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Abstract

González, Fabio Ph.D. The University of Memphis. May 2003. A Study of Ar-
tificial Immune Systems Applied to Anomaly Detection. Major Professor: Dipankar
Dasgupta, Ph.D.

The main goal of this research is to examine and to improve the anomaly detection

function of artificial immune systems, specifically the negative selection algorithm and

other self/non-self recognition techniques. This research investigates different repre-

sentation schemes for the negative selection and proposes new detector generation

algorithms suitable for such representations. Accordingly, different representations

are explored: hyper-rectangles (which can be interpreted as rules), fuzzy rules, and

hyper-spheres. Four different detector generation algorithms are proposed: Negative

Selection with Detection Rules (NSDR, an evolutionary algorithm to generate hyper-

cube detectors), Negative Selection with Fuzzy Detection Rules (NSFDR, an evolu-

tionary algorithm to generate fuzzy-rule detectors), Real-valued Negative Selection

(RNS, a heuristic algorithm to generate hyper-spherical detectors), and Randomized

Real-valued Negative Selection (RRNS, an algorithm for generating hyper-spherical

detectors based on Monte Carlo methods). Also, a hybrid immune learning algorithm,

which combines RNS (or RRNS) and classification algorithms is developed. This al-

gorithm allows the application of a supervised learning technique even when samples

from only one class (normal) are available. Different experiments are performed with

synthetic and real world data from different sources. The experimental results show

that the proposed representations along with the proposed algorithms provide some

advantages over the binary negative selection algorithm. The most relevant advan-

tages include improved scalability, more expressiveness that allows the extraction of

high-level domain knowledge, non-crisp distinction between normal and abnormal,

and better performance in anomaly detection.
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Chapter 1

Introduction

The construction of artificial systems by drawing inspiration from natural systems is

not a new idea. Artificial neural networks and evolutionary computation are good

examples of successful applications of the biological metaphor to the solution of com-

putational problems. The study of artificial immune systems (AIS) is a relatively

new field that tries to exploit the mechanisms of the natural immune system (NIS)

in order to develop problem solving techniques.

The NIS is one of the most complex systems in nature. Its complexity is such that

it can be compared with the nervous system [1]. The main purpose of the immune

system is to protect the body from damage that can be caused by harmful entities

that are mostly foreign, but in some cases, damage can be originated in the body

itself [2]. The diversity of these threats is such that they have to be repelled with

a comparable variety of overlapping mechanisms. This makes the NIS complex and

difficult to understand; in fact, many of these mechanisms are not fully understood

[3]. However, this complexity also represents an advantage since it provides a rich

source of inspiration for bio-inspired computing.

There are two main parts of the NIS, the innate immune system and the adaptive

immune system [2]. When an attack occurs, the innate immune system is the first

one to generate a response. This response is not specific, but in many cases, it is

able to repel the attack. If the innate immune system fails in thwarting the intrusion,
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then the adaptive immune system takes over. The adaptive response is more specific,

resulting in a more effective response.

From a computational point of view, adaptive immunity is the most interesting

part of the NIS [4]. The adaptive immune system can remember past encounters with

antigens (virus, bacteria, foreign molecules, etc) in such a way that the next time the

antigen appears, a more specific and effective response is deployed. This mechanism is

called immune memory [2]. Another interesting mechanism of the adaptive immune

system is the self/non-self recognition [5]. The NIS is able to recognize which cells

are its own (self) and which are foreign (non-self); thus, it is able to build its defense

against the attacker instead of self-destructing.

There is a growing area of AIS research [4], but it can be roughly classified in two

main categories: techniques inspired by the self/non-self recognition mechanism and

those inspired by the immune memory mechanism.

One of the first works that suggested NIS as an inspiration to develop a compu-

tational system was performed by Farmer et al. [6]. In this work, he proposed a

pattern recognition model based on the idiotypic network theory[7], which explains

the immune memory mechanism. This work shows that the NIS can be viewed as a

learning system and suggests that it can be used as an inspiration to build machine

learning techniques. The work of Cook [8] follows these ideas to develop an algo-

rithm for DNA sequence classification. Timmis [9] modified the algorithm to develop

a general technique for data reduction and clustering.

Forrest and her group [10] proposed the negative selection (NS) algorithm. This

algorithm is inspired by the mechanism used by the immune system to train the T-cells

to recognize antigens (non-self) and to prevent them from recognizing the body’s own

cells (self). Different variations of these algorithm were applied for anomaly detection

problems [11, 12], for fault detection problems [13, 14], for detection of novelties in

time series [15], and even for function optimization [16].

Despite the success of these AIS techniques, there remain many issues unaddressed.

As the field is relatively new, most of the existing works have been exploratory, and
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the algorithms do not scale. Among others, the following are some aspects that have

to be addressed in order to make AIS an useful problem solving technique:

• Improvement of the efficiency of the algorithms.

• Enhancement of the representation.

• Introduction of other mechanisms of NIS that are not used in the current tech-

niques.

• Development of unified models that integrate more natural mechanisms from

the AIS.

1.1 Goals

The purpose of this dissertation is to contribute some ideas that will be, hopefully,

a step forward in finding the solution to the above mentioned issues. The main goal

of this research is to improve the anomaly detection function of AIS, specifically

the negative selection algorithm and other self/non-self recognition techniques. The

following is a description of the main objectives of the proposed research:

• To study new encoding schemes for the self/non-self representation, instead of

the existing low-level binary representation for the NS algorithm.

The idea is to use representation schemes that are closer to the problem space.

This makes the extraction of useful knowledge easier since the NS algorithm

deals with objects that have a rich semantic content. Thus, the NS algorithm

will be not only a tool to detect anomalies in a given system, but also a tool to

produce high-level characterization of the system structure.

• To define different representations of the detectors.

This is a direct consequence of the previous point. New representations of the

self/non-self space requires different detectors and matching schemes. A higher
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level representation opens interesting possibilities for defining detectors that

have a better semantic content.

• To design new detector generation algorithms.

The existing NS algorithms are specific to the binary representation; however,

a new representation requires new algorithms. These new algorithms might

exploit the advantages that the representations provide in order to improve

their efficiency and scalability.

• To perform a non-crisp distinction between self and non-self.

Most of the self/non-self recognition algorithms perform a crisp distinction be-

tween the two sets. It is clear that the self/non-self boundary, in general, is

not well-defined. Therefore, it is necessary to design detection schemes that can

take into account this fuzziness.

1.2 Main contributions

As it was mentioned in the previous section, the main goal of this work is to study

alternatives to the binary representation used by the current implementations of the

NS algorithm. Our work in studying binary matching rules [17] presents a justification

for exploring different alternatives to binary representation. Specifically, this work

shows, experimentally, that binary matching rules have a very low-level representation

that is unable to capture the structure of even simple problem spaces. The main

conclusion is that the matching rule, which determines the representation of the

self/non-self space, needs to be chosen in such a way that it represents accurately

the affinity relationship in the problem space.

As an alternative to binary representation, we chose a real-valued vector repre-

sentation of the self/non-self space for the following reasons:

• It is appropriate for multiple applications, even if the data is not real, it is

possible to find a mapping to the R
n space.
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• Many AISs use this kind of representation. This implies that the represen-

tation is not unnatural and that there is already a conceptual mapping from

immunology to this representation. For instance, real representation of anti-

bodies and antigens, as well as different matching or affinity functions for this

representation, have been extensively studied [18, 19, 20, 9]. Also, the use of this

representation allows researchers to integrate the NSA with other immune-based

algorithms.

• It is possible to use geometric properties of R
n to speed up the algorithm. The

richer structure of the representation space promotes the application of some

heuristics that help to distribute better the detectors on the non-self space,

minimizing the overlap and maximizing the coverage.

