Self-Nonself Discrimination in a Computer®

Stephanie Forrest
Dept. of Computer Science
University of New Mexico

Albuquerque, N.M. 87131-1386

forrest@cs.unm.edu

Lawrence Allen
Dept. of Computer Science
University of New Mexico

Albuquerque, N.M. 87131-1386

Abstract

The problem of protecting computer systems can
be viewed generally as the problem of learning
to distinguish self from other. We describe a
method for change detection which is based on
the generation of T cells in the immune sys-
tem. Mathematical analysis reveals computa-
tional costs of the system, and preliminary ex-
periments illustrate how the method might be
applied to the problem of computer viruses.

1 Introduction

The problem of ensuring the security of computer
systems includes such activities as detecting unautho-
rized use of computer facilities, guaranteeing the in-
tegrity of data files, and preventing the spread of com-
puter viruses. In this paper, we view these protec-
tion problems as instances of the more general prob-
lem of distinguishing self (legitimate users, corrupted
data, etc.) from other (unauthorized users, viruses,
etc.). We introduce a change-detection algorithm that
is based on the way that natural immune systems dis-
tinguish self from other. Mathematical analysis of the
expected behavior of the algorithm allows us to predict
the conditions under which it is likely to perform rea-
sonably. Based on this analysis, we also report prelim-
inary results illustrating the feasibility of the approach
on the problem of detecting computer viruses (demon-
strating that the algorithm can be practically applied

OTn Proceedings of 1994 IEEE Symposium on Research in
Security and Privacy (in press).

Alan S. Perelson
820 Los Arboles Lin.
Santa Fe, N.M. 87501

asp@santafe.edu

Rajesh Cherukuri
Dept. of Computer Science
University of New Mexico

Albuquerque, N.M. 87131-1386

raj@cs.unm.edu

remains an open problem), and finally, we suggest that
the general principles can be readily applied to other
computer security problems.

Current commercial virus detectors are based on
three distinct technologies: activity monitors, signa-
ture scanners, and file authentication programs. The
system that we describe is essentially a file authenti-
cation method, or change detector. Although our ini-
tial testing has been in a virus detection setting, the
algorithm may be more applicable to other change-
detection problems. There are several significant dif-
ferences between the algorithm described here and
more conventional approaches to change detection,
such as checksums and message-digest algorithms: (1)
the checking activity can be distributed over many
sites with each site having a unique signature, (2) the
quality of the check can be traded off against the cost
of performing check, (3) protection is symmetric in
the sense that the change detector and protected data
set are mutually protective, and (4) the algorithm for
generating the change detectors is computationally ex-
pensive, although checking is cheap, so it would be
difficult to modify a protected file and then alter the
detectors in such a way that the modification could
not be detected. As with other authentication meth-
ods, our method relies on the guarantee that the data
to be protected are uncorrupted at the time that the
detectors are generated.

There are several change-detection tools available
which employ a variety of change-detection methods
and signature functions, e.g., Tripwire [6]. Tools such
as Tripwire devote considerable attention to the im-
portant problems of administration, portability, and

reporting. Our work is properly viewed as an algo-
rithm, comparable in nature to a signature function,
which might be incorporated into a tool like Trip-
wire. As we mentioned above, there are several fea-
tures which distinguish our algorithm from conven-
tional signature methods, in particular, our “signa-
tures” are expensive to generate (although cheap to
check, especially if the checking activity is distributed
across multiple sites) and multiple signatures exist for
each data set. These distinguishing features have ad-
vantages and disadvantages, and it remains to be seen
what setting is most appropriate for an algorithm with
these features.

Our approach relies on three important principles:

e Fach copy of the detection algorithm is unique.
Most protection schemes need to protect multiple
sites (e.g., multiple copies of software, multiple
computers on a network, etc.). In these envi-
ronments, we believe that any single protection
scheme is unlikely to be effective, because once a
way is found to avoid detection at one site, then
all sites are vulnerable. Our idea is to provide
each protected location with a unique set of de-
tectors. This implies that even if one site is com-
promised, other sites will remain protected.

e Detection is probabilistic. One consequence of
using different sets of detectors to protect each
entity is that probabilistic detection methods are
feasible. This is because an intrusion at one site is
unlikely to be successful at multiple sites. By us-
ing probabilistic methods our system can achieve
high system-wide reliability at relatively low cost
(time and space). The price, of course, is a some-
what higher chance of intrusion at any one site.

e A robust system should detect (probabilistically)
any foreign activity rather than looking for spe-
cific known patterns of intrusion. Most virus de-
tection programs work by scanning for unique
patterns (e.g., digital signatures) that are known
at the time the detection software is distributed.
This leaves systems vulnerable to attack by novel
means. Like other change detectors, our algo-
rithm learns what self is and notices (probabilis-
tically) any deviation from self.

