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The Hysteretic Hopfield Neural Network
Sunil Bharitkar, Student Member, IEEE,and Jerry M. Mendel, Fellow, IEEE

Abstract—A new neuron activation function based on a prop-
erty found in physical systems—hysteresis—is proposed. We in-
corporate this neuron activation in a fully connected dynamical
system to form the hysteretic Hopfield neural network (HHNN).
We then present an analog implementation of this architecture and
its associated dynamical equation and energy function. We proceed
to prove Lyapunov stability for this new model, and then solve a
combinatorial optimization problem (i.e., the -queen problem)
using this network. We demonstrate the advantages of hysteresis
by showing increased frequency of convergence to a solution, when
the parameters associated with the activation function are varied.

Index Terms—Hysteresis, hysteretic activation function,
hysteretic Hopfield neural networks, NP-complete, -Queen
problem, neural networks, optimization.

I. INTRODUCTION

I N this paper, we propose a new neuron model that is based
on a phenomenon found widely in nature, namelyhysteresis.

Recall that hysteresis [31] is defined as a lagging effect due
to a change of force acting on a body. Hysteresis manifests it-
self in the structures of many cooperative dynamical systems
(formed of local interactions), and is observed in animals such as
frogs [15] and crayfish [38]. Many engineering systems display
hysteresis. Among these are mechanical structures subjected to
acoustic or aerodynamic loads, a three-phase transformer [32],
etc. Marshallet al.[30] give a detailed explanation of hysteresis
as it occurs in ferromagnetic materials. The identification of
hysteretic type nonlinearities is important in earthquake resis-
tant designs of buildings (e.g., [4], [5]). A good background on
hysteresis is provided in [44].

Taga [40] developed a network containing six coupled
oscillators (that functioned as neurons) to control bipedal lo-
comotion. During locomotion, transitions between movements
(walking, running) exhibited hysteresis. Similar hysteretic
behavior can also be observed in humans [3]. Hoffman and
Benson [23] demonstrated that a single cell-level neuron
model, based on an analogy between the immune system and
the central nervous system, exhibits hysteresis.

Models of hysteresis appear, for example, in [12], [45], [46],
and [8]. Hysteretic neuron models usingsignumfunctions have
been proposed by Yanai and Sawada [49], and Keeleret al.[28],
for associative memory. They demonstrated that their hysteretic
models performed better than nonhysteretic neuron models, in
terms of capacity, signal-to-noise ratio, recall ability, etc. Take-
fuji and Lee [42] proposed a two state (binary) hysteretic neuron
model such that: 1) if the input to a neuron exceeds a threshold
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Fig. 1. (a) Hysteretic neuron and (b) hysteretic activation function.

(upper trip point) the neuron fires (i.e., the output of the neuron
is unity); 2) if the input is below a certain threshold (lower trip
point), the output of the neuron is zero; and 3) if the input to the
neuron is between these trip points, the output equals its pre-
vious value.

In this paper, we describe an hysteretic neuron model that
differs from those in [28], [42], and [49] in the following ways:
it 1) is multivalued; 2) has memory; and 3) is adaptive.

In Section II, we present the hysteretic neuron. Section III de-
scribes the hysteretic Hopfield neural network (HHNN) along
with its circuit dynamical equations. In Section IV, we briefly
review the concept of Lyapunov stability for nonlinear dynam-
ical systems We then propose a Lyapunov function and use the
Lyapunov theory to prove stability of the HHNN. In Section V,
we introduce a well-known combinatorial optimization appli-
cation, the -queen problem, and use the HHNN to solve it.
Conclusions are drawn in Section VI.

II. HYSTERETICNEURON

Our hysteretic neuron [Fig. 1(a)] is similar to other neuron
models, in that it processes a linear weighted combination of

1045–9227/00$10.00 © 2000 IEEE
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Fig. 2. (a) Hysteresis neuron circuit. (b) Differentiator-integrator pair in series and modeled as net resistance.

inputs. It differs from other neuron models in that its nonlinear
gain (activation) function is the hysteresis function depicted in
Fig. 1(b). Mathematically, our hysteretic neuron gain function
is described as

(1)

where and

(2)

(3)

, and, , and
.

