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The Hysteretic Hopfield Neural Network

Sunil Bharitkar Student Member, IEEEBNd Jerry M. MendelFellow, IEEE

Abstract—A new neuron activation function based on a prop- 4
erty found in physical systems—hysteresis—is proposed. We in-
corporate this neuron activation in a fully connected dynamical Y> Hysteresis
system to form the hysteretic Hopfield neural network (HHNN). @X—, Nonlinearity | Y
We then present an analog implementation of this architecture and
its associated dynamical equation and energy function. We proceed
to prove Lyapunov stability for this new model, and then solve a v
combinatorial optimization problem (i.e., the N-queen problem)
using this network. We demonstrate the advantages of hysteresis

by showing increased frequency of convergence to a solution, when
the parameters associated with the activation function are varied. !

Index Terms—Hysteresis, hysteretic activation function, 08
hysteretic Hopfield neural networks, NP-complete, INV-Queen
problem, neural networks, optimization. 0.8

0.4

I. INTRODUCTION 0z

N this paper, we propose a new neuron model that is basZ

on a phenomenon found widely in nature, nantglgteresis 3
Recall that hysteresis [31] is defined as a lagging effect d o=
to a change of force acting on a body. Hysteresis manifests
self in the structures of many cooperative dynamical systel
(formed of local interactions), and is observed in animals such _os
frogs [15] and crayfish [38]. Many engineering systems displ¢
hysteresis. Among these are mechanical structures subjecte
acoustic or aerodynamic loads, a three-phase transformer [
etc. Marshalkt al.[30] give a detailed explanation of hysteresi
as it occurs in ferromagnetic materials. The identification c.
hysteretic type nonlinearities is important in earthquake resis- (b)
tant designs of buildings (e.g., [4], [5]). A good background ofig. 1. (a) Hysteretic neuron and (b) hysteretic activation function.
hysteresis is provided in [44].

Taga [40] developed a network containing six couple@lipper trip point) the neuron fires (i.e., the output of the neuron
oscillators (that functioned as neurons) to control bipedal Igs unity); 2) if the input is below a certain threshold (lower trip
comotion. During locomotion, transitions between movemengsint), the output of the neuron is zero; and 3) if the input to the
(walking, running) exhibited hysteresis. Similar hysteretineuron is between these trip points, the output equals its pre-
behavior can also be observed in humans [3]. Hoffman agibus value.

Benson [23] demonstrated that a single cell-level neuronin this paper, we describe an hysteretic neuron model that
model, based on an analogy between the immune system difters from those in [28], [42], and [49] in the following ways:
the central nervous system, exhibits hysteresis. it 1) is multivalued; 2) has memory; and 3) is adaptive.

Models of hysteresis appear, for example, in [12], [45], [46], In Section II, we present the hysteretic neuron. Section Ill de-
and [8]. Hysteretic neuron models usisignumfunctions have scribes the hysteretic Hopfield neural network (HHNN) along
been proposed by Yanai and Sawada [49], and Ke¢®lt[28],  with its circuit dynamical equations. In Section IV, we briefly
for associative memory. They demonstrated that their hysteratiwiew the concept of Lyapunov stability for nonlinear dynam-
models performed better than nonhysteretic neuron modelsjdal systems We then propose a Lyapunov function and use the
terms of capacity, signal-to-noise ratio, recall ability, etc. Takéyapunov theory to prove stability of the HHNN. In Section V,
fujiand Lee [42] proposed a two state (binary) hysteretic neureve introduce a well-known combinatorial optimization appli-
model such that: 1) if the input to a neuron exceeds a threshelgtion, the/N-queen problem, and use the HHNN to solve it.