1.1 System Overview

The algorithm has two phases:

1. Generate a set of detectors. Each detector is
a string that does not match any of the pro-
tected data (see below for a careful definition of

“match”). This “censoring” phase is illustrated
in Figure 1.

2. Monitor the protected data by comparing them
with the detectors. If a detector is ever activated,
a change is known to have occurred (shown in
Figure 2).

This might seem to be an unpromising approach.
If we view the set of data being protected as a set of
strings over a finite alphabet, and a change to that
data as any string not in the original set, then we are
proposing to generate detectors for (almost) all strings
not in the original data set. Surprisingly, this algo-
rithm turns out to be feasible mathematically—that
is, a fairly small set of detector strings has a very high
probability of noticing a random change to the origi-
nal data. Further, the number of detectors can remain
constant as the size of the protected data grows. Fig-
ures 1 and 2 illustrate how the algorithm works. Each
copy of the detection system generates its own unique
valid set of detectors once, and then runs the monitor-
ing program regularly (for example, as a background
process) to check for changes.

Before describing the procedure in detail, we need
to describe what it is that we are trying to detect. We
reduce the detection problem to the problem of detect-
ing whether or not a string has been changed, where a
change could be a modification to an existing string or
a new string being added to self. The algorithm will
fail to notice deletions. The string could be a string of
bits (and hence, anything that can be represented in a
digital computer), a string of assembler instructions,
a string of data, etc. However, as will become appar-
ent later, the method appears to be most relevant for
strings that do not change over time, that is, the pro-
tected strings need to be fairly stable. We define self
to be the string to be protected, and other to be any
other string. Note that it will sometimes be convenient
to view self as an unordered collection of substrings,
and other times as one long string that is the concate-
nation of the substrings. We use the term “collection”
instead of “set” because we do not remove or check
for duplicates. Duplicates appear with extremely low
frequency, but technically, the collections both of pro-
tected strings and detectors are “multisets.”

To generate valid detectors, we first split (logically)
the self string into equal-size segments. Originally, we
chose to split the strings to facilitate our mathemati-
cal analysis of the system, which allows us to predict
the probability of detection. However, it has turned
out to have other advantages, such as making it much
easier to detect certain kinds of computer viruses, and
suggesting extensions to the system. As an example,

Self Strings

(S)
Generate l D
Random _ Match —_— Setecf{or
Strings (Rp) no et (R)
yes
Reject

Figure 1: Generation of Valid Detector Set (Censoring) .

we might break the following 32-bit string into eight
substrings, each of length four:

0010 1000 1001 0000 0100 0010 1001 0011

This produces the collection S of self (sub)strings to
be protected (S contains all of the substrings). The
second step is to generate random strings (call this col-
lection Ry), and then match the strings of Ry against
the strings in S. Strings from R, that match self (see
Section 1.2) are eliminated. Strings that do not match
any of the strings in S become members of the de-
tector collection (R), also called the repertoire. This
procedure is called censoring. Continuing the exam-
ple, suppose Ry contains the following four random
strings: 0111, 1000, 0101, 1001. Then, R will con-
sist of two strings, 0111 and 0101, the strings 1000
and 1001 being eliminated because they each match a
string in S.' The censoring procedure is illustrated in
Figure 1.

Once a collection R of detector strings has been pro-
duced, the state of self can be monitored by continu-
ally matching strings in S against strings in R. This is
achieved by choosing one string from S and one string
from R and testing to see if they match. In our imple-
mentation, the pairings are made deterministically—
each string is chosen for matching in a fixed order.
The detectors are checked in the order they were pro-
duced. For the self strings, the order is determined, for

1In practice, the procedure is to generate random strings
sequentially, and to continue generating them until R has a
sufficient number of elements. Rg is useful conceptually for
predicting how many strings must be generated to produce a R
of a certain size.

example, by the order of instructions in the program.
Alternatively, the procedure could be randomized. If
ever a match is found, then it is concluded that .S has
changed.