The mapping that is effected by this transformation is
. Note that, in the special case when , and

, the activation function becomes the conventional
sigmoid. Observe that this neuron’s output not only depends
on its input, , but also on derivative information, namely,

. It is the latter information that provides the neuron with
memory1 and distinguishes it from other neurons, such as the
hysteretic neuron proposed by Takefuji which is memoryless.
In their case, the transfer function behaves as a thresholding
device. Hence from (1)–(3), if is positive at one time point
and increases in value at the next time point, the activation
function remains along segment . On the other hand,
if is positive at one time point and decreases at the next
time point, then the activation function jumps from hysteretic
segment to segment .

Note that the hysteretic neuron’s activation function has four
parameters associated with it, namely,, , , . Usually,
one does not tune a neuron’s activation function because, for

1Recall that a system is said to bememoryless[33] if its output at any instant
depends, at most, on the input at the same instant but not on any past or future
values of the input.

the most part, there are no parameters to tune (or there is, at
most, one parameter, the slope of the sigmoid). The hysteretic
neuron is different in this sense, and we can think about tuning
all of its parameters in order to maximize its performance. So,
it seems that the hysteretic neuron provides us with much more
flexibility than the usual neuron.

The hysteretic neuron can be applied to many types of neural
networks (multilayer, recurrent). In this paper, we apply it to the
Hopfield neural network.

III. H YSTERETICHOPFIELD NEURAL NETWORK

A circuit-based noiseless dynamical model of the hysteretic
neuron is depicted in Fig. 2(a). Important considerations in the
design of such an analog circuit are that its individual compo-
nents have a negligible (but nonzero) propagation time, and the
differentiator and integrator have a unity -time constant. We
denote the voltage at nodeas . In Fig. 2(b), we assume
a negligible effect of the capacitance, and a high internal re-
sistance of the operational amplifiers in the differentiator-inte-
grator pair. The net resistance in the two branches consisting of

current sources and is denoted
(this resistance can be assumed to be introduced by the differen-
tiator-integrator- resistances in series). Accordingly, we
can place a resistance of the same value (i.e.,) in the branch
which is in parallel with the capacitor , as shown in Fig. 2(a).
The logic device denoted by an arrow after node, switches to
the upper branch if , and to the lower branch
if (here denotes the finitely small propa-
gation time involved with respect to node, before switching).
Applying Kirchhoff’s current law to node, we obtain the fol-
lowing circuit equation:

(4)
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where is a shorthand notation for given by
(1), and is as defined in (3).

We refer to the interconnection of the nonlinear equations
in (4) as an HHNN. Unlike the usual Hopfield neural network
(HNN), the HHNN includes memory.

A discretization of (4) can be accomplished by letting
, with

, and using a unit sampling interval. In this way, (4)
may be used as a discrete update equation for the application
described in Section V.

IV. STABILITY OF THE HHNN

Stability is an important consideration in the theory of non-
linear systems. Lyapunov, a Russian mathematician from the
late nineteenth and early twentieth centuries, developed an ap-
proach to stability analysis that is widely used in the control
theory literature, and is now known asthe direct method of Lya-
punov. Its key feature is that it leads to conclusions about sta-
bility of nonlinear systems without having to explicitly solve the
system’s nonlinear differential equation. It has also become an
important tool for establishing the stability of HNN’s [24] or
more complicated nonlinear feedback neural networks [14]. We
use it to study the stability of the HHNN.

