a Nash equilibrium (according to

de�nition 1) of the game. Then we say that i is in Nash equilibrium with itself.

The reasoning laid by Axelrod is the following : if the population is uniquely

constituted by a single \indigenous" strategy i, then, to be able to survive,

an invading strategy j must do a score strictly greater than the natives. As

the invader and most of the indigenous play only against native i, because of

their great numerical superiority, j will survive if �ji > �ii. Thus strategy i is

evolutionary stable if this inequality never holds.

Using this de�nition, he shows that TFT is collectively stable in IPD. Then

he states that collective stability is evolutionary stability and so, TFT is evolu-

tionary stable. This work is closely related to J. Maynard-Smith's studies (1975),

although Axelrod's collective stability is less restrictive than Maynard-Smith's

evolutionary stability.

A doubt is cast on the utility of these results results by Boyd and Loberbaum

(1987). The critic is that it is su�cient that the invading strategy j realises

�ji � �ii to be able to survive in an homogenous population of i. As the authors

notice, this distinction is important in IPD because a lot of couple (i; j) verify

�IPDji = �IPDii . It is to be noted that, after having argued that the collective

stability of TFT is not su�cient to explain the emergence of cooperation, the

authors propose another de�nition of evolutionary stability, more restrictive than

Axelrod 's collective stability. Then they show that no deterministic strategy may

be evolutionary stable in IPD according to their de�nition.

It seems to us that this criticism is very well founded. It is particularly

pertinent in the case of evolutionary algorithms as Genetic Algorithms (GA)

and Evolution Strategies (ES). See (B�ack and Schwefel 1993 ; Ho�meister and

B�ack 1991) for an overview of evolutionary algorithms, (Holland 1975 ; Goldberg

1989 ; B�ack and Ho�meister 1991 ; B�ack 1992) for GA, and (Rechenberg 1973 ;

Schwefel 1977 ; Schwefel 1981 ; Herdy 1991) for ES.

Imagine an evolutionary algorithm (GA or ES) when, at some time, the

population is uniquely constituted with TFT. In appearance, it expresses by a

population of agent that always cooperate. Evolutionary algorithms working in

a somehow blind mode, random mutations may always happen. For instance, an

individual playing the strategy \Always Cooperate" (ALLC) may appear. Exter-

nally, this modi�cation is not seenable since everybody continues to cooperate.

So, the ALLC mutant realises the same score as TFT indigenous, and for this

reason, he has the same probability to survive selection. Thus, it is theoretically

possible that little by little the TFT population becomes invaded by ALLC,

creating so a favourable ground for the later appearance of \Always Defect"

(ALLD) individuals. We do not know what will then happen, it seems that the

population must tend to an equilibrium point, or enter a cyclic dynamic. In all

cases, it is highly improbable that the population still be composed only of TFT



after a few iterations of the algorithm. So TFT is not stable under the action of

GA and ES 7.

A de�nition of stability consistent with evolutionary algorithms is the fol-

lowing :

De�nition4. The decision i for game � is EA-stable i�. :

�ii > �ji 8j 6= i

So, a strategy is EA-stable if it is in strict Nash equilibrium with itself, according

to the de�nition :

De�nition5. (i; j) is a strict Nash equilibrium of game � i�. :

�ij > �i0j 8i0 6= i; and �ji > �j0i 8j0 6= j:

It is be noted that our EA-stability is more restrictive than Boyd and Lober-

baum's evolutionary stability (but this rough de�nition is enough to illustrate

our purpose). So, we can deduce of their results that no deterministic strategy

is EA-stable in IPD.

Although Axelrod's theoretical results may be put in the balance, he also

proposes experimental results to support the thesis that cooperation based on

benevolence, susceptibility and indulgence is a natural phenomenon. In (Axelrod

1987), he presents results of simulations where a population of 20 strategies for

IPD is submitted to the action of a GA. Each one satis�es :

Hypothesis M3. The choice of every decision only depends on the three last

results with the same opponent (3 steps of memory),

and is encoded on a linear chromosome of length 70. This experiment concludes

with the emergence of cooperation, due to the dominance of TFT and TFT-like

individuals.