In the example, suppose that one bit of the last
self string (0011) is changed to produce 0111. Then,
at some point in the monitoring process, it would be
noticed that the “self” string (0111) matches one of
the detector strings (the string 0111), and a change
would be reported.

1.2 Matching

A perfect match between two strings of equal length
means that at each location in the string, the sym-
bols are identical. The example in Section 1 shows
perfect matching between strings defined over the al-
phabet {0,1}. Since perfect matching is extremely
rare between strings of any reasonable length, a par-
tial matching rule is needed. We relax the matching
requirement by using a matching rule that looks for r
contiguous matches between symbols in corresponding
positions. Thus, for any two strings x and y, we say
that match(z,y) is true if z and y agree (match) at
at least r contiguous locations. See Figure 3 for an
example.

The matching rule can be applied to strings defined
over any alphabet of symbols. In the most general
case, the strings will be over the alphabet {0,1}, rep-
resenting any bit pattern that can be stored in a com-
puter. At a higher level, strings might be defined over
a particular machine instruction set. Figure 4 shows
an example of censoring with r = 2.

Detector
Collection

(R)

Protected No
Strings — Match

(5)

Yes

Nonself
Detected

Figure 2: Monitor Protected Strings for Changes.

(1) increases. Rows one and five show the exponential

decrease in Pys as r increases. Finally, the last eight
X ABADCBAB rows show the dramatic effect on Py of increasing the
Y CAGDCBBA alphabet size.

Figure 3: Example Matching Rule. The two
strings, z and y defined over the four-letter alpha-
bet {4, B,C, D} match at three contiguous locations
(underlined). Thus, match(z,y) is false for r = 4 or

greater, since x and y agree at 3 contiguous locations. ! L Py
match(z,y) is true for r = 3 or less. 8 | 32 0.0502023
8 | 64 0.108697
8 | 128 0.2151
It is useful to know the probability Py that two 256 0.391316

16 | 32 0.000137329
16 | 64 0.000381437
16 | 128 0.000869474
16 | 256 0.00184483
128 | 8 | 32 | 3.33067 * 10~16
128 | 8 | 64 | 7.77156 * 10~
128 | 8 | 128 | 1.66533 * 10~15
128 | 8 | 256 | 3.44169 * 10~15

random strings match at at least r contiguous loca-
tions. If:

m = the number of alphabet symbols,

[= the number of symbols in a string
(length of the string), and

r =the number of contiguous matches re-
quired for a match,

NN NN NN NE
o0

then]9, 8], 128 | 16 | 32 ~ 0.0
. 128 | 16 | 64 ~ 0.0

Py =m™"[(l=r)(m —1)/m +1]. 128 | 16 | 128 ~ 0.0

128 | 16 | 256 ~ 0.0

The approximation is only good if m™" << 1, so we
use the exact formula for the cases in which the ap-
proximation fails [12]. Table 1 illustrates the effect of
varying r and | on Py for different values of m. The
first row shows the configuration we have used in most
of our experiments. Setting r = 8 corresponds to a
one-byte change. The first four rows of the table show
the linear increase in Py as the length of the string

Table 1: Example values of Py for varying values of
m (alphabet size), r (number of contiguous matches
required for a match), and [(string length).

Generating the Repertoire

String to be protected:

(r=2)

1011011100110000
Segment: S
1011
0111
0011
0000
Generate random strings: l
Match
1000
1100 1101
1101 g —— 1101
. 0000 N
. o
R
Yes
R l (Reject)

1000
1100

Figure 4: Generating the repertoire. The string to be protected is logically segmented into four equal-length
“self” strings (stored in S). To generate the repertoire, random strings are produced in the box labeled Ry and
matched against each of the self strings. The first two strings, 1000 and 1100, are eliminated because they both
match self string 0000 at at least two contiguous positions. The string 1101 fails to match any string in self at at
least two contiguous positions, so it is accepted into the repertoire (box labeled “R”).

2 Probability of Detection

Since detection is probabilistic, we need to make
accurate estimates of these probabilities for different
configurations of the change-detection system. This
section describes how we make our predictions. The
following analysis is taken from [1].