Conclusions are drawn in Section VI.
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Fig. 2. (a) Hysteresis neuron circuit. (b) Differentiator-integrator pair in series and modeled as net resistance.
inputs. It differs from other neuron models in that its nonlineahe most part, there are no parameters to tune (or there is, at

gain (activation) function is the hysteresis function depicted most, one parameter, the slope of the sigmoid). The hysteretic
Fig. 1(b). Mathematically, our hysteretic neuron gain functioneuron is different in this sense, and we can think about tuning

is described as all of its parameters in order to maximize its performance. So,
. . it seems that the hysteretic neuron provides us with much more
y(z(t) |2t — o0t)) = Pl (t) — A(@(t — 61))] (1) flexibility than the usual neuron.

The hysteretic neuron can be applied to many types of neural

whereg(p) = tanh[yp] and networks (multilayer, recurrent). In this paper, we apply it to the

68 = {%7 Bt — 8t) > @ Hopfield neural network.
e x(t(t 62) I1l. HYSTERETICHOPFIELD NEURAL NETWORK
. «, Tt — . . . . .
A(E(t — 6t) = {/37 it —6t) < 3 A circuit-based noiseless dynamical model of the hysteretic

neuron is depicted in Fig. 2(a). Important considerations in the
. A _design of such an analog circuit are that its individual compo-
3 > —a, and,(vq, > 0, andz(t — 6t) = dx(t — 6t)/dt = e . .
{imm C;( (t) E’yx(:i) 51))/6t. #( ) %( % nents have a negligible (but nonzero) propagation time, and the
The mapping that is effected by this transformation ISn‘ferennatorand integrator have a unfC-time constant. We
Y §R2 — R. Note that, in the special case whan= £, and enote the voltage at nogeasz;. In Fig. 2(b), we assume
' ' A negligible effect of the capacitance, and a high internal re-

7« = 7g, the activation function becomes the convention fth : i he diff
SlngId Observe that this neuron’s output not only depena's?tance of the operational amplifiers in the differentiator-inte-

on its input, z, but also on derivative information, namelygrator pair. The net resistance in the two branches consisting of
. It is the latter information that provides the neuron witfurrent sources,; = = ;/R; andL: = ;/R; is denotedg;

memory and distinguishes it from other neurons, such as tfthis resistance can be assumed to be introduced by the d|fferen—
hysteretic neuron proposed by Takefuji which is memorylediator-integratork; (Rz) resistances in series). Accordingly, we

In their case, the transfer function behaves as a thresholdf@j) Place a resistance of the same value (g} in the branch
device. Hence from (1)—(3), if is positive at one time point Whichis in parallel with the capacitd;, as shown in Fig. 2(a).
and increases in value at the next time point, the activatidme logic device denoted by an arrow after ngdewitches to
function remains along segme6t — A. On the other hand, the upper branch if;(¢ — é¢) > 0, and to the lower branch

if = is positive at one time point and decreases at the ndkti;(t — 6t) < 0 (heredt denotes the finitely small propa-
time point, then the activation function jumps from hysteretigation time involved with respect to nogebefore switching).

segmentC — A to segmenB — D. Applying Kirchhoff's current law to nodg, we obtain the fol-
Note that the hysteretic neuron’s activation function has folfwing circuit equation:
parameters associated with it, namely,3, v., ~vg. Usually, dx () z;(t) Az, (t = 6t))

one does not tune a neuron’s activation function because, for i dt  R; - R;

IRecall that a system is said to memoryles§33] if its output at any instant N
depends, at most, on the input at the same instant but not on any past or future + Z wpy +14;, j7=1,2,....N (4)
values of the input. i—1
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wherey; is a shorthand notation feg (x; | 2;(¢t — 6t)) given by Note that
(1), andX; (&, (t — 6t)) is as defined in (3). N
We refer to the interconnection of té nonlinear equations dE _ <~ OF dy; dx; %
in (4) as an HHNN. Unlike the usual Hopfield neural network dt <= Oy;dx; dt '
(HNN), the HHNN includes memory.
A discretization of (4) can be accomplished by lettind\ssuming symmetric weights and zero diagonal components of
dx;(t)/dt = lims—o(x;(t + 6t) — z;(¢))/6t, with ¢ = KT, the weighting matrix (i.e.;; = w;; andw;; = 0), differenti-
§t = T, and using a unit sampling interval. In this way, (4pting (6), and using (1), we find that