A lot of other studies have been laid to experiment the evolution of a popu-

lation of IPD-strategies under the action of evolutionary algorithms. The main

di�erences between them is the way to encode strategies, what directly deter-

mines the nature of the search space (Fogel 1993 ; Gac�ogne 1994 ; Lindgren and

Nordal 1994 ; M�uhlenbein 1992). Most often, the authors succeed in having co-

operation emerge. It seems to us that, because of its simplicity, Axelrod's result

is still the most convincing. However, we think that the search space used in this

study is too large beside of the population size to allow a deep understanding of

the mechanisms in process.

7 all this reasoning may be summarised in the following way : Axelrod's collective
stability is consistent with a model of evolution where there is a cost imposed on

mutation. This is not the case of GA and ES, where the calculus of the �tness of an

individual does not take into account the fact that it is a mutant or an indigenous.



3 Our Approach

As we have seen in section 2, the decision space of IPD is totally out of the range

of actual computers. We are concerned with the following of its consequences : a

simulated population of strategy for IPD may only cover an insigni�cant part of

the complete search space.This is a issue very important to keep in mind when

we approach IPD and evolution.

Even if they restrict their study to a sub-set of the complete strategy space,

previous works on evolution and IPD always use search spaces too large for being

totally explored. For instance, Axelrod's sub-set of strategies satisfying hypoth-

esis M3 is of size 270 ' 1021, and he uses a population of only 20 individuals.

Moreover, the size of the search space seems to be one of the main limitations

to the e�ciency of evolutionary algorithms. The following appealing remark is

made about the validity of D. E. Goldberg's Schema Theorem by B�ack and

Schwefel (1993) :

\: : :�nite populations often do not contain all instances of a speci�c

schema. Observed schema �tnesses thus might quite mislead the search

process."

In order to be able to lead reliable simulations with population sizes not too low

beside of the search space, we have chosen to limit ourselves to the set of the 32

strategies that satisfy :

Hypothesis M1. the choice of every play only depends on the result of the last

iteration played with the same opponent (1 step of memory).

It appears to us that this is the easiest way to arbitrarily restrict the search space

to a very low sub-set of the set of all strategies, while preserving the symmetry

of the original space. Moreover, most of the atypical strategies as TFT, ALLC

and ALLD satisfy M1. An arbitrary numbering for the strategies satisfying M1

is proposed in table 1. It will be used all over the end of this paper.

When we limit ourselves to the strategies satisfying M1, IPD becomes a 32-

decisions game. Its 32� 32 utility-matrix �IPD may then be easily calculated by

simulating, on any computer, all the possible confrontations of two strategies,

for a �xed length of interaction L. We can then verify that, as it is announced

in section 2, there is no strategy that is EA-stable, whatever the value of L.

However, there may exist mixed situations (i.e. situations where di�erent

strategies cohabit) that constitute equilibrium points of the system. The analyt-

ical determination of them is possible by a solving 32-unknowns system, after

having de�ned the dynamic of the system (cf. section 4). However we prefer to

lead an experimental determination of them. Our idea is to try di�erent evolution

schemes on a population of strategies satisfying M1.

Our work could seem to be \another" IPD-based simulation of evolution.

However, the originality of our work lies in the fact that we can use population

sizes greater than the search space, and then lead simulations where the observed



behaviour of the algorithm is not too far from its expected behaviour. In the

limit, we represent the population by a set fq1; q2; : : : q32g 2 [0; 1]32 such that :

32X
i=1

qi = 1

(i.e. belonging to the simplex S32 of IR
32) where qi represents the percentage of

individual using strategy i in the population.

With this continuous approach to the population, we associate a determin-

istic handling of chance : all calculus are made by using the expected values of

variables with respect to calculated probabilities, instead of by simulating ran-

dom drawings, as it is the case in classical GA and ES. So, as a consequence

of the weak law of large numbers, the continuous approach to the population

simulates the theoretical behaviour of the model with an in�nite population. It

allows a very interesting look at the evolution of the population that would not

have been possible in greater search spaces.