Suppose that we have some string that we want to
protect. As we mentioned before, this string could
be an application program, some data, or any other
element of a computer system that is stored in mem-
ory. Using the algorithm described in Section 1.1, we
would like to estimate the number and size of detector
strings that will be required to ensure that an arbi-
trary change to the protected string is detected with
some fixed probability.

We make the following definitions and calculations:

Ng

The number of initial detector strings

0
(before censoring).

Ng The number of detector strings after

censoring (size of the repertoire).

Ng = The number of self strings.
Py; = The probability of a match between 2
random strings.
f = The probability of a random string not
matching any of the Ng self strings.
= (1-Py)Vs.
P; = The probability that Ng detectors fail to

detect an intrusion.

If Py is small and Ng is large, then

f = e~ FrmNs
and,
Ng Ng, x f (1)
Po= (1-). (2)

Initial Repertoire Size (Ng,)

500000.0

400000.0

300000.0

200000.0

100000.0

0.0

Ng vs. Ng, when P, = 1/Ng

0.0

20000.0 40000.0 60000.0

Number of Self Strings (Ng)

80000.0

one copy of the detection algorithm (N, = 1), 46
detectors can protect a data set (of any size) with
90.6% reliability. With only ten different sites
(N; = 10), the same system-level reliability can
be obtained with less than four detectors per site.

5. Detection is symmetric. Changes to the detector
set are detected by the same matching process
that notices changes to self. This implies that
when a change is detected there is no a prior:
way to decide if the change was to self or to the
detectors. The advantage is that self confers the
same protection to the detector set that the de-
tector set provides to self.

3 Experiments

Based on the above analysis, it is possible to design
a wide variety of detection systems, each with different
properties. In this section, we report some preliminary
results based on our investigations of different param-
eter settings. We report three classes of experiments:
experiments using random binary strings, experiments
on SPARC instructions generated by compiling C pro-
grams, and in the DOS environment, experiments on
COM files infected with actual computer viruses.

The first set of experiments show some of the impli-
cations of Equation 5 and confirms the estimates pro-
vided by the theoretical analysis. The remaining two
sets of experiments illustrate how the method might be
applied to the problem of detecting computer viruses.

Table 2 compares the theoretical and experimental
probabilities (Py) that a fixed number (Ng) of detec-
tors will fail to detect a random change to self. It also
compares the theoretical and experimental values for
the initial repertoire size (Ng,), thus providing an es-
timate of how costly Phase I of the algorithm is. The
repertoire size (Ng) is set to 46 (i.e., 46 detectors, each
consisting of 32 bits) and the target failure rate (Py) is
set to 0.1. The experimental procedure was as follows:

1. Fix Py to 0.1.
2. Compute Py using m = 2, [= 32, r = 8. Setting
r = 8 corresponds to a matching rule that notices

1-byte changes.

3. Compute Ng based on P; and Pys (using Equa-
tion 2) and round to next largest integer.

4. Repeat the following 1000 times:

(a) Generate Ng random binary strings (I = 32).

(b) Determine Ng, experimentally by generat-
ing random strings until Ng valid detectors
are found.

(c) Test the detectors:

i. Replace a string in self with one random
string.

ii. Compare the detector strings with the
modified self strings.

iii. If any of the detectors matches the new
string (using the partial matching rule
described earlier), report a modification.

5. Compare the mean P; obtained over the 1000 tri-
als with the Py of (1).

Using this procedure, we obtained close agreement
between the theoretical predictions and the observed
results, as shown in Table 2. This experiment estab-
lishes a worst-case baseline for the algorithm. It is
“worst case” in the sense that there is only one set
of detectors (no advantage from distributing the de-
tection task), the self strings are generated randomly,
and changes to self consist of replacing a single string
(changing at most 32 bits). For example, 128 self
strings can be protected by a repertoire consisting
of 46 detectors. These detectors detect one random
change to self 84.3% of the time. Additionally, we can
see that the exponential cost of generating the detec-
tor set is already significant (34,915), even for 128 self
strings (a modest amount of data to protect). How-
ever, if the detection task were distributed over 100
sites, then each site would need to generate only one
valid detector, would use an initial repertoire of 269
and would achieve at least a 98% detection rate.