The multidimensional real-valued representation of the self/non-self space opens the

possibility to define different types of detectors. We explored different options and

developed detector generation algorithms for each one of them. The following is a list

of the algorithms proposed in this dissertation:

• Negative selection with detector rules (NSDR)

This algorithm uses a genetic algorithm to evolve detectors with a hyper-

rectangular shape that can cover the non-self space. These detectors can be

interpreted as If-Then rules, which produce a high-level characterization of the

self/non-self space. The initial version of the algorithm [21] used a sequential

niching technique to evolve multiple detectors. We developed an improved ver-

sion of the algorithm [22] using deterministic crowding as the niching technique.

The algorithm was applied to detect attacks in network traffic data.

• Negative selection with fuzzy detector rules (NSFDR)

We extended the NSDR algorithm to use fuzzy rules [23]. This improves the

accuracy of the method and produces a measure of deviation from the normal

that does not need a discrete division of the non-self space.
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• Real-valued negative selection (RNS)

This algorithm takes as input a set of hyper-spherical antibodies (detectors)

randomly distributed in the self/non-self space. The algorithm applies a heuris-

tic process that changes iteratively the position of the detectors driven by two

goals: to maximize the coverage of the non-self subspace and to minimize the

coverage of the self samples. We combined the algorithm with an hybrid immune

learning algorithm [24, 25, 26] and applied it to different data set.

• Randomized Real-valued negative selection (RRNS)

Like the RNS algorithm, the goal of this algorithm is to cover the non-self space

with hyper-spherical antibodies. The main difference is that the RRNS algo-

rithm has a good mathematical foundation that solves some of the drawbacks of

the RNS algorithm. Specifically, it can produce a good estimate of the optimal

number of detectors needed to cover the non-self space, and the maximization

of the non-self coverage is done through an optimization algorithm with proved

convergence properties. The algorithm is based on a type of randomized algo-

rithms called Monte Carlo methods. Specifically, it uses Monte Carlo integration

and simulated annealing.

In many anomaly detection applications, only positive (normal) samples are available

for training purpose. However, conventional classification algorithms need both pos-

itive and negative samples. We proposed a hybrid immune learning algorithm that

combines the RNS algorithm with conventional classification algorithms to perform

anomaly detection [24, 26]. This method does not use positive or negative detection;

rather, it tries to find a boundary between normal and abnormal classes. Specifi-

cally, the hybrid AIS uses normal samples to generate abnormal samples by applying

RNS; then, both normal and abnormal samples are used as input to a conventional

classification algorithm which produces anomaly classifiers.

6



1.3 Dissertation outline

Chapter 2 presents a succinct biological background on immunology and discusses

the necessary concepts to understand the proposed work. Also, a survey of the area

of AIS is given. It is not intended to be comprehensive, but to cover the literature

that is directly related to this work. Also, a brief review of different interpretations

and approaches to solve the anomaly detection problem is presented. Additionally, a

clear statement of the anomaly detection problem, as it is interpreted in the present

work, is given.

Chapter 3 shows that binary matching rules with low-level representation are

unable to capture the structure of simple problem spaces. In order to support this

claim, we use some of the binary matching rules reported in the literature and study

how they behave in a bi-dimensional real-valued space. In particular, we study the

shape of the areas covered by individual detectors and by a set of detectors generated

by the NS algorithm.

Chapter 4 presents the NSDR algorithm and compares it with a positive anomaly

characterization approach. The chapter also presents the extension of this algorithm

to use fuzzy rules instead of crisp rules (NSFDR). Both algorithms are applied to find

anomalies in network traffic data and synthetic time series data.

In Chapter 5, the RNS algorithm is presented. The chapter also presents a new

method that combines real-valued negative selection with conventional classification

algorithms. The algorithm is tested and compared against an unsupervised learning

algorithm using different data sets in anomaly detection.

Chapter 6 describes the RRNS algorithm and its mathematical background. The

algorithm is compared experimentally with the RNS algorithm in terms of the cover-

age of the non-self space. Experiments to validate the assumptions in the design of

the RRNS algorithm are performed.

Finally, Chapter 7 presents conclusions, and suggestions for future research.
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Chapter 2

Background

2.1 Natural immune system

The immune system is a complex network of specialized tissues, organs, cells, and

chemicals. Its main function is to recognize the presence of strange elements in the

body and to respond in order to eliminate or to neutralize the foreign invaders [2].

All living organisms are exposed to many different microorganisms and viruses

that are capable of causing illness. These microorganisms are called pathogens.

In general, organisms try to protect against pathogens using different mechanisms

including high temperature, low pH, and chemicals that repel or kill the invaders.

More advanced organisms (vertebrates) have developed an efficient defense mechanism

called the immune system [3]. Substances that can stimulate specific responses of the

immune system are commonly referred to as antigens (pathogens usually act as

antigens).

To be effective, the immune system must respond only to foreign antigens; there-

fore, it should be able to distinguish between the self (cells, proteins, and in general,

any molecule that belongs to or is produced by the body) and the non-self (anti-

gens) [5]. The self/non-self discrimination is an essential characteristic of the immune

system, since the outcome of an inappropriate response to self molecules can be fatal.
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2.1.1 Structure and function of the immune system

The immune system generates a large variety of cells and molecules for defensive

purposes. These cells and molecules together act in a dynamic and intricate network

of interactions to detect and eliminate antigens. It is difficult to give a concise picture

of such a complex system; moreover, many of the mechanisms are not completely

understood. This section gives an abstract view of the immune system, yet omits

many details of many specific mechanisms. The purpose is to serve as a reference to

the subsequent sections. Detailed review of the the natural immune system and its

functionalities may be found elsewhere [3, 27, 2].

The immune system can be envisioned as a multilayer system with defense mech-

anisms in several layers [28]. The three main layers include the anatomic barrier, the

innate immunity and the adaptive immunity. They are described as follows:

2.1.1.1 Anatomic barrier

The first layer is the anatomic barrier, composed of the skin and the surface of mucous

membranes. Intact skin prevents the penetration of most pathogens and also inhibits

most bacterial growth because of its low pH. On the other hand, many pathogens

enter the body by binding or penetrating through the mucous membranes; these

membranes provide a number of nonspecific mechanisms that help to prevent such

entry. Saliva, tears, and some mucous secretions act to wash away potential invaders

and also contain antibacterial and antiviral substances [2].

2.1.1.2 Innate immunity

Innate immunity [3], which is also known as nonspecific immunity, refers to the defense

mechanism against foreign invaders that individuals are born with. Innate immunity

is mainly composed of the following mechanisms:

Physiologic barriers This includes mechanisms like temperature, pH, oxygen ten-

sion, and various soluble chemicals. The purpose of these mechanisms is to provide
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detrimental living conditions for foreign pathogens. For instance, the low acidity of

the gastric system acts as a barrier to infection by ingested microorganisms, since

they cannot survive the low pH of the stomach.

Phagocytic barriers Some specialized cells (like macrophages, neutrophils and

natural killer cells) are able to ingest specific material, including whole pathogenic

microorganisms. This ingestion has two purposes: to kill the antigen and to present

fragments of the invader’s proteins to other immune cells and molecules.

Inflammatory response Activated macrophages produce proteins called cytokines.

They work as hormone-like messengers that induce the inflammatory response, which

is characterized by vasodilation and rise in capillary permeability. These changes

allow a large number of circulating immune cells to be recruited to the site of the

infection. The cytokines are also produced by other immune cells and non-immune

cells, for example those that secrete cytokines when damaged [29].

2.1.1.3 Adaptive immunity

Adaptive immunity [30], also called acquired or specific immunity, represents the part

of the immune system that is able to specifically recognize and selectively eliminate

foreign microorganism and molecules. The main characteristics of the adaptive im-

munity [2] are the following:

• Antigenic specificity. It allows the immune system to distinguish subtle

differences among antigens.