To present our model, we develop in section 4 a discussion about the ques-

tion : \what is an evolutionary dynamic ?".

4 Arti�cial Evolution

The actual model of natural evolution is the following :

1. each individual metabolism is determined by its genetic code, the DNA, that

is proper to him and present in all of its cells.

2. DNA is the support of heredity, it is transmitted from parents to children,

on the condition of some random recombinations and mutations.

3. An individual metabolism determines its external characters, the environ-

ment selects the individuals possessing the characters the most favourable

for survival and reproduction. This phenomenon of natural selection modi�es

the statistical distribution of genetic codes from generations to generations.

Evolutionary algorithms are based on the idea that there exist an intrinsic \op-

timising principle" in this scheme, and they try to reproduce it in purpose of

optimisation. But, because they only modelise a part of the whole process, the

mechanism processed is quite di�erent.

GA basic principle is to replace the problem of optimising a numerical func-

tion f of some discrete set X, by the problem optimising a numerical function

g of a certain set C of \codes" of X elements. The Building Block Hypothesis

(Holland 1975 ; Goldberg 1989) states that we wait from the code to satisfy

some special properties with respect to the objective function. In particular,

this is needed that individuals obtained by recombination (at the code level)

of good individuals, are also good individuals. Somehow, things may abstracted

the following way : by de�ning notions of neighbourhood and distances, the re-

combination operator induces a topology on the code space C ; the function g is



then supposed to have some properties close to continuity with respect to this

topology.

The Strong Causality Principle , one of the two fundamental principles of ES

(Ho�meister and B�ack 1991 ; Herdy 1991), explicitly stipulates that a small vari-

ation of the phenotype induces a small variation of the objective (�tness) func-

tion. So, ESs directly use a property of continuity of the objective function.The

need of a certain continuity of the �tness function in evolutionary mechanisms

also appears in (Feistel and Ebeling 1989), that greatly inspired us for building

our model. As these authors do, we modelise the evolutionary process with two

operators :

mutation : a mechanism of random transformation of an individual into one of

his neighbours, with respect to a certain topology. With in�nite population

a di�usion operator is used.

selection : a mechanism that determines the individuals able to survive to the

change of generation, deterministically or stochastically, and in a way that

favours the performance.

We tried several alternatives for the choice of the mutation topology and the

selection operator. With these choices, we wanted to build a system not to far

from GA and ES. However we do not argue that our scheme is an exact repro-

duction of all these algorithms. This particularly true in the case of GA, because

of the absence of explicit recombination in our model.

Even if it does not always constitute a good model of evolutionary algorithms,

we argue that our system is a not so bad model of evolution. In all cases it is

very close to Feistel and Ebeling's one. Moreover, the surprising robustness of

our observations (cf. section 5), allows to conjecture that the behaviour of the

system would not have change if we had used an explicit recombinative operator.

There also exist an other point where our model is closer to Feistel and

Ebeling's one than to evolutionary algorithms. In GA and ES, the �tness of an

individual is constant and deterministically determined by the objective function

f . In our model, the �tness fi of strategy i depends on all the population, and so,

it varies through time. De�ning qi as the percentage of individual using strategy

i in the population, then we use :

fi =

32X
j=1

qi �
IPD
ij :

The underlying hypothesis is explained in the next paragraph. We want to quote

now that the use of a formula of type fi = f(q1; q2; : : : qN ) to replace in Feistel

and Ebelling's model and in ours, the less general formula fi = a constant =

f(xi) of evolutionary algorithms, could be used to di�erentiate evolutionary

computation as a particular �eld of a more general arti�cial evolution domain.

The arti�cial evolution approach allows to really modelise evolving interactions,

and so, is much closer to the process of natural selection than evolutionary

computation models. Previous works on IPD and evolution like (Axelrod 1987

; Fogel 1993 ; Lindgren and Nordal 1994) are arti�cial evolution models in the



sense de�ned here. This also the case of arti�cial ecology models as (Werner and

Dyer 1991).