These and other similar experiments indicate that
there is good agreement between experimental and
predicted values for P;. The desired P; can be
achieved either by fixing Ng, or Ng.

We also conducted several tests using C programs
compiled for a SPARC processor. These experiments
are interesting because they illustrate the effect of us-
ing a larger alphabet. The tests differed in the method
used to generate the infected program. In all of the
tests a C source code file was first compiled. The re-
sulting object file was then disassembled into SPARC
instructions which were each mapped to a single ASCII
character. This produced one long string in which
each symbol represented a single op-code. The string
was then split into substrings, each 32 ASCII sym-
bols long, representing the collection S of self strings.
Thus, each string was defined over an alphabet of size
104 (m = 104) and of length 32 (I = 32).2

2The full SPARC instruction set is larger than 104, but we

96 6618(1343.56 6458 | 0.130(0.011

Experimental Theory Experimental
Ng Ng, Ng,

8 69(6.06) 69 | 0. 085(0 009)
16 105(11.99) 105 | 0.104(0.010)
24 156(20.09) 158 | 0.110(0.011)
32 240(32.49) 239 | 0.099(0.009)
40 360(53.49) 361 | 0.107(0.010)
48 549(82.98) 545 | 0.133(0.011)
56 829(133.06) 823 | 0.109(0.010)
64 1253(218.77) 1243 | 0.124(0.010)
72 1876(318.55) 1876 | 0.112(0.010)
80 2872(495.61) 2833 | 0.116(0.010)
88 4327(781.78) 4277 | 0.130(0.011)

) (0.011)
) (0.011)
) (0.010)
) (0.011)
) (0.012)

104 9903(2082.86 9750 | 0.135(0.011
112 15074(3140.29 14722 | 0.124(0.010
120 22878(5283.80 22228 | 0.154(0.011
128 34915(8513.26 33561 | 0.157(0.012

Table 2: Theoretical and Experimental Py with fixed
Ng. Numbers reported are the mean of 1000 trials.
Numbers in parentheses are standard deviations. Ng
is set to 46 and the theoretical P; is 0.094 for all en-
tries. The theoretical Ng, is calculated using the for-

mula Ng, = (1_115%. Theoretical P; is calculated

using the formula P; = (1-Py)N® with Py = 0.0502.
It differs from 0.1 because Ni has been rounded in
Step 3 of the algorithm.

Next, we constructed the collections Ry (implicitly)
and R (explicitly), defined over the same alphabet and
also 32 symbols long. The detectors were selected by
randomly generating strings, and comparing them to
the program strings. If more than the specified num-
ber (r) of contiguous characters in the same positions
matched those in a program string, the detector was
rejected. The generate and match procedure contin-
ued until the specified number of detectors was gener-
ated.

To test for a modified file, a new file was constructed
and the detectors were then compared to it. If any of
the detectors matched the strings in the new file by
more than the specified allowed maximum number of
matches, a modification was reported. We used sev-
eral methods to modify the program file: changing
the source code and recompiling (say, to add a loop),
changing a single character in the protected file (the
minimal change possible), and changing 24 characters
at the end of the code segment of the source file. These

collapsed some variants into one symbol, e.g., different versions
of certain floating point operations were treated uniformly.

Method of Num. of
Infection Detectors | Prp (Pp)®
Loop 2 0.26 | 0.001
Single Mutation 50 0.62 0.092
Single Mutation 100 0.24 | 7.96e-4
Data Segment 8 0.18 | 1.89¢-4
Data Segment 16 0.06 | 7.776e-7
Data Segment 32 0.00 0.00

Table 3: System performance on high-cardinality al-
phabet (experimental results). Each experiment was
run with 37 self strings, each of length 32 characters,
and with » = 1. Each reported number is based on
multiple repetitions of the detection system using a
different Ry, but leaving the modification constant.
The Loop and Single Mutation experiments were re-
peated 50 times, Data Segment experiments were re-
peated 100 times.

methods are labeled “Loops,” “Single Mutation,” and
“Data Segment” respectively in Table 3. The last
method is intermediate in difficulty and is probably
the most realistic from a virus-detection viewpoint. It
was the one used to generate the example shown in
Table 5.