• Diversity. The adaptive immune system can generate billions of different

recognition molecules that are able to uniquely recognize different structures

of foreign antigens.
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• Immunologic memory. The adaptive immune system can remember a pre-

vious encounter with an antigen. This helps to deliver a quick response in

subsequent encounters.

• Self/non-self recognition. As it was mentioned before, the immune system

can distinguish its own cells from foreign antigens, and so responds only to the

non-self molecules.

It is important to note that the acquired immunity does not act independently of the

innate immunity; on the contrary, they work together to eliminate foreign invaders.

For instance, the phagocytic cells (innate immunity) are involved in the activation of

the adaptive immune response. Also, some soluble factors, produced during a specific

immune response, have been found to augment the activity of these phagocytic cells

[2].

An important part of the adaptive immune system is managed by white blood

cells, called lymphocytes. These cells are produced in the bone marrow, circulate

in the blood and lymph system, and reside in various lymphoid organs to perform

immunological functions.

B-cells and T-cells They represent the major population of lymphocytes. The

cells are produced by the bone marrow and are inert initially, i.e. they are not capable

of executing their functions. In order to become immune-competent, they have to go

through a maturation process. In the case of B-cells, the maturation process occurs

in the bone marrow itself. For T-cells, they have to migrate first to the thymus

where they mature. In general, a mature lymphocyte can be considered as a detector

that can detect specific antigens. There are billions of these detectors which circulate

in the body, constituting an effective, distributed anomaly detection and response

system [2] .

Humoral immunity Mature B-cells express unique antigen-binding receptors

(ABR) on their surface. The interaction of the ABR with specific antigen induces
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proliferation and differentiation of B-cells into antibody-secreting plasma cells. An

antibody is a molecule that binds to antigens and neutralize them or facilitate their

elimination. Antigens coated with antibodies can be eliminated in multiple ways: by

phagocytic cells, by the complement system, or by preventing them form performing

any damaging function (e.g. binding of viral particles to host cells) [31].

Cellular Immunity During their maturation, T-cells express an unique ABR on

their surface called the T-cell receptor. Unlike B-cell ABR that can recognize anti-

gens alone, T-cell receptors can only recognize antigenic peptides that are presented

by cell-membrane proteins known as major histocompatibility complex (MHC)

molecules. When a T-cell encounters antigens associated with an MHC molecule on a

cell1, the T-cell proliferates and differentiates into memory T-cells and various effector

T-cells. The cellular immunity is accomplished by these generated effector T-cells.

There are different types of T-cells that interact in a complex way to kill altered

self-cells (for instance, virus infected cells) or to activate phagocytic cells [32] .

Self/non-self discrimination As it was mentioned before, T-cells mature in the

thymus. There, they go through a process of selection that ensures that they are able

to recognize non-self peptides presented by MHC. This process has two main phases:

positive selection and negative selection [5].

Positive selection During the positive selection phase, T-cells are tested for

recognition of MHC molecules expressed on the cortical epithelial cells. If a T-cell

fails to recognize any of the MHC molecules, it is discarded; otherwise, it is kept.

Negative selection The purpose of negative selection is to test for tolerance

of self cells. T-cells that recognize the combination of MHC and self peptides fail this

1In general, T-cells do not recognize whole antigen molecules; instead, their receptors detect
fragments of the antigen called peptides, which are processed and presented by antigen-processing
cells (APC).
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test. This process can be seen as a filtering of a big diversity of T-cells; only those

T-cells that do not recognize self peptides are kept [33].

Immune memory Immune-competent lymphocytes are able to recognize specific

antigens through their ABR . The specificity of each T-cell and each B-cell is deter-

mined prior to its contact with the antigen through random gene rearrangements in

the bone marrow (or thymus) during the maturation process [34]. The presence of an

antigen in the system and its subsequent interaction with mature lymphocytes trig-

gers an immune response, resulting in the proliferation of lymphocytes with a unique

antigenic specificity. This process of population expansion of particular T-cells and

B-cells is called clonal selection [35].

Clonal selection contributes to the specificity of the adaptive immunity response

since only lymphocytes whose receptors are specific to a given antigen will be cloned

and thus mobilized for an immune response.

Another important consequence of clonal selection is the immune memory [2]. The

first encounter of naive immune-competent lymphocytes with an antigen generates

the primary response, which, as discussed before, results in the proliferation of

the lymphocytes that can recognize this specific antigen. Most of these lymphocytes

die when the antigen is eliminated; however, some of these lymphocytes are kept as

memory cells. The next occurrence of the same antigen can be detected quickly,

activating a secondary response. This response is faster and more intense because

of the availability of such memory cells.

2.1.2 Computational aspects of the immune system

From the point of view of information processing, the natural immune system exhibits

many interesting characteristics. The following is a list of these characteristics [4, 36]:

• Pattern matching: the immune system is able to recognize specific antigens

and generate appropriate responses. This is accomplished by a recognition
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mechanism based on chemical binding of receptors and antigens. This binding

depends on the the molecular shape and on the electrostatic charge.

• Feature extraction: in general, immune receptors do not bind to the complete

antigen, rather portions of it (peptides). In this way, the immune system can

recognize an antigen just by matching segments of it. Peptides are presented to

the lymphocyte receptors by Antigen Presenting Cells (APC). These APCs act

as filters that can extract the important information and remove the molecular

noise.

• Learning and memory: the main characteristic of the adaptive immune sys-

tem is that it is able to learn through the interaction with the environment. The

first time an antigen is detected, a primary response is induced and includes the

proliferation of lymphocytes and subsequent reduction. Some of these lympho-

cytes are kept as memory cells. The next time the same antigen is detected, the

memory cells generate a faster and more intense response (secondary response).

Memory cells work as an associative (highly) distributed memory.

• Diversity: clonal selection and hyper-mutation mechanisms are constantly

testing different detector configuration for known and unknown antigens. This

is a highly combinatorial process that explores the space of possible configura-

tions looking for close-to-optimum receptors that can cope with the different

types of antigens. Exploration is balanced with exploitation by favoring the

reproduction of promising individuals.

• Distributed processing: unlike the nervous system, the immune system does

not possess a central controller. Detection and response can be executed lo-

cally and immediately without communicating with any central organ. This

distributed behavior is accomplished by billions of immune molecules and cells

that circulate around the blood and lymph systems and are capable of making

decisions in a local collaborative environment.
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• Self-regulation: depending on the severity of the attack, response of the im-

mune system can range from very light and almost imperceptible to very strong.

A stronger response uses a lot of resources to help repel the attacker. Once the

invader is eliminated, the immune system regulates itself in order to stop the

delivery of new resources and to release the used ones.

• Self-protection: by protecting the body as a whole, the immune system is

protecting itself. It means that there is no other additional system to protect

the immune system; the immune system can self-defend.

2.2 Artificial immune systems

The study and design of artificial immune systems (AIS) is a relatively new area of

research that tries to build computational systems that are inspired by the natural

immune system (NIS) [37]. As we mentioned in Subsection 2.1.1.3, there are many

desirable computational features in the NIS that can be used to solve computational

problems. A typical AIS implements one or more of these features.

In many respects, AISs are abstract computational modeling of the immune sys-

tem; in fact, some AIS techniques are based on theoretical models of the NIS. However,

the main difference lies in the use of AISs as a problem solving technique.

A theoretical model that has served as a basis for some AISs is the idiotypic

network theory proposed by Jerne [7]. This theory proposed that the NIS regulates

itself by forming a network of B-cells that can enhance or suppress the expression of

specific antibody types. This self-regulatory mechanism maintains a stable immune

memory. The formation of such a network is only possible by the presence of paratopes

on the B-cells that can be recognized by other B-cells epitopes. This recognition

usually extends to more than one level, resulting in the formation of complex reaction

networks.