By choosing

fi =

32X
j=1

qi �
IPD
ij :

we implicitly made the hypothesis of no spatial distribution of the population.

With a �nite population, it formulates as :

Hypothesis NS. At each generation, every individual meets every other one

once, its �tness is its average score over these meetings (no spatialization).

With in�nite population, it formulates as :

Hypothesis NS'. At each generation, every individual meets a big number of

its colleagues and its opponents are randomly drawn according to the probabil-

ities (qi).

5 Experimental Protocol

We give below an exhaustive list of all the parameters of the model. Readers

desiring more information are invited to contact us.

IPD parameters : i.e. the utilities P , T , S and R, and the length of inter-

actions L. They are used when the simulation begins, to calculate �IPD by

simulating all possible confrontations.

Population size S : that may be in�nite, as explained in section 3. It is in-

teresting to see how large must the population be, to have the observed

evolution of the system correspond with the expected evolution. We may so

verify the accuracy of the quote from B�ack and Schwefel (1993) in section 3

Topology of mutation : we tried two alternatives :

{ trivial topology : each strategy is the neighbour of every strategy ;

{ structured topology : a neighbour of a given strategy i is obtained by


ipping one decision in the rule representation as used in table 1. Thus

every strategy has exactly 5 neighbours.

Selection operator : proportional or elitist :

{ proportional selection is a GA selection operator. The probability of

selection of strategy i is equal to :

qi fiP32
j=1 qj fj

;

where fi is the �tness of strategy i and qi is the percentage of individuals

using strategy i in the population.

{ elitist selection is the selection operator used in � + �-ES (B�ack and

Schwefel 1993 ; Ho�meister and B�ack 1991). Mutation creates new in-

dividuals and increases the population size. The selection brings it back

to its initial value by suppressing the worst individuals �rst.



Temperature � : the parameter that determines the magnitude of genetic mix-

ing at each generation. With proportional selection, it is a probability of

mutation, and with the elitist selection, it is to the ratio �=�.

Initial population : uniformly distributed or composed of a single strategy

that may be chosen among the 32 possible ones.

With some special sets of value attached to di�erent parameters, our system

correspond to existing evolutionary algorithms :

{ with elitist selection and trivial topology, our system is a � + �-ES with no

recombination and where � = S and � = S �.

{ with proportional selection and structured topology, it is a GA with no

crossover and a special mutation operator that works at the scale of individ-

uals. The probability for an individual to mute is pm = �.

The real-time needed to run a simulation is very short. The limit behaviour

of the system (equilibrium or cycle) is always obtained in less than one minute

on a good PC. So, we could try a very large variety of parameters and totally

explore the model. As a consequence, an exhaustive description of the totality

of our observations is impossible in a small paper like this one. That is why we

have chosen to present our results in a descriptive and non-rigorous form. Some

representative graphics are added to illustrate our purpose, they are gathered at

the end of the paper.

6 Experimental results

This section is divided into two parts. The �rst describes the behaviour of the

model with in�nite population. Of course, this behaviour may be obtained with

�nite but large populations. We develop this point in the second part, that con-

stitutes a description of the in
uence of all the parameters listed in the previous

section.

To describe our observations with in�nite population, we also put apart the

case where elitist reproduction and structured topology are used together. As a

matter of fact, excepted for this special case, the population always converges to

an equilibrium. Moreover, we verify that the composition of the initial population

has no in
uence on the state of the system at equilibrium. That seems to indicate

that this is the only stable equilibrium of the model.

So, with proportional selection or/and trivial topology, there exists a unique

equilibrium of the model dynamics. The \quality" of the equilibrium is well

measured by the average score of individuals over the population when it is

reached. Figure 1 represents the evolution of this data as a function of the

temperature �, with proportional and elitist selection, and trivial topology of

mutation. This is to be noted that, although, they have been drawn with some

special values for the parameters, the two curves have a high level of generality

and similar results are obtained with other sets of parameters.

