Using Cenetie Programining
to evelve sirategies for the
lterated Prisoner's Dilemma

by Robert De Caux
Supervised by Robin Hirsch

September 2001

This report is submitted as part requirement for the MSc Degree in
Computer Science at University College London. It is substantially the

result of my own work except where explicitly indicated in the text.

Thereport will be distributed to the internal and external examiners, but
thereafter may not be copied or distributed except with permission from

the author.

Robert De Caux —MSc CS Abstract

Using Genetic Programming to Evolve
Strategiesfor the lterated Prisoner’s Dilemma

by Robert De Caux
Supervised by Robin Hirsch

September 2001

Abstract

The technique of Genetic Programming (GP) uses Darwinian principles of natural
selection to evolve simple programs with the aim of finding better or fitter solutions to
aproblem. Based on the technique of Genetic Algorithms (GA), a population of
potential solutions stored in tree form are evaluated against afitness function. The
fittest ones are then modified by a genetic operation, and used to form the next
generation. This process is repeated until certain criteria have been met. This could
be an ultimate solution, or a certain number of generations having been evolved.

Genetic Programming is afast developing field with potential usesin medicine,
finance and artificial intelligence. This project attempts to use the technique to evolve
strategies for the game of Prisoner’s Dilemma. Although a simple game, the range of
possible strategies when the game is iterated is vast, but what makes it particularly
interesting is the absence of an ultimate strategy and the possibility of mutual benefit
by cooperation.

A system was created to allow strategies to be evolved by either playing against fixed
opponents or against each other (coevolution). The strategies are stored as trees, with
GP used to form the next generation. The main advantage of GP over GA isthat the
trees do not need to be of afixed size, so strategies can be developed which utilise the
entire game history as opposed to just the last few moves.

This implementation has advantages over previous investigations, as information
about which go is being played can be used, thus allowing cleverer strategies. Work
has also been conducted into a hunting phase, where strategies roam atwo
dimensional grid to find a suitable opponent. By studying the history of potential
opponents and using GA, evidence emerged of an increase in cooperative behaviour
as strategies sought out suitable opponents, demonstrating parallels with biological
models of population dynamics.

The system has been developed to allow a user to alter important parameters, select
the evolution method and seed the popul ation with pre-defined strategies by means of
agraphical user interface.

Robert De Caux —MSc CS Table of contents

Table of Contents

I 1 018 0o [[f o o P 1
00 N o 1 P 1
1.2 SPECITIC ODJECHIVES.......coiiiiieceeeee s 1
1.3 Two player games and StrategieS........cevuvrverieerierierieniesieeee e 1
1.4 ChOiCE Of GAIME....cceieceeeeceieeeeetee e see et e e e sre e s e e naeeeneeenns 2
1.5 Why eVvolVe SIrategieS?......cocvee e 2
1.6 REPOI OULIINE ...t 3

2 Background ..o 4
2 R 7= 10 0= I 0= 4

2200 0 R ¥ o: {0 (0¥ o SRS 4
2.1.2 TWO-PErSON ZEr0 SUM JAIMES......c..eerirurerreerersresreeresseesseesressnessessesseessesnnens 5
2.1.3 Two-person non-zero Sum NON-cooperative Qames..........cccceveeveeseeseenens 6
2.2 PopUlation DYNAMICS.......cooiririeiinieeie et s 7
2.2.1 The Decline of the Rational Player...........ccccccvvieveeieieeseee e 7
2.2.2 ANSWErSTrOM NALUIE......cueeieieiesieeiesee et 7
2.2.3 Evolutionary Stability........ccccccceeieiiiieiie e 7
2.2.4 Nash EQUITTDIIA. ..o e 8
2.2.5 Evolutionary Stable Strategi€s..........covveveieeieeiie e 8
2.3 Search TEChNIQUES........ooeiiiieeeeeee s 9
P2 B R © V< V1= USSR 9
2.3.2 Genetic AlQOrtNMIS........cccuiiiecicse e 9
2.3.3 GENEtiC Programiming.........cceeereeereeeeieeeeseessessessessesseseeseessesseseesseseesns 10
2.4 Detalls of Genetic Programmingcccceeeeeereeereeeseesseeseeeseeesseeeneeens 11
2.4.1 Stepsto solving aproblem With GPc.cooviieiieeeeeeee e, 11
2411 Terminalsand FUNCHIONScooeieirirescsie st 11
2.4.1.2 FNESS FUNCHION.......iiieeieecese ettt sreeee e 11
2.4.1.3 CONrol Para@mELErS......ccoieeieieeiisieee e seese e ee st eee e seeseesreeeesnees 11
2414 Termination CrTEIIA.......cuviiririerierieeeerese s st 12
2.4.2 GENELIC OPEraLIONScocveeieieeeiteceeeeesteeee st ste e ae e steeee e ere e e e sreennas 12
2.4.3 FItNESS EVAlUBLION......cceiieieiece e 13
2.4.3.1 Absolute and RE@tive FItNESS........ccccviiiierieieeeeeeses e 13
2.4.3.2 ParefO SCOMMNG ...cuveeeuerreruirsessessessesseseesessesse s ssessessessee e s sse s snessessesseneenesseas 13
2.4.4 Selection and Breeting........cccoeveeveeieceesie e 14
2.4.4.1 The Problem of Premature CONVEIgENCE..........corererrereeresieseesieneeseeeeeenens 14
2.4.4.2 Probabilistic SEECHION.cooiii e 14
2.4.4.3 TournameNt SEIECION........cciiieeeeeereres e 14
24.4.4 Steady state and Generational GPccccce v 14
A S D < 11 14
2.4.5 Strongly Typed Genetic Programsccceeceieeveeieeseesescee e 15
2.5 Prisoner’SDIleMMAL........cccviiiiieiierieseeeesee e 15
2.5.1 BasiC GAaME DESCIIPLIONc.cciveceecieesieee et 15
2.5.2 The Payoff MELIXcccoiiiiiiiiieieieeee e 15
2.5.3 An Evolutionary Stable Strategyccccevveveieereeie e 16

Robert De Caux —MSc CS Table of contents

2.5.4 The lterated Prisoner’ s DilemmaL.........ccceeieiine s 16
255 Simple SrategieSfor IPD ... 17
2.5.6 Lack of an Evolutionary Stable Strategycccceveeveiieevecce e 17
2.5.7 SIOCHESHC SIAEJIES........eoveeeterieeieeieeeee ettt nre s 18
2.5.8 Spatialised Iterated Prisoner’ sDilemma..........ccccceveeveevecee e, 19

G N = 1 20
3.1 REQUITEIMENES.....coitiiiiieiieie ettt 20
3.1.1 FUNCtional reqUITEIMNLS.......cciieieererreeeeeeie et 20
3.1.2 Non-functional reqUIreMENtS..........cceeveerreereeiesee e 22
3.2 UsSe Case DIagramsS........cccccueereeeieeeneeesieesieeseeesseeesseeessesessessnsesssessnnes 22
321 GP ENGINE ..ottt bbb 23
3.2.2 WRHOIE SYSIEM ...ttt r e ens 23

I = o | o RS 24
4.1 Choice of Programming LangUagE...........cccerererieerierierieesieseeneeseesieenes 24
4.2 ChoiCe Of GP ENQINE......coiiiiiieieeee e s 24
I I 0T T T 0 [T S 25
4.3.1 IMPOrtant ClaSSESccovieeiicce et 25
4.3.2 RealiSatioN Of USE CASEScceeiieierieesie ettt 25
4.3.3 Classesto be extended or implemented............cccoevevevieieece e 25
4.4 DeSigN Of tNE GP......ceoieiiiiiee e 26
441 REQUITEIMENES.....c.eiiuieieceiesteeteeeesteete st e teeee s e seeseesreeresseesseenesneesreenneenes 26
4.4.2 Choiceof Terminalsand FUNCLIONS..........cccceviriereeneneeseee e 26
4.4.3 Examples of Common StrategieS as TreES.......covveeveeieeseere e creeee e 27
4.4.4 Choice of FItNeSS fUNCHION.......c.coeeiiieieeieieee e 28
4.4.5 CONtrol PalraMeEterS........cceierierireseseeeeiesiesie e st sse e 28
4.4.5.1 SiZ€ Of POPUIBLION......cciiiiriiieieeeeeeeeeee s 28
4.4.5.2 NUumber Of gENEratioNS........ccceceeieieeeese e 28
4.4.5.3 TOUMEBIMENE SIZE.....ccoiiriiriiiiiriesieieeeese sttt st be e 29
4.4.5.4 Probability Of MUEELTION..........cciieiiiirise s 29
4.4.5.5 Probability Of reprodUCTION..........cccoiriiiiririeeeee s 29
4,456 ChrOMOSOME SIZE ..ueccveeiteeiureireereeiteesteesteestessaesreesbeesbeesbeesseesaessasesnsesnbeesens 29
4.4.5.7 EVOIULION TYPE ..c.veiiiieitesieeietee ettt 29
4.4.5.8 Other PAaraMELErScooerieiieieieieesese et 30
4.4.6 TermiNation CrITEIIA. .. .ccooeieriesireseeeeeeee et 30
4.5 Design of Computerised Iterated Prisoner’s Dilemma...........cccceveeee.e. 30
4.5.1 Requirements and package gpSyS.PriSONESccccveverreerreerieseesreeree e 30
4.5.2 Specific classesfor playing the game...........cccooeiiiinnnnnnee 30
4.5.3 Hunting for an OpPONENT..........ccocceiieie e 31
4.6 Design of Hunting MeChaniSM.........cccocuveriinineniene e 31
4.6.1 Requirements and package gpsyS.grid.......cccoeveriririenieienesesese e 31
4.6.2. Criteriafor finding an OppOoNENtccceveeiieieseese e 31
4.6.3 An agorithm for deciding on an OppPONENT.........c.coeereeeeieerieniesese e 32
4.6.4 DeSIGNING ClaSSES......c.ecieiieitieie ettt e e eaesne s 32
4.6.5 Creating and inheriting huntCriteria.........coccooeiirinineneeeeee e 33
4.7 Design of the User Interface.......ccoeveeveeiee e 34

Robert De Caux —MSc CS Table of contents

4.7.1 Editable optionsfor the USESccceveeviiiiiieee e 34
4.7.2. Prevention of iNCONSIStENt PAraMELENS.ccoiveieriirieriene e 34
4.7.3 Displaying INfOrmation............ccceceeiiriieiieneeie e 34
4.7.4 Graphing rESUITS.........cceeieiieeiere e 34
4.8 Incorporating COEVOIULION.........ccceeueereeeieeeree e se e 34
4.8.1 Standard COBVOIULIONcoueiiirierienierieseeee e e 34
4.8.2 HUNtiNG COBVOIULIONocveeieieeesiecie e 35
4.8.3 SEEUING ..ottt e 35
4.8.4 FItNESS @VAlUBLIONevieiieiieiesiesie sttt 35
4.9 EXtending the enginecoooiiiiieieneneeese s 36
4.9.1 Additions/changes to origina package gpSysS.......ccocerererereeieeneeneniennenne 36
4.9. 1.1 NEW ClBSSESouvcvieeiiieiiste ettt sr e n e 36
4.9.1.2 New/edited CONSITUCTONS........ociciiiiiie ettt sbee e sbe s s e s sbee e 36
4.9.1.3 Other ChaNgES.......cccoouriririiteieeeer s 36
4.9.2 EXIENSIONSTO ENQINE.....couiiiiiiieie et 36
4.10 Final Class Diagrams.........ccccceeereerieesiieeseeeseeeieesseeeseeeseeesseesnsessnnes 37
S5 IMPIEMENTALION ..o 38
5.1 Problems encountered............cocuviiiiieniinieseeseee e 38
511 LaCK Of QIVEISITYcoueeiiiiieiesie et 38
5.1.2 HUNLING DIBS.....ceeiiieiiiiieceese ettt 38
5.1.3 Error in Crossover type Checkingcocovverinineneieeeeeeeeee e 39
5.1.4 RaNdOmM NUMDENS.ccciiiieieieriese sttt st sre s eneeneas 39
5.2 Other program ChangesS..........c.coerereerieniereenie et 39
521 Speeding UP NUNEINGcocoiiiie e 39
5.2.2 Adding DUmmy fUNCLION.........ccccoiiririnieee e 39
5.3 Examining important methods.............ccoeeiiiiniiiinneeeeeeees 40
5.3.1 EAitiNg PAramMELENS.......c.ecceeitieie ettt s 40
5.3.2 Implementing the NUNL.............cooiiiiir e 40
5.3.3 Performing eVOolULION.........ccocueiieiiceceee e 41
5.3.5 Playing agame between two INdividuals............ccooviriiiinienencnencnee, 42
5.3.6 SequUENCE DIAQraMS.......cccuviieieesie ettt 43
G = o S 44
6.1 Testing INtErfaCe.......cooiiiieee e 44
6.1.1 Testingillegal SEIECIONSc.ccovevieiieiicie e 44
6.1.2 Testing aCCePt DULLON.........coouiiiieiieierieeeeee s 44
6.2 TeStNG HUNLINGoooieeiieece e 44
6.3 TESHNG CrOSSOVESceeiuieeeieisieeeiteeeieeseeeseeesseeesseesseeesesssessnseessenensenns 44
6.4 Testing Mutation and ReProduction...........c.ccoceevereneniene e, 45
6.5 Testing Chromosome FUNCLIONS..........ccceviiiieriere e, 45
6.6 TeStNG SEEAINGeeieeeieeeeiieeiee e e e ee e e et e et e e e nneeennee s 45
6.7 TESHNG GAME......eiitiriieieite ettt r e 45
A == U] 46

Robert De Caux —MSc CS Table of contents

7.1 Playing fixed OpPONENL(S)ccceerrerireerererieeeseeererereeeesreeseeeseeessenesseens 46
711 VS AIC Pl ..o 46
7.1.2 VS AlID Player......ccceee ettt st 46
7.1.3 VS Tit-FOr-Tat Playerccceeieeeeieseee et e 47
714 VS Tit-FOr-2-Tat Playercccoooeieiereseeeeeeee e 47
7.1.5 Vs. Cooperative and Tit-For-Tat Playersccceoeveeienceneeie e 48
7.1.6 Vs. Cooperative, Backstabbing and Tit-For-Tat Players...........cccceeenenne. 49
8 T A VS N L o = P 50

7.2 Standard COBVOIULIONcceeveeiieriesieesiee et 51
7.2.1 Without functions Go, EQ and If.........ccceeeveieiiiiecie e 51
7.2.2 With al functions eXCEPL GO.......coerueeeeeiierieriesie e 52
7.2.3 With @l fUNCLIONSccueeiiieiie e 52

7.3 HUNtiNG COBVOIULION ... 54
7.3.1 Setting the threshold for playabilitycccoevveieiieiee e, 54
7.3.2 Inducement Of COOPEIAIONccceiueueieeriesie ettt 55

7.4 RESUITS SUMMAIYccuvieiuieeeieesieeeieesteesieeseeesseeesseesseeeseessseesneeensenensenas 57

8 Conclusionsand Evaluation..........cccceeeveiveiieneenen e 58

8.1 CONCIUSIONS.......ueeitieiiieiieiieeieete e ee sttt et e saeeneesneeens 58

8.2 SUCCESS Of SYSLEIM ...ttt 59

8.3 EXtending the ProJECL........ccccveeeeeiee e 60

A USEN MANUAL ..ot 61

A.1 RUNNING the Program.........cccooiiereenieneneese s s 61

A.2 TheUSer INTEITACecceeeeecece et 61

A.3 Changing the OptioNS...........cccvieiie e 62
A3 L GPParaMELENSeeieciiee e 62
A.3.2 Chromosome ParameEtersS.........cceceereeeereenieeieseesieseeseeenee e seeeeesseeneens 62
A.3.3 GaME PalramMELErS........ccoiiieiieeieeree e 62
A.34 HUNE ParamMELENS..... .ot 62
A.3.5 Coevolution/Opponent SELUP.........covieeriereeee e 63
A.3.6 Seed POPUIATION ..o e 63

A.4 Saving the Population and Generational Reports..........ccceecvevcveernnnnne. 63

A.5 Displaying results of EVOIULIONcccooeiiiinienineeeee e 64

A.6 Displaying the HUNL ..o s 64

B System Manual ..o 65

B.1 SyStem reqUIremMENTS........coceiiereerieerieesie et 65

B.2 MaKiNg ChangEScceiuiiiiriieiesieeieeie e 65
B.2.1 Extracting the Code and DOCUMENLALIONccerveruererereeieniesie s 65
B.2.2 JAVAOOC.........ei ettt nne s 65
B.2.3 Compiling and Running the System ..., 66

B.3 Extending or Adapting SySteMccceeveeeiieeiee e 67

Vi

Robert De Caux —MSc CS Table of contents

C Closer examination of GP engine........cccccoeoeeieeveevee e 68
C.1 Storing GP Parameters.........ccooeeeeierereeie e 68
C.2 POPUIELION SIIUCLUIE ...t 68
C.3 Evauation of an INdividualccooeeiiiiiniiniiee e 69
C.4 Creating NewW POPUIELION..........ccceeiieeeiece e 70
C.5 EVvOlVING POPUIELION.....c..eiiiieieieieie e 71
C.6 Performing the Genetic Operations..........cooceveeieereresieesie e, 71

(O350 M = 7= o (0o U Tox 1 oo RS 71
(O3 /U 1 o] o S 71
C.0.3 CIOSSOVEN:eeeiieeetieeieeetee st et e st e e e s e e s e e sae e s nn e e sneesnneesneesnreenneeenns 72
C.7 Giving feedback O USEY ...t 72
C.8 Establishing FItNESSccccveiieeci e e 72
C.O ClasSIagramM.......cccceeiieeiie e esieeseeseeseeesee e e e e ereeseeesneeenseeensee s 73

D Classand Sequence Diagrams........cccceeceereereeneeseeeneeesseesessenseens 74

D.1 ClasSdiagrams.........ccccererereeniesereeniesiesee e sie s see e seesee s sseeseessesneans 74
D.1.1 Package gpSYS.PriSONENccceieriruereeieeeieesse s stessessessese e see e seesneseens 74
D.1.2 Interface between packagesin setting up coevolutionccccceevvenee 75
D.1.3 Packages gpsys.primitives and gpsys.primitives.priSonerccccceeue.. 75
D.1.4 Package gpSyS.Oridcceeieieeiieie ettt 76
D.1.5 Package gpSyS.priSONEr.QUI......cceeuereereeeeesieeerseeesseeeesseeseesseessessesseessenns 77
D.1.6 Package gpsys after eXtENSIONS..........ccceevereeiieerieiieseeieseese e e 78
D.1.7 PaCkage SITUCIUIE........ceiiieeieiereste e 78

D.2 SequenCe DIagramsScccceceeiieeerieeereeesieeseeeseeesseeesseeenseseseesseessseenns 79
D.2.1 Evauating an INdivVidualc.cooeriiiiiiiiinereeeeeeeeeee e 79
D.2.2 Creating anew POPUIBLION.cccovirerieieieie e 79
D.2.3 Creating anew HUNE.........ccoiiiiiiiiieeeeee e 80

E SOUICE COUR......oiuieieceeie ettt 81

F' EVOIULION LOGS....cciiiiiece ettt 106
F.1 Testing genetiC OPErations..........ccecceeeeueeeieeesiieesieeseeeseeeseeeeseesseesneas 106

FLL L CrOSSOVEcoiiiitieiiieteesiee e et sie et eeae e et e st e e sae e s beenae e saneenneeeaes 106
F.1.2 Mutation and REProOdUCLION.........ccceeeeiieiieieceese e 106

F.2 Standard COBVOIULIONcceiieiieiie e 106

F.3 Hunting COBVOIULIONcc.oiiiiiieeeeeee e e 107

F.4 FUNCHON SELLESE ..o 108

F.5 Seeding POPUIALiON.........ccuieiieeiie e 109

G Bibliography —BOOKSccccoiiiiecseereesee e 111

H Bibliography —Web [INKS.......ccooveeiniiie e 112

Robert De Caux —MSc CS Table of contents

viii

Robert De Caux —MSc CS Introduction

1 Introduction
1.1 Aims

The main aim of this project isto establish the strongest and most robust strategies for playing
the Iterated Prisoner’s Dilemma, and to determine what makes them effective.