One of the early works that suggested NIS-based computational algorithms was

developed by Farmer et al. [6]. In this work, they proposed a computational model
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of the NIS based on the idiotypic network theory of Jerne [7]. This model is a

simplification of the NIS that ignores important elements like T-lymphocytes and

macrophages and concentrates on the modeling of the idiotypic networks. The model

represents antibodies and antigens as sequences of 0’s and 1’s and uses different

equations to define the dynamic of the system. The authors suggest that the model

“has a strong similarity to an approach to learning and artificial intelligence introduced

by Holland, called the classifier system”2[6]; this similarity gives foundation to suggest

that the NIS can be a good inspiration to build learning systems.

The work of Varela [1] took even further the idiotypic network theory and pro-

posed that this network can be thought of as having cognitive capabilities that makes

it similar to a neural network. Bersini et al. [38, 39] also presented an immune

recruitment mechanism and proposed its application in control engineering.

The last decade has seen an increase in AIS research with a wide variety of works

in different areas. Based on the survey of existing AIS literature, we tried to put them

in a tabular form. Tables 2.1, 2.2, 2.3, and 2.4 show a chronological list of some AIS

models and techniques that we considered more relevant. The tables include a short

description of each model or technique, along with the information about immuno-

logical mechanisms used, the type of representation, and the intended applications.

The different models/techniques use a variety of NIS aspects; however, the most

relevant are the antigen-antibody (Ag-Ab) binding3 (see Subsection 2.1.1.3 on page 12),

idiotypic immune network theory (described above), and the self/non-self discrimina-

tion (see Subsection 2.1.1.3 on page 12). The modeling of the Ag-Ab biding mecha-

nism is present in almost all the models and techniques. In fact, this feature is the

only one that can uniformly characterize most AIS models and distinguish them from

other soft-computing models. The representation of the basic elements of the NIS

(usually antigens and antibodies) also varies from model to model. Binary and real

vectors are the most common representations among different approaches. There are

2The classifier system is a genetic-based machine learning system that is composed of syntactically
simple classifier rules and is able to interact and learn in a dynamic environment.

3In the case of idiotypic immune networks, it also includes antibody-antibody binding.
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different areas of application with special emphasis in computer security, anomaly

detection, and learning (pattern recognition, data analysis, etc.).

It is difficult to classify the different models and techniques since there is no single

criteria that can be derived to build a satisfactory taxonomy. It is possible, however, to

distinguish some areas of research that share common elements. In order to organize

our discussion, we will divide the different works into the following categories:

• Algorithms based on the self/non-self discrimination mechanism (negative se-

lection).

• Algorithms based on the idiotypic immune network theory of Jerne and the

clonal selection mechanism.

• Software and hardware architectures inspired by the organizational structure of

the NIS.

• Hybrid models or techniques that combine immune system ideas with other soft

computing models.

This broad division of the AIS field does not intend to be an exhaustive and non-

intersecting partition of the area. In fact, there are many models that cannot be

classified in any of these categories, and others that share elements from more than

one. Taking these constrains into account, we will give a general overview of each of

these areas in the following subsections.

2.2.1 Negative selection based algorithms

As it was mentioned in Section 2.1.1.3, during the generation of T-cells, receptors are

made through a pseudo-random genetic rearrangement process [15, 44, 58]. Then,

they undergo a censoring process in the thymus, called the negative selection. There,

T-cells that react against self-proteins are destroyed; thus, only those that do not

bind to self-proteins are allowed to leave the thymus. These matured T-cells then
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Table 2.1: A time-line of AIS (1986 to 1995)
Author

(year)

Model or technique

description

Aspects of the

NIS modeled

Type of

repre-

sentation

used

Applications

Farmer et

al. (1986)

[6]

The immune system as

machine learning pro-

cess.

Ag-Ab binding.

Immune net-

work.

Binary

strings.

NIS modeling.

Bersini

and Varela

(1991) [40]

Selective evolution-

ary strategy based on

immune recruitment.

Immune net-
work.

Recruitment

mechanism.

Real-valued

vectors.

Optimization.

Forrest et al.

(1993) [41]

Exploration of pattern

recognition in NIS using

genetic algorithms.

Ag-Ab binding. Binary

strings.

NIS modeling.

Forrest et al.

(1994) [10]

Original Negative Selec-

tion algorithm based on

the T-cell recruitment

process performed by the

thymus.

Ag-Ab binding.

Self/non-self dis-

crimination.

Strings from

a finite al-

phabet.

Change and

anomaly detec-

tion.

Kephart

(1994) [42]

A computer immune sys-

tem architecture to de-

tect and repeal virus.

Ag-Ab binding.

Self/non-self dis-

crimination.

Byte strings

(signa-

tures).

Computer secu-

rity.

Ishiguro et

al. (1995)

[43]

A decentralized behav-

ior arbitration mecha-

nism to control robots in-

spired by the NIS.

Ag-Ab binding.

Immune net-
work.

Distributed con-

trol.

High level

representa-

tion (robot

instruc-

tions).

Robot control.

Hunt and

Cooke

(1995) [8]

An AIS based on immune

network theory for learn-

ing.

Ag-Ab binding.

Immune net-

work.

Binary

strings.

DNA sequence
matching.

Case based rea-

soning.
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Table 2.2: A time-line of AIS (1996 to 1999).
Author

(year)

Model or technique

description

Aspects of the

NIS modeled

Type of

repre-

sentation

used

Applications

D’Haeseleer

et al. (1996)

[44]

An efficient implementa-

tion of the negative selec-

tion algorithm for binary

strings.

Ag-Ab binding.

Self/non-self dis-

crimination.

Binary

strings.

Change and

anomaly detec-

tion.

Dasgupta

and Forrest

(1996) [15]

A method to detect nov-

elties in time series based

on the negative selection

algorithm.

Ag-Ab binding.

Self/non-self dis-

crimination.

Binary

string repre-

senting real

values.

Anomaly and

novelty detec-

tion.

Ishida

(1996) [45]

An agent architecture

based on immune net-

works.

Ag-Ab binding.

Immune net-

work.

Real-valued

vectors.

Fault diagnosis.

Hajela et al.

(1997) [46]

Uses immune networks

to improve the conver-

gence of genetic algo-

rithms applied to design

optimization.

Ag-Ab binding.

Immune net-

work.

Binary

strings

Evolutionary

design optimiza-

tion.

Hunt et al.

(1999) [47]

A machine learning sys-

tem (Jisys) based on im-

mune networks.

Ag-Ab binding.

Immune net-

work.

Mixed

numerical,

categorical

and string

data.

Fraud detection.

Learning.

Dasgupta

(1999) [48]

An architecture for

an agent-based intru-

sion/anomaly detection

and response system.

Distributed con-
trol.

Self/non-self dis-

crimination.

Not apply. Computer secu-

rity.

Dasgupta

and Cao

(1999) [49]

Combines immune sys-

tem ideas and genetic

algorithms to interpret

chemical spectra.

Ag-Ab binding.

Self/non-self dis-

crimination.

Binary

strings.

Chemical

spectrum

recognition.

Williams et

al. (1999)

[50]

A multi-agent compu-

tational immune system

(CDIS) for intrusion de-

tection.

Ag-Ab binding.

Self/non-self dis-

crimination.

Strings from

a finite al-

phabet.

Computer secu-

rity.
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Table 2.3: A time-line of AIS (2000).
Author

(year)

Model or technique

description

Aspects of the

NIS modeled

Type of

repre-

sentation

used

Applications

Tarakanov

and Das-

gupta

(2000) [51]

A formal model of the

immune system.

