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Abstract

The immune system is a remarkable and complex
natural system, which has been shown to be of interest
to computer scientists and engineers alike. This paper
reports an on-going investigation into the usefulness of
the negative selection metaphor for immune inspired
fault tolerance. Various procedures to generate
detectors for the negative selection algorithm are
reviewed and compared in terms of time and space
complexity for the production of competent detectors.
A new algorithm has been identified and implemented.
Experimentation was undertaken, and an analysis is
presented on the effectiveness of the various
algorithms. The outcome of this empirical analysis
reveals that trade-offs have to be made in the choice of
algorithm based on the time and space complexities, as
well as the detection rate.

1. INTRODUCTION

As engineering and computing problems grow ever
more complex, alternative sources of inspiration for
solutions to these problems are being sought by
computer scientists and engineers. Biology has been
seen as a fruitful resource of inspiration with the
creation of various biologically inspired techniques
such as genetic algorithms, neural networks, and swarm
systems (Bentley 2001). The immune system is now
receiving more attention and is slowly being realized as
a new biologically inspired computational intelligence
approach (de Castro and Timmis 2002). An intuitive
application of the immune system, and one that many
researchers have followed, is to create artificial systems
that have the ability to differentiate between self and
non-self states: where self could be defined as many
things, such as, normal behavior, normal network traffic
between computers, and so on.

The next section explores one way in which the
immune system allows for self non-self discrimination
(negative selection), and reviews some approaches in
artificial immune systems literature that have attempted
to model this process. The main problems with these
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approaches are highlighted and a new algorithm has
been implemented in an attempt to overcome some of
these problems. The results presented in this paper
demonstrate that the proposed algorithm is equivalent
to the exhaustive algorithm for certain classes of
problems, and even outperforms it in some cases for
example clustered data. The fact still remains that none
of the algorithms is able to resolve all the inherent
problems associated with detector generation, thus
some tradeoffs have to be considered when choosing an
algorithm for generating detectors. The final section
presents some conclusions and directions for future
research.

2. USEFUL IMMUNOLOGY

The immune system is a remarkable and complex
natural defense mechanism. The immune system
responds to foreign invaders called pathogens. The first
line of defense is known as innate immunity: this is the
immune mechanism our bodies are born with (Janeway
1993). If the innate immune system cannot remove the
pathogen, then the adaptive (or acquired) immune
system takes over.

The adaptive immune system is made up of B and T-
cells, which are capable of responding to certain
antigenic patterns presented on the surface of
pathogens. Receptors on B and T-cells match antigenic
material and depending on the closeness of that match,
T-cells stimulate B-cells into rapid proliferation and
undergo affinity maturation.

Affinity maturation is a process by which stimulated B-
cells are driven to become better tuned to the antigen
responsible for initiating the immune response. This
enhances the quality of the response (Staines, Brostoff
et al. 1994). During affinity maturation, stimulated
antibodies undergo a somatic mutation with high rates,
termed hypermutation. The amount of mutation that a
B-cell will undergo is inversely proportional to how
well it matches the antigenic pattern: the higher the
affinity (match) the lower the mutation, and vice versa.
Production of antibodies from these B-cells then
ensues, which ultimately remove the antigenic material.



Viewed from a computational perspective, this is an
attractive learning mechanism and is one reason why
the immune system has attracted such interest.

Pertinent to this work is the maturation of T-cells: what
mechanisms are present to prevent the T-cells reacting
against the own cells of the body? If this breakdown
happens, it is known as an autoimmune disease. This is
in part prevented via a process known as negative
selection, that allows only the survival of those T-cells
that do not recognize self cells. T-cells are produced in
the bone marrow, but undergo a maturation process in
the thymus gland, after which they are allowed to take
part in an immune response. The maturation of the T-
cells is conceptually very simple. T-cells are exposed to
self-proteins. If this binding activates the T-cell, then
the T-cell is killed, otherwise it is allowed into the
repertoire. Cells that take part in an immune response
are known as immunocompetent cells.