To begin, we recall the definition of a Lyapunov function and
stability in the sense of Lyapunov (e.g., [10]). For a function

to be a Lyapunov function, it must satisfy
the following three properties: let
be an equilibrium point for a dynamical system; then 1)

; 2) ;
and 3) should have partial derivatives with
respect to all . Given that is a Lyapunov
function, and if

(5)

then is stable in the sense of Lyapunov.
The stability of the HHNN can be demonstrated by either of

two approaches: 1) use the Cohen–Grossberg theory [14] that
is already based on Lyapunov stability theory or 2) a direct ap-
proach in which we must establish an energy function, show that
it is a Lyapunov function, and then demonstrate the truth of (5)
for it. Here we take the second approach (see [6] for the first
approach).

We propose the following energy function for the system in
(4):

(6)

where is defined in (1). Details of the proof that
in (6) is indeed a Lyapunov function can be

found in [7] and [6]. Here we focus on demonstrating the truth
of (5).

Note that

(7)

Assuming symmetric weights and zero diagonal components of
the weighting matrix (i.e., and ), differenti-
ating (6), and using (1), we find that

(8)

where we have also made use of (4). Substituting (8) into (7),
we find

(9)

Consider the th neuron [each neuron contributes indepen-
dently toward the minimization of the energy function, as can
be seen from (9)]. Accordingly, from (9)

(10)

We analyze (10) by considering the following transitions [see
Fig. 1(b)]: 1) Transition 1 for which

;
2) Transition 2 for which

; and
3) Transition 3 for which transitions occur
along the sigmoid, which is a nondecreasing function i.e., for
which .

Because for all possible transitions, we have
shown that the equilibrium point for the HHNN, described by
(1)–(4), is stable in the sense of Lyapunov.

V. THE -QUEEN PROBLEM

In this section we describe an application of the HHNN to a
well-known combinatorial optimization problem, the-queen
problem. According to Wirth [47], “ the problem of the eight
queens is a well known example of the use of trial and error
methods and of backtracking algorithms. It was investigated by
C. F. Gauss in 1850, but he did not completely solve it. The
characteristic property of these problems is that they defy ana-
lytic solution. Such algorithms have therefore gained relevance
almost exclusively through the automatic computer, which pos-
sesses these properties to a much higher degree than people,
even geniuses, do.” This quote typifies the prevalent view of the
eight queen problem, which was first posed in 1848, and inves-
tigated by several 19th century mathematicians.

A general -queen problem is defined by the following con-
straints on an grid: 1) only one queen can be placed in any
row; 2) only one queen can be placed in any column; 3) only one
queen can be placed on any diagonal; and 4) exactly-queens
must be placed on the grid. This problem was explored in the
1950’s by Yaglom and Yaglom [48]. Since then, there have
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been diverse approaches taken in the study of this problem, in-
cluding algorithmic design, program development, parallel and
distributed computing, and artificial intelligence ([1], [25], [26],
[19], [16], [37], [47], [17], [18], [20], [21], [35], [9], [39], [27],
[34], [42], [29], [2]). The eminent mathematician Pólya [36] ex-
amined a solution to a constrained-queen problem. Chandra
[11] developed the theory of independent permutations to char-
acterize the family of solutions to the-superqueen problem.
This widespread interest in the-queen problem is due in part
to an aspect that often characterizes difficult problems, namely
a set of global constraints. For example, the very moment that
one queen is placed on an grid, the number of positions
the next queen can be placed on is significantly reduced.

A. Mathematical Model

The following mathematical model for the-queen problem
was introduced by Takefuji [41]. Let us denote the state of the
existence of a queen at theth location on an grid as

. If a queen exists at the th location, then , other-
wise . The nonlinear state equations for the-Queen
problem are

(11)

where is the input to the th neuron,
and is the Kronecker-delta function, i.e.,

. In (11), the first term is a row constraint that
forces only one queen to be placed in a row; the second term
is a column constraint that forces only one queen per column;
the third and fourth terms are perturbation (hill-climbing) terms
that have been included so that the state of the system can es-
cape local minima (when no neuron is fired in theth row or
the th column); and, the last two terms correspond to diagonal
constraints, i.e., no pair of queens can diagonally command each
other.