In �g.1 we verify that the average score at equilibrium tends to 100% of coop-

eration when � tends to zero (no mutation at all). With proportional selection,



this value is reached in zero, but nowhere else. In the case of elitist selection,

there is a discontinuity in zero, where the score at equilibrium is the one of

a uniformly distributed population. This is due to the fact that the � + �-ES

model implemented with elitist selection, does not a�ect the population in any

way when � = � S = 0. Thus the population at equilibrium is the same as the

initial population, i.e. uniformly distributed.

We also see in �g.1 that the equilibrium quality rapidly decreases when the

temperature raises. In the case of proportional selection, we tend to a random

game when the temperature tends to 1. This is not surprising since the GA model

behaves almost as a random algorithm when pm = 1. With elitist selection, there

is a fall from 100% of cooperation to 100% of defection around � = 2�. This is

a typical instance of the brutal behaviour of the ES model due to its extremist

way to carry on selection with the max operator.

We are now interested in the composition of the population at equilibrium.

Figure 2 gives two very representative examples with low temperature and so,

high level of cooperation at equilibrium. In these barcharts, it appears that

strategy 18 is always dominating at equilibrium. Other experiments show that,

each time that cooperation emerges, 18 eventually dominates. Referring to table

1, we may explicit the behaviour of 18 in the following way : always cooperate

until the �rst defection of the opponent, and then, always defect until the end of

the game. Thus, it is an ALLC that turns to ALLD at the �rst defection of the

opponent. So it possesses as TFT the properties of benevolence and susceptibility

(cf. section 2), but unlike TFT, it has no indulgence at all. For this reason, and

following J. Maynard-Smith's inspiration, we call it \the Retaliator" (RET).

To understand the role of RET in the emergence of cooperation, we must look

at the evolution of the population from t = 0 to the equilibrium. To present our

results, we focus on four strategies that play a primordial role in the phenomenon.

They are :

{ Always Defect (ALLD) : numbers 1, 2, 3 and 4 ;

{ Always Cooperate (ALLC) : numbers 20, 24, 28 and 32 ;

{ Tit for Tat (TFT) : number 22 ;

{ the Retaliator (RET) : number 18.

Figures 3 and 4 represents the evolution of the proportion of these strategies, and

of the average score over the population, starting from a uniformly distributed

distribution. In both case, and also in all the other experiments that we laid, the

scenario leading to cooperation is the same.

At time zero, when the population is uniformly distributed, the malevolent

strategies as ALLD realise the best score. They are so the �rst to grow, at the

expense of dumb benevolents as ALLC that quickly disappears. In the uniformly

distributed initial population, the susceptible benevolents as RET and TFT do

better than ALLC because they avoid being exploited by malevolents, but worse

than ALLD because they do not exploit non-susceptible benevolents. So, there

quickly happens a situation very di�erent from the initial one, where defection

dominates, the population being mainly composed with ALLD, and a little of

RET and TFT.



When opposed to itself ALLD realises the poor score of permanent mutual

defection, i.e. LP . When opposed to RET and TFT, it gains a very little more

because it exploits the opponent at the �rst iteration, its score is then T +

(L � 1)P . During this confrontation, the benevolent RET or TFT realises the

lesser, but close, score S+(L�1)P . It is when two benevolent are opposed that

a signi�cant di�erence appears. Two benevolent realises the score LR, that is

the best over the population. We verify that this advantage is enough to have

benevolent recover the delay that they gain in front of malevolents. So, this is

now the susceptible benevolents that grow, and especially the unforgiving RET.

Because they have destroyed their spring of reward constituted by the ALLC

population, the malevolents now decrease at great speed. RET continues to grow

and achieves a very wide majority of the population, establishing cooperation.

A population almost entirely composed with RET is a very stable equilibrium

of the system. Other benevolents strategies may sometimes cohabit. Because of

the behaviour of RET, everything seems to them as if they were in an ALLC

population. From the point of view of malevolents, the population is mainly

composed with individual behaving almost as ALLD. So, they realise the poor

score of mutual defection and may not survive. RET is still lightly the best,

because he avoids the total rout sustained by ALLC when they are opposed to

the rare malevolents.