3. ARTIFICIAL IMMUNE SYSTEMS

Artificial immune systems (AIS) are adaptive systems
inspired by theoretical immunology and observed
immune functions, principles and models, which are
applied to problem solving (de Castro and Timmis
2002). The important points of this definition are
inspiration and rationale. In this case, the main idea is
to develop problem solving tools that are inspired by
the immune system. Through the use of the negative
selection process described above, there have been a
number of works attempting at building artificial
immune systems for virus detection (Forrest, Perelson
et al. 1994), computer security (Forrest, Hofmeyr et al.
1996), (Hofmeyr and Forrest 2000) and hardware fault
tolerant systems (Bradley and Tyrell 2002). The
original work by (Forrest, Perelson et al. 1994), in
which the negative selection algorithm was proposed,
has been inspirational to almost all the research in the
AIS related to the computer security. More recently,
that work has also provided the basis for building fault
tolerant systems (Tyrell 1999). The basic idea of the
algorithm is to produce a set of change-detectors,
which can detect changes in what is considered normal
behavior of a system.

4. NEGATIVE SELECTION:
PRINCIPLES AND ISSUES

The negative selection algorithm is inspired by the
maturation of T-cells in the thymus gland (Forrest,
Perelson et al. 1994). The algorithm consists of two
stages: censoring and monitoring. The censoring phase
caters for the generation of change-detectors.
Subsequently, the system being protected is monitored
for changes using the detectors generated in the
censoring stage. However, this algorithm is reported to
be very time consuming (D'haeseleer, Forrest et al.
1996), (Wierzchon 2000). The time taken to generate
the detectors is measured by the number of candidate

detectors that have to be examined before producing the
required number of competent detectors. It was
observed that the number of candidate detectors
increases exponentially with the size of the self-set, at a
fixed probability of not detecting non-self (Forrest,
Perelson et al. 1994). This implies that the time to
complete the process increases with the size of the self-
set. Furthermore, this process does not check for
redundant detectors. For minimizing these limitations,
some variations of detector generating algorithm were
developed: linear (D'haeseleer, Forrest et al. 1996),
greedy (D'haeseleer, Forrest et al. 1996), and binary
template (Wierzchon 2000). Both the linear and greedy
algorithms run in linear time respective to the size of
the self and detector sets (D'haeseleer, Forrest et al.
1996). While the focus of the binary template is to
generate efficient non-redundant detectors rather than
minimizing the time to generate them. Work in
(D'haeseleer, Forrest et al. 1996) claimed that the
greedy algorithm manages to resolve this problem by
generating a complete repertoire of detectors.

This paper includes the examination of time and space
complexities of these algorithms, which were
normalized for comparison. In order to cater for worst
case situations, all the earlier assumptions included in
the derivation of the original time and space
complexities were discarded. For a more detailed
comparison of several negative selection algorithms,
please refer to (Ayara, Timmis et al. 2002).

4.1 EXHAUSTIVE DETECTOR GENERATING
ALGORITHM

The exhaustive detector generating algorithm is the
original method proposed by (Forrest, Perelson et al.
1994). The algorithm attempts to construct a set of
competent detectors in the following way: (1) define the
self data; (2) generate a random candidate detector; and
(3) match each candidate detector generated with self
data. If it matches with any self data, it is discarded,
otherwise it is added to the collection of competent
detectors. A flow diagram of the algorithm is presented
in Figure 1.

Self data (V)

Generate no Collection of
candidate competent
detector detectors
(NRO) (NR)
yes
Reject

Figure 1: Exhaustive detector generating algorithm.



The time complexity of the algorithm was derived
based on two factors: the time to generate a number of
candidate detectors (N,) and the time to compare each
one of them with the population of self-data (Ns). The
space complexity depends on the self-population,
whose individual members are of length /. In
(D'haeseleer, Forrest et al. 1996), the authors derived
mathematical formulae to determine the computational
complexities of the original algorithm. These were
reviewed based on the following considerations: (1)
generalising alphabet size m from binary {0,1}, where
m = 2; and (2) the total number of candidate detectors
(Ng.) that can then be generated is m', where / is the
length of each individual detector string.

Time and space complexities for this algorithm are
presented in Section 7, while the empirical experiments
carried out with the algorithm using 8-bits binary data,
are presented in Section 6. The experiments confirm the
limitation observed by (Forrest, Perelson et al. 1994)
and (Kim and Bentley 2001), which is a costly
computation of generating detectors.