Asthereis no definitive way to maximise the score against every type of opponent, the
strategies being sought are ones which perform best against a variety of other strategies, and
which maintain their place in an €litist population. These strategies should maintain ahigh
average score over aperiod of time. Investigations will also be conducted into the best ways
for playing one or a selection of fixed opponents, bearing in mind that the strategies
discovered may be opportunistic, rigid and exploitable by other strategies, but ideally suited
to thissituation. The strategies will have access to which go is currently being played, which
is not the case for previous investigations combining Priosner’ s Dilemma and Genetic

Programming, so thiswill hopefully yield some new results.

An additional aim isto study other means of strategies surviving in a competitive
environment, such as the effects of hunting for an opponent before a game takes place, based
on criteria established in previous games. Thisisarelatively unexplored area of research.

1.2 Specific objectives

- Tousethetechnique of genetic programming to discover which strategies are best
against given fixed opponents, and which can maintain a place within a population
(coevolution)

- Toestablish how average and extremal scores will vary over time

- To experiment with different evolutionary parameters

- Todevelop amechanism for strategies to hunt for suitable opponents using a genetic
algorithm

- Todiscover whether this hunting can help a strategy to survive within a popul ation

- Todevelop agraphical user interface to implement al alterations to parameters which

the user may wish to change

1.3 Two player games and strategies

Robert De Caux —MSc CS Introduction

Most two player games have some strategy available to players which will enable them to
improve their performance. In some cases, a definitive strategy can be found which a player
can use to guarantee victory. Games such as tic-tac-toe and connect4 fall into this category,
as one player can dictate the play so that their opponent has only limited options available on
each go, none of which will allow them to win. Of course there are some gamesin this
category, Chess being an example, in which the number of permutations are enormous, but
thereis still a“best” way of playing. Such games are called two player zero sum games
(82.1.2).

A more interesting type of game from the point of view of studying strategies is one where a
good move for one player is not necessarily a bad move for the other, thus incorporating both
competition and cooperation. Now there is no ultimate strategy which works best against
every type of player, as the effectiveness of any strategy is determined by the decision of the
opponent. The poker inspired quote that “you cannot bluff abad player” highlightsthis, asa
clever bluff against an experienced player is an unnecessary waste of money against an

amateur with a good hand®. This type of game is known as two player non-zero sum. (§2.1.3).
1.4 Choiceof Game

The game of Iterated Prisoner’s Dilemmawas chosen as it has simple rules and the choices
availableto a player on any go are very limited, so strategies are relatively easy to understand.
It does offer a surprising degree of complexity however, with a plethora of different strategies
available, and most importantly it does not have a solution or “best” way of playing against

all opponents.

1.5 Why evolve strategies?

The benefit of using evolutionary techniques to evolve the strategies is that the trial and error
approach of evolution can produce effective strategies which may learn and adapt to

counteract the possibleirrationality of opponents. There islittle point in approaching the

1 A bluff in Poker is adeliberately high bet placed to scare the opponent into thinking that a player’s
hand is stronger than is actually the case. An inexperienced player will only pay attention to the quality
of his own hand and not to how their opponent behaves, so will continue to play undaunted. An
experienced player may decide that their hand is not sufficiently good enough to play for such high
stakes, and concede the money for that hand.

2

Robert De Caux —MSc CS Introduction

problem from a purely rational viewpoint when the game in question means that a rational”
player may not score aswell asan irrational player. The Darwinian quote “No instinct has
been produced for the exclusive good of other animals, but each animal takes advantage of the
instincts of others” suggests that the strategies that will evolve are the ones that can compete
best within their environment, even if they may not seem to be the most rational. Thisis
exactly what is required.

1.6 Report outline

» Background: Detailsthe fundamentals of game theory and population
dynamics, before discussing various search techniques for finding solutions,
with a heavy emphasis on Genetic Programming (GP). The game of
Prisoner’s Dilemmais then discussed in depth, including previous research.

e Analysis: Details the requirements for the system being built and for the
GP engine to be used.

* Design: Discusses the GP engine chosen, and how it can be extended to
incorporate the game of Prisoner’s Dilemma, with emphasis on setting up the
GP. Also details design decisions for the Graphica User Interface (GUI),
hunting mechanism and coevol ution.

* Implementation: Discusses problems encountered whilst testing the
system and changes that were made. Also details how the use cases are
realised.

* Tedting: Shows tests carried out to verify al of options implemented

* Results: Discusses the strategies that have evolved for playing fixed

opponents, during coevolution and with the inclusion of hunting, by
examination of graphs over a number of generations and generational reports.

» Conclusions & Evaluation: Discusses what can be drawn from the results,
and how this relates to previous work and to nature, as well as how successful
the system is and how it can be extended.

2 A rational player is discussed in §2.1.1

Robert De Caux —MSc CS Background

2 Background

2.1 GameTheory
2.1.1 Background

Game theory can be thought of as a mathematical approach to the study of conflict of interest,
and is generally attributed to von Neumann [7]

It describes a game as a set of situations with well specified outcomes, such that were they
offered to a player, it could be ascertained which choice he would make. The decision
making of players underpins the whole theory, and a player istermed rational if they make a
decision which will maximise the benefit to themselves.

A gameissaid to be normalised if it satisfies the following:

n players are required to make one choice from a set of choices, without knowledge of what
the other playersare doing. These choices lead to a resulting outcome for each player. Both
playerstry to maximise the outcome for themselves

Thetwo player version of anormalised game can be characterised by a matrix, termed the
payoff matrix, where the choices of both players give as the outcome the corresponding
matrix entry. Asan example, suppose that a goalkeeper isfacing a penaty from a striker, and
both can choose to go either left or right. If they both choose the same direction, the penalty
is saved and the score stays the same (both score 0). If they go in different directions
however, the ball goesinto the net and the striker scores 1, while the keeper scores—1. The
payoff matrix for this situation is given below:

Goal keeper

Left | Right
Striker [Left | 0,0 |1,-1
Right | 1,-1 | 0,0

The entries indicate what each player scores. The number of the left isfor the striker, the

other for the goalkeeper.

Robert De Caux —MSc CS Background

A pure strategy can be thought of as a pre-conceived method for dealing with every
eventuality that may result throughout he game. If both playersin atwo player game have a
pure strategy, this dictates what they would do in every situation, so the game could be played
to a conclusion by some umpire with no further input from the players. These are also
sometimes referred to as deterministic strategies. An extreme example would be two players
playing connect4, with one always placing their piecesin the leftmost available column, and
the other placing theirsin the rightmost available column.

2.1.2 Two-person zero sum games

Suppose agameisin normalised form, and there is a payoff matrix defined. Each player will
have an order of preference for the set of outcomes available. Now if both players have the

same preferences, then there is no conflict of interest and the game becomes trivial.

At the opposite extreme, if for al outcomes thereis either mutual indifference or one player
prefers one and the second player the other, then it is strictly competitive and referred to as a

zero sum game >,

If both players are to choose one of their options without knowledge of the other player’s
choice, they will have a problem deciding, asin al likelihood the best choice that they can
make is dependent on the choice of their opponent. To escape from this potentially circular
argument, each player should seek to maximise their own security level, which is the worst
they can do by making any particular choice. If both players choose a strategy to do that, they
are effectively making the best choice to counter their opponent, i.e. if one player revealstheir
choice first that maximises their own security level, the other player can do no better than to
choose to maximise their own security level®. Readers wishing a more detailed explanation of

the above should refer to [8, chap.4], but it can be formalised quite simply:

Suppose player one chooses strategy a, from &...a,, and player two chooses b, from by...by.
Then if the best outcome O, for player 1 is O, ,and the best outcome O, for player two is

01, i, j00..n, each player has maximised their own security level, and the pair of choices

3 Zero sum refers to the sum of the utilities for the two players, which is zero as the name suggests.
Utility isdiscussed in [8, chap.2]

* One of the most important principles of game theory however isthat it does not say what any player
should do. Although this decision may give the player the best guaranteed performance, they may be
ableto improve on it with adifferent choice. Game theory simply states how to achieve certain
outcomes from given situations.

Robert De Caux —MSc CS Background

(a1, by) isan equilibrium pair, so called because neither player has incentive to change from
their decision and so it isrepeatedly chosen. These equilibrium pairs may not be unique or
may not even exist for a particular matrix®

The minimax theorem, the central theorem of two-person zero-sum theory, states that there
exists anumber v, so that player one has a strategy (maximin) guaranteeing at least a return of
v, and player two has a strategy (minimax) guaranteeing that player one can get at most v.
These strategies are in equilibrium, and any pair of strategiesin equilibrium will give
maximin and minimax strategies for player one and player two respectively.

Thisresult isbasically an extension of the discussion above to take in any zero sum game (not
just ones with equilibrium pairs), but stipulates that players must be allowed mixed strategies
(where each strategy available to aplayer is given a probability of being chosen).

The solution to a zero sum game is the strategy derived from the minimax theorem, with v
being termed the value of the game. Thiswill maximise the expected return for that player

which isthe aim of the game.

2.1.3 Two-person non-zer o sum non-cooper ative games

A two-person non-zero sum game is such that if one player prefers choice x toy, then the
other does not necessarily prefer y to x. Thisintroduces the element of agreement, and alows
benefit to be gained from cooperation. A non-cooperative game simply means that no

communication is allowed before adecision is taken, known as pre-play communication.

Unlike zero sum games, there is no solution. Thisis because the fundamental rules of zero-
sum games are violated. In particular, these rules no longer apply:
i) if (x,y) and (x’,y’) are equilibrium pairs, then (x, y’) and (X', y) arealso
equilibrium pairs.

i) if x isamaximin strategy and y a minimax strategy, (x,y) isan equilibrium pair.

Analysis of asimple hon-zero sum game showing violation of these rulesis givenin [8,

chap.5.3], and avery mathematical analysis of two player gamesisgivenin[9].

Now thereis no minimax solution, as maximin and minimax strategies do not form an

equilibrium. Instead there is always an incentive to “double cross’ the opponent if it isfelt

® Consider the matrix (3 1) —no entry which is min of its row and max of its column,
(24) sono equilibrium pair
6

Robert De Caux —MSc CS Background

they are going to stick to the safe strategy, but if both double cross they suffer, so thereisa
temptation to stick to playing safe, etc. A vicious circle emerges.

A definition was given by Nash for a non-zero sum game to be solvable [8, p106] if al pairs
of equilibrium pairs are interchangeabl€®, but thisis little more than a theoretical solution with
no practical use.

Strategies for non-zero sum games can be affected by the number of times the game is played.
In aone off game for exampl e, retaliation is not possible so players may feel more inclined to
risk trying to maximise their return by double crossing.

2.2 Population Dynamics

2.2.1 TheDecline of the Rational Player

Theidea of a perfectly rational player providing the best solution was questioned by the so-
called “trembling hand” line of reasoning, where by the opponent is thought to occasionally
behave irrationally [6, preface xii]. This change in behaviour can force even the most robust
rational strategy into trouble. Therefore some dynamical reasoning needed to be injected into
the strategy, instead of being totally based on “apriori” reasoning. This of course may not
lead to a stable solution.

2.2.2 Answersfrom Nature

John Maynard Smith, abiologist, drew a comparison between animal conflicts and games, by
placing the game in a population-dynamical setting [11, chap.47 209-221]. Each member of
the population would have a strategy for playing, and could randomly come across an
opponent within the population who they would play against. In this setting the more stable
strategies should take control as the strategies adapt to survive. Thisissimilar to self
regulation within an animal population — the predator/prey cycle.

2.2.3 Evolutionary Stability

® Pairs are interchangeable if for equilibrium pairs (x, y) and (X', y'), (x, y’) and (X', y) are also in
equilibrium
7

Robert De Caux —MSc CS Background

Behaviour is evolutionary stable if, when adopted by all members of a population, it cannot
be invaded under natural selection. Thisisformalised by Hofbauer and Sigmund [6, chap.6
59-60]

Suppose that we represent the fitness (as discussed in §2.3.5) of an individual by W(1,Q) ’,
where | represents the strategy they are adopting, and Q represents the composition of the
population. A mixed population would be represented by Q = x J+ (1-x) I, O<x<1, with x
being the frequency of Jtypeindividuas, and (1-x) the frequency of | type individuals.

An | type population is evolutionary stable if upon the introduction of a small number of J

type individuals, the | types fare better than the J types, i.e. for JZ I,

W(l, e+(1-€)l) > W(J, eH(1-¢)l), €0 and small

Provided that W(I,Q) is continuousin Q, Ase - 0, W(I, I) = W(J, I)

Therefore no types can fare better against a population of | typesthan the | typeitself. The
only problem is that a strategy | may not actually exist.

2.2.4 Nash Equilibria

A Nash equilibriumis a strategy which is a best reply toitself. Any normal form game will
give at least one Nash equilibrium [6, chap 13.4]

A strategy q isastrict Nash equilibriumiif it is the unique best reply to itsdlf, i.e.

g.Mq > p.Mq, p # g, M isthe payoff matrix.

2.2.5 Evolutionary Stable Strategies

A strategy p is an evolutionary stable strategy if it satisfies the following two conditions:

i) Equilibrium: p.Mp = q.Mp, 0g0Sy, i.e. al possible strategies
ii) Stability: if g # p and g.Mp = p.Mp, then q.Mq < p.Mq

" This means that W isafunction of | and Q

Robert De Caux —MSc CS Background

Just having condition i), the Nash equilibrium, would not be sufficient, as there may be
another strategy which is an aternative best reply, and may be ableto invade. Clearly the
strict Nash equilibrium is sufficient, as any individual not using that strategy will
automatically do lesswell.

2.3 Search Techniques

2.3.1 Overview

The solution or strategy being sought can be thought of as a particular point within a search
space of al possible solutions or strategies. There are three main types of search techniques
which can be used to find the one desired. They are enumerative techniques (which in
principle search every point one at atime, although this search can be restricted only to places
that can contain the solution), Calculus based techniques (which treat the search space asa
continuous function and search for maxima and minima), and Stochastic techniques (which
use information from the search so far to choose the next point probabilistically). The latter
techniques include evolutionary algorithms which are the basis for both genetic algorithms

and genetic programming.

Evolutionary agorithms use Darwinian natural selection to breed progressively better
children from a popul ation by keeping the strong and discarding the weak [4]. The different
types of evolutionary algorithm differ in the representation of individuals and the process of
evolving new ones. One such technique is genetic algorithms.

2.3.2 Genetic Algorithms

Genetic algorithms (GA) were pioneered by John Holland [12], and take their ingpiration
from nature. A population of individuals are created, and each of these individuals has a
known fithess which has been calculated in some way. This population isthen evolved over a
number of generations, with new individuals being bred from the fitter individualsin the
previous generations. Thiswill hopefully direct the evolution in the required direction,
although of course it may take many generations to achieve the required result. Once this
result has been reached we can terminate the GA, or if there is no definitive solution we can
terminate the algorithm after a certain number of generations.

Each individual is made up of DNA, usually represented by afixed length vector. Each entry
in the vector represents some characteristic of the individual, and the entries are usually

Robert De Caux —MSc CS Background

binary. The fithess of theindividual is then calculated using the entriesin the vector. The
DNA does not represent the program itself, but affects how the program will behave.

Genetic operations are then applied to the individuals, affecting their DNA entries, and so the
vectors change and hopefully become better at solving the required problem. The use of
building blocks (a small localised subset of vector entries which are successful) leads to the
creation of successful individuals.

2.3.3 Genetic Programming

Genetic programming (GP) is an extension of GA credited to John Koza[13]. Where as
vectors are used asthe DNA in GA, GP uses a hierarchical representation, usually some form
of tree, to store the genetic code. The two main benefits of this over GA isthat the size and
structure of the tree do not need to be specified in advance making it much more flexible, and
also the trees represent the program code itself, rather than just influencing how the program

performs. Theindividua is effectively the tree.

Of course there are now difficulties in making sure all trees are valid programs. In fact
experiments which tried to evolve trees with no regard for syntax produced very few
compilable programs and so were ineffective at approaching the solution [4, p11]. Therefore
care must be taken to keep the programs valid when the genetic operations take place, and this

is helped vastly by the tree structure, as all operations can be implemented on the branches.

A very simple example is the following tree, representing the program (2+3)* 4:

An overview of GP can befound at [19]

10

Robert De Caux —MSc CS Background

2.4 Details of Genetic Programming

2.4.1 Stepsto solving a problem with GP
John Kozaidentified five steps to solving a problem with GP [13]. They are the choice of:

1) Terminals

2) Functions

3) Fitness Function
4) Control Parameters

5) Termination Criteria
24.1.1 Terminalsand Functions

Theterminals and functions are the components of the programs. Terminals act as the leaves
of the tree (for example the numbers in the examples above), and functions act as junctions,
with their children being their arguments (for example ‘ +' takes two numbers as arguments).
Deciding on the function and terminal setsfor the problem is a very important part of the
design, as these essentially determine what the strategy is able to do. Neglecting to include
certain functions or terminals will prevent some strategies from being available.

2.4.1.2 FitnessFunction

The fitness function determines how the fitness of an individual is calculated, and therefore
how successful itis. The function is designed to be specific to the problem, so thisis another
important design factor. It is sensible to encourage fitness to increase as solutions improve
unless a definite target is known for the solutions to aim for, in which case the fitness should
try and be as close to zero as possible, with zero being the perfect solution. Further details on

the fitness function and fitness evaluation can be found in §2.4.3.
24.1.3 Control Parameters
These are the parameters that affect how the GP is run, such as the size of the population,

number of generations, probability of each of the genetic operations, and maximum/minimum

sizes for solutions.

11

Robert De Caux —MSc CS Background

2414 Temination criteria

If the termination criteria are met, the GP stops. The rule for stopping could be a perfect
solution, or a certain number of generations having el apsed.

2.4.2 Genetic Operations

The three most common operations used on the individuals are reproduction, mutation and
Crossover:

Reproduction is the most straightforward, with the individual being placed unchanged into the

next generation.

Mutation randomly changes one of the branches of the tree, then places the new program into

the next generation, e.g.

()
(2) (+)
3) (@)

Crossover takes in two parent trees, replaces a random branch of one of the parents with a
random branch from the other, and places the new program into the next generation.

oS
oRRo
oo

12

Robert De Caux —MSc CS Background
A C

There are other operators[4, p26], which will be mentioned but not pursued.