The first series of tests involved inserting a short
loop into the source code of a program and recom-
piling the code (called Loop in the table). Although
the Data Segment change inserts only 24 additional
instructions into the compiled file, the insertion shifts
the order of the instructions from the point of insertion
forward. This has the effect of altering all of the char-
acter strings following the new code. For this type of
change, tests run with only two detectors constructed
with 7 = 1 (one matching symbol), could detect a
change 74% of the time. We conclude that detecting
viruses of this form is easy for our algorithm.

It may seem surprising that the algorithm works
with » = 1. In fact, there are two constraints on the
matching process: (1) the detector must have the cor-
rect character (out of a possible 104), and (2) the char-
acter must be in the correct position. It turns out that
these constraints are restrictive enough that we do not
need to require any contiguous matching.

The second series of tests created an infected file by
changing only one character in the original file (labeled
“Single Mutation” in the table). This represents the
opposite extreme from the first case. In these tests,
we performed two types of experiments, one with 100
detectors and one with 50. Each detector was 32 char-
acters long. Again, r was set to one. In the test runs

Binary SPARC COM Timid
Params | Strings | (m =104) | (m=2) | (m =2)
l 32 32 32 32
r 8 1 8 9
Ng 128 37 128 655
Py ~ 0.0 ~ 0.0 ~ 0.0 ~ 0.0
Ng, 24081 68 1861 6576
Ng 46 8 25 10

T NR NRo Pf

9 2 | 1435(1150.53) | 0.270(0.044)
9 5 | 3229(1104.72) | 0.111(0.074)
9 8 | 5910(1864.25) | 0.010(0.010)
9 | 10 | 7274(2580.88) | 0.000(0.000)
10| 5| 182 (71.67) | 0.150(0.036)
10 8 315 (126.09) | 0.040(0.020)
10 10 382 (111.66) | 0.020(0.014)
10 | 15| 598 (161.29) | 0.020(0.014)
10| 25| 996 (211.11) | 0.000(0.000)
13| 25 54 (7.18) | 0.140(0.035)
13| 50 86 (8.36) | 0.110(0.031)
13 | 100 170 (12.35) | 0.010(0.010)
13 | 125 205 (0.00) | 0.000(0.000)

Table 4: Probability of failing to detect modification
to more.com when infected by timid virus. Ng = 655.
String Length = 32. ris match threshold. Npg is the
number of detectors. Ng, is the Initial repertoire size.
Ny is the number of non-self strings. Ny = 76. Py is
the observed probability of failing to detect the virus.

with 50 detectors, the modification was detected 38%
of the time. With 100 detectors the modification was
detected 76% of the time. Table 3 shows results from
all three types of experiments. The rightmost column,
labeled (Pr)®, shows the dramatic improvement that
is obtained if only five copies of the detection algo-
rithm are present (i.e., five independent sites).

A final set of experiments tested a simple file-
infector virus. As an example, consider the TIMID
virus, described in [7]. This virus modifies the first
five bytes of a COM file and appends 300 bytes of
code to the end of the file. Viruses such as these turn
out to be extremely easy for our algorithm to detect,
for the same reason as the data segment change in the
SPARC test. The testing method was as follows:

1. Generate detectors for a standard .com file, sup-
plied with DOS 5.0.

2. Copy the virus into a directory containing the
.com file.

3. Execute the virus, causing the original .com file
to be infected.

4. Test modified .com file with detectors to see if a
modification is detected.

Tests were conducted on three different files,
more.com, loadfix.com (not shown), and edit.com (not
shown). Table 4 shows the results for more.com, a file

Table 5: Typical experimental results on randomly
generated binary strings (column 1), strings of SPARC
instructions generated from a C program (column 2),
.com files (column 3), and a file infected by the Timid
virus (column 4). In each case, m, [, r, and Ng are
predetermined. In the binary string and .com cases,
P; was fixed and Ng, and Ng were determined ex-
perimentally. In the SPARC and Timid cases, Ng
was fixed and P; observed experimentally.

with 655 binary self strings, each of length 32. Values
shown are the average of 100 trials (numbers in paren-
theses are the standard deviations). Considering the
first four lines of the table, 73% reliability can be at-
tained with only two detectors, and essentially 100%
reliability is attained with ten detectors.

Finally, in order to compare the results from each
of the preceding experiments, Table 5 displays typical
results from each of the preceding experiments.