The results motivated the examination and proposal of
other algorithms to generate the set of candidate
detectors. They are the linear, greedy and binary
template algorithms. For the linear and binary template
algorithms, please refer to (D'haeseleer, Forrest et al.
1996) and (Wierzchon 2000), respectively. The greedy
algorithm will be analyzed in the following section due
to its advantages of being linear in relation to the self-
set as well as presenting a good coverage of non-self.

4.2 GREEDY DETECTOR GENERATING
ALGORITHM

The greedy algorithm improves upon the linear
algorithm through the elimination of redundant
detectors. Furthermore, it ensures that generated
detectors achieve as much coverage of non-self space as
possible (D'haeseleer, Forrest et al. 1996). The
algorithm is in two phases. The first is the processing
phase taken from the linear algorithm, with the second
phase being the actual process of generating detectors.
This algorithm is based on the use of schemata
proposed by (Helman and Forrest 1994) for the r-
contiguous bits matching rule. The r-contiguous bits
matching rule is a model of the affinity measure in the
immune system. Assuming a binary representation of
the self and detector strings, the r-contiguous bits
matching rule compares a sequence of bits (of length r)
in one string with a sequence of bits of the same length
in the second string to see if they match. This approach,
as shown in Figure 3, has been stated to closely capture
the interaction between elements in the immune system
(Percus, Percus et al. 1993). This is subject to a pre-
defined matching threshold 7 that is the minimal length
of contiguous bits strings common to the two strings for
a match to occur. Given this matching rule, the

schematic approach is to check for these common sub-
strings, as depicted Figure 2, rather than the whole
string.

r=4
—>

R:01011010
$:00011001

Figure 2: r-contiguous bits matching rule. The strings R
and S of length / = 8§, present » = 4 consecutive bits in
common.

Assuming a matching threshold 7, an alphabet size m
(usually binary) and a length /, which is the length of
each string, the first phase involves the generation of
valid detector templates from a total number of m"
possible combinations. Templates are strings with 7-
contiguous significant bits that start from a specified bit
position; and / - r insignificant bits replaced with don’t
cares. Each template is constructed from a sequence of
r bits that can be extended to fully specified detector
strings. The set of valid templates are based on the self-
data, such that only templates with no match in self are
generated. These templates make up the first template
array Ts where the nonzero entries constitute the valid
templates.

During the second phase, detectors are generated
through the extension of the templates to fully specified
detector strings. After the generation of each detector
string, all the templates that match the detector are
removed from the set of valid templates for generating
detectors. This prevents the generation of redundant and
inefficient detectors at each step.

The time complexity of this algorithm depends on three
factors: (1) the time to generate each valid detector
templates in m"; (2) the time to extend each valid
template to a fully specified string; and (3) the time to
update the templates 7 when creating each detector.
The original time and space complexities were derived
given these considerations (D'haeseleer, Forrest et al.
1996), but their corresponding mathematical formulae
were derived based on the assumptions that each
element of the template array can be evaluated in
constant time. Also, the analysis ignored the earlier
processing phases, before the valid number of detector
templates are derived. Additionally, emphasis on binary
alphabets can be extended to an alphabet size of m.
These were incorporated into the reviewed formulae in
Table 5.

5. NEGATIVE SELECTION WITH
MUTATION

Work in (de Castro and Timmis 2002) proposed a slight
modification of the exhaustive stage of the negative



selection, by introducing somatic hypermutation.
Briefly, the procedure proposed the following: (1)
define self data; (2) generate a candidate detector
randomly; and (3) match each candidate detector with
self data, if it matches, perform guided mutation on
detector away from self. The guided mutation is
performed on the candidate detector, which matches the
self data. Mutation is then performed on the parts of the
candidate detector that match with the self element. The
mutation is adaptive, based on the affinity of the closely
matching self element to a candidate detector. This
means that the probability of mutation is directly
proportional to affinity. Thus, the greater the affinity,
the higher is the mutation probability. This idea was
taken from the affinity maturation process of B-cells to
antigenic patterns in the immune system. In this
algorithm, however, the reference is the self-set, instead
of non-self set. Hence, the mutation is performed
proportionally to affinity to self-set, such that the
candidate detector is changed so as not to match self-
set. Also, this mutation approach was further
augmented by the introduction of a life time indicator
for a candidate detector. This in effect restricted the
number of times mutation is performed on a candidate
detector before a non-improved mutant is discarded. It
was thought to have the desired effect of reducing the
search space and hence, the number of candidate
detectors generated.