- Hoist—A new individual is created entirely from a subtree of an existing individual

- Self-crossover — Similar to crossover, but the same individual represents both parents

- Context Preserving Crossover — Subtrees for crossover are only alowed if their node
positions alow it

2.4.3 Fitness Evaluation

There are a number of issues concerned with the fitness function which are the subject of
research. Some of the most relevant are detailed below.

2.4.3.1 Absolute and Rdative Fitness

Most GP applications calculate the fitness of an individual by comparing it to a fixed number
of test cases or by playing against fixed opponents. Thisis known as absolute fitness, and
requires knowledge of an optimal strategy.

To avoid this problem, solutions can be coevolved to give areative fithess. Thisis achieved
by playing the individua s against each other, and so over a period of time, as the test cases
are also evolving, hopefully the overall fitness of the individuals should improve. Severa
experiments have shown co-evolved players to give better and more robust solutions than

those derived using absolute fitness[14].

2.4.3.2 Paretoscoring

Pareto scoring allows individuals to be scored on multiple criteria, such as functionality,
complexity and efficiency. These could be used to give asingle fitness score, or alow
different scoresto be used in different circumstances, e.g. if functionality istied, choose
individual with lower complexity.

13

Robert De Caux —MSc CS Background

2.4.4 Selection and Breeding
2.4.4.1 TheProblem of Premature Convergence

Choosing which individuals are selected from a population and how their offspring are
produced is avital part of any GP. It iscrucial that the decision prevents premature
convergence, which occurs when a population loses diversity and converges to a non-optimal
solution. Much research has been conducted into methods of maintaining diversity, such as
Brood selection and Diassortative mating [4, p22-23]. Two of the most common selection
methods are discussed below.

2.4.4.2 Probabilistic selection

Individuals are assigned a probability for being selected based on their fitnessin relation to
the rest of the population. This may be by ranking the individuals and then assigning the
probabilities, or by making the probability the individual’ s fitness divided by the total fitness.
Thisisthe standard method for GA systems.

2.4.4.3 Tournament Selection

A small subset of the population is selected at random, and the individual with the best fitness
ischosen. Careful consideration must be given to the tournament size — increasing it may

stifle diversity, but making it too low introduces more noise.
24.4.4 Steady state and Generational GP

When new individuals are created, they can either replace weak individuals aready in the
population (steady state) or form a completely new generation (generational). Steady state
GPisan dlitist breeding policy, asindividuals with high fitness can never be replaced.
Therefore it may not be appropriate for coevolution where the test cases are constantly
changing.

2445 Demes

Instead of allowing individuals to be alowed to breed with any other individual, the

popul ation can be divided into subpopulations or demes [4, p23], placed on a 2D grid, and
encouraged to breed with individualsin their locality. During coevolution, the idea of demes
on a 2D grid could be extended to encourage individuals to use othersin their locality as test

cases, or to alow individuals to search for suitable test cases.

14

Robert De Caux —MSc CS Background

2.4.5 Strongly Typed Genetic Programs

In most genetic programming systems, the terminals and functions are chosen so that they
operate with only asingletype. Thisisknown as closure of the system. However it is
possible to include different types as shown by Montana [16], so long as care is taken to
ensure that all functions take in and return the valid types for the branch they are on. Multiple
types make the rules of crossover and mutation more complicated, but can allow complicated
solutionsto be derived faster. It is possible to make functions generic to reduce the number

that must be explicitly specified.

2.5 Prisoner’sDilemma

25.1 Basic Game Description

The game of Prisoner’s Dilemmawas first proposed by Merrill Flood in 1951, and arises from
the following situation, quoted from [21]:

Two criminals are captured by the police. The police suspect that they are responsible for a
murder, but do not have enough evidence to prove it in court, though they are able to convict
them of a lesser charge (carrying a conceal ed weapon, for example). The prisonersare put in

separate cells with no way to communicate with one another and each is offered to confess.

If neither prisoner confesses, both will be convicted of the lesser offence and sentenced to a

year in prison. If both confess to murder, both will be sentenced to 5 years. If, however, one
prisoner confesses while the other does not, then the prisoner who confessed will be granted
immunity while the prisoner who did not confess will go tojail for 20 years.

What should each prisoner do?

An dternative analogy is playing agame for coins[16]. If both players cooperate they
receive 3 gold coins each, if they both backstab the other they receive 1 gold coin each, but if
one backstabs and the other cooperates, the defector gains 5 coins and the cooperator 0.

This coin analogy will be used, as high scores are wanted for successful defection, where as
the prisoner analogy gives low scores for successful defection (O yearsin prison).

2.5.2 The Payoff Matrix

15

Robert De Caux —MSc CS Background

The outcome for each of the participants can be summarised in the following matrix. R
represents the reward for cooperation, S represents the sucker’s payoff, T represents the
temptation to defect, and P represents the punishment for mutual defection [17]
Cooperate Defect
Cooperate | R=3 S=0
Defect T=5 P=1

The figures being used in the matrix could be altered, so long as they satisfy the following:

1) T>R>P>Sand 2) R>(S+T)/2

The first rule ensures the temptation to defect exists. The second ensures that players score

worse by taking turns to defect instead of cooperating all the time.

The dilemma arises because it seems to both players that they will better off defecting (5 as
opposed to 3, or 1 as opposed to 0), but if they both defect then they will only score 1, less
than the 3 they would have got from cooperating. What should a player do?

2.5.3 An Evolutionary Stable Strategy

AsT dtrictly dominates R, and P strictly dominates S, it makes sense that if the gameis
played just once, aplayer should defect. Thisisthe rational choice, and satisfies the criteria
of an evolutionary stable strategy. However we can seethat if two players play irrationally, it

is possible to score more than two rational players. Thisisaworrying observation.

254 Thelterated Prisoner’s Dilemma

The Iterated Prisoner’s Dilemma (IPD) involves repesating the Prisoner’ s Dilemma game a
certain number of times, and keeping the overall score. Now the problem of evolutionary
stability becomes a problem. If both players are playing cooperatively then they satisfy the
Nash equilibrium, but it is not evolutionary stable, as any defector will score T to his
opponents S. If both defect, again they satisfy the Nash equilibrium, but they are now scoring
lessthan if they cooperate.

The most disturbing aspect of the IPD was highlighted in the Flood-Dresher experiment [21].
Suppose the gameis played 100 times. Both players know that on the final go, they arein
fact playing a solitary game of PD, and should therefore both defect. Thisin effect makes the

16

Robert De Caux —MSc CS Background

99" go the fina go, but then this again can be viewed as a solitary game of PD, so both should
defect. Iterating thisline of thought implies that both players should defect on every go, but
they will then only score 100 points, where as cooperators, the seemingly irrationa players,
will score 300. Thisis something of an unresolved paradox, and “ademonstration of what’s
wrong with theory, and indeed the world” [2]. A very theoretical examination of the IPD is
givenin [8, p.101]

255 Simple Strategiesfor IPD

The simplest strategies are to cooperate on every move (AllC), or to defect on every move
(AlID). These arethe blind strategies, relying on no information from the game so far to
make their decisions. AlID will perform well if it isin a population of mainly cooperative
playersasit will be able to exploit them, but will suffer against similar individuals. AllC can

only prosper in an environment of cooperative players.

Anocther simple strategy, Tit-for-Tat, has proved to be one of the most successful, and in fact
won atournament staged by Axelrod of many different IPD strategies[1]. It works by
cooperating initially, and then copying its opponent’ slast move. Inthisway it can never win,
but will score well against al types of opponent. It should be emphasised that the aim of IPD
isto score well (maximise expected return), not to win. Many other strategies are available
for playing on an IPD simulator at [23].

2.5.6 Lack of an Evolutionary Stable Strategy

A strategy isin equilibrium if

V(SIS) 2 V(S[S),

where V(S|S) is the score achieved by strategy S playing against S.

Thisis simply condition 82.2.5i) restated with different notation to represent a game with
multiple goes and avoid mentioning the payoff matrix.

If we make the assumption that a strategy has no knowledge of which go is being played,
studying the Tit-for-Tat strategy shows it to be in equilibrium according to the above equation,
as no strategy playing against Tit-for-Tat can do better than to score an average of 3.0 per go
(cooperation), which iswhat Tit-for-Tat scores againgt itself.

Unfortunately, 82.2.5ii) states that (in the new notation)
ifj zi and V(S§|S) = V(SIS), then V(§IS) < V(SIS) if i isstable.

17

Robert De Caux —MSc CS Background

This condition is violated if we play Tit-for-Tat against the Tit-for-2-Tat (TF2T) strategy,
which isvery similar to Tit-for-Tat, but won’t defect until the opponent has defected twicein
arow, thus making it slightly more forgiving. Since neither Tit-for-Tat or Tit-for-2-Tat will
ever defect except asretaliation, they will cooperate with each other and score 3.0 per go.
Therefore V(S|S) = V(SIS), so Tit-for-Tat is not evolutionary stable.

It is quite easy to show how Tit-for-Tat could potentially be invaded by its"twin” strategy®
Tit-for-2-Tat and athird strategy, Suspicious Tit-for-Tat (STFT), which operates as Tit-for-
Tat but defects on the first move. Only afew individuals playing STFT are placed in the
population. Now TFT and TF2T both score 3.0 against each other, but where as TF2T can
induce cooperation in STFT and score 2.7 °, TFT will exact retribution and force the game
into a series of defections, only scoring 2.5. Thiswill allow the TF2T strategy to slowly take
over the population. A more in depth analysis of the above can be found in [17, Deterministic

strategies)

If information about which go being played isincorporated into the strategies, it is even easier
to displace TFT. A strategy which cooperates on every go except the last ° will outscore TFT
3.2t0 2.7, and so can take over. It struggles to maintain its superiority however, asit only

scores 2.8 against itself, and is easily defeated by an AlID player.

Boyd and L orberbaum proved that the above thinking about invasion extends to all strategies,
and that no deterministic strategy can be evolutionary stable [11, Deterministic strategies].

2.5.7 Stochastic Strategies

A strategy such as Tit-for-Tat will suffer in anoisy environment, where the probability of
playing each move according to the strategy islessthan 1. An “accidental” defection by the
opponent (see §82.2.1) can lead to sequence of recriminatory moves, lowering the average

score of both players.

Research by Nowak and Sigmund[3] showed thisto be due to the deterministic nature and
rationality of the strategies thus far described. A strategy found to due well in this situation
was one which defects after Sand T, and cooperates after R and P with avery high

probability. This can correct occasional mistakes and exploit naive cooperators, and was

8 A twin strategy to strategy x would score the same against x as x would against itself
® Game lasts for ten goesin all examples, aslonger games will not affect outcome.
19 This will be known as a“sneaky” strategy

18

Robert De Caux —MSc CS Background

dubbed Paviov. Itsweaknessliesin thefact that it is easily exploitable by AlID, but if the
probability of making certain decisions based on experience is reduced from one to slightly
less than one, Pavlov can achieve stability against AlID if the game s iterated for long enough.
[17, Stochastic strategies]

2.5.8 Spatialised Iterated Prisoner’s Dilemma

Some experimentation has been carried out into placing a population of strategies on a2D
grid, and seeing how their distribution evolves by each individual playing itsimmediate

neighbours. Some interesting results can be obtained.

If asmall group of AllC strategies are placed together on a grid consisting on predominantly
AlID grategies, AllC strategies can spread throughout the population if they only play each
other and take over adjacent squares[22]. Thiswould not normally be possible as AlID can

easily defeat AlICin agame.

[15] creates a system to randomly place a population on a 2D grid, and hunt for an opponent
according to bits selected in a Genetic Algorithm. These bits are set randomly however and
no results of note appear to have been obtained, although it provides an excellent mechanism
for carrying out the hunting to be investigated in this project

19

Robert De Caux —MSc CS Anaysis

3 Analysis

3.1 Requirements

In order to design a system to meet the desired aims, the regquirements must be formalised.
Requirements prioritisation is based on the MoSCoW criteria, namely M ust have, Should
have, Could have and Would like, and divided into functional and non-functiona

requirements.

3.1.1 Functional requiremnts

GP Engine

1 The engine shall support the genetic operations of M
mutation, reproduction and crossover.

2 The engine shall just provide a mechanism for GP S
to take place

3 The engine shall be extendable to whatever scenario | M
isrequired

4 The engine shall support tournament selection C
The engine shall allow aflexible formulation of M
fitness

6 The engine shall store a population of individuals M

7 Theindividuals shall be represented by M

chromosomes, which arein turn made up of genes

8 The genes will form atreelike structure, consisting | M
of terminals and functions

9 The engine will have editable parameters for the S

chromosomes

10 The engine shall have editable parameters for the M
genetic program itself, such as number of

generations and population size

11 The engine shall support different types with C
appropriate type checking

12 The engine shall support co-evolution M

13 The engine shall be implemented in Java S

20

Robert De Caux —MSc CS

Anaysis

14 The engine shall give regular updates to the user
Prisoner’s Dilemma game

15 The game shall be playable by two computer
players against each other

16 The game shall be playable by a human against a
computer opponent

17 The computer player shall operate a deterministic
strategy

18 The strategy shall have accessto a complete history
of the game up to that point

19 The length of game shall be editable

20 The players shall know the length of the game

21 The payoff matrix shall be as described earlier, with
scores of 5,3,1 or 0.

22 The payoff matrix shall be editable

23 There shall be arandom element possiblein a
computer player’s strategy

24 Players shall be ableto hunt for their opponents
Hunting for an opponent

25 Individuals shall be placed on a2D grid

26 Individuals shall move randomly around the grid

27 Individuals shall perform a compatibility test if they
are adjacent to another Individual

28 The compatibility test shall decide whether the
Individuals play

29 Individuals who have found an opponent shall stop
searching

30 Individuals shall only have a certain number of goes
to find an opponent

31 The size of the grid shall be editable

32 Hunting shall be visible to the user
Integrating Prisoner’s Dilemma into
theengine

33 Each Individual shall represent a strategy

21

Robert De Caux —MSc CS

Anaysis

34 Thefitness of an Individual shall be how well it
performs at Prisoner’ s Dilemma

35 The fitness shall be calculated over a number of
games

36 The functions and terminals shall be relevant to
Prisoner’s Dilemma

37 An Individua shall evaluate to avalid movein
Prisoner’s Dilemma

38 Genetic operations shall alter the strategy that the
Individual plays

39 Players shall play against fixed opponents or against
each other

40 Custom built strategies may be devel oped

41 Strategies may be seeded into the Population at the

outset

3.1.2 Non-functional requirements

1 The user shall be able to edit al parameters by
means of a graphical user interface (GUI)

2 Opponents and strategies to be seeded shall be
selectable on the GUI
Generational reports shall be output to the GUI

4 A graph detailing fitness information shall be
presented on the GUI

5 The grid containing representations of individuals
shall be displayed on screen

6 Individuals shall have different representations

according to whether they have found an opponent

3.2 Use Case Diagrams

Now the requirements have been formalised, use case diagrams can be drawn to demonstrate

what the system should achieve

22

Robert De Caux —MSc CS Anaysis

3.21 GPengine

—

Create Population

Individual
/Calculate Fitness
A S
S

how Report Parameters

Rank And Select
Fitness Evaluation
Mechanism

v

Evolve Population

Looking at a higher level, a use case diagram can be used to show what the user is able to do,
and what engines and parameters need to be accessed to achieve these choices.
3.2.2 Whole system

Edit GPParameters
GP Parameters GP Engine
/

O > %P |

Seed Population Evolve Strategies =

Strategy
Parameters ’

Select Strategies
Hunt

<>\\\\§%4/ Game Engine \

(Edit Game Parameters

Game
I Parameters

e —

Edit Hunting Parameters —
/4 \ Hunt Engine

Board

23

Robert De Caux —MSc CS Design

4 Design
4.1 Choice of Programming Language

The choice of programming language for the GP engine and extension to incorporate the
game will be Java. There are several reasons for this choice. Java alows the use of packages,
which will be helpful for separating the engine mechanism from the Prisoner’ s Dilemma
implementation, and Java a so allows utilises inheritance, so classes from the engine can be
extended as desired.

It will aso be straightforward to implement a class hierarchy using Java, which will allow a
set of genesto represent a chromosome, several chromosomes an individual, etc.

4.2 Choice of GP engine

Several engines were examined as potential candidates to be extended for the Prisoner’s
Dilemma. One was Lithos [20], which was turned down due to its stack based mechanism
and the fact it was only apparently implemented in C. Although advantages have been
reported with a stack based GP [4, p19], it was decided that the standard tree representation
would be more suitable.

The engine chosen was written by Adil Quereshi [24]. Aswell asincorporating all the
compulsory features which are stipulated in the requirements, it also allows mixed types
within the same chromosome, with appropriate type checking (see 82.4.5). Thisisamajor
advantage over most other engines, and should allow more flexibility in the development of
strategies.

Theengineisalso ideal for extension to an appropriate use with its robust framework,
including abstract classes and interfaces, and is well annotated to alow thisto be
implemented relatively easily. The only drawback is that the engine chosen does not
currently support coevolution. This must be added, asit isimportant to see which individuals

become dominant in a competitive contained environment.

24

Robert De Caux —MSc CS Design

4.3 Enginedetails

4.3.1 Important classes

All of the classes below are stored in the gpsys package

GPsys — class which starts the evolution process

GPParameters — stores the parameters for the GP

GPObserver —interface representing the user

Primitive — abstract class specified with the terminal or function required

Gene — abstract classwhich is specified to be function or aterminal. Stores a primitive.
Chromosome — stores a collection of Genes

Individual — stores a collection of Chromosomes

Population — stores a collection of Individuals

ChromosomeParameters — stores the parameters for creating a Chromosome, including type
information

Type — specification for different types available for use

Stored in the package gpsys.primitives are the collection of primitives currently available for

use as functions or terminals
4.3.2 Realisation of use cases

Appendix C gives more detail on the methods and classes in the engine, and explains how the

use cases of §83.2.1 areredlised. Theinitia class diagram for gpsysisin Appendix C.9

4.3.3 Classesto be extended or implemented

Definite:
GPObserver —interface
Fitness — abstract

Probable:

GPParameters
ChromosomeParameters

25

Robert De Caux —MSc CS Design

4.4 Design of the GP

4.4.1 Requirements

Each strategy will be represented by an Individual, which will be made up of asingle
Chromosome storing atree of Genes, with each Gene representing either afunction or a
terminal. We only require a single Chromosome as any strategy can be represented as a
singletree. The Individual must evaluate to avalid move in Prisoner’s Dilemma. Asthere
are only two options avail able, cooperate and defect, the Boolean nature of this decision can
be captured by saying that the Individual must evaluate to either True or False, with True
representing defect and Fal se representing cooperate.

4.4.2 Choice of Terminalsand Functions

Asthe Individual must evaluate to a Boolean, it suggests that the Boolean operators And, Or,
Xor and Not would be appropriate. Xor represents exclusive Or ™. The functions If and EQ
(which represents equals) will be used for simplification purposes, although both can be
represented by complex arrangements of the above functions. The reasonisthat it will make

complex strategies easier to evolve. All these functions take in and return Booleans.

All of the above are available in the gpsys.primitives package of the engine, but some custom
functions are also needed.

- YourPrev —takesin an integer argument, and returns a Boolean according to the entry
in the opponent’ s history as indexed by the argument.