The most notable observation about the data in
this table is that the algorithm performs much better
in practice than in theory. The most obvious explana-
tion for this discrepancy is that real programs are not
collections of completely random strings. For example,
our analysis assumed that each symbol of the alphabet
occurs with equal probability, and this is certainly not
the case with the SPARC instruction set. It is fairly
straightforward to modify the analysis to account for
different occurrence frequencies of symbols. However,
there are other ways in which actual programs might
deviate from random strings. For example, certain se-
quences of symbols may occur with some regularity,
perhaps related to the particular compiler that was
used. We have not yet investigated what these pat-
terns are or how to extend the theory to account for
them. A second way in which our experiments deviate
from the analysis is in the method used to generate
a modified string. The theory assumes that only one
random string is added to self, possibly replacing an
existing string, but the viruses and modifications we
reported (except for single mutation in the SPARC
case) all involve larger changes to self.

4 Discussion

The algorithm we have just presented takes its in-
spiration from the generation of T cells in the immune
system. The immune system is capable of recognizing
virtually any foreign cell or molecule. To do this, it
must distinguish the body’s own cells and molecules
which are created and circulated internally (estimated
to consist of on the order of 10° different proteins) from
those that are foreign. T cells have receptors on their
surface that can detect foreign proteins (called anti-
gens). These receptors are made by a pseudo-random
genetic process, and it is highly likely that some re-
ceptors will detect self molecules. T cells undergo a
censoring process in the thymus, called negative se-
lection, in which T cells that recognize self proteins
are destroyed and not allowed to leave the thymus.3
T cells that do not bind self peptides leave the thy-
mus, and provide the basis for our immune protection
against foreign antigens. Our artificial immune sys-
tem works on similar principles, generating detectors
randomly, and eliminating (censoring) the ones that
detect self. We refer to the detectors as antibodies,
even though our model was inspired more by the dele-
tion of self reactive T cells than by the deletion of
antibodies.

The algorithm presented here is related to earlier
immune-system models based on a universe in which
antigens (foreign material) and antibodies (the cells
that perform the recognition) are represented by bi-
nary strings [2, 11, 4, 3]. The complex chemistry
of antibody/antigen recognition is highly simplified
in these binary immune systems, being modeled as
string matching. These binary models have been used
to study several different aspects of the immune sys-
tem, including its ability to detect common patterns
in noisy environments [3], its ability to discover and
maintain coverage of diverse pattern classes [10], and
its ability to learn effectively, even when not all anti-
bodies are expressed and not all antigens are presented
[5]. In the current algorithm, we logically split the self
string into equal-size segments to generate valid an-
tibodies (detectors), providing a collection of strings
analogous to internal cells and molecules in the body.

The distributed nature of the algorithm was also
inspired by the immune system in which each individ-
ual generates its own unique set of protective antibod-
ies. This analogy is reflected in the change-detection
algorithm because each copy of the detection system
generates its own unique valid set of detectors.

3Just as our algorithm splits up a self string into smaller
substrings, proteins are broken up into smaller subunits, called
peptides, before recognition by T cells.

5 Conclusions and Future Directions

We have described a general method for distinguish-
ing self from other in the context of computational
systems, and we have illustrated its feasibility as a
change-detection method on the problem of computer
virus detection. The major limitation appears to be
the computational difficulty of generating the initial
repertoire. Although this is potentially an advantage
in that it protects the antibodies from being modified
to conform to a modified form of self, we are currently
investigating several possible ways to reduce this com-
plexity. Our current investigations in this direction are
based on ideas from immunology, although we believe
that it may also be possible to apply more conven-
tional algorithms, especially to take account of regu-
larities in self. It should be noted, however, that any
nonrandom method of generating detectors is likely to
produce some regularities in the detector set. These
regularities might be exploited by a malicious agent,
thus compromising the security of the system.

One way to defeat our algorithm would be to design
a virus that was composed from a subset of self (pre-
sumably in a different order). That is, if one could de-
sign a virus that used the same logical segments of the
program as our method uses for its checking, we would
be unable to detect it. Although we believe that this
would be very difficult to do in practice, a slight mod-
ification to our method protects against this vulnera-
bility. By simply choosing a different segment length
(1) for each site, the number of common substrings
available for the virus quickly diminishes. Interest-
ingly, natural immune systems use a similar strategy.
Proteins are broken up into a large pseudorandom col-
lection of peptides. Major histocompatibility complex
(MHC) molecules bind a subset of these peptides and
present them to T cells for recognition. The genes that
code for the MHC molecules are highly polymorphic
and thus each individual may present a different set of
peptides for recognition.