By this mechanism, the combination of benevolence and susceptibility (cf.

section 2) of RET guarantees the stability of cooperation. RET and TFT are

the only two strategies that are at the same time benevolent and succeptible 8 .

Finer studies are needed to understand why TFT does not play a similar role,

but it is a fact that simulations always show an advantage in RET intransigence
9 . Some experiments were laid by preventing the creation of RET individuals,

reducing so the search space to the other 31 strategies. We saw then that TFT

takes the place of RET, although it takes more time to have cooperation emerge.

Moreover cooperation does not emerges, if we suppress RET and TFT from

the search space. This con�rm the primordial importance of benevolent and

susceptible strategies in this phenomenon.

All the results presented above are obtained with proportional selection or

trivial topology of mutation. In the special case where elitist selection is as-

sociated with structured topology, the scenario is almost the same, excepted

that instead of an equilibrium, it is a cyclic oscillation between TFT, RET and

sometimes other benevolents, that is the attractor of the dynamic.

For the sake of completeness, we conclude this section with the description

of the in
uence of all the parameters (listed in section 5). It is striking to see

that most of them have only a weak in
uence on the behaviour of the system.

8 benevolence traduces by the schemata (; 7! C) and (R 7! C), what leaves 8 benev-

olent strategies (even numbers between 18 and 32). Susceptibility implies (S 7! D)

and (P 7! D) and so, only two strategies may be benevolent and susceptible. TFT's
indulgence is the schema (T 7! C) replaced by (T 7! D) in RET.

9 a possible explanation is the better score realised by RET in front of strategy 16

that always cooperate excepted at the �rst iteration.



IPD parameters : We tried two sets of value for (T;R; P; S) that are (3; 2; 1; 0)

and the more classical (5; 3; 1; 0), and a very wide variety of values for L

(including odd, even and prime numbers), without a signi�cant modi�cation

of the observations. However it is possible to change the behaviour of the

system with extreme values for these parameters. The combination

S � P; P ' R; R� T

and a short length L (e.g. (T;R; P; S) = (41; 21; 20; 0) and L = 11), is unfair

with susceptible benevolents and stop the scenario at its �rst stage, when

malevolence dominates (cf.previous discussion about the rise of RET and

the fall of ALLC).

Population size S : Until now, we have only described the theoretical be-

haviour of the model with in�nite population. As we explained in section

3, it is obtained by representing the population under the form of a set of

real numbers fqig 2 S32. Of course, the observed behaviour of the system

with �nite population tends to it when the population size grows. The size

needed to have convergence varies with the model used, GA or ES. With

elitist selection, a population of 8 individuals, i.e. 25% of the search space,

is enough to have the system evolve accordingly to its theoretical behaviour.

That is a quite good result when compared to the proportional selection per-

formances. As a matter of fact, a conformable behaviour of the GA model

is not obtained until a population size by 96 individuals, i.e. 300% of the

search space. We may understand that the proportional selection, because

it is somehow more subtle than the rough Max operator of elitist selection,

needs bigger populations, but the observed di�erence was unexpected and

strongly con�rms the quote fromB�ack and Schwefel (1993) in section 3. How-

ever, this very low observed performance of the GA model may be explained

by the absence of any recombinative operator as crossover, and thus of a

real schema processing that is supposed to be the heart of GA. As we argue

in section 7, we believe that the use of crossover may reduce the population

size needed, but that it would not change the qualitative behaviour of the

system.

Topology of mutation : The results presented in the graphics were all ob-

tained with trivial topology of mutation, i.e. when every strategy may be

created from every strategy by mutation. As we explained, the use of struc-

tured topology with elitist selection modify the behaviour of the model in the

fact that the attractor is not an equilibrium anymore, but it becomes a cycle.

With proportional selection, the use of structured topology instead of trivial

topology has almost no in
uence, it just modi�es a little the distribution at

equilibrium.

Selection operator : The di�erence between the two alternatives for selection

appears clearly on the graphics. The GA'proportional selection is a smooth

operator that induces continuity in the behaviour of the model. On the con-

trary, the ES'elitist selection, because it uses the max operator, has a brutal

behaviour leading to discontinuity and non derivability of observable statis-

tics. It is also to be noted that elitist selection realises exact optimisation for



a large variety of parameters, but when it does not succeed, it falls an the

opposite extreme and realises very low performances.