Ag-Ab binding. Real-valued

vectors.

NIS modeling.

Timmis

(2000) [9]

A resource limited ar-

tificial immune system

(RAINE) for data anal-

ysis that extends the

work of Cooke and Hunt

[8].

Ag-Ab binding.

Immune net-

work.

Real-valued

vectors.

Data analysis.

Clustering.

De Castro

and Von

Zuben

(2000) [19]

A system based on

clonal selection and

affinity maturation

(CLONALG) for

pattern matching and

optimization.

Ag-Ab binding.

Clonal selection.

Affinity matura-

tion.

Binary and

integer

strings.

Pattern match-
ing.

Optimization.

De Castro

and Von

Zuben

(2000) [18]

An immune network

learning algorithm

(aiNet).

Ag-Ab binding.

Clonal selection.
Affinity matura-
tion.

Immune net-

work.

Real-valued

vectors.

Data analysis.

Clustering.

Hofmeyr et

al. (2000)

[12]

An architecture for an

artificial immune system

(Lisys) for computer se-

curity.

Ag-Ab binding.

Self/non-self dis-
crimination.

Affinity matura-

tion.

Binary

strings.

Computer secu-

rity.

Bradley

and Tyrrel

(2000) [52]

A machine fault toler-

ance mechanism based

on immune system ideas

(Immunotronics).

Self/non-self dis-

crimination.

Binary

strings.

Hardware fault

detection and

tolerance.
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Table 2.4: A time-line of AIS (2001 to 2003).
Author

(year)

Model or technique

description

Aspects of the

NIS modeled

Type of

repre-

sentation

used

Applications

De Castro

and Von

Zuben

(2001) [53]

A simulated annealing

algorithm based on a im-

mune systems (SAND)

applied to neural net-

work initialization.

Ag-Ab binding.

Immune diver-

sity.

Real-valued

vectors.

Initialization

of feed-forward

neural network

weights.

Tarakanov

and Das-

gupta

(2002) [54]

An architecture to build

chips that implement the

immune system model

proposed in [51].

Ag-Ab binding.

Immune net-

work.

Real-valued

vectors

(internally

represented

as bits).

Pattern match-

ing.

Nasraoui et

al. (2002)

[20]

An immune network

based algorithm that

uses fuzzy theory to

model the Ag-Ab

matching.

Ag-Ab binding.

Immune net-

work.

Real-valued

vectors.

Clustering.

Web data min-

ing

Hart and

Ross (2002)

[55]

A system to cluster

non-stationary data

(SOSDM) that com-

bines ideas from NIS

and sparse distributed

memories.

Ag-Ab binding.

Immune mem-

ory.

Binary

strings.

Associative
memory.

Clustering.

Coello and

Cortez

(2002) [16]

An approach to handle

constraints in GA based

optimization.

Ag-Ab binding.

Gene libraries.

Binary

strings

Optimization.

Kim and

Bentley

(2002) [56]

An algorithm to perform

dynamic learning on

changing environments .

Ag-Ab binding.

Clonal selection.

Self/non-self dis-

crimination.

Binary

strings.

Dynamic learn-

ing.

Nasraoui et

al. (2003)

[20, 57]

A scalable artificial

immune system model

for dynamic unsuper-

vised learning based on

immune network theory.

Ag-Ab binding.

Immune net-

work.

Real-valued

vectors.

Clustering.

Dynamic learn-

ing.
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circulate throughout the body to perform immunological functions and protect the

body against foreign antigens.

Forrest et al. [10] developed a negative selection (NS) algorithm based on the

principles of self/non-self discrimination in the NIS. This negative selection algorithm

can be summarized as follows (adapted from [4]):

• Define self as a collection S of elements in a feature space U, a collection that

needs to be monitored. For instance, if U corresponds to the space of states of

a system represented by a list of features, S can represent the subset of states

that are considered as normal for the system.

• Generate a set R of detectors, each of which fails to match any string in S.

An approach that mimics what happens in the NIS would generate random

detectors and discard those that match any element in the self set. However, a

more efficient approach will try to minimize the number of generated detectors

while maximizing the covering of the non-self space.

• Monitor S for changes by continually matching the detectors in R against S.

If any detector ever matches, then a change is known to have occurred, as the

detectors are designed not to match any of the original strings in S.

The previous description is very general and does not say anything about what kind of

feature space is used or what matching exactly means. It is clear that the algorithmic

problem of generating good detectors can be very different depending on the kind of

feature space (continuous, discrete, mixed, etc.), detector representation scheme, and

the rule that determines if a detector matches an element or not.

The first version of the algorithm was proposed by Forrest et al. [10]. The fea-

ture space was restricted to binary strings of fixed length and the matching between

detectors and elements was defined by a process called r -contiguous matching. The
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matching process was defined as follows: given a binary string x = x1x2...xn and a

detector d = d1d2...dn,

x matches d ≡ ∃i ≤ n− r + 1 such that xj = dj for j = i, ..., i + r − 1,

that is, two strings match if there is a window of size r where all the bits are identical.

The algorithm works in a generate-and-test fashion, i.e. random detectors are gener-

ated and then are tested for self-matching. If a detector fails to match all self strings,

it is retained. The number of random detectors that is required to be generated is

exponential on the size of self [59]; this makes the algorithm very inefficient.

Two new detector generation algorithms (based on dynamic programming) were

proposed by D’haeseleer et al.[44], the linear NS algorithm and the greedy NS al-

gorithm. Similar to the previous algorithm, they are also specific to binary string

representation and r -contiguous matching. Both algorithms run in linear time and

space with respect to the size of the self set, though the time and space is exponential

on the size of the matching window, r.

Some alternatives to r -contiguous matching have been proposed [60, 61, 62]. For

example, different matching rules (similarity measures) were reported by Harmer et

al. [62]; however, an efficient negative selection algorithm that uses them was not

presented. An algorithm that extends the exhaustive algorithm was proposed by

Castro and Timmis [63]; this algorithm was compared with other implementations by

Ayara et al. [60]. Balthrop et al. [61] proposed a new matching rule that subsumes

r -contiguous matching, called r -chunks. Some preliminary experiments on a “small

data set” suggests that the r -chunk matching rule can improve the accuracy and

performance of the NS algorithm.

2.2.2 Idiotypic network and clonal selection based algorithms

Based on the immune network theory [7], Cooke and Hunt [8] proposed a super-

vised machine learning algorithm to classify DNA sequences as either promoter or
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non-promoter classes. The system consisted of a network of B-cells that generated

antibodies to classify DNA sequences (corresponding to antigens). Each B-cell can

be stimulated (by antigens or by other B-cells) or suppressed (by other B-cells).

Timmis [9] proposed a new algorithm similar to the above, but domain indepen-

dent, called AINE (Artificial Immune NEtwork). The elements of a training data

set correspond to antigens that stimulate a set of B-cells. Each B-cell represents a

data element, and the strength of the stimulation is determined by the Euclidean

distance between the antigen and the B-cell. As in the previous model, B-cells can be

suppressed or stimulated by other B-cells. According to its stimulation level, a B-cell

can produce a number of clones that are subsequently mutated. The final outcome of

this algorithm is a network of B-cells that follows the structure of the training data.

This network constitutes a reduced version of the original data that can be used for

data clustering or compression.

One major drawback of AINE is the explosion in B-cell population. This problem

is addressed, in part, in another algorithm called RAIN (Resource limited Artificial

Immune Network) [64]. The main difference between AINE and RAIN is that the

basic element of the RAIN algorithm is not the B-cell but the Artificial Recognition

Ball (ARB). Each ARB corresponds to a set of identical B-cells but still represents

a single data item. Each ARB is assigned a number of resources (B-cells) depending

on its stimulation; these resources, unlike the previous model, are restricted.