The details of our partial matching rule and the
segmentation of self into equal-size segments were ar-
bitrary decisions. We designed our system with these
features in order to simplify the mathematical analy-
sis of its behavior. Although a matching rule based
on contiguous matching regions makes sense immuno-
logically, there may well be more appropriate rules for
a computational environment. An important area of
future research is to investigate other matching rules
and to revisit the decision to partition self into equal-
size segments. To date, we have only studied how the
method can be applied to computer virus detection.
However, we suspect that it is also applicable to a wide

variety of network and operating system problems, and
this is an area which we are currently investigating.
Finally, our approach unifies a wide variety of com-
puter and data security problems by treating them as
the problem of distinguishing self from other. Nega-
tive selection is only one of many mechanisms that
the immune system has evolved to distinguish self
from other. We are interested in discovering other
information-processing methods used by the immune
system that can be translated into useful algorithms.

6 Acknowledgments

The authors gratefully acknowledge the Santa Fe
Institute for encouraging and supporting the interdis-
ciplinary research that produced the results reported
here. Support was provided to Forrest by the Na-
tional Science Foundation (grant IRI-9157644). David
Mathews helped prepare the figures and John McHugh
made many helpful suggestions about the manuscript.

References

[1] R. J. De Boer and A. S. Perelson. How diverse
should the immune system be? In Proc. Roy. Soc.
London B, volume 252, pages 171-175, London,
1993.

[2] J. D. Farmer, N. H. Packard, and A. S. Perelson.
The immune system, adaptation, and machine
learning. In D. Farmer, A. Lapedes, N. Packard,
and B. Wendroff, editors, Evolution, games and
learning, pages 187-204. North—Holland, Amster-
dam, 1986. (Reprinted from Physica, 22D, 187—
204).

[3] S. Forrest, B. Javornik, R. Smith, and A. S. Perel-
son. Using genetic algorithms to explore pattern
recognition in the immune system. Fvolutionary
Computation, 1(3):191-211, 1993.

[4] S. Forrest and A. S. Perelson. Genetic algo-
rithms and the immune system. In H. Schwefel
and R. Maenner, editors, Parallel Problem Solv-
wng from Nature, Berlin, 1991. Springer-Verlag
(Lecture Notes in Computer Science).

[5] R. Hightower, S. Forrest, and A. S. Perelson. The
evolution of secondary organization in immune
system gene libraries. In Proceedings of the Sec-
ond FEuropean Conference on Artificial Life, (in
press).

[6] G. H. Kim and E. H. Spafford. The design and
implementation of tripwire: a file system integrity
checker. Technical Report CSD-TR-93-071, Pur-
due University, Dept. of Cmputer Sciences, Pur-
due University, West Lafayette, IN 47907-1398,
1993.

[7] M. Ludwig. The little black book of computer
viruses. American Eagle Publishers, 1991.

[8] J. K. Percus, O. Percus, and A. S. Perelson. Pre-
dicting the size of the antibody combining region
from consideration of efficient self/non-self dis-
crimination. Proceedings of the National Academy
of Science, 90:1691-1695, 1993.

[9] J. K. Percus, O. E. Percus, and A.S. Perelson.
Probability of self-nonself discrimination. In A. S.
Perelson and G. Weisbuch, editors, Theoretical
and Frperimental Insights into Immunology, NY,
in press. Springer-Verlag.

[10] R. Smith, S. Forrest, and A. S. Perelson. Search-
ing for diverse, cooperative populations with
genetic algorithms. Fwvolutionary Computation,
1(2):127-149, 1993.

[11] I. Stadnyk. Schema recombination in pat-
tern recognition problems. In Proceedings of
the Second International Conference on Genetic
Algorithms, pages 27-35, Hillsdale, NJ, 1992.
Lawrence Erlbaum Associates.

[12] J. V. Uspensky. Introduction to Mathematical
Probability. McGraw-Hill Book Co., NY, N.Y.,
1937. pp. 77-79.