- MyPrev —asfor YourPrev, but this time checks the history of this player.

- Go-takesin aninteger argument, and returns a Boolean according to whether the
argument is equal to the current go number.

- Ever —takesin an integer argument, X, and returns a Boolean according to whether
the opponent had ever defected up to x goes back in their history, e.g. (Ever 0) would
check whether the opponent had ever defected, whilst (Ever 1) would check whether
the opponent had defected before his previous go *2.

1 X or returns trueif x or y istrue, but falseif x and y are true

12 This complicated looking function was chosen after an initial terminal, Ever was turned down. This
just returned a Boolean according to whether the opponent had ever defected, and it was decided it was
not flexible enough. Allowing only some of the goes to be checked improved the flexibility. The
function could have been defined to see whether the Individual has defected in the most recent n goes
with n the argument, but this seems to similar to the Y ourPrev function.

26

Robert De Caux —MSc CS Design

The above four have been chosen because they are the only factors that can be considered
when deciding on the next move. Combinations of these will be able to create any
deterministic strategy for the Iterated Prisoner’s Dilemma. The inclusion of Go is potentially
problematic, as the players may not realistically know the length of the game when they take
part. It shall be assumed that they do.

Thisjust leaves the terminas. Zero and One are obvious choices, and are included in the
primitives package. A custom terminal, Last, is aso included, which returns an integer
corresponding to the length of the game —1. Thisis mainly used by the function Go, as (Go
Last) would check whether it is the final go of the game, but can be applied to any function

that takes an integer argument.

Two more functions need to be added to cover all the integers necessary. They are
AddModL ength and MinusM odL ength, which both take in two integers as arguments, and
return them added or subtracted, modulo the length of the game. Thisis because the integers
are used for referencing game histories and the current go, so only integers between zero and

the game length are relevant.

All the new primitives will be stored in a package gpsys.primitives.prisoner, asthey are

specific to this system.

4.4.3 Examplesof Common Strategiesas Trees

Here are some of the most common Iterated Prisoners Dilemma strategies as they would be
represented as Individuals using the defined function and terminal sets.

Only cooperate (AlIC): YourPrev Last ¥
Only defect (AlID): Not (YourPrev Last)

Tit-for-Tat: YourPrev 0

Tit-for-2-Tat: If (EQ (YourPrev 0) (YourPrev 1)) (YourPrev 0) (MyPrev Q)
Paviov: EQ (MyPrev 0) (YourPrev Q)

Spiteful: Ever 0

These six strategies shall be the only ones available for playing as fixed opponents.

13y ourPrev Last will always return false, as the entire array for the opponents moves isinitially set to
false. Thefinal array entry (the one being referenced) will not be updated until the entire game history
isavailable, but by thistime the game has finished, so it remains false for the duration.

14 A spiteful strategy will cooperate until the opponent defects. It will defect from then on.

27

Robert De Caux —MSc CS Design

4.4.4 Choiceof Fitnessfunction

The fitness of an Individual will beits average score per go of Prisoners Dilemma. It can
therefore lie between 0 and 5. The higher the fitness score the better, as that indicates a better
performance. Thisisin contrast to how the engine currently operates, searching for afitness

close to zero (termination criteriais known).

If two fitnesses are equal, the Individual with the lower complexity will be chosen. Thisisto
prevent the Individuals' trees becoming too large.

Other information will be scored and kept in an Individual’ s Fitness class, but instead of being
used to determine who goes through to the next generation, it will be used for selection in the
hunting phase. Each Individual will have a score for cooperativeness and whether they are
thefirst to defect during a game (stored asfirstToDefect). They will also store an array of
hunt criteria which represent the values they wish an opponent’ s cooperativeness,
firstToDefect and fitness to take.

Cooperartiveness, firstToDefect and fitness were chosen asthey carry alot of information
about how other Individuas will fare against them. Thisis further discussed in §4.6.2.

The Fitness will be displayed in a quintuple, with the five entries representing fitness,

complexity, cooperativeness, firsgToDefect and huntSuccess.

445 Control Parameters

The control parameters will be editable by the user, but the following are default choices.

445.1 Size of Population

The default Population size will be 100. This should be large enough to maintain diversity,
but should also make computation time reasonable. It also keeps noiseto aminimum. If itis
discovered that the results produced show alack of diversity, the Population size could be
increased

4.45.2 Number of generations

28

Robert De Caux —MSc CS Design

Fifty generations will be the default. Most evolution takes place in the first few generations

and then settles down, so this should be enough.

Some theories advocate a greater number of generations, claiming that significant evolution
can take place after the 50 point, so if the results are unsatisfactory the number of generations
can be increased.

4453 Tournament Size

A tournament size of seven will beinitially selected. Thisisthe standard size [4], but may
need to be altered if the Population sizeis drastically lowered or there is not enough diversity
in the Population. A smaller tournament size will introduce more noise, and larger will stifle
diversity.

4.45.4 Probability of mutation

The probability of mutation shall be set very low (1%), so that it israre asin nature. Again
there are sources advocating higher and lower rates, so it can be altered if poor results are
achieved.

4.45.5 Probability of reproduction

Thiswill be set initially to 40%. To test whether crossover haslittle or no effect, it could be
raised to up to 95%.

4456 Chromosomesize

The maximum depth of a Chromosome is set to 9, as all strategies can be represented within
this depth. The maximum depth at creation will be set to 7 to discourage large strategies
forming early on, and the maximum depth of mutation will be 3 so that it has a more profound

effect. Mutation lower down thetreeis unlikely to ater the strategy dramatically.

4.45.7 Evolution type

Generational GP will be used to produce the next generation. Thisis because the elitism that
Steady State GP would supply is not wanted here, because coevolution does not search for a
best solution. Instead it monitors how the popul ation changes over a certain number of

generations.

29

Robert De Caux —MSc CS Design

4458 Other parameters

The length of the game will be 10. This seems sufficient to alow the vast mgjority of
strategies to prove themselves, but could be extended if AlID is performing too well.

Twenty opponents will be used to assess fithess. This seems large enough to avoid a strategy

being able to survive on afew lucky results.
4.4.6 Termination criteria

If we assume no prior knowledge of a best solution against fixed opponents then we do not
want the GP to terminate early, as we have no best fitnessto aim for. We could set the GP to
terminate if a strategy achieves an average fitness of 5.0, but it is more interesting to graph
how the Population develops over time. Thisis definitely the case with coevolution, where it
isvital to let the GP run for the full number of generations.

45 Design of Computerised Iterated Prisoner’s Dilemma

45.1 Requirementsand package gpsys.prisoner

The game shall be played by two computer players, represented by Individual s taken from the
Population. Each of the players will have a strategy which is represented by their genetic
coding and which will tell them how to play on each move. They must aso store sufficient
information about the state of the game and previous moves made by both them and their
opponent in order to implement their strategy.

It must also be possible to have custom made players, both to play against as fixed opposition
and to seed into the Population. Seeding design isdiscussed in 84.8.3.

All classes dealing with the game will be held in the package gpsys.prisoner.
45.2 Specific classesfor playing the game

Each Individual must store a reference to the game history information which will be held in a
PDParameters class. PDParameterswill hold arrays for the previous decisions of the
Individual and their opponent, aswell as the current go number being played. Aseach new
decision is made, it will be added to the front of the array (array index 0), thus forming a

game history with al previous goes able to be referenced. All the array entries will initially
30

Robert De Caux —MSc CS Design

be set to false, indicating cooperation. Thisintroduces a slight but unimportant bias into the

strategies. All the game information will be available via get and set methods.

The game itself will be handled by a PrisonersDilemma class. Thiswill have a playGame
method, which will take in two Individuals, and evaluate their strategies to give either
cooperation or defection according to the state of their PDParameters. The scoreswill be
calculated, and the process iterated as many times as required for the complete game.

Creating custom players will be handled by the PlayerGenerator class. Thiswill have
methods for creating each of the six possible players specified in §4.4.3

4.5.3 Hunting for an opponent

Instead of simply playing random opposition, a package will be created to allow Individuals
to search for desirable opponents before playing them. This hunt package is detailed in 84.6.

4.6 Design of Hunting Mechanism

4.6.1 Requirementsand package gpsys.grid

The aim of the hunting mechanism isto allow Individuals to hunt for an opponent according
to some criteria, rather than just play random opposition. The Individuals need to be placed
on a 2D grid, and then allowed to move around to search for an opponent. If they encounter
another Individual on an adjacent grid square, they may perform atest to see whether they
make suitable opposition. If so, they then attach themselves to that Individual, and stop
searching for an opponent. After a period of time, the search will terminate. Any Individuas
with an opponent will engage in a game of Prisoners Dilemma, whilst unattached Individuas

will not play. Thiswill be detrimental to their fitness.

All classes associated with hunting and the grid will be stored in the package gpsys.grid.
4.6.2. Criteriafor finding an opponent

Three fundamental criteriawill be used for the search. They are:
- Cooperativeness of Individual
- How often they are thefirst to defect (firstToDefect)

- Fitness of the Individua

31

Robert De Caux —MSc CS Design

Almost without exception, the higher the cooperativeness of an Individual, the more desirable
they areto play, asthey are easily exploitable and consistently friendly. An Individual that
regularly defectsfirst is undesirable, asit limits the scoring opportunities for both players.
Fitnessis dightly more difficult, as an Individua with high fitness may be an excellent
opponent who has just scored well by cooperating, and an Individual with alow fitness may
be a poor opponent who was involved in a game of mutual defection. However, afitness
under 10 is definitely desirable in an opponent, and over 30 is undesirable.

4.6.3 An algorithm for deciding on an opponent

There needs to be a definitive way of one Individual deciding whether to play another after
checking the above criteria. The following algorithm will be used:

i) Store cooperativeness as a double between 0 and 1, where O represents aways
defecting, and 1 always cooperating.

i) Store firstToDefect as a double between 0 and 1. 0 meansthey never defect first,
1 means they always do (n.b. if two players both make the first defection
simultaneoudly, they are both guilty and score 1 for that game).

iii) Store fitness as a doubl e between 0 and 5, representing the average score
achieved per go of Prisoner’s Dilemma.

iv) Let each player store an array of three numbers, with the entries representing the
desired values for the three criteria above.

V) Each player instantiates a double, playability, initialy set to 3.

vi) Each player tests the three relevant scores of their opponent in turn against their
criteria. The difference between the desired and actua value is subtracted from
the playability (difference/ 5 for fitness asit is 5 times larger).

vii) The playabilities of both players are added together

viii) If thetotal of step vii) is greater than 5*°, the two Individuals “ agree” to play

each other.
The specific figures quoted in the algorithm may be altered after testing.
4.6.4 Designing classes
The framework for the Grid is based on the framework developed by Winder and Roberts for

simulating ants[10]. It isnot abstract however, asit requires alot of information specific to

Prisoner’s Dilemma.

1> This number is the playability threshold
32

Robert De Caux —MSc CS Design

The hunting will be controlled by a Hunt class, which takesin the grid size and hunt length
information, and creates a display frame, an instance of HuntDisplay.

It will have a method, initialiseHunt, which takesin a Population, creates a new Grid,
populatesit, and then performs the hunting, displaying the Grid after each move.

The Grid itself shall store a collection of Square objects, which are only aware of their
neighboursin each direction, called by the joinSquares method. It shall also store an array of
Occupants. These are representations of Individuals on the Grid, but store additional

information such as which square they are on and who they have chosen as an opponent.

When Occupants come to move, they check whether adjacent Squares are free by referencing
their current square. Similarly, when they try to find an opponent, they check adjacent
Squares for an unengaged Occupant. If they find one, they perform a compatibility test to
decide whether to play them or not.

The Grid showing the state of each sguare is passed to the huntDisplay, which buffersthe
information, and then displays the completed Grid on the display.

4.6.5 Creating and inheriting huntCriteria

When anew Individual is created from scratch, values will randomly be assigned to each of
the huntCriteria within the appropriate range. |If the huntCriteria are treated as a Genetic
Algorithm however, they can be inherited from their parents via the same genetic operation
by which the new Individual were created. For example, if anew Individual iscreated asa
mutation of the mother, the huntCriteria will be inherited from her with a mutation of one of
the values. Similarly crossover will lead to arandom crossover of the criteria of the parents,
and reproduction will lead to a straight reproduction of the criteria. Thisallowsthe
huntCriteria to evolve along with the Individuals, although the diversity will decrease rapidly.

33

Robert De Caux —MSc CS Design

4.7 Design of the User Interface

4.7.1 Editable optionsfor the user

The interface needs to allow the user to edit al the options as described in 84.4.5. It also must
allow the user to select opponents for non-coevolution, and select playersto be

seeded *°. Functions If, EQ and Go can also be excluded from the GP if desired. To aid the
interaction, a selection of choice and tick boxes will be set up.

4.7.2. Prevention of inconsistent parameters

The following slections must be avoided.
- Tournament size greater than half Population size
- Grid not large enough to hold Population
- Probabilities of mutation and reproduction totalling more than one
- Too many Individuals seeded
- Max depth at creation or of mutation greater than max depth

- No opponent selected for non coevolution

4.7.3 Displaying Information

All generationa reports and diagnostic updates will be written to a text areawithin a scroll

pane on the interface. Population information will be centered.
4.7.4 Graphingresults
A graph class will store an image which is updated after every generation with the best, worst

and averagefitness. A line graph will be created on a special display frame as the generations
progress.

4.8 Incorporating Coevolution

An abstract class CoevolutionM echanism will be extended as follows.

4.8.1 Standard Coevolution

18 These will be limited to the players available in PlayerGenerator
34

Robert De Caux —MSc CS Design

Thiswill be handled by a class StandardPDTournament, which will play games of Prisoner’s
Dilemma within the popul ation to determine fitnesses. The implementation of thisis
discussed in 85.3.3.

4.8.2 Hunting Coevolution

Thiswill be handled by a class HuntingPD Tournament. The method coevolveFitness will
now allow the Individuals to hunt for an opponent as described in §4.6, before all the games

of Prisoner’s Dilemma are played. Implementation of thisis discussed in 85.3.3.

4.8.3 Seeding

Both coevolution classes will define a method seedPopulation, which is called by the
Population class. It places pre-defined Individuals passed from the GUI into the Population.

4.8.4 Fitnessevaluation

In the case of co-evolution, there is no way of measuring an absol ute fithess as there is no
point of reference. Instead arelative fithessis calculated. Initially it was thought that a
fitness would not need to be assigned until tournament selection was carried out to decide
which individuals were to be used to form the next generation. Thislogic was rejected for
several reasons:
i) The Individua would only have a fitness temporarily, and so it could not be used
for hunting purposes
i) The technique limited population diversity, as taking the tournament winner
would favour defecting strategies, where as strategies such as Tit-for-Tat which
continually score highly but never actually win would never progress through.
i) Strategies will be selected for different numbers of tournaments, and so their
fitness score may become skewed

Point ii) could be solved using a probabilistic selection method, but instead it was decided to
assign fitness as follows.
i) Wait until anew generation has been evolved/created (if first one)
i) Call the required Coevol utionM echanism extension to calcul ate fitness for the
new generation before the generational stats are calculated

Using this method, each individua plays the same number of games of IPD, and so no bias

can occur.
35

Robert De Caux —MSc CS Design

4.9 Extendingtheengine

4.9.1 Additions/changesto original package gpsys
49.1.1 New classes

Abstract classes CoevolutionM echanism, TwoPlayerGame and TwoPlayerGameParameters
must be added, as well as the exception classes OverseedException and
InvalidStrategy Exception which both extend GPException.

49.1.2 New/edited constructors

New constructors must be placed in Individual and Chromosome to allow Individuals to be
created with a pre-defined strategy, i.e. a pre-defined Gene tree. The seedPopulation method
in CoevolutionM echanism must be called from the Population constructor if coevolution is

being employed.
4.9.1.3 Other changes

Public variables for the abstract classes must be added to the GPParameters, as well as
integers representing the gamel ength and number of opponents required for Prisoner’s
Dilemma. A public variable for the TwoPlayerGameParameters class must be added to class
Individual, a public Individual worstGeneration must be added to the Population class, and a
method inherit must be added to the Fitness class. The method coevolveFitness from
CoevolutionMechanism must also be called from updateStats in Population if coevolution is
being used. The bestRun information can be edited out asit is not required.

4.9.2 Extensionstoengine

The following classes shall also be included in the package gpsys.prisoner.

Prisoner GPPar ameters:
This classis an extension of GPParameters. The ChromosomeParameters will beinitialised
for the sole Chromosome being used. Generic instances of PrisonerFitness and PDParameters

are created for reference by Individuals, and the engineis set to be generational .

Prisoner ChromosomePar ameters:

36

Robert De Caux —MSc CS Design

This extends ChromosomeParameters. The return type of the Chromosome is set to Boolean,
and the function and terminal sets are explicitly defined, with specific type information for the
generic primitives.

PrisonerFitness:
Thisisthe most complicated class as it holds so much information about the Individual:

- Fitnessinformation — average fitness per game of Prisoner’s Dilemmaand

complexity of strategy

- Hunt information — cooperativeness, firstToDefect, hunt criteria.
All thisinformation must be updated after the Individual has played a game of Prisoner’s
Dilemma, and the method updateStats accomplishesthis. All the comparative abstract
methods from Fitness are implemented. We never wish the GP to terminate early, so the

termination criteria are set unreachably high (average fitness per go of 5.1).

The constructor checks whether coevolution is being employed. If so, then the fithess cannot
be calculated yet, so all that happens are new hunt criteria are created if required. If thereis
no coevolution, the fitnessis calculated by playing the Individual against each of the
opponents that have been specified. The only other important method is inherit, which allows
an Individual to inherit huntCriteria from its parent(s). This allows the hunt criteriato evolve

in the same way as the strategies, except that it is effectively a GA instead of a GP.

Prisoner:

Prisoner implements the GPObserver interface. It also has the main method for the system.
When the systemisrun, a new GUI is created, information is received back from it, and the
evolution processis started.

The generationUpdate method prints out a generational report into the output window on the

GUI, and the diagnosticUpdate method prints out the diagnostic information to the same place.
The individual Update method is declared but not used.

4.10 Final Class Diagrams

These can be found in Appendix D

37

Robert De Caux —MSc CS Implementation

5 Implementation
5.1 Problemsencountered

5.1.1 Lack of diversity

A magjor problem encountered upon testing the engine was alack of diversity in the
Populations evolved, especially when coevolution was employed. The Population would
settle down quickly to incorporate only afew strategies, al of them very simplistic, such as
(YourPrev 0). Thereason for thisisthat small strategies are often successful at an early stage
of coevolution when complexity isimportant, and once established in the Population, they are
very hard to remove as they have so few Genes available for change.

To solve this problem, two alternatives were considered.

- Employ asingle type system with additional operations Reverse and Rest, asused in
[5]. Thisproved efficient at evolving some very clever complex strategiesin a
prototype version against fixed opponents, but was too slow to use for coevolution as
it needed a dynamic data structure which was difficult to clone.

- Introduce a new type, New Boolean. Thiswill be the return type of Y ourPrev,
MyPrev, Ever and Go. The standard Boolean operators must also be adapted to
accept either New Booleans or Booleans as arguments and to return either type as
well. This means making them generic to a certain extent. Now strategies such as
(YourPrev 0) * will not be possible as the final return type must be Boolean, not New

Boolean, so all strategies will be more robust and open to modification.