Nasraoui et al. [65, 20] proposed an immune network based algorithm (called

FuzzyAIS) that uses a fuzzy set to model the area of influence of each B-cell. This

improves the expressiveness of previous models and makes it more robust to noise

and outliers. The algorithm was applied to mine user profiles in web access data [66].

De Castro et al. [19] proposed an algorithm based on the clonal selection and

affinity maturation principles of the NIS called CLONALG. The main applications

of this algorithm are pattern matching and optimization. It is a population-based,

evolutionary-like algorithm guided by mechanisms of reproduction, genetic variation

24



(mutation only), and selection. So, it has many elements in common with conventional

evolutionary algorithms.

A model called aiNet, which shares some characteristics of Timmis’ AINE, was

proposed by De Castro [18]. The main difference is that the immune network structure

is not a part of the antibody (B-cell in AINE) cloning and selection process. The

final network is extracted from the output data by applying a hierarchical clustering

algorithm.

2.2.3 Software and hardware architectures inspired by the

organization of the NIS

The models in this category are more general in the sense that they do not belong to

any specific algorithm; rather, they are part of a general software architecture inspired

by the distributed processing mechanism of the NIS.

Kephart [42] proposed an architecture inspired in the immune systems to pro-

tect computer systems from viruses. The basic idea was to extend a conventional

signature-based antivirus by adding the possibility of dealing with an unknown virus

(virus without a signature). If an unknown virus is detected, the system automatically

extracts the signature and adds it to the known-signature data base.

The distributed control of the NIS has served as inspiration to design agent ar-

chitectures that are able to accomplish tasks without centralized control. Ishida [45]

proposed an agent-based immune algorithm to perform fault diagnosis. The most

relevant characteristic of the system is the self-adaptivity to changing environment,

which could include a change on the self. A decentralized behavior arbitration mech-

anism for controlling a set of independent robots was proposed by Ishiguro et al. [43].

This mechanism allows a set of independent robots to accomplish cooperative tasks

without having a centralized control.

NIS has also been an inspiration for designing network security systems. The

main goal of this type of system is to detect anomalies and/or intrusions in net-
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worked computers and to deploy responses that prevent a further degradation of

the system. Examples of this type of architectures are an architecture for agent-

based intrusion/anomaly detection and response system proposed by Dasgupta [48],

a multi-agent computational immune system for intrusion detection (CDIS) devel-

oped by Williams et al. [62, 50], and an architecture for a computer immune system

(Lisys) designed by Hofmeyr et al.[12].

Another promising area of work is the implementation of AIS in hardware design.

Bradley et al. [52, 67] developed a machine fault tolerance mechanism based on the

self/non-self discrimination mechanism of the NIS that can be implemented directly

in hardware. Tarakanov and Dasgupta [54] proposed a hardware implementation

of a formal immune model [51]. This work is the first to explore the feasibility of

implementing an AIS in hardware - immunochip.

2.2.4 Hybrid immune system models

Researchers also explore combining AIS with other computational models and tech-

niques, especially with soft-computing methods. An interesting characteristic of the

NIS is that it combines a diverse repertory of mechanisms that interact in a tight

and complex way to accomplish the goal of keeping the body free of foreign attackers.

Therefore, it is quite natural to develop AISs that combine different problem solving

strategies.

Evolutionary computation shares many elements, concepts like population, genotype-

phenotype mapping, and proliferation of the most fitted are present in different AIS

methods. Some of the earlier work that combined NIS ideas with evolutionary com-

putation was developed by Bersini and Varela [40]. This work proposed a selective

evolutionary technique based on the immune recruitment mechanism. A later work by

Hajela et al. [46] used immune networks to improve the convergence of genetic algo-

rithms for design optimization. Dasgupta and Cao [49] developed an immunogenetic

technique for chemical spectrum recognition. A more recent work from Coello and
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Cruz-Cortés uses an immune inspired approach to handle constrains in genetic based

optimization [16] and to solve multi-objective optimization problems using genetic

algorithms [68].

AIS models based on immune networks resembles the structures and interactions of

connectionist models. Some works have pointed out the similarities and the differences

between AIS and artificial neural networks: Dasgupta [69] and De Castro and Von

Zuben [70]. De Castro has also used AIS to initialize the centers of radial basis

function neural networks [71] and to produce a good initial set of weights for feed-

forward neural networks[53].

Another interesting example of an hybrid AIS is the work of Hart and Ross [55],

which combines sparse distributed memories and ideas from the NIS to cluster data

in a dynamical changing environment.

2.3 Anomaly detection

In general, the problem of anomaly detection can be seen as a two class classification

problem. Given an element from a given problem space, the system should classify it

as normal or abnormal. However, this is a very general characterization since it can

correspond to very different problems depending on the specific context where it is

interpreted.

From a statistical point of view, the problem can be seen as that of outlier detec-

tion. According to Hawkins, an outlier is “... an observation that deviates so much

from other observations as to arouse suspicion that it was generated from a different

mechanism” [72]. A common statistical approach to solve this problem [73] is to build

a statistical model of the normal and use it to determine if a given observation is an

outlier or not; basically, if the probability of the observation being generated by the

distribution of the normal observations is low, the observation is an outlier. A more

complex approach can also model the outlier generation mechanism.
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In the previous approach, the idea is to clean the data of any observation that can

be classified as an outlier. Another possibility is to use methods that accommodate

the outliers, i.e. methods that can produce good estimates or inferences even in the

presence of outliers. This kind of methods belongs to a more general area of statistics

called robust statistics [74, 75].

The outlier detection point of view implicitly assumes that the data is available

at once for both normal data and outliers (which are possibly caused by errors in

the data collection or by noise). The interpretation of anomaly detection that we

are interested in, is situated in a most dynamic context. In this case, an anomaly

is considered as a state of a given system that is not consistent with the normal

behavior of this system. According to this, an anomaly detection system will perform

a continuous monitoring of the system and an explicit classification of each state as

normal or abnormal. Notice that the statistical modeling of the normal can be applied

to this definition of anomaly detection, but the robust statistics approach cannot.

This type of interpretation of anomaly detection fits well with the problem of in-

trusion detection in computer security, fault detection in hardware, and novelty or

surprise detection in time series. The most common approach to perform anomaly

detection in computer security uses a statistical model [76, 77] to calculate the proba-

bility of occurrence of a given value; the lower the probability, the higher the possibil-

ity of an anomaly. The main problem about building a statistical model of normal is

that it needs to make assumptions about the distribution properties of the monitored

variables, which, in general, are not known. Another problem is that, in general,

statistical approaches model individually different variables that represent the state

of the system4, and the anomalies may depend on interactions between the different

variables.

Other approaches also build models to predict the future behavior of systems or

processes based on the present and past states [78, 79, 44, 80, 81, 82]. Accordingly,

4Despite the possibility for using multi-variate distributions, the assumptions are too restrictive
to be applied to real problems.
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if the actual state of the system differs considerably from the predicted state, an

anomaly alarm is raised. This kind of approach is investigated by Lane [83], who

uses a hidden Markov model technique to model the interactions of an user with the

computer. This model assigns probabilities to a sequence of actions. If this probability

is very low, an alarm is raised.

Data mining techniques have also been applied to solve anomaly detection prob-

lems [84, 85, 86]. This approach has the advantages of dealing with large data sets

and being able to garner useful knowledge (generally expressed in terms of rules). Lee

et al. [86] applied a rule induction algorithm [87], frequent episode mining [88], and

association rules mining [89] to the discovery of anomalies in audit data.