We have modified this model to one in which is given by
the following hysteretic function: Note that this hysteretic func-
tion differs from the one in (1), because must, in this applica-
tion, be zero or one. Now, in (11), is short for
(where, ), as is clear
from (12), shown at the bottom of the page.

We must show that (11) reduces to the correct form for the
hysteretic Hopfield circuit dynamical equation, so that it inherits
the Lyapunov stability property, proven in the previous section.

For our application involving hard-limiting functions (i.e.,
two state neurons) as given in (12), the second term of (6) be-
comes negligibly small [22], [13] due to the large gain in the
neuron’s activation function. The corresponding energy (Lya-
punov) function reduces to

(13)

and (4) can be expressed as

(14)

Term I in (14) is the decay term (with time con-
stant); it may, as we explain next, cause an increase in the time
derivative of the energy function. Recall, that

(15)

Solving (14) for Term II and substituting this into (15), we see
that

(16)

In Section IV, we showed thatTerm Bin (16) is always posi-
tive [by analyzing the finite differences in the input–output sig-
nals of a neuron (10)]; however,Term Acan be positive or nega-
tive, so that may not be negative (in which case the pro-
posed energy function is no longer a valid Lyapunov function).
One solution to this, that has been considered in [43], is to elimi-
nateTerm Iin (14), which eliminatesTerm Ain (16). This can be
accomplished by using a sufficiently large resistance and capac-
itance (e.g., Mohm, F). Doing this, reduces
(16) to

(17)

(12)
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thereby demonstrating Lyapunov stability for (14). In this case,
(14) (using (13)) reduces to

(18)

Next, we proceed to show that (11) can be expressed in the
form of a two-dimensional version of (18), as

(19)

Comparing (11) and (19), the two are equivalent when

(20)

where is a two-dimensional Kronecker delta, defined as fol-
lows:

(21)

In the equation for , the first two terms represent the row
and column constraints respectively, whereas the third term con-
tains the two diagonal constraints. It can also be easily demon-
strated that . So, (11), which is the basis for a
HHNN solution of the -queen problem, reduces to a HHNN.

The equilibrium point for the nonlinear system in (11) occurs
when . A stable and valid equilibrium point occurs
when all the constraints are satisfied simultaneously, i.e., when
terms 1, 2, 5, and 6 in (11) equal zero (i.e., when one neuron is
fired per row, per column, and per queen diagonal). This in turn
implies that the hill-climbing terms (3 and 4) will be zero, since
terms 1 and 2 are zero. At the equilibrium point, the output of
the HHNN (i.e., ) will be either a one or a zero.

B. Tuning of HHNN Parameters

For an -queen problem that uses the hysteretic activation
function, there is a high degree of flexibility in deciding the
choice for the network parameters (i.e.,

). Instead of performing an exhaustive search
over all of these parameters, which would be prohibitive, we
used a gradient descent procedure to optimize the
pairs. Using the notation from (3), our gradient descent algo-
rithm has the following form:

(22)

where is the energy function in (13). Substituting the
right-hand portion of (8) into (22) (replacing the single
subscripted quantities in (8) by their appropriate double-sub-
scripted counterparts, and, assuming ) we have

(23)

Unfortunately, we cannot compute using
(12), because of the discontinuity of the step function. Instead,
we use the continuous version of the step function, viz., the
sigmoid, since the step function is just the limiting form of
the sigmoid when the slope of the sigmoid [i.e.,

, and when ]. We, therefore,
use sigmoids instead of the signum functions in (11), but only
to approximate the derivatives that are needed in (23), i.e.,

(24)

It is straightforward to show, using (24) and (23), that

(25)

where is defined in (2).
The steady-state solution of (25) is achieved when the system

in (11) converges to a solution i.e., when .
Using (2) and (3), (25) can be expressed in terms of the pa-

rameters and , as

(26)