The time complexity of NSMutation depends on the
following factors: (1) the time to generate a random
detector (each of length /) and compare with the
population of self data to determine if they match; (2)
assuming the use of r-contiguous bits matching, time to
mutate matching region of length » in random detector
away from self; and (3) a check for redundant detectors.
In the worst case, m'possible detectors can be
generated when an alphabet size m is assumed. Hence
N, candidate detectors are equivalent to m'. Also,
mutation is limited to a region of length » in the
candidate detector, which gives the upper bound of
mutating the candidate detector as m" . Subject to these
factors, the time and space complexities are given in
Table 5.

6. EXPERIMENTS

In order to verify the claims made in (Forrest, Perelson
et al. 1994) and (Kim and Bentley 2001) with regards to
the exhaustive algorithm, and additionally to test the
efficacy of the proposed algorithms, experiments were
undertaken using an 8-bit binary data test set. The
exhaustive algorithm was wused as the empirical
standard for the experiments.

6.1 EXPERIMENTAL SETUP

The experiments were performed with randomly
generated 8-bits data, with the inclusion of relevant

parameters. The following subsections describe the
procedures carried out for experimental set up.

6.1.1  Generating self data

As earlier stated, the 8-bit data used were randomly
generated. The pseudorandom number generator of the
Java 2 Platform (Standard Edition version 1.3) API was
used to generate integer numbers between 0 and 255,
which were then converted to 8-bit binary strings.
During the experiments, there was a need to generate
different sizes of self set. This was carried out by
creating separate files for different population sizes of
self sets.

6.1.2  Setting the matching threshold

The affinity between these binary strings (for the self-
set, detector set and test data) was determined using the
r-contiguous bits matching rule. The optimal value for
matching threshold ( » ) had to be obtained by changing
values of » from 1 to /. This process was done in order
to obtain the combined values of correct and incorrect
classification by detectors generated using a specific
threshold. Correct classification value is derived from
the sum of true positive (rate at which non-self is
correctly detected) and true negative (rate at which self
is correctly not detected). While incorrect classification
is the sum of false positive (rate at which self is
incorrectly detected) and false negative (rate at which
non-self is not detected). Both the correct and incorrect
classification values are used to determine the
appropriate values of 7. This is different from the
approach used by (Kim and Bentley 2001) as well as
the suggested method in (D'haeseleer, Forrest et al.
1996). In (Kim and Bentley 2001), the value of » was
determined from the equations in (Forrest, Perelson et
al. 1994), which yielded poor values of matching
threshold for the corresponding data. While
(D'haeseleer, Forrest et al. 1996) proposed an approach
based on the greedy algorithm. Both approaches reveal
that there is no hard-and-fast rule for setting this
parameter, rather various values can be tested in order
to select the optimal one. The following procedure was
carried out to determine this parameter:

1. Generate self and test sets from the data sets
being experimented upon;
2. Generate required detectors Ni (using

equation: y, :M) for different values of r
which are varied from 1 to /;

3. Test the detectors generated on the test file to
obtain their correct and incorrect classification
rates;

4. Use the value of r for which there is minimal
incorrect classification and maximum correct
classification rates in subsequent experiments.



An outcome of the procedure is illustrated in Table 1
based on the mean values of correct and incorrect
classification rates obtained over 10 trials using the
following parameters: self set Ng = 8, test set Nt = 256,
available (NVg), and potential (Ng,) repertoires. Given
this table, a matching threshold value of 8 will be
preferable to the other values since it yields maximum
correct and minimum classification rates. When the
matching threshold was set to values below 3, no
detectors could be generated. This indicates that at such
threshold values, all the detectors match the strings in
the self-set. The value of r thus determines the proper
partitioning of the data space into self and non-self
segments. This makes the choice of an optimal value
for r crucial to the effectiveness of the change-detection
function.