The latter option was chosen and successfully increased diversity in the population.
Another method was also employed to further improve diversity - instead of choosing the
strategy with the lowest complexity if two strategies have the same fitness, a compl exity
between 5 and 13 was set to be the most desirable, with lower than 5 following, and
greater than 13 trailing behind.

5.1.2 Hunting bias

During the hunt method in class Grid, the array of Occupants is|ooped through, and each tries

to find an opponent by checking its neighbours. Thisintroduces alarge bias towards the

Y The simplest representation of Tit-For-Tat is now (Or (YourPrev 0) (Y ourPrev 0))
38

Robert De Caux —MSc CS Implementation

Occupants with low indicesin the array, as by the time it gets to Occupants with high indices,

alot of potential opponents will already have been taken.

To correct this, atemporary array is created containing every number from zero to the length
of the Occupant array in arandom order. Thisarray isthen used to decide the order in which
Occupants get to hunt.

5.1.3 Error in Crossover type checking

A potentially damaging error was discovered in class GeneBranch in the original engine [24].
Branches of the correct type for crossover from the father were not being recognised, and so
many trees were returned with the message “ Couldn’t find compatible branch in dad during
crossover” when thiswas not true. The problem has been rectified, and crossover can now be
demonstrated successfully.

5.1.4 Random numbers

Tests with random numbers have shown that they tend to turn up in batches. This has been
noted, but hopefully should not affect results significantly - the Occupantsin the hunting

phase seem to be following arandom 2D walk sufficiently well.
5.2 Other program changes

5.2.1 Speeding up hunting

In order to speed up the hunting phase, the display can be disabled, as updating it takes alarge

amount of time. This change allows alarger number of generations to be checked.
5.2.2 Adding Dummy function

An extrafunction, Dummy, was added to the function set. It is of typefloat, and issimply
used to fill the function array if we wish to disable some other function. Asit hasareturn
type of float, it can never be chosen to appear in a strategy.

39

Robert De Caux —MSc CS Implementation

5.3 Examining important methods

Asthereistoo much codeto analyse in depth, just the parts that implement the use

cases from 83.2.2 will be covered.

5.3.1 Editing parameters

The GUI isused to store all the user information, and is constantly checked by the main class
Prisoner for the accept button to be pressed *®. As soon as this happens, class Prisoner can
continue. Using get methods from GUI, Prisoner extracts references to a GPParameters
object, the graph panel, the output panel and the filenames for saving Population and
generational reports, all of which are stored by the GUI. As Prisoner holds the GUI as a static

variable, these methods can all be called from anywhere, even from within the main method.

Within the GUI itself, clicking Accept first calls a consistency checker on the parameters. If
this passes, a PrisonerGPParameters object isinstantiated and set with all the user’s choices.
All variablesin PrisonerGPParameters are public and are therefore easy to access and change.

Care needs to be taken with the coevolution choice. If standard or hunting coevolution is
selected, the public variable CoevolutionMechanism in PrisonerGPParameters must be
instantiated with the correct extension (and set with hunting parametersif required). Seeding
isaso controlled in this class, so the GUI must pass information on the Individuals to be

seeded as an array to the public CoevolutionM echanism variable.

If no coevolution is selected, an array containing information on which opponents are to be
played to determine fithess is passed to the public PrisonerFitness variablein
PrisonerGPParameters. Thisis then called whenever anew PrisonerFitnessinstanceis
created for an Individual.

If any of the functions have been deselected, an instance of Dummly is passed to the
PrisonerChromosomeParameters object in the correct position in the function array to

overwrite the unwanted function.

5.3.2 Implementing the hunt

18 Checks for aBoolean valuein GUI to be true. If not, it sleeps for a second, then tries again
40

Robert De Caux —MSc CS Implementation

The two most important parts of the hunting phase are performed by the methods move() and
findOpponent() in Occupant.

move checks that the Individual is not engaged, and if thisis the case it then chooses arandom
direction and checks whether the square in that direction is empty™. If so, the Occupant
moves into it, otherwise the whole process is repeated.

findOpponent is more complicated. Each adjacent square is checked for an occupied status,
meaning it holds an unengaged Occupant °. If oneisfound, a private method
compatibilityTest is called which returns a Boolean. Trueisreturned if

- either player isyet to play agame (they have no stats to test against huntCriteria and

so are given the benefit of the doubt)

- the playability score (calculated asin 84.6.3) is above the threshold required
If either isthe case, the two Occupants have an engaged variable which they set to be each
other, and the squares are set to engaged status.

Class Grid creates the order for the Occupants (as specified in 85.1.2), then calls move and
findOpponent in that order for each. Gridisalso responsible for initially placing the
population on the grid, achieved by choosing random x and y coordinates and testing whether
that squareis occupied. If it isfree the Occupant is placed there, otherwise the processis
repeated. A GridException isthrown if the Population istoo large for the Grid.

5.3.3 Performing evolution

Although the genetic operations and selection are carried out in the GP engine, the fithess

calculation method has to implemented in package gpsys.prisoner.

Calculating the fitness against fixed opponentsis relatively easy as this can be done when the
fitness of an Individual iscreated (i.e. in the constructor). The array of opponentsto be
played should have been passed from the GUI to the PrisonerFitness class, and each player is
created as an Individual using PlayerGenerator. The playGame method in class
PrisonersDilemmais then called (85.4) for the Individual in question and each of its

opponents, and the scores are averaged to calculate the fitness.

Coevolution is dightly more complicated. The following must first be added to the start of
the updateStats() method in class Popul ation.

19t can also choose to keep the Occupant on the same square
% A Square can bein one of three states— EMPTY, OCCUPIED or ENGAGED

41

Robert De Caux —MSc CS Implementation

if (gpParameters.coevMech!=null)
gpParameters.coevMech.coevol veFitness(this, gpParameters);

This method ranks the Individuals and returns a generational report, so we must assign the
Individuals afitness before this happens (see §4.8.4). In StandardPDTournament, the

coevolveFitness method is implemented as follows.

An opponent is chosen at random from the population, making sure that an Individual cannot
play itself. The playGame method in PrisonersDilemmais then called, and the scores
returned. These scores are passed to the updateStats method in PrisonerFitness which updates
the fitness according to the scores achieved . The processis repeated for as many opponents

are specified in the GPParameters.

In HuntingPD T ournament, the hunt must be performed first —initialiseHunt is called in class
Hunt (84.6.4). Thisreturns an array of al the Occupants on the grid, representing the whole
population. Each of theseis checked to seeif it is engaged (has an opponent), and if so then a
game of Prisoner’s Dilemmais played between the two Individuals stored within the
Occupants. The fitnesses of both are then updated #. This process (including the hunt) is

then repeated as many times as the number of opponents required.

Seeding is aso controlled by the CoevolutionMechanism class. A setSeeds method is called
by the GUI with the array of playersfor seeding. Each index in the array represents a
different player. Thisarray is stored in the CoevolutionM echanism class until the
seedPopulation method is called by Population. The method then works through the array of
seeds, and instantiates each one as an Individual using the PlayerGenerator. These then
replace existing Individuals in the population.

5.3.5 Playing a game between two Individuals

The actual IPD takes place in the playGame() method of the PrisonersDilemma class.

It creates atemporary PDParameters object for each player as ssmple reference, and creates an
array of size six to store average score, cooperativeness and firstToDefect information for
each player. Loop through all the goes, and for each one update the current go, evaluate the

Individuals® and score accordingly, and then update the PDParameters for each player.

2 Only the fitness of the Individual being tested is updated, not the fitness of their opponents

2 ypdateStats has two variants — oneis called if the Individual has played, and all stats are updated.
The other iscalled if the Individual has not played, in which case cooperativeness and firstToDefect are
untouched, but huntSuccess and most importantly fitness suffer as aresult.

% shown in Appendix D.2.1 as a sequence diagram

42

Robert De Caux —MSc CS Implementation

An example of scoring is given below:

if (playerOneGo & !player TwoGo) //Player one defects and player two cooperates

{
scores] PLAYER_ONE_SCORE] +=5;
scores] PLAYER_TWO_COOPERATIVE] ++;
if (scores] PLAYER_TWO_FIRST_DEFECTION] == 0)
scores] PLAYER_ONE_FIRST_DEFECTION] = 1;

Once the required number of games has been played, the array of scoresis returned.

5.3.6 Sequence Diagrams

Sequence diagrams showing the sequence of method calls required to perform some other
interesting functions can be found in Appendix D.2. These are:

- Evaluating an Individual — shows the use of recursion on the tree structure

- Creating a new Population — shows how the new gpsys.prisoner classes interface with
the origina engine

- Creating a new Hunt — shows how the hunt is set up

Robert De Caux —MSc CS Testing

6 Testing

6.1 Testing Interface

6.1.1 Testingillegal selections

A message such as the one below was successfully brought up when the parameters were set
to reflect the problems identified in 84.7.2.

E’i Meszage EI

ﬁ_ Tournament Size too hig.

0K

All buttons/boxes successfully integrated into program.
Selecting/desel ecting functions successfully reflected in strategies.

6.1.2 Testing accept button

The button was tested to make sure it is not active during evolution, but then becomes active

again after the run hasfinished. This proved to be so.
6.2 Testing Hunting

The hunt was tested to ensure that Occupants were moving around the grid successfully,
stopping and changing status when they found an opponent, and that this was being correctly
displayed on screen. All tests were successful. Lowering the playability threshold caused
more Occupants to find opponents as expected.

6.3 Testing Crossover

A Population of 100 was seeded with
- 50 Tit-For-Tat players (Or (YourPrev 0) (YourPrev 0))
- 50 Cooperative players (Or (YourPrev Last) (YourPrev Last))

Robert De Caux —MSc CS Testing

The probability of reproduction was set to zero, probability of mutation to 0.01. Standard
coevolution was selected. Asshown in Appendix F.1.1, the Population after one generation
consisted of combinations of the two strategies, i.e. the originals and

(Or (YourPrev 0) (YourPrev Last)), (Or (YourPrev Last) (YourPrev 0))

6.4 Testing Mutation and Reproduction

The Popul ation was seeded as above, probability of mutation set to 0.1, probability of
reproduction set to zero. As shown in Appendix F.1.2, one of the Population has been
mutated after the first generation, and the rest have been reproduced.

6.5 Testing Chromosome Functions

Two runs were implemented using standard coevolution, one using functions If, EQ and Go,

and one not. The strategies from the run, shown in Appendix F.4, successfully reflect this.
6.6 Testing seeding

A run was carried out to test seeding. Five Tit-For-Tat players and five AlID players were
placed in a population of 10 and coevolved for one generation. As shown in Appendix F.5,
after one generation the Tit-For-Tat players had completely taken over, which isto be
expected as AlID players score so badly amongst themselves.

6.7 Testing game

A game of length ten was played between a Tit-For-Tat player and an AlID player to test the
scoring system. The fitnesses evolved were (2.7, 0.1, 0.0) and (3.2, 0.0, 1.0) *, which iswhat
the strategies should give. Other games were played between combinations of the six players
available for sdection, aswell as a sneaky player - al of them gave the correct results. This
also tested successfully that the six players had been implemented correctly in
PlayerGenerator.

2 (Average score, Cooperativeness, FirstToDefect)
45

Robert De Caux —MSc CS Results

7 Results

All results use the default parameters as specified in 84.4.5 unless otherwise stated.
7.1 Playing fixed opponent(s)

7.1.1 Vs AlIC Player
-0 x|

Average Fithess
5

EW e | [

1]

1]
0 10 Z0 30 40 50 60 F0 50 S0 100
Generations

|— Best — Waorst ﬁwerage|

As expected, an all defecting (AllD) strategy proved to be the best of way of playing an all
cooperative player (AlIC). Being asimplistic strategy, several versions of AlID turned up in
generation 0, notably (Not (YourPrev Last)), and spread so quickly throughout the population
that by the second generation, every strategy was playing AlID. This was maintained over
100 generations, apart from afew strategies formed by mutation and crossover which

performed less well.

7.1.2 Vs. AlID Player
- 1ol x|

Average Fithess
a.

Figure 2
al g

2]
1

o UV U LRI,
0 10 Z0 30 40 50 60 70 80 90 100
Generations

|— Best — 'Waorst Aﬁ.ferage|

Aswith the AlIC player above, AllD again proved to be the best strategy here, and spread
through the Population just as quickly. The fluctuationsin the worst strategies are for

46

Robert De Caux —MSc CS Results

new strategies that developed and tried to encourage cooperation unsuccessfully, thus scoring

very poorly. An example of one of theseis (And (Y ourPrev Last) (Ever Last)).

7.1.3 Vs Tit-For-Tat Player
: (ol x|

Average Fithess
a.

Figure 3

(AN}
T

]

-Mﬂ‘m
0
0 10 Z0 30 40 50 60 YO &0 S0 100

Generations
|— Best — 'Waorst Aﬁ.ferage|

Againit wasasimplistic strategy that proved to be the best against a Tit-For-Tat player,
namely cooperative on every go until the last, then defect. There are many representations of
this, and severa turned up in generation O, including (Or (MyPrev 0) (Go Last)), and spread
guickly throughout the Population. Although the average fitness was 3.2, there were always a
few strategies that performed worse by trying to defect at an earlier point in the game, thus
invoking defection from Tit-For-Tat. Many previous |PD/GP investigations do not
incorporate Go information, so they would have failed to find this strategy, ending up with an
AlIC strategy instead, which scores 3.0.

7.1.4 Vs Tit-For-2-Tat Player
: i

Figure 4

1]
0 10 Z0 30 40 50 &0 70 80 90 100
Generations

|— Best — 'Waorst Aﬁ.ferage|

For the first 43 generations, the best strategy discovered was to start by defecting, and
alternate between cooperation and defection from then on. This scored 4.0 and spread
throughout the Population, before a dlightly altered strategy appeared, that was the same apart

47

Robert De Caux —MSc CS Results

from that it defected on the last go regardless. This new strategy scored 4.2. The example
which first appeared was

(Not (If (Go (MinusModLength (AddModLength Last Last) (AddModLength O Last))) (Ever
0) (MyPrev 0)))

but this soon simplified to

(Not (If (Go Last) (Ever 0) (MyPrev 0))).

This strategy did spread to a certain extent, but because it is slightly larger and more
susceptible to change, minor alterations caused major variationsin performance. This
accounts for the average fitness remaining at around 4.0, and the worst fitness hovering
between 1.0 and 2.0.

Figure 4 shows an example of punctured equilibrium

7.1.5 Vs. Cooperative and Tit-For-Tat Players
-0 x|

Average Fithess

a.
| Figure5
E.KWV_\I\JW\’V'\/\"_A_M_NW_AM
2]
1)
0
0 10 Z0 50 40 50 &0 7O 80 90 100
Generations
|—Elest — Waorst ﬁwerage|
(=]

Average Fithess
a.

Figure 6

TP YRR A W

| % R

1]
0 10 Z0 30 40 50 60 F0 50 S0 100
Generations

— Best — Waorst Average

% A phenomenon found in nature where one equilibrium is amost instantaneously shifted to a new
equilibrium of adifferent value
48

Robert De Caux —MSc CS Results

This example proved slightly more problematical, as the best solution was not always evolved
using the standard parameters — Figures 5 and 6 are from identical runs. In Figure 5, the
strategy:

(Not (Or (If (Go Last)(MyPrev Last)(Ever 0))(Ever Last)))

appeared in generation 1. In words, this strategy defects until the opponent defects, and from
then on cooperates until the final go when it defects again. This scored 3.95, but couldn’t get
amajor foothold in the Population as avery simplistic strategy, (Not (Ever 0)), scored 3.85
and so was aso picked regularly. The average fitnessis around thislevel.

It may seem strange that 3.95 is the best possible score against the two players. Playing AlID
against the cooperative player, and cooperating until the last go against the Tit-For-Tat player
would score4.1. The problem isthat the opening move is different against either player, and
this cannot be possible without knowledge of which strategy is being played. A deterministic
strategy can only operate on a set of rules, so will always start with the same move. Therefore

the best deterministic strategy is the one given above.

Figure 6 shows the best strategy scoring 3.85. Thiswas again (Not (Ever 0)) which spread
rapidly and meant that the better but more complicated strategy was never evolved. By
increasing the probability of mutation and the Population size, and decreasing the tournament

size, greater diversity was encouraged and the best strategy always emerged asin Figure 5.

7.1.6 Vs. Cooperative, Backstabbing and Tit-For-Tat Players
-0 x|

Average Fithess

a_

Figure7

(]

]

1]
0 10 Z0 30 40 50 &0 70 80 90 100
Generations

|— Best — 'Waorst Aﬁ.ferage|

Figure 7 shows two stages of evolution. The best score rose from 2.8666 through 2.9 to
2.9333, where it settled before rising again to 2.9666. The average score stayed at around
2.9333. The best strategy evolved was:
(If (Xor (Or (MyPrev Lagt) (If (YourPrev 0) (MyPrev 0) (MyPrev Last))) (Or (Ever 0) (Ever
0))) (And (Go Last) (YourPrev (MinusModLength Last (MinusModLength 1 Last)))) (EQ
(YourPrev 1) (If (YourPrev 0) (MyPrev 1) (MyPrev Last))))

49

Robert De Caux —MSc CS Results

The simplest way to represent it is:

(EQ (Or (YourPrev 0) (And (Ever 0) (Go Last))) (Xor (Go 1) (Ever 1)))

Theway it plays against the three opponents specified can be summarised as defect on go O
and cooperate on go 1. If the opponent cooperated then defected, continue to cooperate until
the last go, and then defect. If they cooperated or defected on both goes, continue to defect on
every go. Again, this strategy was not discovered on every run with the default parameters.
The best performing simplistic strategy was (EQ (Y ourPrev 0) (Ever 1)), which scored 2.8333.
Changing the parameters as in the previous example yielded the best solution almost every
time, and increasing the number of generations alowed the complexity to be reduced.

Againit is hard to appreciate that thisisthe best strategy, but it highlights the major benefit of
using GP — the best solution does not need to be known beforehand, and unlike GA, its
structure does not need to be specified. The result gained in [5] that the best strategy would
score 3.0 against the three players was only gained by not scoring the first ten goes, thus
allowing thefirst “scored” go to have information about the opponent already. Thisisnot a
redistic situation however, as normally there are no practice games beforehand, and scoring

starts straight away.

7.1.7 Vs All players

=10l x|

Average Fithess
a.

Figure 8

(]

&
=

1]
0 10 Z0 30 40 50 &0 70 80 90 100
Generations

|— Best — 'Waorst Aﬁ.ferage|

The best strategy for playing all six set players was avery simple one which appeared in
generation O - (Or (Ever 0) (Go Last)), meaning defect if the opponent has ever defected,
otherwise cooperate, but defect on the last go regardless. It scored 2.81666.

50

Robert De Caux —MSc CS Results

7.2 Standard Coevolution

7.2.1 Without functions Go, EQ and If
N [w]]

Average Fithess
a.