may be used as a discrete update equation for the application N

described in Section V. OF _ 3 _ (@5t —6t)) I — Zwﬂyz
dy; R, Ry P
IV. STABILITY OF THE HHNN c dzx; ®)
Stability is an important consideration in the theory of non- ! dt

linear systems. Lyapunov, a Russian mathematician from thfiere we have also made use of (4). Substituting (8) into (7),
late nineteenth and early twentieth centuries, developed an @afe-find
proach to stability analysis that is widely used in the control N 5
theory literature, and is now known & direct method of Lya- av Z o Wi <%>
punov Its key feature is that it leads to conclusions about sta- dt Ydr; \ dt
bility of nonlinear systems without having to explicitly solve the
system’s nonlinear differential equation. It has also become arfconsider thejth neuron [each neuron contributes indepen-
important tool for establishing the stability of HNN'’s [24] ordently toward the minimization of the energy function, as can
more complicated nonlinear feedback neural networks [14]. V@& seen from (9)]. Accordingly, from (9)
use it to study the stability of the HHNN. dE. A/ daes\ 2

To begin, we recall the definition of a Lyapunov function and —2 = lim Cji <—J> . (20)
stability in the sense of Lyapunov (e.g., [10]). For a function dt Azj—0 T Az \ dt
E(y1,12,-..,yn) to be a Lyapunov function, it must satisfywe analyze (10) by considering the following transitions [see
the following three properties: let* = col(yy,%3,...,yx) Fig. 1(b)]: 1) Transition XA — B) for which Az; < 0 =
be an equilibrium point for a dynamical system; then Jij < 0= (dE;/dt) > 0,j=1,2,...,N = (dE/dt) < 0;
E(yl,u3,---u5) = 0, 2) E(y1,y2,---,yn) > 0,y # y*,  2) Transition 2(B — A) for which Az; > 0 = Ay; >
and 3)E(y1,y2,.-.,yn) should have partial derivatives withg — (dE;/dt) > 0,5 = 1,2,...,N = (dE/dt) < 0; and

A~ dE

= 5 (9)
it

=1

respect to ally;. Given thatE(y:, v, ..., yn) is @ Lyapunov  3) Transition 3(C — A, B — D) for which transitions occur
function, and if along the sigmoid, which is a nondecreasing function i.e., for
AE(, s, -, uy) which (dE;/dt) > 0,7 =1,2,...,N = (dE/dt) < 0.
e <0 (5) BecausedFE /dt < 0 for all possible transitions, we have
dt shown that the equilibrium point for the HHNN, described by
theny* is stable in the sense of Lyapunov. (1)-(4), is stable in the sense of Lyapunov. O
The stability of the HHNN can be demonstrated by either of
two approaches: 1) use the Cohen—Grossberg theory [14] that V. THE N-QUEEN PROBLEM

is already based on Lyapunov stability theory or 2) a direct ap-
proach in which we must establish an energy function, showthat - . : L
it is a Lyapunov function, and then demonstrate the truth of ( é” known combinatorial optimization problem, thé-queen

. ‘ptoblem. According to Wirth [47], . .the problem of the eight
for it. Here we take the second approach (see [6] for the fi a&eens is a well known example of the use of trial and error

In this section we describe an application of the HHNN to a

approach). : . .methods and of backtracking algorithms. It was investigated by
We propose the following energy function for the system IR £ Gauss in 1850. but he did not completely solve it. The
). . F. , .