Table 1: Test for obtaining optimal value of matching

threshold ( 7)
r Nz, Ng Correct Incorrect
classification classification
rates rates
3 209.2 5 41.80% 58.20%
4 37.30 12 56.02% 43.98%
5 46.50 29 70.98% 29.02%
6 87.90 74 85.12% 14.88%
7 210.90 196 89.10% 10.90%
8 604.80 589 91.72% 8.28%

6.1.3  Mutation probability

The mutation probability (mutProb) is a threshold that
determines whether a bit position in a binary string will
be mutated or not. This value was initially implemented
using an adaptive mechanism which is calculated as the
length of the matching bits in two binary strings divided
by the length / of the binary string. The value generated
is a real number between 0.0 and 1.0. This threshold
value is then used to determine whether a bit position is
subjected to mutation. For each bit position to be
mutated, if a randomly generated number between 0.0
and 1.0 is less than the mutation probability, the bit is
mutated. The converse is the case when the random
number is greater than the mutation probability. In
(Ayara, Timmis et al. 2002), the adaptive mutation
probability was discovered to degrade the time
complexity of the algorithm if the probability is greater
than a specific value. This is because the probability
indicates that a sizeable fraction of the total number of
bits in a random binary string matches self. Hence the
process of mutating a random detector is restricted to
limited options. This can be explained by a matching
threshold » = 8. In this case, the mutation probability is
1 and the process of mutation just flips a random
detector to its image. In a situation that the image also
matches self, mutation flips back to the original
detector which also matches self. If this is the case for a

significant number of random detectors generated, the
time complexity is increased considerably. However
there is a threshold value below which this will not
occur. For example, the results of experiments in
(Ayara, Timmis et al. 2002) show that using 8-bits
binary data generated randomly the maximum mutation
probability that will not make the algorithm worse off
than the original exhaustive, for threshold values of 7
and 8, was confirmed to be 0.8. This directed the choice
of mutation probability for subsequent experiments,
which was set to 0.5.

6.14 Detector life-time indicator

The detector life-time indicator (mutLim) determines
the number of attempts that mutation can be performed
on a random detector. When values of this parameter
are greater than 1, it was found to increase the time
complexity of NSMutation when used with adaptive
mutation probability. This phenomenon can be linked to
the explanation given in section 6.1.3, which accounts
for the poor behaviour of the algorithm using adaptive
mutation probability. In a situation when the mutation
probability is above a specific value, and the limited
detector options that mutation can generate also match
with self, an increase in life-time indicator only extends
the time for the flipping the detector back and forth
between the image and the original detector.

Some definitions of terms used in the experiments are
listed in Table 2.

Table 2: Definitions of terms used in experiments

Terms Definitions
/ Length of string
r Matching threshold

m Alphabet size
Ng Population of self data

Ngo Population of candidate detectors

Ng Population of competent detectors

P, Probability of detecting a non-self

Py Probability of failing to detect non-self

Nr Population of test data
mutProb  Mutation probability

mutLim  Mutation limit (Detector life-time
indicator)



6.2 THE BOTTLENECK FOR NEGATIVE
SELECTION

Given the earlier discussion regarding the constraint of
the exhaustive algorithm, i.e., the size of the set of
candidate detectors increases exponentially with the
size of the self-set, initial tests were performed to check
if this claim holds true for the proposed algorithm. This
process involved determining the number of candidate
detectors required to produce a specified number of
competent detectors when the population size of self is
increased progressively. The test was carried out with
both the NSMutation and exhaustive algorithm for
comparison.

Using the definitions provided in Table 2, the
mathematical equations for estimating P,,, Nk, and Nz,
(Forrest, Perelson et al. 1994), were employed for
implementing the algorithm.