Figure 9

(]
——

P2
—_
=

1]
0 10 Z0 30 40 50 &0 70 80 90 100
Generations

|— Best — 'Waorst Aﬁ.ferage|

When all the Individuals play against each other, the fitness level drops off initially asthe
AlID players exploit the AlIC playersin the Population, but after afew generations the AlID
players start struggling as they are scoring badly playing amongst themselves. This alows
the more adaptive players such as Tit-For-Tat to take over as they score much better than
AlID when playing each other. The best, average and worst fitnessesrise to level out at 3.0,
i.e. cooperate every go. Thisisthe equilibrium position, which is only occasionally disrupted
when afew evolved playerstry to defect. These players are soon forced out however, asthere

are only afew playersin the Population who cannot adapt to deal with an AlID player.

Occasionadly when the GPis run, AlID gets such afoothold in the population that no other
strategy is ableto invadeit. Thisis because the game length is so short, so AlID can get away
with some poor scores. If the game length isincreased to 100, a game between two
cooperative players leaves both 200 points better off than a game between two AlID players,
and it is therefore made incredibly unlikely for AlID to take over.

51

Robert De Caux —MSc CS Results

7.2.2 With all functions except Go
-0 x|

Average Fithess
a.

Figure 10

S I TS

e a

|:| o
0 10 Z0 30 40 50 60 70 80 90 100
Generations

|— Best — 'Waorst Aﬁ.ferage|

Figure 10 shows how the equilibrium position can be disrupted *® due to the EQ function, as
this can create defective players from cooperative players with only minor alterations to the
strategy. For example, (Or (Y ourPrev 0) (YourPrev 0) operates Tit-For-Tat, where as (EQ
(YourPrev 0) (YourPrev 0)) operates AlID. This causes the average fitness to drop off from
3.0toaround 1.5. The equilibriumin §7.2.1 is so strong because most aterations to the
strategies caused by evolution do not introduce defection, where as that is not the case here.

7.2.3 With all functions
- 10| x|

Average Fithess
5

3

Figure 11

— P2

1]
0 10 Z0 30 40 50 &0 70 80 90 100
Generations

— Best — 'Waorst Average

% may be disrupted, but often is not
52

Robert De Caux —MSc CS Results

=101 x|

Average Fithess
5

4
3 el
2

Figure 12

—

1]
0 10 Z0 30 40 50 60 F0 50 S0 100
Generations

|— Best — Waorst ﬁwerage|

When the function Go is introduced, the situation changes drastically. The equilibrium
position achieved in the previous section is no longer stable, as any sneaky strategy that
cooperatives until the final go and then defects will be able to beat a strategy that cooperates
unless provoked, including Tit-For-Tat. It does not cause a new sightly higher equilibrium
however, as when a sneaky strategy plays itself, instead of scoring 3.2 asit would against an
AIlIC player, it now scores 2.8. Thisislower than the previous equilibrium position. The
other problem isthat alot of the strategies which defect solely on the final go are
opportunistic and can be easily beaten by invading AlID players. This can cause the average
fitness to drop off.

Figures 11 and 12 were obtained on identical runs. Figure 11 shows a case when no strategy
can get afoothold in the Population to fend off AllID, so the average fithess drops off to
around 1.0. From that point, the equilibrium can amost never be shifted, as Tit-For-Tat
players can only invade in large numbers. This situation is more likely than in §7.2.1, but can

till be nearly eradicated by increasing the game length.

Figure 12 shows a“ quasi-equilibrium” where arobust sneaky strategy such as (Or (Y ourPrev
0) (Go Last)) forms the mgjority of the Population, causing the best fithessto fluctuate
between 2.8 and 3.2, and the average fithess to stay just below 3.0. It is strong enough to fend
off the threats of invading AlIC, AlID and Tit-For-Tat players, has al the benefits of Tit-For-
Tat, but suffers most by playing itself. Although it isin fact a Nash equilibrium (see §2.2.4),
cooperative players could invade by playing amongst themselves and scoring 3.0, provided
that there are enough of them. That iswhy the equilibrium is only semi-stable.

A stable equilibrium could form at 2.8 if the entire population was made up of sneaky players,
but thiswill not happen for two reasons.
- Thereisawayslikely to be at least one strategy in the population which triesto
cooperate at al times and can be exploited on the final go
53

Robert De Caux —MSc CS Results

- Unlike §7.2.1, minor changes to a sneaky strategy dramatically affect the
performance, e.g. if the (Go Last) is changed to (Go 0), it could trigger a series of
reprisals with a Tit-For-Tat player, causing the fitnesses of both to drop.

It should be emphasised that Figure 12 is not reached on every run, but it can be encouraged
by increasing the game length and population size, and lowering the tournament size.

The last three generational reports of arun with all functions can be seen in Appendix F.2.

7.3 Hunting coevolution

For every run, the length of the hunt was 40, and the size of the grid 20x20 (to best

accommodate the Population of size 100). These figures were also used in [15]

7.3.1 Settingthethreshold for playability

Early runs involving hunting seemed to be encouraging cooperation, with a high cooperativity
generally emerging as the crucial factor in the hunt criteria, but on some runs the hunt criteria
would settle to seemingly random levels, and the strategies would adapt themsel ves to meet
these criteria specifically. This suggested that being able to find an opponent was becoming
more important than scoring well at the game, and this does not fit well into the GP ideal. By
testing how many Individuals were able to find a game on each hunt, it was discovered that
only 5-20% were playing in the first few generations. Even increasing the hunt length had no
effect %’. This percentage is clearly too low, as the whole population becomes dictated by the
Individuals who do manage to get agame. In order to improve this, the threshold for
playability was lowered from 5.0.

At 4.5, approximately 40-60% of Individuals were getting a game, whilst at 4.0, 70-80% were

playing, which is much more suitable.

Even though the threshold of 5 was too high, it did yield interesting results. Asthe strategies
adapted to meet the dominant hunt criteria, an unstable equilibrium formed. However if the
hunt criteriawere altered slightly, the strategies that had been dominant suddenly became
redundant as they were so opportunistic and inflexible. Completely new strategies then had to
form around the new criteria. The equilibrium only became stable once the cooperativeness

%" Some tests were carried out on the best hunt length. After 40 moves, most Occupants who could find
an opponent had done so. Raising thisto 80 dighlty increased the number of Occupants getting a game,
but any higher had no effect.

54

Robert De Caux —MSc CS Results

level required became sufficiently high for cooperative playersto take over. This
demonstrates the ability of GP to create strategies which adjust to their environment, even if
this environment is dynamic.

7.3.2 Inducement of cooperation

=10l x|

Average Fithess

a_

Figure 13 -
Playability of 4.5

(]

=

1]
0 10 Z0 30 40 50 60 70 80 90 100
Generations

— Best — 'Waorst Aﬁ.ferage|

Runs of the GP with the playability threshold set to 4.5 showed that if an Individual is
instantiated with hunt criteria that encourage a cooperative opponent, it tends to do very well
asthere are so many AlIC playersin thefirst generation. Not only doesit get alot of games,
but also scores highly, no matter what its genetic make-up.

This means that many evolved Individuals will inherit the hunt criteriawhich tell them to
search for a cooperative opponent. If the Individual which performed well in generation 0
was a defective player exploiting the cooperators, it will no longer be able to find many
games and so will not be selected for the next generation. Consequently, cooperative players
take over rapidly, as can be seen from the Figure 13. This seems reasonable, as hunt criteria

which search for a player with low cooperativity are detrimental to both parties.

As the generations pass, the criteria gradualy begin to resemble the type of player everyone
wants play — maximum cooperativity, minimum firstToDefect and fitness of 3.0. These
“ultimate” statistics cannot quite be reached as diversity within the hunt criteria becomes

small, so it takes a lucky mutation to make an advance.

The average fitness remains below 3.0 as there are often strategies that fail to get many games
and so score badly. Notably the best fitnessis at 3.0 despite all of the functions being
included. This seemsto be because the cooperativeness required to get agameis so high
(0.95—1.0) and the firstToDefect sufficiently low, that even sneaky players who cooperate on
every go bar one cannot play enough to gain their slight advantage over Tit-For-Tat, so

cooperative strategies dominate.
55

Robert De Caux —MSc CS Results

=101 x|

Average Fithess
a.

Figure 14 -

4]
MM Playability of 4.0

| % R

1]
0 10 Z0 30 40 50 60 F0 50 S0 100
Generations

|— Best — Waorst ﬁwerage|

With the playability threshold lowered to 4.0, finding an opponent becomes less of a
challenge and so similar results are obtained to §7.2.3. Sneaky players now start to emerge,
and the hunt criteria settle around 0.9 for cooperativeness and 0.8 for firstToDefect.

In both Figure 13 and Figure 14, the equilibrium or quasi-equilibrium is much stronger than in
§7.2.1/87.2.3, because in order for AlID playersto invade, they must first get agame, and as
their fitness statistics bear no relation to the hunt criteria required, thisis amost impossible.

The last three generational reports of a run with playability set to 4.5 can be found in
Appendix F.3.

56

Robert De Caux —MSc CS

Results

7.4 Resultssummary

These were the results gained on the mgjority of runs. For the coevolution fields, these are

the best possible strategies that could evolve if an equilibriumis reached. In each case,

assume stable equilibrium unless stated otherwise in red, and assume standard parameters as

in 84.4.5 unless otherwise stated. The hunting results were taken from actual runs.

GPrun Best/regular strategy Fitness | Cooperative | FTDefect
vsAllC Not (YourPrev 0) 5.0 0.0 1.0
vsAlID Not (YourPrev 0) 5.0 0.0 1.0
vs TFT Or (Go Last) (Go Last) 3.2 0.9 1.0
vs TF2T (Not (If (Go Last) (Ever 0) | 4.2 0.4 1.0
(MyPrev 0)))
VvsSAIIC, TFT (Not (Or (If (GoLast) 3.95 0.35 1.0
(MyPrev Last)(Ever
0))(Ever Last)))
vsAlIC, AlID, (EQ (Or (YourPrev 0) (And | 2.9666 | 0.2333 1.0
TFT (tournament | (Ever 0) (Go Last))) (Xor
size4, p.mut =0.2) | (Go 1) (Ever 1)))
vs All 6 players (Or (Ever 0) (Go Last)) 2.8166 | 0.7666 0.8333
Standard coev. (Or (YourPrev Q) 3.0 1.0 0.0
(YourPrev 0))
Standard coev. inc. | (Not (YourPrev Last)) 1.0 0.0 1.0
Go, EQ, If
(semi-stable)
Standard coev. inc. | (Or (Go Last) (Go Last) 3.2 0.9 1.0
Go, EQ, If, Game
length 50
(semi-stable)
Hunting coev, And (EQ (YourPrev 0) 2.75 0.6 0.9
Threshold 5.0 (Ever 0)) (Not (MyPrev
(unstable) Last)))
Hunt Crit. (0.62, 0.92, 1.71)
Hunting coev. (Or (YourPrev 0) 3.0 1.0 0.0
Threshold 4.5 (YourPrev 0))
Hunt Crit. (0.62, 0.96, 2.21)
Hunting coev. (Or (Go Last) (Go Last) 3.2 0.9 1.0
Threshold 4.0 Hunt Crit. (0.92, 0.13, 3.08)
(semi-stable)

57

Robert De Caux —MSc CS Conclusions and Evaluation

8 Conclusions and Evaluation

8.1 Conclusions

The use of genetic programming allows optimal strategiesto be generated very successfully
against a selection of opponents. The random principles of evolution mean that itis
sometimes difficult to evolve the more complex strategies, but by adjusting the GP parameters
to increase diversity, they are usually discovered. The fact that the whole game history is
availableis used by some of the more complex strategies, and thisis where GP has the

advantage over GA.

The experiments with coevolution show that without the If, EQ and Go functions, cooperative
behaviour emerges as the equilibrium from arandom selection of Individuals. Thisis because
although defective Individuals can gain short-term benefits by exploitation of cooperative
players, they struggle over the long term as they perform badly against players similar to
themselves. On the other hand, cooperative players perform well amongst themselves, and so
do well over the long term. The difficulty isin establishing the cooperative behaviour in the
first place, as this requires enough non-defecting strategies to establish afoothold. These
strategies must be robust enough to perform well against defective players to have a chance of

selection, but then cooperate with each other. Thisiswhat makes Tit-For-Tat so successful.

Once in a cooperative situation, any cooperating player will score well, but unless enough of
the Population are robust enough to prevent invasion, defective strategies can ater this

equilibrium.

When Individuals are allowed to take into account which go of the game they are on,
opportunistic strategies are able to disrupt the cooperative equilibrium if they defect on the
final go when retribution is not possible. This can allow defective playersto take over, but
usually more robust versions of the (Go Last) strategy take over and form a quasi-equilbrium
around 3.0. This still means that there is a very large amount of cooperation in the Population.

Allowing Individuals to hunt for opponents tends to encourage cooperation, as cooperative
players make the best opponents. Once established, this cooperative equilibrium is much
harder to disrupt, as defecting players cannot find opponents to play and so score badly.
Thereisavery delicate threshold for setting the playability however, above which finding an
opponent becomes the most important factor.

58

Robert De Caux —MSc CS Conclusions and Evaluation

These results are consistent with previous work. The main differenceis the choice of
parameters — previous investigations [5] have used alarger population size and a much longer
game (100-150 goes), but this system has managed to get the same results using lower
numbers, and therefore runs alot faster. The Iterated Prisoner’s Dilemmais the standard
metaphor for the conflict between mutual support and selfish exploitation in nature [17, The
game], and much research has been conducted into why cooperative behaviour emerges from
the competitive setting - reciprocal atruism %, This project has managed to answer alot of
those questions. Actually finding the IPD in natureis rare however as the parameters can
rarely be discovered, athough some cases are claimed [17, Where is Prisoner’ s Dilemma

found in nature].

The hunting phase is much more appreciable in nature, even within human culture.
Cooperative people will tend to find partners easily, where as backstabbing people, who may
benefit well in the short term, will soon become mistrusted and shunned. Of course, the
individuals who are mainly cooperative but can exploit others without losing their trust will
do very well, and thisis mirrored here by the sneaky players. Testing human interaction with

Prisoner’ s Dilemma does not a'ways give decisive results however, as shown by [18].

In summary, the stronger equilibrium of cooperation derived through hunting is hopefully a
useful addition to the growing amount of research into the complicated field of modelling
biological societies. The effectiveness of sneaky strategies may also be applied to these
societies to show how seemingly comfortable equilibria can be dramatically disrupted by
Individuals who do not follow the trend in pursuit of personal gain.

8.2 Success of system

The system has given excellent resultsin al areastested, so the choice of GP engine was
successful. Theonly query iswhether allowing multiple types stifles diversity. Asthe
Boolean operators are given a specific type which can’t be altered once initidised, certain
functions can only be included in certain places if they are of the required type. Thisleadsto
localised evolution, where different parts of the tree are evolved according to their type. At
the top of the tree are the Boolean functions, followed by NewBoolean functions, and then
integer functions. Asthe most dramatic changesin strategy occur with the changesin the
Boolean functions near the treetop, alot of evolution is effectively wasted by changing

integer functions which have little effect. This doesn’t seem to have caused mgjor problems

% Reciprocal atruism is the phenomenon of unrelated individuals cooperating, even when it appears
that thisis not advantageous in terms of inclusive genetic fitness [5]
59

Robert De Caux —MSc CS Conclusions and Evaluation

however, especialy if the parameters are adjusted to allow for it, e.g. lower the max depth of

mutation.

8.3 Extending the project

Further investigation could be done into hunting for opponents, as this seemsto bea
potentially exciting areawhich hasn’t had a great deal of research. The GUI isfairly robust to

allow for varying parameters, so that will not require much alteration.

The newly developed engine is well suited to the investigation of any other simple two player
game where a fitness can be established. The abstract CoevolutionMechanism,
TwoPlayerGame and TwoPlayerGameParameters will have to be implemented as required for

the game. All Java documentation to assist in this can be found using Appendix B.2.2

Other possible developments would be a status bar for the hunting phase, displaying
information such as how many Individuals have found an opponent, as well as the options of
stopping and stepping through the hunt and clicking on different Occupants on the display to
show an Individual’s strategy and fitness. Seeding has not being explored in depth either, and
if ahunt is seeded with just afew AlIC individuals and the rest AlID, it may be possible to get
the AlIC individualsto survive by careful selecting their opponents. Thiswould involve pre
setting their huntCriteria as well.

A way of extending the number of strategies available for seeding and as fixed opponents
would also be anidea. A database could be formed to hold successful strategies, and this
could be searched and updated as required.

There is also more potential for experimenting with different parameters, as few combinations

weretested. This may be an especially good idea for the hunting parameters — length and grid
size.

60

Robert De Caux —MSc CS User Manual

A User Manual

A.1 Runningthe Program

The computer being used must have aversion of Javainstalled. To run the program on a

Windows based machine, run the prisoner.jar file on the disk by simply double-clicking.
To run on aUNIX based machine, typein
java—ar prisoner.jar

at the prompt.

Thiswill bring up the user interface

A.2 TheUse Interface

Below isthe interface presented to the user on running the program

10l =l
Coevolution/Opponent Setup rHunt Parameters rSeed Population |
GP Parameters r Chromosome Parameters |/ Game Parameters |
Population | 100 - Generations | 50 - |
Tournament Size | 7 - | Prob. of Reproduction | 0.4 -
Prab. of Mutation | 0.01 #
o [\ [»
Report file name | / ; | .n.ccept Population file name | \]
Options pane (click Tabsto Filename Button to start Output pane
select appropriate panel) bars evolution

61

Robert De Caux —MSc CS User Manual

A.3 Changingtheoptions

Click the appropriate tab to select different options panels. The panels are as follows.

A.3.1 GPParameters

Select Population size, number of Generations, size of tournament for Tournament Selection,
and the probability of selecting mutation and reproduction when choosing a genetic operation.

To select an option, click on the bar shown to bring up alist of possible values.

-10] x|
Coevolution/Opponent Setup rHum Parameters rSeed PUW
GP Parameters r Chromosome Para TS |/ Game Parameters |
Population | 100 A/ v | Generations | 50 - |
100
10
25
50
200
Tuurnameqﬁl]l] Prob. of Reproduction | 0.4 -
Prob. of Mutation | 0.01 -
e | »
Report file name | Accept Population file name |

A.3.2 Chromosome Parameters

Select the maximum depth of strategies, as well as the maximum depth they can be created to,
and the maximum depth they can be mutated at. Also choose whether to use the functions If,
EQ and Go by ticking the appropriate check boxes.

A.3.3 Game Parameters

Select the game length for Prisoner’ s Dilemma, and the number of opponents to be played
against for determining fitnessin coevolution.

A.3.4 Hunt Parameters

62

Robert De Caux —MSc CS User Manual

Select the size of the grid for hunting, and how long the Occupants have to find an opponent

(in terms of number of moves).

A.3.5 Coevolution/Opponent Setup

Click aradio button to select Click selection of check boxes to choose
fitness evaluation method opponents for fixed opponents method

o (=]

Cuevc\(utiunIOppunent Setup rHunt Parameters rSeed Population |
GP\Parameters r Chromosome Parameters |/ Game Parameters

Choose players to evolve against
[Cooperative Player
Choose fithess evaluation method
[_] Backstabbing Player
8! Play fixed opponent(s)
[Z] Tit-for-Tat Player
[Z] Spiteful Player
[[] Paviov Player

[Z] Tit-for-2-Tat Player

) Standard coevolution

) Hunting coevolution

Report file hame || Accept | Population file name |

A.3.6 Seed Population
Select the number of each different type of player to be seeded into the Population.