characteristic property of these problems is that they defy ana-
E(1, 1y yx) Iytic solution. Such algorithms have therefore gained relevance
N N N almost exclusively through the automatic computer, which pos-
_ 1 Zzwyy + 1 /y’ bt sesses these properties to a much higher degree than people,
2 T “Rj Jo even geniuses, do.” This quote typifies the prevalent view of the
N eight queen problem, which was first posed in 1848, and inves-
R o . tigated by several 19th century mathematicians.
X Qi [ &) dyy ; Lvi ©) A generalN-queen problem is defined by the following con-
straints on aV x NV grid: 1) only one queen can be placed in any
wherey;(xz; | &,) is defined in (1). Details of the proof thatrow; 2) only one queen can be placed in any column; 3) only one
E(y1,42,...,yn) in (6) is indeed a Lyapunov function can bequeen can be placed on any diagonal; and 4) exa¢tyjueens
found in [7] and [6]. Here we focus on demonstrating the trutimust be placed on the grid. This problem was explored in the
of (5). 1950’s by Yaglom and Yaglom [48]. Since then, there have

i=1 j=1 j=
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been diverse approaches taken in the study of this problem, inWe must show that (11) reduces to the correct form for the
cluding algorithmic design, program development, parallel amysteretic Hopfield circuit dynamical equation, so thatitinherits
distributed computing, and artificial intelligence ([1], [25], [26] the Lyapunov stability property, proven in the previous section.
[19], [16], [37], [47], [17], [18], [20], [21], [35], [9], [39], [27], For our application involving hard-limiting functions (i.e.,
[34],[42],[29], [2]). The eminent mathematician Polya [36] extwo state neurons) as given in (12), the second term of (6) be-
amined a solution to a constraindd-queen problem. Chandracomes negligibly small [22], [13] due to the large gain in the
[11] developed the theory of independent permutations to chaeuron’s activation function. The corresponding energy (Lya-
acterize the family of solutions to th¥-superqueen problem. punov) function reduces to

This widespread interest in thé-queen problem is due in part

to an aspect that often characterizes difficult problems, namely E(y1y2,- o yjf\) N

a set of global constraints. For example, the very moment that 1

one queen is placed on & x N grid, the number of positions I Z Z Wyililj — Z 1y (13)
the next queen can be placed on is significantly reduced. ==l =t

and (4) can be expressed as

A. Mathematical Model da; 1 )
The following mathematical model for thé-queen problem At R;C; [z = Aal@(t = 61))]
was introduced by Takefuji [41]. Let us denote the state of the h T
existence of a queen at tligth location on anV x N grid as 1 OE(y1, 92 .- yn)
yi;- If @ queen exists at thigth location, theny;; = 1, other- o ’8 — Jj=12,...,N.(14)
wisey;; = 0. The nonlinear state equations for theQueen - Yi

problem are Term 11
Term | in (14) is the decay term (with; = R;C; time con-

N N N
i_ _ <Z Yin — 1) _ <Z Yui — 1) 4o <Z ym) stant); it may, as we explain next, cause an increase in the time
k=1 k=1 k=1

dt derivative of the energy function. Recall, that
N
. dE OF dy; dx;
N oL N o8 4y Al (15)
+o <Z yk;) - Z Yi—k,j—k dt ; dy; dx; dt
k=1 1<i—k; j—k<N . L ..
k50 Solving (14) for Term Il and substituting this into (15), we see
that
o N
- Y wiewgwk i 63=12..,N A O R WA ]
1<i—ksj+h<N dt Z R; ey = Ag(5) dr; dt
k#0 J=1
(11) Ter;; A
N d d 2
wherey;; = 0.5sgnz;; +0.5, z;; is the input to the;jth neuron, _ Z Cjﬁ <ﬂ> ) (16)
and o(.) is the Kronecker-delta function, i.ea() = {1,7 = = Tdxy \ dt
0; 0,7 # 0}. In (11), the first term is a row constraint that ——