The following procedures were carried out for
NSMutation algorithm:

1. For a particular data set, derive » (section 6.1.2)
for all runs of the experiment;

2. Calculate B, and select a desired value for Py ;

3. Determine the value of Np according to the
i)
P

m

following equation: y, =

4. Set the values of mutProb and mutLim using the
guidelines in sections 6.1.3 and 6.1.4 respectively;

5. Execute steps a-c a number of times while
incrementing the size of Ns, 8 < Ng<160. (The
selected value was 100 for trial runs):

a. Determine Np, experimentally by generating
random strings until N, valid detectors are
determined,;

b. Once a match occurs between a self string and
a candidate detector, or there is a duplicate of
the detector in the detector set, perform
uniform mutation in a guided manner until the
candidate detector becomes a competent
detector. The detector is then added to the set
of useful detectors;

¢. The number of mutation attempts is limited by
a detector life time indicator (mutLim), which
is set to a fixed value.

This life-time indicator constrains the time expended to
change a detector that closely resembles self. In a
situation where a mutated detector is not improved by
the time the life-time has expired, it is discarded and
replaced by another random detector. The same process
was undertaken for the exhaustive algorithm, excluding
the mutation operator and the check for redundant
detector in the detector set. The potential repertoire size

( Ng, - collection of candidate detectors before negative

selection) for both algorithms was recorded for
comparison. While the population of detectors
generated after negative selection, known as the
available repertoire size ( Ny ), was set as a parameter

for the simulation. The results obtained from the
experiments are presented in Table 3 and Figure 3.
These results are obtained from 100 trials for each size
of the self-set, 8 < Ng<160, with the following
parameters Ny = 389, r= 8, Pr= 0.1, mutLim = 4,
mutProb = 0.5. Each column of Table 3 holds values
calculated as a mean of the number of trials, while the
standard deviations are enclosed in brackets for each
mean value. Column (a) indicates the size of self set,
(b) holds the theoretical estimates of potential repertoire
(Nro), (¢) the experimental N, values for the exhaustive
algorithm, (d) experimental Ny, values for NSMutation,
and (e) the mean mutation occurrence over 100 trials.

The results in Table 3 are selected from the outcome of
the experiments shown in Figure 3. From Table 3, it can
be clearly seen that the potential repertoire generated
for both algorithms are similar, for example when the
population size of self set is 152, the exhaustive and
NSMutation algorithms generate potential repertoire of
1128.16 and 1127.62 respectively. This explains the
overlap in the graphs of both algorithms. Also, column
(e) in Table 3 show that mutation occurs 1.807 = 2
times out of 100 trials.

In order to determine the effectiveness of the
NSMutation in comparison to the exhaustive algorithm,
their detection rates were tested empirically using a
single population size of self Ny = 8. Other parameter
values include N = 589, r =86, Pr= 0.1, mutLim = 4,
mutProb = 0.5, Ny = 256. The outcomes of these tests
are presented in Table 4.

As shown in Table 4, the theoretical estimation of
potential repertoire size is calculated as 608.21, while
the mean potential repertoire sizes for exhaustive and
NSMutation respectively are 608.10 and 608.40. Their
corresponding detection rates are 90.36% for
exhaustive and 89.84% for NSMutation. Testing the
statistical difference between their detection rates using
the Z-test, gave a value of +0.085, which shows that
their detection rates are not statistically different.



Table 3: Experimental results generated from 8-bits data based on 100 trials for self set Ng= 152, 160.

Ns NR,, NR(, NRo Mutation
(Theoretical) (Exhaustive (NSMutation Occurrence
algorithm) algorithm)

(@) (b) () (d) ()

152 1068.62 1128.16 1127.62 (31.739)  1.807 (1.020)
(33.130)

160 1102.61 1084.26 1091.14 (31.190) 1.768(0.992)
(32.344)
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Figure 3: Chart for 8-bits data that illustrates the theoretical estimates and mean population of potential repertoire
based on 100 trial runs for both algorithms given each size of self-set.

Table 4: Test results of detection performance of the
NSMutation and exhaustive algorithms over 10 trials.

Exhaustive NSMutation
Theoretical Ng, 608.21
Experimental N, 608.10 608.40
Detection rates 90.36% 89.84%
Z-test value +0.085

7. ANALYSIS AND DISCUSSION

In this section, the output of the experiments performed
in section 6.2 are analyzed with the aim of discussing
the features peculiar to NSMutation and comparing
with the exhaustive algorithm in terms of tests
conducted. This comparison is then extended to the
other algorithms for an overview of all the detector
generating algorithms.