In other approaches, an anomaly is considered as a deviation from a set of normal

states. This assumes that there is a notion of distance in this space that allows to

measure deviations. Examples of this kind of approach are the works of Eskin et al.

[90], which proposes a geometrical framework for unsupervised anomaly detection,

and the work of Portnoy et al. [91], which uses a self -organizing map (a neural

network architecture) to cluster the normal feature vectors.

The next section gives a formal description of the anomaly detection problem that

we will address in the present work.

2.3.1 Anomaly detection problem definition

The purpose of anomaly detection is to identify states of a system as normal or

abnormal. The states of a system can be represented by a set of features. Accordingly,

Definition 1. System state space. A state of the system is represented by a

vector of features, xi = (xi
1, ..., x

i
n) ∈ [0, 1]n. Each state is represented by a set

U ⊆ [0, 1]n. It includes the feature vectors corresponding to all possible states

of the system.

These features can represent current and past values of system variables. The actual

values of the variables could be scaled (or normalized) to fit a defined range [0, 1].
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Definition 2. Normal subspace (crisp characterization). A set of feature vectors,

Self⊆U, represents the normal states of the system. Its complement is called

Non Self and is defined as Non Self = U - Self. In some cases, we will define the

Self (or Non Self ) set using its characteristic function χself : [0, 1]n → {0, 1}

χself(−→x ) =





1 if −→x ∈ Self

0 if −→x ∈ Non Self

The terms self and non-self are motivated by the natural immune system. In general,

there is no sharp distinction between normal and abnormal states; instead, there is a

degree of normalcy (or conversely, abnormality). The following definition reflects this

fuzziness:

Definition 3. Normal subspace (non-crisp characterization). The characteristic

function of the normal (or abnormal) subspace is extended to take any value

within the interval [0, 1] : µself : [0, 1]n → [0, 1]. In this case, the value represents

the degree of normalcy: 1 indicates normal, 0 indicates abnormal, and the

intermediate values represent elements with some degree of abnormality.5

The non-crisp characterization allows a more flexible distinction between normalcy

and abnormality. However, in a real system it may be necessary to decide when to

raise an alarm or not. In this case, the problem becomes again a binary decision

problem. It is easy to go from the non-crisp characterization to the crisp one by

establishing a threshold:

µself,t(
−→x ) =





1 if µself(−→x ) > t

0 if µself(
−→x ) ≤ t

Definition 4. Anomaly detection problem. Given a set of normal samples,

Self ′ ⊆ Self , build a good estimate of the normal space characteristic function

5This definition is basically a fuzzy set specification. In fact, the function µself is a membership
function.
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χself (or µself in the non-crisp case). This function should be able to decide

whether or not the observed state of the system is anomalous.
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Chapter 3

The Effect of Binary Matching

Rules in the Negative Selection

Algorithm

A process that is of absolute importance for the NIS is the antibody-antigen match-

ing1, since it is the basis for recognition and selective elimination mechanism of foreign

elements (see Subsection 2.1.1.3). Most of the AIS models implement this recognition

process, but in different ways (see Section 2.2). Basically, antigens and antibodies are

represented as strings of data that correspond to the sequence of aminoacids consti-

tuting proteins in the NIS. The matching of two strings is determined by a function

that produces a binary output (match or not-match).

The binary representation is general enough to subsume other representations;

after all, any data element, whatever its type is, is represented as a sequence of bits

in the memory of a computer (though, how they are treated differ). In theory, any

matching rule defined on a high-level representation can be expressed as a binary

matching rule. However, in this work, we restrict the use of the term binary matching

1Antibodies are part of a class of proteins called antigen-binding receptors, which also includes
T-cell receptors (see Subsection 2.1.1.3). Although the following discussion refers to antibodies, it
also applies to T-cell receptors.

32



rule to designate those rules that take into account the matching of individual bits

representing the antibody and the antigen.

Most works on the NS algorithm have been restricted to binary matching rules

like r -contiguous [61, 44, 10]. The reason is that efficient algorithms that generate

detectors (antibodies or T-cell receptors) have been developed, exploiting the simplic-

ity of the binary representation and its matching rules [44]. On the other hand, AIS

approaches inspired by the immune memory mechanism often use real vector repre-

sentation for antibodies and antigens [18, 64], as this representation is more suitable

for applications in learning and data analysis. The matching rules used with this

real-valued representation are usually based on Euclidean distance, (i.e. the smaller

the antibody-antigen distance, the more affinity they have).

The NS algorithm has been applied successfully to solve different problems; how-

ever, some unsatisfactory results have also been reported [92]. As it was suggested

by Balthrop et al. [93], the source of the problem is not necessarily the NS algorithm

itself, but the kind of matching rule used. The same work [93] proposed a new binary

matching rule, r -chunk matching (Equation 3.2), which appears to perform better

than r -contiguous matching.

The starting point of this chapter is to address the question: do the low-level

representation and its matching rules affect the performance of NS in covering the

non-self space? This chapter provides some answers to this issue. Specifically, it shows

that binary matching possesses a low-level representation that is unable to capture

the structure of even simple problem spaces. In order to justify our argument, we

use some of the binary matching rules reported in the literature and study how they

behave in a simple bi-dimensional real space. In particular, we study the shape of the

areas covered by individual detectors and by a set of detectors generated by the NS

algorithm.
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3.1 Binary matching rules in the negative selection

algorithm

The algorithmic problem of generating good detectors using NS varies with the type of

representation space (continuous, discrete, hybrid, etc.), the detector representation,

and the process that determines the matching ability of a detector.

A binary matching rule is a rule that is defined in terms of individual bit matchings

of detectors and antigens represented as binary strings. In this section, some of the

most widely used binary matching rules are presented.

3.1.1 r-contiguous matching

The first version of the NS algorithm [10] used binary strings of fixed length, and

the matching between detectors and new patterns is determined by a rule called

r-contiguous matching. The binary matching process is defined as follows: given

x = x1x2...xn and a detector d = d1d2...dn,

d matches x ≡ ∃i ≤ n− r + 1 such that xj = dj for j = i, ..., i + r − 1, (3.1)

that is, the two strings match if there is a sequence of size r where all the bits are

identical. The algorithm works in a generate-and-test fashion, i.e. random detectors

are generated; then, they are tested for self-matching. If a detector fails to match a

self string, it is retained for novel pattern detection.

Subsequently, two new algorithms based on dynamic programming were proposed

[44], the linear and the greedy NS algorithm. Similar to the previous algorithm, they

are also specific to binary string representation and r -contiguous matching. Both

algorithms run in linear time and space with respect to the size of the self set, though

the time and space are exponential on the size of the matching sequence, r.
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3.1.2 r-chunk matching

A new binary matching scheme called r-chunk matching was proposed by Balthrop

et al. [61]. This matching rule subsumes r -contiguous matching, that is, any r -

contiguous detector can be represented as a set of r -chunk detectors. The r -chunk

matching rule is defined as follows: given a string x = x1x2...xn and a detector

d = (i, d1d2...dm), with m ≤ n and i ≤ n−m + 1,

d matches x ≡ xj = dj for j = i, ..., i + m− 1, (3.2)

where i represents the position where the r -chunk starts. Some preliminary exper-

iments [61] suggest that the r -chunk matching rule can improve the accuracy and

performance of the NS algorithm.

3.1.3 Hamming distance matching rules

One of the first works that modeled NIS concepts in developing pattern recognition

was proposed by Farmer et al. [6]. Their work proposed a computational model of

the NIS based on the idiotypic network theory of Jerne [7], and compared it with the

learning classifier system [94]. This is a binary model representing antibodies and

antigens and defining a matching rule based on the Hamming distance. A Hamming

distance based matching rule can be defined as follows: given a binary string x =

x1x2...xn and a detector d = d1d2...dn,

d matches x ≡
∑

i

xi ⊕ di ≥ r, (3.3)

where ⊕ is the exclusive-or operator, and 0 ≤ r ≤ n is a threshold value.