forces only one queen to be placed in a row; the second term
is a column constraint that forces only one queen per column;/n Section IV, we showed thderm Bin (16) is always posi-
the third and fourth terms are perturbation (hill-climbing) terméve [by analyzing the finite differences in the input—output sig-
that have been included so that the state of the system can"&4s of a neuron (10)]; howeveérerm Acan be positive or nega-
cape local minima (when no neuron is fired in the row or tive, so thatlE//dt may not be negative (in which case the pro-
the jth column); and, the last two terms correspond to diagori®sed energy function is no longer a valid Lyapunov function).
constraints, i.e., no pair of queens can diagonally command e&¥pe solution to this, that has been considered in [43], is to elimi-
other. nateTerm lin (14), which eliminate$erm Ain (16). This can be
We have modified this model to one in whigly is given by accomplished by using a sufficiently large resistance and capac-
the following hysteretic function: Note that this hysteretic fundance (e.g./; = 100 Mohm, C; = 1 F). Doing this, reduces
tion differs from the one in (1), becaugg must, in this applica- (16) to

tion, be zero or one. Now, in (113;; is short fory;;(x;; | Z:;) IE Ny de\ 2
(where,&;; = limgi—o(zi;(t) — xi;(t — 6t)/6t)), as is clear -y c; S0 <ﬂ) <0 (17)
from (12), shown at the bottom of the page. dt o Tdwy \ dt

o O.SSgn(a:ij + Oéu) + 0.5 37“ >0 o
Yij = {0.588‘11(1'”' — [3“) + 0.5 i’ij <0’ hj=1..., N (12)
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thereby demonstrating Lyapunov stability for (14). In this casethere E is the energy function in (13). Substituting the
(14) (using (13)) reduces to right-hand portion of (8) into (22) (replacing the single
subscripted quantities in (8) by their appropriate double-sub-

]\T . . .

dx; scripted counterparts, and, assumirig = 1, Vi, ) we have

cjﬂZE:wjiyiJrIj j=1,2,...,N. (18) P P g 2
dt ;

=1 drij  dyij

n IR
dt d)\ij(azu)

AF (@) = M (@) — (23)
Next, we proceed to show that (11) can be expressed in the

form of a two-dimensional version of (1 . ;
orm of a two-dimensional version of (18), as Unfortunately, we cannot computéyij/d)\ﬁj(xij) using

N N (12), because of the discontinuity of the step function. Instead,
Cij drij _ Zzw“ s + Lij. (19) We use the continuous version of the step function, viz., the
dt Ll sigmoid, since the step function is just the limiting form of
_ _ the sigmoid when the slope of the sigmoid — oo [i.e.,
Comparing (11) and (19), the two are equivalent when y = 1/(1+ ¢ %), andy = 0.5 whenz = 0]. We, therefore,
o use sigmoids instead of the signum functions in (11), but only
Cj;=1 45=12...,N to approximate the derivatives that are needed in (23), i.e.,
gl = —0i k= 051 — (i k i j b .
Wikl Jo = 050 = (Cijrtt + Giju—t) 0.5tanh [y8(zi; + aij)] + 0.5 @i >0
X (1= [6ip + 650 — 6 165.1]) Yij & _ 3 o (24)
N N 0.5 tanh |:’}/'“(.’IZ'“ — /3“):| —+ 0.5 T4 < 0.
I; = ik 2, : - :
i=e <kz_:—1y ’“) te <; y’”) + It is straightforward to show, using (24) and (23), that
t,j=1,2,...,N (20) )‘ij—l(ajw)
whereé,. , is atwo-dimensional Kronecker delta, defined as fol- () — dj Yij(#35) 25
’ zg(‘TU) n 2 . ( )
lows: dt cosh [’yij(xij - )\“(J}”))]

5 — { 1, r=s 21) where~;;(2;;) is defined in (2).
e 0, 7#s The steady-state solution of (25) is achieved when the system
in (11) converges to a solution i.e., whép;; /dt = 0, Vi, j.
Inthe equation fotv;; i, the first two terms representthe row  ysing (2) and (3), (25) can be expressed in terms of the pa-
and column constraints respectively, whereas the third term CoBmetersy;; and3;;, as
tains the two diagonal constraints. It can also be easily demon-

strated thatv;; i = wei,i5. SO, (11), which is the basis for a N o dx;;
HHNN solution of theN-queen problem, reduces to a HHNN. @il +1) = ai;(1) +m dt