The approximation in (24) introduces two positive slope param-
eters, and , which can also be tuned. In order to perform
gradient descent on these parameters, we introduce an interme-
diate parameterso as to prevent them from becoming negative.
With , our gradient descent algorithm for the slopes can
be written, as

(27)
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thus

(28)

In summary, we compute and using (26) and
(28). We substitute the and values into (12), and the
resulting quantity is used in (11) to compute . Note that
we use (12) and not the approximation in (24) in this step, since
the constraints for (11) are satisfied only at the vertices of
a hypercube, i.e., for or . We use (24) only to
derive (26) and (28), and and are in turn only used to
update and in (26).

C. Results

Associated with (11) is an energy function as defined in (13),
but with the weights and current sources appropriately defined
in (20). We refer to (13) as a “modified” energy function, be-
cause it accounts for all six terms on the right-hand side of (11),
including terms 3 and 4, which were added in by Takefuji et al.
[41] for the reason given below (11). The energy function that
is associated with the version of (11) that only contains terms 1,
2, 5, and 6 on its right-hand side is referred to by us as a “stan-
dard” energy function. We have compared the performance of
our HHNN with that of the HNN for both the standard as well
as modified energy functions. In addition, we have performed
many experiments with the HHNN by tuning its available pa-
rameters.

Tables I and II provide a summary of our simulation results.
The traditional HNN does not have any tunable parameters for
either energy function. The initializations for the HNN and the
HHNN model were the same, i.e., the initial values for the inputs
to all neurons, for the -queen and the -queen
problems, were (uniform),

The differential equations corresponding to the modified
energy function and the standard energy function, were dis-
cretized. We then performed a Monte Carlo simulation with 100
randomized initializations on the inputs to the neurons. Each
number within the tables indicates the percentage of solutions
obtained from 100 random initializations, i.e., the percentage of
convergence to a solution. Our stopping rule was: terminate if a
solution is obtained or if 1000 iterations have occurred, where
an iteration refers to one time-step for the implementation of
the discretized version of (11), or its standard energy function
counterpart.

TABLE I
SUMMARY OF EXPERIMENTAL RESULTS

FORN = 30-QUEEN PROBLEM. ANN: ARTIFICIAL NEURAL NETWORK;
HNN: HOPFIELD NEURAL NETWORK; HHNN: HYSTERETIC HOPFIELD

NEURAL NETWORK

TABLE II
SUMMARY OF EXPERIMENTAL RESULTS FORN = 50-QUEEN PROBLEM. ANN:
ARTIFICIAL NEURAL NETWORK; HNN: HOPFIELDNEURAL NETWORK; HHNN:

HYSTERETICHOPFIELD NEURAL NETWORK

Note that, when the HHNN is not tuned, are computed
using (12), so that the HHNN is characterized just by theand

parameters. For the HHNN results related to “No tuning”
(Standard or Modified energy functions), we scanned over the

parameters (constraining ) looking for the
values that yielded the best convergence percentage, as follows.

1) We chose and
, using only integer values. All pos-

sible integer-valued pairs were chosen subject to
(a total of 36 pairs).

2) 100 random initializations of were used for each
.

3) For each , we recorded the convergence per-
centage averaged over the 100 random initializations of

.
4) Each result shown in Tables I and II, for the HHNN “No

tuning” cases, is the maximum average convergence per-
centage over all .

Each neuron in the “tuned” HHNN has four tunable param-
eters , as described in the previous section.
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Fig. 3. Solution forN = 30, obtained at iteration= 33.

Fig. 4. Solution forN = 30, obtained at iteration= 29.

These had to be initialized. Rather than randomly initializing
these parameters (which would add further complexity to the
Monte Carlo simulations), we decided to start the HHNN as an
HNN; thus, we chose: ;
and , (uniform).