From the diagram of Figure 3, it can be observed that
the number of candidate detectors examined for the
exhaustive algorithm increases exponentially with the
size of the self-set. This confirms the limitation
expressed by (Kim and Bentley 2001). This behavior is
also exhibited by NSMutation, whose pattern of
increase in potential repertoire closely resembles that of
the exhaustive algorithm. This can be explained to be a
result of the random nature of the self set, which is
normally distributed. During the process of mutating a
candidate detector for the NSMutation algorithm, the
aim is to guide the candidate detector away from self
set. But since the self set is randomly distributed around
the search space, there is an equal probability of
mutating the random detector away from or towards
self set. Hence the impact of guided mutation cannot be
guaranteed for random data, and the outcome is more or
less a random generation of detectors. However, this is
not the usual case for a clustered self set with well-
defined boundaries. Preliminary experiments performed
in (Ayara, Timmis et al. 2002) to test this showed that
the potential repertoire is almost linear with increase in
the self set. Also refer to (Ayara, Timmis et al. 2002)
for the pseudocodes of all the algorithms.

The comparison of their detection rates in Table 4
further confirms the similarities. The difference in their
performance at detecting non-self was evaluated using
the Z-statistic at a significance level of 0.05%, and the
outcome showed that their detection rate performances
were not statistically different.

Although from Figure 3 it can be asserted that the
NSMutation algorithm behaves similarly to the
exhaustive, some extensive studies of the NSMutation
algorithm (Ayara, Timmis et al. 2002), provide more
information about some parameters of the algorithm
that control its performance. They include the matching
threshold (7), detector life-time rate (mutLim) and
mutation probability (mutProb). These parameters can
deteriorate its performance than its predecessor or
speculatively Dbetter, if a good combination of
parameters for the data set can be obtained. For
example, when r =/ (length of each string), the effect of
the mutProb on the time complexity is more profound,
even though there is a higher chance of generating good
detectors due to the exact matching. The effect of
mutProb is aggravated by a high value of mutLim. For
example when / =8, » = 8§, mutLim = 4, and mutProb =
1.0, mutation of a non-competent detector produces its
image and if the mutant also matches self, further
mutation just flips the image back to the original
detector, thereby causing an alternation between the
image and the original detector. The mutLim parameter
thus causes this process to be carried out for a specific
number of trials. However, as r << [, the effect of
mutProb and mutLim pale into insignificance, since the
value of r already triggers high time complexity. This
parameterization factor for good performance of

learning algorithms has been observed by (Bentley,
Gordon T. et al. 2001). So the next question to be
answered is “what parameter values for the NSMutation
algorithm can make it outperform the exhaustive?”

Altogether, the reviewed and normalized time and
space complexities of all the algorithms, as shown in
Table 5, reveal the characteristics in terms of
computational complexity. While the time complexities
of the exhaustive algorithm and NSMutation are
exponential with respect to the size of self, the others
have time complexities that are linear functions of the
self. The linear algorithm, however, has the
disadvantage of generating redundant detectors, as is
the case with the exhaustive; this in turn limits its
performance. However, the greedy algorithm achieves
the best coverage for detection, due to the fact that it
generates complete repertoires of detectors as claimed
by (D'haeseleer, Forrest et al. 1996). The binary
template, which derives its inspiration from the greedy
also achieves similar coverage. Both greedy and binary
template algorithms have higher computational
complexity when compared to the linear algorithm. The
greedy algorithm includes the process of checking that
each detector generated represents a cluster of non-self
to prevent redundancy and also ensure that efficient
detectors are produced. Also the binary template
algorithm includes similar processes of removing
redundant detectors and ensuring that inefficient
detectors are eliminated. Hence, these additional
processes of guaranteeing non-self coverage and non-
redundancy incur extra time to complete the algorithms.
It must be noted that when the matching threshold »
approaches length [ of each string in the search space,
the linear time complexities of the linear, greedy and
binary template with respect to the size of the self-set,
may exhibit similar behavior as that of the exhaustive
and NSMutation, due to the exponential value m" in
their time complexity equation.