A.4 Savingthe Population and Generational Reports

To save generational reportsto atext file, enter afile prefix in the Report file name bar, and

the reports will be saved as <prefix>.txt in the current directory.

Similarly, to save the final Population, enter afile prefix in the Population file name bar.

63

Robert De Caux —MSc CS User Manual

A.5 Displaying resultsof Evolution

Generational reports showing the generation number, average fitness and best and worst
Individuals of the generation are displayed in the output pane - this pane can be scrolled.
Diagnostic reports are also displayed. Thefitnessis displayed in the following form:

(average score, complexity, cooperativeness, firstToDefect, huntSuccess %°)

During evolution, agraph is created showing the best, worst and average fitness for the
generation.

=10l x|

Average Fithess

a_

(]

}

1]
0 10 Z0 30 40 50 &0 70 80 90 100
Generations

|— Best — 'Waorst Aﬁ.ferage|

The graph cannot be obscured or the window minimised once the run has finished, or the

pictureislost.
A.6 Displaying the Hunt

During hunting coevolution, the following grid is displayed:

= B _ D x :
5 —IQI;I Blue circles represent unengaged Occupants.
ol] ‘. |"T i Green circles represent engaged Occupants,
L i and the line joins them to their opponent.
A n_“_ :u|._/
» - .t . The grid should be moved to avoid obscuring
:- : . .¢| the graph (above).
F o 22 -
* e e nT %
| L
% e
*

% Hunt successisout of 1, with 1 being always gets a game.
64

Robert De Caux —MSc CS System Manual

B System Manual

B.1 System requirements

The computer must have Java 1.3 or better installed in order to run the program. Due to the
nature of genetic programming, the program is computationally intensive and so a powerful

system is strongly recommended for optimum performance.
B.2 Making changes

B.2.1 Extracting the Code and Documentation

Stored on the disk isthejar file prisoner.jar. Copy thisinto the chosen directory for
extraction, and type:

jar xvf prisoner.jar

at the command line. Thiswill create the following in the current directory:
- directory gpsys, which contains all the .java and .class files for the system as

described.

- directory prisoner_doc, which contains al the java documentation for the system
- directory META-INF, which contains the manifest file for running the jar file.

All the javafiles can be viewed on any text editor.

B.2.2 Javadoc

All Java documentation isin the directory prisoner_doc. Using aviewer run the index file

using frames, and the screen below will be presented. Click on packages and classes as

required.

65

Robert De Caux —MSc CS System Manual

g leerapatad Dncumentabion [lintgkd) - Micinenl Isberest Feplorss provicded by ADL) — |n|£|
| Be B8 Vew Fywies Dok e
| =Bt « b - [A PSeach [fFeote PHbey | 2 S - [B2
|-'#-=|t' s D s W P T P s v et 2 ot _ s e e :l 8o | Linke B
[]
41 Clasess :I EDERER] kg Class Tree Deprecated |ndex Help
Ry HEXT FHAIJIE u: :EAHIE

Pachages

B Packages

e i LI-I -

= Y5 BTl

All Classes pays grid

AdedbedL espth B2 S UL e S

AlPechon BN prisitve s prissnoy

ADT erminal . |

And [ERsys.prisoner

ChoiceFanel EPEYS.Prisoner.gui

ClecanoFuncsoanSe

Closgnogcme

ChroanosomeF aran

Cosvoharabdechie | |[PPENY Package Class Tree Deprecated |ndex Help

Lirnde Syl ar o Laices FEEV HEXT [RAMEE KO PRAMES

Crusrerey

Evaluationbxc eptct m

1| | 3
2] Done [[S My Computm r

All classes detail attributes and methods, and the related parameters, return objects and
exceptions.

B.2.3 Compiling and Running the System

Firstly, the classpath must be set to the directory in which the jar file was extracted, asthisis
the base of the package system.

Type set CLASSPATH = <enter directory here> in the autoexec.bat file (Windows)
or setenv CLASSPATH = :./<enter directory here> in the optionsfile (UNIX)

To compile ajavafile, the command javac <filename> must be typed in the directory

containing it.
The main method isin class Prisoner, so to run the program type:
java gpsys.prisoner.Prisoner

to bring up the user interface.

To exit, click the cross at the top right of the interface.

66

Robert De Caux —MSc CS System Manual

B.3 Extending or Adapting System

The Javadoc can be used to adapt the methods and classes as required. If the gameisto be

changed, packages gpsys.prisoner, gpsys.prisoner.gui and gpsys.primitives.prisoner would

need to be altered accordingly.

The following classes must be implemented/extended for package gpsys:

Fitness (abstract)

GPObserver (interface)

TwoPlayer Game (abstract)

TwoPlayer GameParameter s (abstract)
CoevolutionMechanism (abstract)

Suitable methods for alteration are;

findOpponent in gpsys.grid.Occupant — controls how potential opponents are found
and tested for suitability during the hunting phase

displayGraph in gpsys.prisoner.gui.Graph — outputs graph to screen.

Currently cannot be recovered if covered or minimised

the constructor of gpsys.prisoner.gui.GUI — controls editable options for the user

the constructor for gpsys.prisoner.Prisoner ChromosomePar ameters — controls
functions and terminals to be used in the GP

displayPopulation in gpsys.grid.Grid — determines how output of hunt is displayed on
screen

all of gpsys.prisoner.PrisonerFitness - controls huntCriteria and fitness information

all of gpsys.prisoner.PlayerGenerator — controls the players available for creation

67

Robert De Caux —MSc CS Closer examination of engine

C Closar examination of GP engine

C.1 Storing GP Parameters

Probably the most important class is GPParameters. This contains al the information related
to the GP that is required by the various classes, and is passed between them as a parameter.
Its public variablesinclude:

- observer — an object of the GPObserver class representing an observer looking in on
the GP process, which will take input from the user, start and control the GP, and
produce reports for the user

- engine— whether the GP uses the steady state or generational method

- pMutation and pReproduction — probabilities of mutation and reproduction when a
genetic operation is being chosen

- tournamentSize — the size of the group used for tournament selection

- populationSize — the number of individuasin the population

- generations—the number of generationsfor the GP

- adf —an object of the ChromosomeParameters class, used to determine how new
Chromosomes are created

- fitness—agenera object of type Fithess, not linked to any Individual. Thisisused to
allow an instance of a concrete fithess class to be constructed, even though the calling
class may not know what the concrete classis.

- population —an object of type Population, which is discussed below.

These variables are changed as the GP progresses, so it must always be accessible to classes

as they perform their function.
C.2 Population structure

Class Population is where most of the GP work takes place. It stores the following important
public variables.

- p—anarray of the Individuals in the population.

- generation — the number of current generation

- bestGeneration and worstGeneration — the best and worst Individuals of the current
generation in terms of Fitness.

- averageFitness and averageComplexity — statistics for the current generation

68

Robert De Caux —MSc CS Closer examination of engine

- bookkeepinglnfo — an object of class CrossoverBookkeeping, used for bookkeeping
when creating the next generation. This shall not be detailed any further.

Individuals within the Population are made up of Chromosomes, which in turn are made up of
Genes, forming atreelike structure.

The class Individual stores an array of Chromosome objects, a Fitness object which contains
itsfitness information, and its complexity as public variables.

The Chromosome class stores one Gene, treetop, which can be used to access the rest of the
tree by traversing through the children. It also storesits complexity (total number of nodes),
the GPParameters that were used to create it, and an index to itself within the array in

GPParameters, so thath its ChromosomeParameters can be found.

The Gene classitself is abstract, asit needsto be specified asaterminal or function. There
are classes GeneTerminal and GeneFunction which extend it, although GeneFunction isitself
abstract and must be further extended to specify its method of creation, either
GeneFunctionFull or GeneFunctionGrow. Gene stores methods to cd culate the depth and
complexity of the Gene tree below it (by recursively calling the method on each of the

children), an array of its children, and a Primitive object.

Primitive is an abstract class, extended by Function and Terminal, and is used to define the
precise nature of the Gene. A separate package, primitives, contains a set of classes extending
Function and Terminal, and which are used to represent the actual functions and terminals
required.

C.3 Evaluation of an Individual

When an Individual needs to be evaluated, one of a number of methodsis called according to
the return type required. This recursively calls methods through Chromosome, Gene,
Primitive, Function/Type, until the specific class required isreached. This gives precise
details on how theindividual is evaluated at that particular point, either by evaluating the

children if it isafunction, or by returning an answer if it isaterminal.

For example, suppose that an Individual consists of a single Chromosome referencing the top

of the following Gene tree.

69

Robert De Caux —MSc CS Closer examination of engine

Suppose that the return type of the Individual after evaluationisint, and that the method
evaluatelnt() is called. Thiswill call evaluatelnt(Individual i) in the Chromosome object it is
holding, passing itself as areference. Thisthen cals evaluatelnt(Individual i) in the Gene
object it is holding as atreeTop, and then finally the Primitive object stored by Gene. Inthe
case above, aclass Mul is called which represents the node multiply. Thisrecursively calls
the evaluatelnt method on both of its children, and returns the result multiplied together. The
treeistraversed until terminals are reached, e.g. the class Four above, which would evaluate

to 4. Eventually the answer of 14 isreturned.

Each classin the primitive package details the number of argumentsit takes (if any), their

type, and what its return type should be. Appropriate methods are called accordingly.
C.4 Creating new Population

The class GPsys creates a new Population and table of Types available for usein the
individuals, and has an evolve method which starts the evolution process.

The Population constructor is called, and passed the GPParameters. Thiswill then call the
main constructor in Individual, passing it the ChromosomeParameters specified in
GPParameters. Then the Chromosome constructor is called, which will construct the Gene at
the top of the tree. This Gene will then recursively form the rest of the tree.

Each tree must start with afunction. The Gene at the top will then creste either aterminal or
another function to fill its arguments, according to type checking and random behaviour. Any
new function will then create Genes to fill its arguments. This process continues until there

are no more functions without arguments — all the leaves are terminals.

70

Robert De Caux —MSc CS Closer examination of engine

Each Individua is then given a new Fitness object to store fitness information.
C.5 Evolving Population

There are two methods of evolution supported — steady state and generational. The latter will
be used and is described bel ow:

i) Create a CrossoverBookkeeping object

i) Randomly select a genetic operation

i) Call the selectBest method, which will perform tournament selection on a subset
of the Population, and return the fittest Individual. (Tournament selection smply
ranks the Individualsin order of fitness which has already been established).

iv) If Crossover has been selected as the operation, repeat stageiii)

V) Add the genetic operation and Individual s(s) to the bookkeeping object.

vi) Repeat stagesii)-v) for each new Individual to be created.

vii) Create a new Population using the information in the bookkeeping object

viii) Update the Population statistics (Method updateStats finds the best Individual in
the generation, and calculates the average fithess and compl exity).

iX) Increase the generation number
C.6 Performing the Genetic Operations

C.6.1 Reproduction:

A special constructor iscalled in Individual, which creates anew Individual by taking a deep
clone of the mother. A deep clone will clone al the objects and associations.

C.6.2 Mutation:

The same constructor is called as for reproduction, but a Boolean indicator calls the mutate
method in the Chromosome class. The Chromosome is originally the same as the mother,
before a branch from the tree is chosen by calling GeneBranch, which checks branches
available for selection, and picks one at random. Finaly, anew branch is created recursively
in the same way as when a completely new Individual is created. The return type of this new

71

Robert De Caux —MSc CS Closer examination of engine

branch is made to be the same as the branch to be replaced. This hew branch then replaces
the old branch.

C.6.3 Crossover:

Another constructor is called within Individual, which calls the cross method in Chromosome.
Aswith mutate above, a branch is chosen randomly from the mother. The father isthen
scanned for branches which return the same type, and one of these is randomly chosen. This

is handled by GeneBranch. Again, the new branch replaces the old branch.
C.7 Giving feedback to user

An interface GPObserver must be implemented as required by the user, but include the
following methods.

- generationUpdate, which has the GPParameters as a parameter. Thisis called after
each generation has been evolved, so the user can view a generational report. All the
information required can be accessed viathe public variables in GPParameters.

- individualUpdate, which is called after an Individual has been created, to show the
user both its tree structure and its creation method.

- diagnosticUpdate, which is called whenever something interesting happens, such an
incestuous crossover, or when atreeis discarded for being too large.

This interface, when implemented, will contain the main method for the program.
C.8 Establishing Fitness

The class Fitness is abstract, so must be extended as required for the application. Methods
that must be declared are add, equals, greaterThan, lessThan and divide. These are all used
for comparing different Fitness objects. The other compulsory method is instance, which will
call the constructor of the concrete Fitness object. A generic fitness object is held by
GPParameters, and thisis referenced to create concrete objects belonging to Individuals.
There is also atermination condition, which will stop the GP if satisfied, e.g. the fitnessis

over some threshold.

The actual method of calculating fithessis not specified as it depends on the specific

application. Ascoevolution is not currently supported, the calculation of fitness should be

72

Robert De Caux —MSc CS Closer examination of engine

written into the Fitness constructor, as this means that a new Individual will have a calculated

fitness as soon asiit is created.

C.9 Classdiagram

GeneFunctionGrow GeneFunctionFull ADFunction CrossoverOperation

I
& \ X MutationOperation

Function

GeneFunction
GeneBranch

GeneticOperation

GeneTerminal ,

T
/ A

ReproductionOperation

Type

Chromosome k> | Primitive ?

| Individual \? Terminal

| Population ADTerminal /

Fitness —

TypeToTeminalsTable

ChromosomeParameters

|

CrossoverBookkeeping

GPsys

\ GPParameters TypeException

o z

GP Observer GPException TypeToFunctions Table
MissingEvaluatorException

Parentinfo

- - DivideByZeroException
EvaluationException <

73

Robert De Caux —MSc CS

D.1 Classdiagrams

Here are the final class diagrams for the new packages and package gpsys
D.1.1 Package gpsys.prisoner

Class and Sequence Diagrams
D Classand Sequence Diagrams

. StandardPDTournament .
gosys. prisoner. HuntingPDTournament .
I o gpsys.gn
g \ —>
\ \
N \ \
\ ﬁ \ &r'
Prisoner CoevolutionMechanism PlayerGeneratar
(from gpsys) _
/ / PrisonerFitness
|)
GPsys | /
(from gpsys)|_ Q ~ \ |
—— | GPParameters Fitness \
GPObsener oM IS ! (jom gpys) \/
f .
(from gpsys) \ NoOpponentException
\\\
PrisonerGPParameters \\ %
v :
TwoPlayerGame PDEXception
/ (from gpsys)
ChromosomeParameters N
(from gpsys) b TwoPlayerGameParameters
- { (from gpsys)
W PrisonersDilemma
‘
gpsys.primitives /4
< — — —| PrisonerChomosomeParameters PDParameters

74

Robert De Caux —MSc CS Class and Sequence Diagrams

D.1.2 Interface between packagesin setting up coevolution

Hunt
(from grid) StandardPDTournament
Wysize : int fyseeds[] : int

#ysecarchLength : int

&SQUARESIZE : int = 8 %StandardP DTournament()

®coevolveFitness()

*Hunt() %seedPopulation ()
®initialiseHunt() (SUTSO 450
selseeds

T

\
\ GPParameters

HuntingPDTournament (from gpsys)

fpseeds[] : int gengine : int
#3 ENGINE_STEADYSTATE :int=20
®HuntingP DTournament() &3 ENGINE_GENERATIONAL :int=1

®coevolveFitness()
®secedPopulation()

#ngSeed : long
#pMutation : double

aPsum(#pPReproduction : double
®setSeeds() etournamentSize : int
#populationSize : int

int
“ $ecreationindex : int
CoevolutionMechanism — gopponents : int

\1 \ #generations
|

(from gpsys)

] #yamelength : int

MinusModLength

®coevolveFitness() ®save()
®scedPopulation() ®save()
®setSeeds() *®0ad()
®jo0ad()
Sy riteReport()
®yriteReport()

AddModLength

D.1.3 Packages gpsys.primitives and gpsys.primitives.prisoner

/
Or / Dum my N .Ot N
(from prim itives) / (from piim itives)
Go /
/
/
/
T [
T ~ ‘ Y ourPrev
Xor \A Function -
(from primitives) Ej (from gpsys) [—
A <7
///// \\\ I
— T T Ever
MyPrev \‘
|
|
\
EQ If
And (from prim itives) (from prim itives)
(from prim itives)

One
(from prim itive s)[

Terminal
(from gpsys)

L

Zero
(from prim itives)

| Last

75

Robert De Caux —MSc CS Class and Sequence Diagrams

D.1.4 Package gpsys.grid

76

GridException HuntingException
:Gr?dExcept?onO D ®HuntingE xception()
GridException() $HuntingE xception()
S e
HuntDisplay s“/“/
&ysquareSize : int Grid \\
®ysize : int e \
&NORTH cint=0 LocationException
&EAST:int=1 :
S $Grid()
&WEST: int=2 : _ .
i & placePopulation() *_ocationException()
&SOUTH : int =3 D : !
“J oinSquares () *_ocationException()
! hurt()
4 7
‘HuntDlspIayO $getOccupants() 7
JEs S “displayPopulation() /
clear() 7 /
#$showHuntStatus () ' Y.
N |
\‘ Occupant Square
\ #yplayed : boolean @ystatus :int
‘w\ #ycngagedDirection : int
‘ *QOccupant() #SNORTH: int =0
Hurt *mowe() #SEAST: int=1
&ysize :int #findOpponent() #SWEST:int =2
#yscarchlength : int #Pcompatibility Test() #$SOUTH: int=3
#pSQUARESIZE : int =8 #PcalcuatePlayability() #SEMPTY :int=0
%setlnitialL ocation() = #$OCCUPIED : int=1
$Hunt() SgetStrategy() 1 @$ENGAGED: int=2
®initialiseHunt() ®setEngaged() \ =
/‘\ *setUnengaged() “ *Square()
| %getEngaged() | *setNeighbour()
| ‘getPI_ayedO ‘ *getNeighbour()
| *t0String() \ *getStatus()
| ‘\ \ $setStatus()
| ‘\ *place()
HuntingPDTournament \‘ $get()
(from prisoner) “_ ; $getDirection()
&yseeds[] : int Individual $setDirection()
(from gpsys) *empty()
*HuntingPDTournament() ecomplexity : int |
*coewoleFitness() _
*seedPopulation() ®individual(
&#sum) *individual()
%setSeeds) *ndividual()
*ndividual()
*evaluateObject()
*evaluateBoolean()
*evaluateNewBoolean()
Scomplexity()
*t0String()

Robert De Caux —MSc CS Class and Sequence Diagrams

D.1.5 Package gpsys.prisoner.gui

Prisoner Graph
(from prisoner) #yxCoord : double
#yyCoord1: double
*pri fyy Coord2 : double
. fisoner() #yyCoord3 : double
generationUpdate() &irst - bool
%individualUpdate() rst- boolean
$diagnosticUpdate() 4G raph()
:exc_eption() *updzteGraph()
main() ‘ %displayGraph()
|
|]
\L ChromoFunctionSelectPanel
GUI sfunctionSelect[] : boolean
:Legiy;:i:fg%an ‘Chrc/)/moFunctionSeIectPaneI()
pGEN : int=1 Y
~TOURN Sint=2 o ChoicePanel
#yREP : int=3 /
&MUT : int = 4 P d *ChoicePanel()
8GAME_LEN : int =5
#OPP :int=6 ~ OpponentPanel
SIZE :int=7