The gradient descent algorithms in (23) and (25) also
required learning rates , which we chose as:

. Examples of typical learning rates
that we used for the modified energy function, and are:

, , , . We noticed

that the convergence performance was more sensitive to the
learning rates for the slopes than to the learning rates of the
crossover points . We believe that this is due to the
direct proportionality of the change of the slope to the state of
the neuron [see (27), where ].

There are many possible solutions to an-queen problem.
We were only interested in converging to any one of them. Two
possible solutions that we converged to, for and

, are displayed in Figs. 3–6. They were obtained for the fully
tuned HHNN.
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Fig. 5. Solution forN = 50, obtained at iteration= 62.

The following observations are made from Tables I and II.

1) We reconfirmed the results in [41], that much better
results are obtained for the HNN when one uses the
dynamical equation of the modified energy function [for

, 66% versus 45%, and, for , 83% versus
61%].

2) Tuning of the HHNN on all its parameters for the mod-
ified energy function gives the overall best results [for

, 73%, and for , 90%].
3) Tuning of the HHNN just on the parameters

for the modified energy function may not necessarily give
better results than those obtained using the HNN [e.g., for

, 82% versus 83%].
4) The untuned HHNN outperformed the HNN for the stan-

dard energy function [for , 56% versus 45%, and,
for , 71% versus 61%].

5) The HNN outperformed the untuned HHNN for the mod-
ified energy function [for , 66% versus 55%, and,
for , 83% versus 78%]. This may be due to the
way we chose the and parameters for the HHNN,
as described above.

Best results were obtained by using gradient descent on all
the parameters of the HHNN, because of the availability of

additional parameters in the activation function of the neuron.
This improvement in performance occurs at the expense of an
increase in computation. Note that all the quantities needed for
computing (26) and (28) are available from (11); moreover,
(11) has the highest computational cost, compared to (26)
and (28). Interestingly enough, we observed experimentally,
that performing a full-blown gradient descent for the HHNN
resulted in a faster convergence to a solution than that obtained
for the HNN. So, even though computation for each iteration
of a fully tuned HHNN is greater than that of a HNN, tuning
frequently gets the HHNN to a solution in fewer iterations than
it takes for the HNN to reach a solution.

Finally, an associated experimental observation for the cur-
rent application is that, system performance (in terms of conver-
gence percentage) improved for hysteretic band sizes less than
three; however larger band sizes had a detrimental effect on per-
formance. A possible explanation for this can be seen with the
aid of Fig. 1(b) [in which , as is the case for
the activation functions in (12)]. Consider the input to a neuron
to be in the saturation region of the top function, i.e., near re-
gion . A change in direction to the input of a neuron at this
point causes the output to switch fromto the other saturation
region marked . This rapid switching in the neuron’s output
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Fig. 6. Another solution forN = 50, obtained at iteration= 47.

could very well cause the system to jump over local minima.
Larger hysteretic bands cause relatively larger gradients in (28),
which accentuate this effect.

VI. CONCLUSION

In this paper, we have introduced the hysteretic activation
function which is multivalued, has memory, and is adaptive.
We have also introduced the HHNN and its associated circuit
model, proved Lyapunov stability for the HHNN, and used the
HHNN to solve the -queen problem. Usually, one does not
tune a HNN. It is straightforward to tune a HHNN on its free
parameters .

The usual sigmoid activation function has a very small gra-
dient in its nonlinear saturation portion, as compared to its linear
portion. This may cause a system using the usual sigmoid to get
stuck in minima if some or all the sigmoids prematurely satu-
rate. On the other hand, the hysteretic activation function has a
tendency to overcome local minima. This can be seen with the
aid of Fig. 1(b). Due to a change in the direction of the input, a
system can pull itself out of a saturated region by jumping from
one segment of the hysteretic activation function to the other
segment. Finally, we wish to reemphasize the fact that our hys-
teretic neuron can be used in other types of neural networks,
such as a feedforward or recurrent network. Our present work,

in which we do this, is directed at identification of systems that
contain hysteresis (e.g., mechanical structures).
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