In terms of space complexity, NSMutation has a higher
space complexity that the exhaustive. The reason for
this is that the NSMutation stores the detectors as they
are generated for comparison with subsequent detectors
in order to prevent redundancy. On the other hand, the
linear, greedy and binary template incur more space
complexity due to the storage of m” binary template
strings that are stored and updated. However the binary
template algorithm has a lower space complexity when
compared with the linear and greedy algorithms.

Another criterion for comparing the algorithms is the
coverage of detectors. This factor measures the extent
to which the detectors generated from the negative
selection algorithm are fully representative of the non-
self set. Thus it thereby provides a means of
determining the efficiency of the algorithm. If complete
coverage is to be achieved, it implies that all non-self
detectors must be generated. However, there is a need
to maintain a balance between the time taken to
generate detectors and getting a good coverage. This
balance seems to be best achieved by the greedy



algorithm. The algorithm is able to generate non-
redundant detectors that have high detection coverage,
at minimal time complexity.

In summary, it can be argued that the NSMutation is
more or else the exhaustive algorithm since they expend
similar time complexity and achieve as much coverage
of non-self. However, NSMutation differs from the
exhaustive algorithm because it includes checks for
redundancy and tunable parameters that can induce
different performance. When compared with the linear,
greedy and binary templates, the simplicity of
NSMutation makes it quite attractive as against the
others that entail cumbersome procedures. Furthermore,
only the exhaustive and NSMutation can be used with
other matching rules. The linear, greedy and binary
template algorithms are restrictive. They are limited to
the r-contiguous bits matching rule, which renders them
inextensible and inappropriate for other matching rules.
The benefits of NSMutation thus include simplicity,
high detection rate performance and extensibility.

Table 5: Reviewed time and space complexities of all
detector generating algorithms (refer to original
equations in (D'haeseleer, Forrest et al. 1996)).

Algorithm Time Space

Exhaustive  O(m'.Ns) O(L.Ns)

Linear O((l-r+1).Nym')+  O((l-r+1)>.m")
O((l-r+1).m")+
O(l. Ny)

Greedy O((l-r+1).Nom')+  O((l-r+1)>.m")
O((I-r+1).m".Ng)

Binary O(m".Ng)+ O((l-r+1).m")+

Template

O((I-r+1).m".Ny) O(Np)

NSMutation ~ O(m'.Ny)+O(Ng.m’)  O(L.(Ns+ Ng))
+O(Ny)

8. CONCLUSIONS

This paper has made a comparison between the
different negative selection algorithms for generating
detectors, and implemented a variation of the initial
exhaustive algorithm. The results were presented using
the time taken to generate detectors, as well as the
detection rate coverage of the final detectors generated.
It has been demonstrated that there are trade-offs to be
made in deciding on the best algorithm for producing
the detectors. The exhaustive algorithm takes
considerable time (exponential in size of self data) and
produces redundant detectors; the linear algorithm has a
linear time complexity but also produces redundant
detectors; the greedy algorithm produces a complete
repertoire using up as much space as the linear

algorithm, but has a higher computational complexity;
the binary template produces a minimal set of efficient
detectors at the expense of more time complexity; and
finally NSMutation is similar to the exhaustive
algorithm with the difference of eliminating redundancy
and possessing parameters that can be optimized for
better performance. However for structured data sets,
the NSMutation has shown better performance in terms
of time complexity, but there is still need for further
verification. Thus, in a case where choice has to be
made between both exhaustive and NSMutation, the
latter has the advantages of possessing tunable
parameters, eliminating redundant detectors, and being
suitable for any matching rule. But, the decision lies
with the constraints being met while implementing the
algorithm in its target domain. Different domains place
emphasis on different constraints that must be satisfied.
These might include factors such as time to generate
detectors; space storage used by the detectors; matching
function; as well as the performance of detectors
generated. Since no algorithm has managed to minimize
all these constraints, trade-offs have to be made in
choosing an algorithm for generating negative selection
detectors. But it must be said that more analysis of the
NSMutation algorithm will need to be carried out in
order to determine the best combination of parameters
that can improve it significantly.
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