The equilibrium point for the non_linear _s_ysFem in (ll) occurs ve5() dwi;
whendz;,; /dt = 0. A stable and valid equilibrium point occurs x cosh? 42 (D) (w1, + 0y ()] T 20
when all the constraints are satisfied simultaneously, i.e., when Vi R
terms 1, 2, 5, and 6 in (11) equal zero (i.e., when one neuron isﬁij(l +1) = By (1) + 2 dz;j
fired per row, per column, and per queen diagonal). This in turn dt
implies that the hill-climbing terms (3 and 4) will be zero, since fyfj(l) d;;
terms 1 and 2 are zero. At the equilibrium point, the output of x 3 3 <0

: : ; cosh? |72 (D)(zi; — Bi; (1) dt

the HHNN (i.e.,;;) will be either a one or a zero. Vi tj tj

,j=1,2,...,N. (26)
B. Tuning of HHNN Parameters

For an N-queen problem that uses the hysteretic activatic}_r%he ap!f rOX|m%t|on n (24) introduces two positive slope param-
eters;y;; andv;;, which can also be tuned. In order to perform

function, there is a high degree of flexibility in deciding the  ~ . . .
choice for the2V? network parameters (i efr;, i} € R gradient descent on these parameters, we introduce an interme-
. 139 My 9

i.j=1,2,...,N). Instead of performing an exhaustive sear iate parameter so as to prevent them from becoming negative.

over all of these parameters, which would be prohibitive, "‘{Jelth 7 = /7, our gradient descent algorithm for the slopes can
. o e written, as

used a gradient descent procedure to optimize(the, 5;,)

pairs. Using the notation from (3), our gradient descent algo- T ) = 1l (i) + AL (E5)

rithm has the following form: R AT A

=l () - OE iy
— Ty (¥} o 17
AT (@) = My (dg) + AN (845) ! 3% drl; (i)
= \(&i) F =7;;(&i;) + 1 dtj
j N (ij) rh(ig) (i — M)
oF dy“ X AN X i\ Vg (27)

= N (&5) + U%W (22) cosh? [(Tjj(a‘:ij))Q (2i; — Aﬁj(a‘:ij))}
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thus TABLE |
SUMMARY OF EXPERIMENTAL RESULTS
FOR N = 30-QUEEN PROBLEM. ANN: ARTIFICIAL NEURAL NETWORK;
Tza (l + 1) HNN: HoPFIELD NEURAL NETWORK; HHNN: HYSTERETIC HOPFIELD
J NEURAL NETWORK

5(0) +
— o
i STt Standard energy Modified energy
U (l) (.’IZU + (l)) ) d‘TU function function
2 a2 ’ dt — 0 ANN No . No .
oo 0 e 0]
(I+1
dz;; HNN 45% 66%
R ij
=17 O+ e
8
y 7 (D@ — By (D) T 58% 73%
2 vt HHNN|| 56%
y 4 - 55%
cosh {(T”»(l)) (wij — /3ij(l)):| 551; 68%

j=1,2,....N. (28)

* All parameters were tuned using gradient descent.

=+ Only (0,) parameters were tuned using gradient descent.

In summary, we compute;;, 3;;, 75 andT using (26) and

(28). We substitute they;; and /3;; values |nto (12), and the TABLE Il

resulting quantity is used in (11) to Compl”t@u /dt Note that SUMMARY OF EXPERIMENTAL RESULTS FORN = 50-QUEEN PROBLEM. ANN:
we use (12) and not the approximation in (24) i in this step, singeriFiciaL NEURAL NETWORK; HNN: HOPFIELD NEURAL NETWORK; HHNN:
the constraints for (11) are satisfied only at e vertices of HYSTERETICHOPFIELD NEURAL NETWORK