&HUNT LEN : int = 8 #opponentSelect[] : boolean

#DEPTH : int=9

#yDEPTH_C: int = 10
#DEPTH M :int = 11 o
#ySEED_COOP : int =12

- = %OpponentPanel()

RadioButtonPanel

@ySEED_BACK:int=13 |

#ySEED_TFT : int = 14

#ySEED_SPIT: int = 15
#ySEED_PAV : int = 16
@ySEED_TF2T : int= 17

*GUI()
#Pnolnconsistencies()
#PsetOptions()
#PseedPopulation()

*getinfoPane()

%getReady()

%setReady()

%getGraph()

*%getFilenames()

%getGPParameters()

| #NORMAL: int =1

#ABSOLUTE :int =0

#HUNTING : int = 2
#eWech :int =0

%RadioButtonPanel()

PrisonerGPParameters
(from prisoner)

®Pris onerGPParameters()
®writePopulation()

77

Robert De Caux —MSc CS

Class and Sequence Diagrams
D.1.6 Package gpsys after extensions

GeneFunctionGrow GeneFunctionFull ADFunction CrossowverOperation
é t MutationOperation
GeneFunction Function
GeneBranch
GeneTerminal
GeneticOperation
ReproductionOperation
Type
" Gene
Chromosome |~ —— = Primitive
| Individual

v = TN

NewBoolean
- y Population ADTerminal
Fitness | B

TypeToTerminalsTable
ChromosomeParameters

TwoPlayerGameParameters

CrossowerBookkeeping
GPParameters TypeException
GPsys %
GPException | | 1ypeToFunctionsTable
O CoevolutionMechanism Parentinfo
GPObsener DivideByZeroException
TwoPlayerGame
MissingEvaluatorException EualuationException
D.1.7 Package structure
grid -
prisoner
T T =
—
— N
/ P N
/ — \ AN
|~ —
— - \ %
gpsys \ gui
(from Logical View) \ (from prisoner)
AN
N \

primitives

prisoner
(from prim itives)

78

Robert De Caux —MSc CS Class and Sequence Diagrams

D.2 Sequence Diagrams

D.2.1 Evaluating an Individual

The Individual in question is (Or (YourPrev 0) (YourPrev 0)), i.e. Tit-For-Tat

: PrisonersDilemma : Chromosome || _: GeneFunctionFull

‘ : Zero ‘

‘ Individual ‘

‘ : Or ‘ ‘ : YourPrev

1: e\ﬁluateBooIean(b ‘ ‘ ‘ ‘
2: evaluateBooIt‘ean(lndividuaI) ‘ ‘

3: evaluateBoolean(Individual)
I

4: evaluateBooIeanJIndividuaI, Gene[])‘

5: evaluateNewBoqglean(Individual)

6: evaluateBoolean(Individual, Gen

7: evaluateInt(Individual)

\
|
\
|
\
|
\
8: evaluatelnt(individual) >HJ
9: evaluateNewBoaglean(Individual) ‘
|
\
|
\
|
|

10: evaluateNewBoplean(Individual, Gene[])

11: evaluatelnt(Individual)

12: evaluatelnt(Individual)

D.2.2 Creating a new Population

PrisonerFitness | | StandardPDTournament

GeneFunctionFull || PDParan

‘ : Prisoner

‘ : GPsys ‘ ‘ : Population

‘ : Individual

‘ : Chromosome

1 C“:Psys(GPParamelFrs) ‘ ‘ ‘ ‘

2: ewolve()

4: Indeua\(GPP‘aramelers) ‘ ‘

3: Populanon(GPL’aramelers) ‘ ‘ ‘ ‘

5: Chromosome(FwPParamelers, \nlr

6: GeneFuncllonFuH(mL Type, GPP‘arameters. int)

7: instanc e(GP| eters) ‘

8: instance()
9: seedP ion, GP)

10: updateStats()
[=—

11: coewlveFitness(Population, GRParam eters)

79

Robert De Caux —MSc CS Class and Sequence Diagrams

D.2.3 Creating a new Hunt

: HuntingPDTournament : Hunt : HuntDisplay : Grid : Occupant : Square

1: initialise Hunt(Popul?ti on)
2: clear() |

3: | |
4: Oc cupant(lndi\fidual)

5: Square()

6: joinSquares(|)
=]

7: setNeighbour(int, Square)

8: placePopulatjon()

i 9: getStatus()

10: place(Occupant)

11: setlnitialLocation(Square)

12: hunt()
13: findOpponent(|)

14: mowve()

>

15: displayPopulation()

16: clear()

17: update(int, int, int, int)

18: showHuntSjtus()
\

80

Robert De Caux —MSc CS

Source Code

E Source Code

Source code for the following classes have been included in this section:

From gpsys.prisoner

HuntingPDT ournament
PDParameters

Prisoner
PrisonerChromosomeParameters
PrisonerFitness
PrisonerGPParameters
PrisonersDilemma

StandardPD T ournament

From gpsys.grid

Grid
Occupant

From gpsys.primitives.prisoner

Last
MyPrev

It was felt that these classes are the most important ones for viewing purposes. Class GUI,

whilst important, islong and has already been explained in 85

The source code of the remaining classes can be viewed on the disc by extracting the jar file

(see Appendix B.2.1).

81

Robert De Caux —MSc CS Evolution Logs

F Evolution Logs
F.1 Testing genetic operations

F.1.1 Crossover

Population 10 — Generation 1

(Or (YourPrev Last) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev 0) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev Last) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev Last) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev Last) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)

(Or (YourPrev Last) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev 0) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev 0) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)

F.1.2 Mutation and Reproduction

Population 10 — Generation 1

(Or (YourPrev Last) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev Last) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev Last) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev Last) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev Last) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev Last) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev (AddModLength (MinusModLength Last 1) (AddModLength 1 Last)))
(YourPrev Last)) Fitness(3.0,11,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)

(Or (YourPrev Last) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev Last) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)
(Or (YourPrev Last) (YourPrev Last)) Fitness(3.0,5,1.0,0.0,1.0) Hunt criteria(0.0,0.0,0.0)

F.2 Standard Coevolution

106

Robert De Caux —MSc CS Evolution Logs

Population 100 — Gener ations 50 — Game length 50 - L ast 3 generational reports
Generation 48 completed...

Date :- 05-Sep-01 00:04:16

Average fitness Fitness(2.7109300000000007,12,0.8382599999999997,0.6160000000000002,1.0)
Average complexity 12.4

best individual of generation =

(Xor (Ever 0) (Go (AddModLength (MinusModLength Last (MinusModLength O Last))
(MinusModLength Last 1))))

Fitness(3.1409999999999996,13,0.8639999999999999,0.9,1.0)

worst individual of generation =

(Xor (Go (AddModL ength (MinusModLength Last 1) (MinusModLength Last 0))) (Go 1))
Fitness(0.535,11,0.9600000000000005,0.85,1.0)

Generation 49 completed...

Date :- 05-Sep-01 00:04:17

Average fitness Fitness(2.8204999999999996,12,0.8846899999999996,0.6349999999999999, 1.0)
Average complexity 12.7

best individual of generation =

(Xor (Ever 0) (Go (AddModLength (MinusModLength Last 0) (MinusModLength Last 1))))
Fitness(3.511999999999999,11,0.6869999999999999,0.6,1.0)

worst individual of generation =

(Xor (Go (AddModLength (MinusModLength 1 1) (MinusModLength Last Last))) (Go Last))
Fitness(0.7389999999999997,11,0.9600000000000005,1.0,1.0)

Generation 50 completed...

Date :- 05-Sep-01 00:04:18

Average fitness Fitness(2.7132599999999987,12,0.8441499999999995,0.6184999999999996, 1.0)
Average complexity 12.22

best individual of generation =

(Xor (Ever 0) (Go (AddModLength (MinusModLength Last 0) (MinusModLength Last 1))))
Fitness(3.049,11,0.9109999999999999,0.6,1.0)

worst individual of generation =

(Xor (Go (AddModL ength (MinusModLength 1 0) (MinusModLength Last 0))) (Go (AddModLength
(MinusModLength Last 0) (MinusModLength Last 0))))
Fitness(0.7279999999999999,17,0.9600000000000005,1.0,1.0)

F.3 Hunting Coevolution

Population 100 — Generations 10— Game L ength 50 — Playability threshold 4.5

Last 3 generational reports
107

Robert De Caux —MSc CS Evolution Logs

Generation 8 completed...

Date :- 05-Sep-01 00:11:49

Average fitness Fitness(2.796,17,1.0,0.0,0.9320000000000005)

Hunt criteria(0.7786999999999992,0.10879999999999988,2.450699999999996)
Average complexity 17.46

best individual of generation =

(Xor (Ever 0) (MyPrev (MinusModLength 0 0)))

Fitness(3.0,7,1.0,0.0,1.0) Hunt criteria(0.73,0.12,1.04)

worst individual of generation =

(Xor (Ever 0) (MyPrev 0))

Fitness(1.0500000000000003,5,1.0,0.0,0.35) Hunt criteria(0.25,0.12,2.48)

Generation 9 completed...

Date :- 05-Sep-01 00:12:06

Average fitness Fitness(2.714999999999999,14,1.0,0.0,0.9050000000000007)
Hunt criteria(0.7951999999999996,0.1658999999999998,2.422899999999997)
Average complexity 14.88

best individual of generation =

(Xor (Ever 1) (MyPrev (MinusModLength 0 Last)))

Fitness(3.0,7,1.0,0.0,1.0) Hunt criteria(0.97,0.12,2.48)

worst individual of generation =

(Xor (Ever 0) (MyPrev 1))

Fitness(0.15,5,1.0,0.0,0.05) Hunt criteria(0.73,0.92,2.48)

Generation 10 completed...

Date :- 05-Sep-01 00:12:22

Average fitness Fitness(2.784,9,1.0,0.0,0.9280000000000005)

Hunt criteria(0.8448999999999995,0.13549999999999984,2.5739999999999967)
Average complexity 9.23

best individual of generation =

(Xor (Ever 0) (MyPrev (MinusModLength Last 1)))
Fitness(3.0,7,1.0,0.0,1.0) Hunt criteria(0.97,0.25,3.27)

worst individual of generation =

(Xor (MyPrev (MinusModLength Last Last)) (MyPrev 1))
Fitness(2.2500000000000004,7,1.0,0.0,0.75) Hunt criteria(0.73,0.12,2.48)

F.4 Function Set test

Standard coevolution — Generation 0 -All functionsincluded:
(EQ (YourPrev 0) (Go 1)) Fitness(2.5149999999999997,5,0.425,1.0,1.0)
(Not (YourPrev 0)) Fitness(2.8649999999999993,3,0.38499999999999995,1.0,1.0)
(Xor (MyPrev 1) (YourPrev Last)) Fitness(0.765,5,1.0,0.0,1.0)
108

Robert De Caux —MSc CS Evolution Logs

(EQ (MyPrev 1) (YourPrev 1)) Fitness(2.9449999999999994,5,0.3,1.0,1.0)

(Not (Go 1)) Fitness(3.814999999999999,3,0.10000000000000005,1.0,1.0)

(Not (If (YourPrev Last) (Ever Last) (Go Last))) Fitness(3.55,8,0.10000000000000005,1.0,1.0)

(If (EQ (Or (MyPrev 1) (MyPrev 1)) (EQ (MyPrev Last) (MyPrev Last))) (Or (And (MyPrev 0) (Go 0))
(And (Go 0) (YourPrev 0))) (EQ (Ever (AddModLength Last 1)) (And (Y ourPrev Last) (Go 0))))
Fitness(1.9900000000000002,33,0.7300000000000002,1.0,1.0)

(Xor (And (EQ (YourPrev 1) (Go 1)) (Not (Go 0))) (Not (Or (YourPrev 1) (Go 0))))
Fitness(1.2650000000000001,16,0.9,0.15,1.0)

(And (Not (If (Ever (AddModLength Last 0)) (Not (Go 0)) (Or (YourPrev 1) (Go 0)))) (Xor (Not (Or
(Go 0) (MyPrev 1))) (EQ (EQ (Ever 1) (MyPrev 1)) (Or (Ever Last) (YourPrev 0)))))
Fitness(1.78,33,0.7449999999999999,0.3,1.0)

(Xor (Xor (Xor (And (Xor (YourPrev Last) (MyPrev 0)) (EQ (YourPrev 1) (YourPrev Last))) (Or (Or
(YourPrev 1) (Go Last)) (And (Go 1) (Go Last)))) (And (Xor (Go (MinusModLength 1 1)) (If (Go
Last) (MyPrev 1) (Go 1))) (Xor (And (Go 1) (YourPrev Last)) (If (MyPrev 1) (Go Last) (Ever 0)))))
(EQ (And (EQ (MyPrev (MinusModLength 1 Last)) (Not (MyPrev 1))) (EQ (Or (MyPrev Last) (Go
Last)) (And (Go Last) (Go Last)))) (Xor (Or (Or (Ever 0) (Go 0)) (And (MyPrev 0) (Ever Last))) (Or
(YourPrev (AddModLength 1 1)) (Or (YourPrev 1) (YourPrev 0))))))
Fitness(2.0650000000000004,94,0.725,0.35,1.0)

Standard coevolution —Generation 0—If, EQ, Go not included:

(And (YourPrev 0) (MyPrev Last)) Fitness(2.4,5,1.0,0.0,1.0)

(And (YourPrev 1) (YourPrev 0)) Fitness(2.5499999999999994,5,1.0,0.0,1.0)

(Or (YourPrev Last) (MyPrev 1)) Fitness(2.6249999999999996,5,1.0,0.0,1.0)

(Or (Ever 1) (MyPrev 0)) Fitness(2.845,5,0.7999999999999999,0.0,1.0)

(Xor (Ever 1) (MyPrev Last)) Fitness(2.7950000000000004,5,0.8800000000000001,0.0,1.0)

(Xor (Or (MyPrev 0) (YourPrev Last)) (MyPrev (MinusModLength 0 0))) Fitness(2.7,10,1.0,0.0,1.0)
(Xor (MyPrev Last) (And (MyPrev (AddModLength Last Last)) (MyPrev 0)))
Fitness(2.625,10,1.0,0.0,1.0)

(Or (And (Or (YourPrev 1) (Ever 1)) (Not (MyPrev 1))) (Not (Or (MyPrev 0) (Ever 0))))
Fitness(2.7350000000000003,16,0.5,1.0,1.0)

(Not (Xor (Not (Not (YourPrev 0))) (Xor (Xor (MyPrev Last) (MyPrev Last)) (Or (MyPrev 0)
(YourPrev 1))))) Fitness(3.499999999999999,17,0.41,1.0,1.0)

(Not (Not (And (MyPrev (AddModLength (AddModLength O Last) (MinusModLength 0 Last))) (Not
(And (Ever Last) (YourPrev 0)))))) Fitness(2.7,17,1.0,0.0,1.0)

F.5 Seeding Population

Population 10 — Generation 1 -5 TFT and 5 Backstabbing player s seeded

Generation 0
(Not (YourPrev Last)) Fitness(1.2999999999999998,3,0.0,1.0,1.0)
(Not (YourPrev Last)) Fitness(1.2599999999999996,3,0.0,1.0,1.0)

(Not (YourPrev Last)) Fitness(1.22,3,0.0,1.0,1.0)
109

Robert De Caux —MSc CS Evolution Logs

(Not (YourPrev Last)) Fitness(1.2599999999999998,3,0.0,1.0,1.0)

(Not (YourPrev Last)) Fitness(1.2599999999999993,3,0.0,1.0,1.0)

(Or (YourPrev 0) (YourPrev 0)) Fitness(1.4249999999999994,5,0.32499999999999984,0.0,1.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(1.7399999999999995,5,0.4599999999999998,0.0,1.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(2.055,5,0.5949999999999998,0.0,1.0)

(Or (YourPrev 0) (YourPrev 0)) Fitness(1.9499999999999997,5,0.5499999999999998,0.0,1.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(2.055,5,0.595,0.0,1.0)

Generation 1

(Or (YourPrev 0) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0)
(Or (YourPrev 0) (YourPrev 0)) Fitness(3.0,5,1.0,0.0,1.0)

110

Robert De Caux —MSc CS Bibliography - Books

G Bibliography — Books

[1] Evolution of Cooperation — Robert Axelrod — Basic Books, NY — 1984

[2] Prisoner’s Dilemma — W.Poundstone — Anchor Books, Doubleday, NY — 1993

[3] The Arithmetics of Mutual Help — M.Nowak, R.M.May, K.Sigmund — Scientific American,
p76-81 — June 1995

[4] Genetic Programming — Computers using “ Natural Selection” to generate programs
(paper) — William B.Langdon, Adil Qureshi — Dept. of Computer Science,

University College London

[5] Modelling Exchange Using the Prisoner’ s Dilemma and Genetic Programming (paper) —
Laurie Hirsch, Masoud Saeedi — Dept. of Computer Science, Sheffield Hallam University

[6] Evolutionary Games and Population Dynamics — Josef Hofbauer, Karl Sigmund - 1998 -
Cambridge University Press

[7] Theory of Games and Economic Behaviour — John von Neumann, Oskar Morgenstern —
1944 — Princeton University Press

[8] Games and Decisions— R. Duncan Luce, Howard Raiffa— 1957 —

John Wiley & Sons, Inc.

[9] Some Topicsin Two-Person Games—T. Parthasarathy, T.E.S. Raghavan — 1971 —
American Elsevier Publishing Company, Inc.

[10] Developing Java Software, Second Edition — R.Winder, G.Roberts — 2000 — John Wiley
& Sons, Ltd.

[11] The theory of games and the evolution of animal conflicts—J.Maynard Smith — 1974 —
Journal of Theoretica Biology

[12] Adaptionin Natural and Artificial Systems. An Introductory Analysis with Applications
to Biology, Control and Artificial Intelligence —J.Holland — 1992 — MIT press

[13] Genetic Programming: On the Programming of Computers by Natural Selection —
JR.Koza—- 1992 — MIT press

[14] Competitive environments evolve better solutions for complex tasks — P.J.Angeline,
J.B.Pollack — 1993 — Taken form proceedings of 5" International Conference on Genetic
Algorithms, ICGA-93, p264-270 - Morgan Kaufmann

111

Robert De Caux —MSc CS Bibliography —Web links

H Bibliography —Web links

[15] www.csse.monash.edu.au/~tonyj/GM 3/gentic.html -Tony Jansen - Hunting implemented

[16] http://serendip.brynmawr.edu/playground/pd.html - On-line PD game

[17] www.brembs.net/ipd - Scholarly discussion of IPD

[18] www.patweb.com/game - Real socid experiment with version of IPD

[19] www.genetic-programming.com - Home of GP
[20] www.esatclear.ie/~rwallace/lithos.html - Lithos GP engine

[21] www.stanford.edu/~jjchen/game.html - Very good PD discussion
[22] www.mk.dmu.ac.uk/~jmarshall/sipd/sipdl.htm - Spatialised IPD
[23] http://netrunners.mur.csu.edu.au/~osprey/prisoner.html - Loads of strategies
[24] www.cs.ucl.ac.uk/staff/A.Qureshi/gpsys.html - GP engine used

112

Robert De Caux —MSc CS Bibliography —Web links

113