Temperature � : As explained in the previous discussion, the temperature is

a major parameter that determines all the behaviour of the system.

Initial population : Excepted for very special case, we did not see any in
u-

ence of the initial distribution of strategies in the population. The attractor

of the dynamic, equilibrium or cycle, seems always to be the only existing

one.

7 Conclusion

We are now interested in the range of our results. We would like to say that :

If the temperature of the genetic melting is not too high and the popu-

lation size not too low, cooperation naturally emerges under the action

of an evolutionary dynamic. Benevolent but susceptible individuals play

a major role in this phenomenon and they ensure the stability of coop-

eration ;

and so, modify slightly Axelrod's thesis by giving no advantage to indulgence.

The �rst objection that may be raised is that our system does not represent

the generality of evolutionary dynamics, in particular it does not use any recom-

binative operator as GA'crossover. It seems to us that this critic is well founded

with regard to the conclusion that we derived about the algorithm behaviour in

general. In particular the observed requirement for a large population size in the

GA model (i.e. with proportional selection), may be explained by the absence of

crossover and so, of a real schema processing that is supposed to be the heart of

a GA. However, we claim that, with regard to the problem of the emergence of

cooperation, the use of other genetic operators would not have change the be-

haviour of the system in a signi�cant way. To support this conjecture, we argue

that our system exhibits a surprising robustness, its behaviour not being altered

by a change of the selection operator or of the mutation operator. So, we may

expect the observed scenario of the emergence of cooperation to be quite general,

and valid for every evolutionary dynamics. We are now improving our software

by introducing a crossover. We are also putting in place a real implementation

of hypothesis NS' (see the end of section 4), that now applies also with �nite

populations and so replaces hypothesis NS.

The other restriction to the generality of our results is that all our conclusions

were derived by restricting ourselves to the small set of strategies that satisfy

hypothesis M1. Although IPD is surely a reliable model for a lot of �eld of study,

its restriction to 32 strategies is only a small game of dubious interest. However,

as we explained in section 3, our motivations were to check the validity of the

Axelrod 's results with large populations, and it is not more arbitrary to restrict

the search space with hypothesis M1 than with hypothesis M3. We think that

the possibility to cover all the search space, and thus be able to see when the



algorithm converge and when it does not, constitute the main interest of our

work, that reinforce Axelrod's one.

It is also striking to see how the observed behaviour of the model, i.e. :

1. growth of malevolents and fall of dumb benevolents,

2. raise of susceptible benevolents and fall of malevolents,

3. establishing of cooperation,

is close to the behaviour of the \human" set of strategies of Axelrod's tourna-

ments (Axelrod 1984). It is a pity that no result is provided in (Axelrod 1987),

we may wander about the scenario of the raise of cooperation in Axelrod's GA.

It seems that the phenomenon that we observe has a certain level of generality,

at least when the symmetry of the search space is preserved, as it is the case

with M1 and M3.

Because of this strong property, IPDmay surely be called an \evolution-easy"

game. It is tempting to conclude that evolution is a very powerful dynamic that

may solve strong cooperation problems. But, if we keep in mind the de�nition

of strong cooperation problems sketched in section 1, i.e. games where Nash

equilibriums are strictly dominated by diametrically opposed situations, we are

not sure that IPD is a strong cooperation problem. On the contrary, a study that

we laid shows us that the situation is not so simple in our 32-alternatives version

of IPD. Thus we may wander about the behaviour of evolving populations in

strong cooperation problems bigger than the 2-decisions PD. In all cases, it is

nice to see that by iterating it, PD becomes an evolution-easy game.

Our theoretical study of IPD and the results of simulations with strong coop-

eration problems will be the subject of a latter publication. We believe that it is

highly improbable that evolution will lead to optimality in a 50-decisions strong

cooperation game. If it turns out to be true, no general conclusion about the

power of evolutionary dynamics could be derived. Then our future works would

be to apply our approach of evolution with large populations, to other not too

big paradigmatic games, and �nd again the nice point of view on evolution that

we had with IPD.
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Table 1. The 32 strategies for IPD that satify M1.