a hypercube, i.e., fog;; = 1 ory;; = 0. We use (24) only to
; . Standard ifi
derive (26) and (28), and} and rfj are in turn only used to f:izﬁirn eneiey ?ﬁggg;id energy
updatec;; andg;; in (26). ANN
No Tuni No .
. uning . Tuning
C. Results tuning tuning
Associated with (11) is an energy function as defined in (13), | gNN 61% 83%
but with the weights and current sources appropriately defined
in (20). We refer to (13) as a “modified” energy function, be- z -
cause it accounts for all six terms on the right-hand side of (11), o 2% 90%
including terms 3 and 4, which were added in by Takefuji etal. |THNN|| 71% e || 3% o
[41] for the reason given below (11). The energy function that 63% 82%

is associated with the version of (11) that only contains terms 1,

2,5, and 6 on its right-hand side is referred to by us as a “stan- " All parameters were tuned using gradient descent.

dard” energy function. We have compared the performance of ~ ~* 0" () parameters were tuned using gradient descent.

our HHNN with that of the HNN for both the standard as well

as modified energy functions. In addition, we have performed Note that, when the HHNN is not tuneg,; are computed

many experiments with the HHNN by tuning its available pa!sing (12), so thatthe HHNN is characterized just bytheand

rameters. B:i; parameters. For the HHNN results related to “No tuning”
Tables | and Il provide a summary of our simulation resultéStandard or Modified energy functions), we scanned over the

The traditional HNN does not have any tunable parameters far;, Ji; Parameters (constraining; > —a;;) looking for the

either energy function. The initializations for the HNN and thalues that yielded the best convergence percentage, as follows.

HHNN model were the same, i.e., the initial values for the inputs 1) We chosev,;; = w; € [—4,4] and3;; = w2 € [—4,4],

to all neurons, for théV = 30-queen and théV = 50-queen Vi,j = 1,2,..., N, using only integer values. All pos-
problems, were;;;(0) € [—1,1] (uniform),z,j = 1,2,...,N sible integer-valued pairs were chosen subjeat4o>
The differential equations corresponding to the modified —w; (a total of 36 pairs).

energy function and the standard energy function, were dis-2) 100 random initializations af;;(0) were used for each
cretized. We then performed a Monte Carlo simulation with 100 (w1, w2).

randomized initializations on the inputs to the neurons. Each3) For each(w;,w2), we recorded the convergence per-
number within the tables indicates the percentage of solutions centage averaged over the 100 random initializations of
obtained from 100 random initializations, i.e., the percentage of ~ z;;(0).

convergence to a solution. Our stopping rule was: terminate if a4) Each result shown in Tables I and Il, for the HHNN “No
solution is obtained or if 1000 iterations have occurred, where  tuning” cases, is the maximum average convergence per-
an iteration refers to one time-step for the implementation of  centage over afw;, w-).

the discretized version of (11), or its standard energy functionEach neuron in the “tuned” HHNN has four tunable param-

counterpart. eterS(a”,ﬂ“,TU,T“) as described in the previous section.
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Fig. 3. Solution forV = 30, obtained at iteration= 33.
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Fig. 4. Solution forN' = 30, obtained at iteration= 29.

These had to be initialized. Rather than randomly initializinthat the convergence performance was more sensitive to the
these parameters (which would add further complexity to tiearning rates for the slopes than to the learning rates of the
Monte Carlo simulations), we decided to start the HHNN as amossover point§c;;, 3;;). We believe that this is due to the
HNN; thus, we chosey;;(0) = 3;;(0) = 0,4,j =1,2,...,N; direct proportionality of the change of the slope to the state of
andr3(0) = 7(0) = ¥, ¥s; € (0, 1) (uniform). the neuron [see (27), wheter;; (I + 1) o x;;].

The gradient descent algorithms in (23) and (25) also There are many possible solutions to Arqueen problem.
required learning rates), 72,73, n4, Which we chose as: We were only interested in converging to any one of them. Two
{m.,m2,m3,ms} € (0,0.5). Examples of typical learning ratespossible solutions that we converged to, fdr= 30 and N =
that we used for the modified energy function, aid= 50 are: 50, are displayed in Figs. 3—6. They were obtained for the fully
m = 0.02, 7o = 0.03, n3 = 0.008, ny = 0.001. We noticed tuned HHNN.
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Fig. 5. Solution forN = 50, obtained at iteration= 62.