1 : ALLD 2 : ALLD 3 : ALLD 4 : ALLD

; 7! D ; 7! D ; 7! D ; 7! D

P 7! D P 7! D P 7! D P 7! D

T 7! D T 7! D T 7! D T 7! D

S 7! D S 7! D S 7! C S 7! C
R 7! D R 7! C R 7! D R 7! C

5 : 6 : 7 : 8 :
; 7! D ; 7! D ; 7! D ; 7! D

P 7! D P 7! D P 7! D P 7! D

T 7! C T 7! C T 7! C T 7! C
S 7! D S 7! D S 7! C S 7! C

R 7! D R 7! C R 7! D R 7! C

9 : 10 : 11 : 12 :

; 7! D ; 7! D ; 7! D ; 7! D

P 7! C P 7! C P 7! C P 7! C
T 7! D T 7! D T 7! D T 7! D

S 7! D S 7! D S 7! C S 7! C

R 7! D R 7! C R 7! D R 7! C

13 : 14 : 15 : 16 :

; 7! D ; 7! D ; 7! D ; 7! D
P 7! C P 7! C P 7! C P 7! C

T 7! C T 7! C T 7! C T 7! C

S 7! D S 7! D S 7! C S 7! C

R 7! D R 7! C R 7! D R 7! C

17 : 18 : RET 19 : 20 : ALLC

; 7! C ; 7! C ; 7! C ; 7! C

P 7! D P 7! D P 7! D P 7! D

T 7! D T 7! D T 7! D T 7! D
S 7! D S 7! D S 7! C S 7! C

R 7! D R 7! C R 7! D R 7! C

21 : 22 : TFT 23 : 24 : ALLC

; 7! C ; 7! C ; 7! C ; 7! C

P 7! D P 7! D P 7! D P 7! D
T 7! C T 7! C T 7! C T 7! C

S 7! D S 7! D S 7! C S 7! C

R 7! D R 7! C R 7! D R 7! C

25 : 26 : 27 : 28 : ALLC

; 7! C ; 7! C ; 7! C ; 7! C
P 7! C P 7! C P 7! C P 7! C

T 7! D T 7! D T 7! D T 7! D

S 7! D S 7! D S 7! C S 7! C
R 7! D R 7! C R 7! D R 7! C

29 : 30 : 31 : 32 : ALLC
; 7! C ; 7! C ; 7! C ; 7! C

P 7! C P 7! C P 7! C P 7! C

T 7! C T 7! C T 7! C T 7! C
S 7! D S 7! D S 7! C S 7! C

R 7! D R 7! C R 7! D R 7! C



Fig. 1. Quality of the equilibrium point as a function of the temperature �,

note that, in the case of elitist selection, the fall from 100% of cooperation to 100%

of defection is at � ' 2:06, and the stage at 100% of defection continues over � = 100
(experience laid with (T; R;P; S) = (3; 2; 1; 0); L = 30, in�nite population and trivial

topology).
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Fig. 2. Population at equilibrium, with proportional selection � = 10% and

the average score at equilibrium is 53.89, with elitist selection � = 1 and the
average score at equilibrium is 60 (100% of cooperation) (experience laid with

(T; R;P; S) = (3; 2; 1; 0); L = 30, in�nite population and trivial topology).
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Fig. 3. Evolution of the population through time, starting from a uniformly

distributed population and using proportional selection, the average score at
equilibrium is 58.76 (experience laid with (T; R;P; S) = (3; 2; 1; 0); L = 30, in�nite

population, � = 2:5% and trivial topology).
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Fig. 4. Evolution of the population through time, starting from a uniformly

distributed population and using elitist selection, the average score at equilib-
rium is 60 (100% of cooperation) (experience laid with (T;R; P;S) = (3; 2; 1; 0); L = 30,

in�nite population, � = 0:75% and trivial topology).
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