The following observations are made from Tables | and Il. additional parameters in the activation function of the neuron.

1) We reconfirmed the results in [41], that much bettefhis improvement in performance occurs at the expense of an
results are obtained for the HNN when one uses tlifgcrease in computation. Note that all the quantities needed for
dynamical equation of the modified energy function [foEomputing (26) and (28) are available from (11); moreover,
N = 30, 66% versus 45%, and, fd¥ = 50, 83% versus (11) has the highest computational cost, compared to (26)
61%). and (28). Interestingly enough, we observed experimentally,

2) Tuning of the HHNN on all its parameters for the modthat performing a full-blown gradient descent for the HHNN
ified energy function gives the overall best results [fofesulted in a faster convergence to a solution than that obtained
N = 30, 73%, and forV = 50, 90%]. for the HNN. So, even though computation for each iteration

3) Tuning of the HHNN just on théw;;, 3;;) parameters of a fully tuned HHNN is greater than that of a HNN, tuning
for the modified energy function may not necessarily givéequently gets the HHNN to a solution in fewer iterations than
better results than those obtained using the HNN [e.g., fbtakes for the HNN to reach a solution.

N = 50, 82% versus 83%]. Finally, an associated experimental observation for the cur-

4) The untuned HHNN outperformed the HNN for the starfent application is that, system performance (in terms of conver-
dard energy function [foN = 30, 56% versus 45%, and, gence percentage) improved for hysteretic band sizes less than
for N = 50, 71% versus 61%. three; however larger band sizes had a detrimental effect on per-

5) The HNN outperformed the untuned HHNN for the modformance. A possible explanation for this can be seen with the
ified energy function [forV = 30, 66% versus 55%, and, aid of Fig. 1(b) [in whichy* = 47 = oo, as is the case for
for N = 50, 83% versus 78%]. This may be due to théhe activation functions in (12)]. Consider the input to a neuron
way we chose the;; and3;; parameters for the HHNN, to be in the saturation region of the top function, i.e., near re-
as described above. gion A. A change in direction to the input of a neuron at this

Best results were obtained by using gradient descent on R@int causes the output to switch frofnto the other saturation

the parameters of the HHNN, because of the availability 68gion markedD. This rapid switching in the neuron’s output
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Fig. 6. Another solution forvV = 50, obtained at iteratios= 47.

could very well cause the system to jump over local minim& which we do this, is directed at identification of systems that
Larger hysteretic bands cause relatively larger gradients in (28pntain hysteresis (e.g., mechanical structures).

which accentuate this effect.

VI. CONCLUSION "
1
In this paper, we have introduced the hysteretic activation

function which is multivalued, has memory, and is adaptive.
We have also introduced the HHNN and its associated circuit
model, proved Lyapunov stability for the HHNN, and used the
HHNN to solve theN-queen problem. Usually, one does not [3I
tune a HNN. It is straightforward to tune a HHNN on its free 4
parametersy;;, B, 75, V-

The usual sigmoid activation function has a very small gra- 5]
dientinits nonlinear saturation portion, as compared to its linear
portion. This may cause a system using the usual sigmoid to gefg]
stuck in minima if some or all the sigmoids prematurely satu-
rate. On the other hand, the hysteretic activation function has g,
tendency to overcome local minima. This can be seen with the
aid of Fig. 1(b). Due to a change in the direction of the input, a [8]
system can pull itself out of a saturated region by jumping from (g,
one segment of the hysteretic activation function to the other
segment. Finally, we wish to reemphasize the fact that our hyg10l

. . 11]
teretic neuron can be used in other types of neural networké,
such as a feedforward or recurrent network. Our present work,

(2]
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