Different variations of the Hamming matching rule were studied, along with other

rules like r -contiguous matching, statistical matching and landscape-affinity matching

[62]. The different matching rules were compared by calculating the signal-to-noise

ratio and the function-value distribution of each matching function when applied to
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a randomly generated data set. The conclusion of the study was that the Rogers and

Tanimoto (R&T) matching rule, a variation of the Hamming distance, produced the

best performance. The R&T matching rule is defined as follows: given a binary string

x = x1x2...xn and a detector d = d1d2...dn,

d matches x ≡

∑

i

xi ⊕ di

∑

i

xi ⊕ di + 2
∑

i

xi ⊕ di

≥ r, (3.4)

where ⊕ is the exclusive-or operator, and 0 ≤ r ≤ 1 is a threshold value.

It is important to mention that a good detector generation scheme for this kind of

rules is not available yet, other than the exhaustive generate-and-test strategy [10].

3.2 Non-binary matching rules

In addition to the binary matching rules, other rules have also been proposed. The

following are some example rules classified according to the representation space (U):

• U = Σn, where Σ is a finite alphabet.

– r -contiguous and r -chunk rules can be easily extended to this case. A

NS algorithm for r-contiguous that extends the greedy algorithm [44] was

proposed in by Singh [95].

• U = {0, 1, ..., m}n, where m ∈ N and m > 1

– Representation of detectors as hypercubes in this n-dimensional discrete

space. An element is matched by a detector, if it is contained in the

respective hypercube [50].

– Landscape-affinity matching was proposed by Harmer et al. [62]. The

sequence of values of an element define a landscape. Two elements match

if their respective landscapes are highly similar.
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• U = [0, 1]n

– In Chapter 4, we propose a matching rule where the detectors are repre-

sented as hyper-rectangles in a n-dimensional continuous space. All the

elements inside the hyper-rectangle are matched by a detector [21].

– A detector, d = (c, r), is defined by an element c ∈ [0, 1]n and a ra-

dius r. Any element x such that distance(c, x) ≤ r is considered to be

matched by d. All the elements matched by a detector (c, r) constitute a

hyper-sphere with center c and radius r. This representation is common in

immune-network-based approaches [18, 9]. In Chapter 5, we will discuss

its application in NS algorithms [25, 24].

3.3 Analyzing the shape of binary matching rules

Usually, the self/non-self space (U) used by the NS algorithm corresponds to an

abstraction of a concrete problem space. For instance, if the problem at hand is to

detect anomalies in a machine, the problem space corresponds to the space of features

that describe the state of the machine at a given time. Each element in the problem

space (e.g. a feature vector) is mapped to a corresponding element in U (e.g. a bit

string).

A matching rule defines a relation between the set of detectors2 and U . If this

relationship is mapped back to the problem space, it can be interpreted as a relation

of affinity between elements in this space. In general, it is expected that elements

that are matched by the same detector have some common property (in the machine

example, the probability of a detector matching two elements that represent similar

states of the machine should be high). So, a way to analyze the ability of a matching

rule to capture this ‘affinity’ relationship in the problem space is to take the subset of

U corresponding to the elements matched by a specific detector, and map this subset

2In some matching rules, the set of detectors is same as U (e.g. r -contiguous matching). In other
cases, it is a different set that usually contains or extends U (e.g. r -chunk matching).
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back to the problem space. Accordingly, this set of elements in the problem space is

expected to share some common properties.

In this section, we apply the approach described above to study the binary match-

ing rules presented in Section 3.1. The problem space used corresponds to the set

[0, 1]2. One reason for choosing this problem space is that multiple problems in

learning, pattern recognition, and anomaly detection can be easily expressed in an

n-dimensional real-valued space. Also, it makes it easier to visualize the shape of

different matching rules.

In this illustration, the self/non-self space is composed of binary strings of length

16. An element (x, y) in the problem space is mapped to the string b0, ..., b7, b8, ..., b15,

where the first 8 bits encode the integer value b255 · x + 0.5c and the last 8 bits encode

the integer value b255 · y + 0.5c. Two encoding schemes are studied: conventional

binary representation and Gray coding. Gray coding is expected to favor binary

matching rules, since the codifications of two consecutive numbers only differs by one

bit.

Figure 3.1 shows some typical shapes generated by different binary matching rules

with different r values. Each figure represents the area (in the problem space) covered

by one detector. In all cases, the detector was chosen to match the point (0.5,0.5)

(1000000010000000 in binary notation).

The shapes generated by r -contiguous rule (Figure 3.1(a)) are composed by verti-

cal and horizontal stripes that constitute a grid-like shape. The r -chunk rule generates

similar, but simpler shapes (Figure 3.1(b)). In this case, the area covered is composed

of vertical or horizontal sets of parallel strips. The orientation depends on the po-

sition of the r-chunk; if it is totally contained in the first eight bits, the strips are

vertically going from top to bottom. If it is contained on the last eight bits, the strips

are oriented horizontally. Finally, if it covers both parts, it has the shape shown in

Figure 3.1(b).

The area covered by Hamming and R&T matching rules has a fractal-like shape,

shown in Figure 3.1(c) and 3.1(d), i.e. it exhibits self-similarity. It is composed of
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(a) (b)

(c) (d)

Figure 3.1: Areas covered in the problem space by an individual detector using dif-
ferent matching rules. The detector corresponds to 1000000010000000, which is the
binary representation of the point (0.5,0.5). (a) r-contiguous matching, r = 4. (b)
r-chunk matching, d = ****00001000****. (c) Hamming matching, r = 8. (d) R&T
matching, r = 0.5.
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(a) (b)

(c) (d)

Figure 3.2: Areas covered in the problem space by an individual detector using Gray
coding for the self/non-self space. The detector corresponds to 1100000011000000,
which is the Gray representation of the point (0.5,0.5). (a) r -contiguous matching,
r = 4. (b) r -chunk matching, d = ******0011******. (c) Hamming matching, r = 8.
(d) R&T matching, r = 0.5.

points that have few interconnections. There is no significant difference between the

shapes generated by the R&T rule and those generated by the Hamming rule, which is

not a surprise, considering the fact that the R&T rule is based on Hamming distance.

The shape of the areas covered by r -contiguous and r -chunk matching is not

affected by the change in codification from binary to Gray (as shown in Figures

3.2(a) and 3.2(b)). This is not the case with the Hamming and the R&T matching

rule (Figures 3.2(c) and 3.2(d)). The reason is that the Gray encoding represents

consecutive values with bit strings with small Hamming distance.
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Figure 3.3: Self data sets used as input to the NS algorithm shown in a two-
dimensional real problem space. (a) First data set composed of random points inside
of a circle of radius 0.1. (b) Second data set corresponding to a section of the Mackey-
Glass data set (described in Subsection 4.6.1.1).

In general, the shapes generated by the rules are sparse over the whole space.

It is clear that the relation of proximity exhibited by these matching rules in the

binary self/non-self space does not coincide with the natural relation of proximity in

a real-valued, two-dimensional space. Intuitively, this seems to make the task harder

of placing these detectors to cover the non-self space without covering the self set.

This fact is further investigated in the next section.

3.4 Comparing the performance of binary match-

ing rules

This section shows the performance of the binary matching rules (as presented in

Section 3.1) in the NS algorithm. Experiments are performed using two synthetic

data sets shown in Figure 3.3.

The first data set (Figure 3.3(a)) was created by generating random vectors in

[0, 1]2 with the center in (0.5,0.5) and scaling them to a norm less than 0.1, so that

the points lies within a single circular cluster. The second set (Figure 3.3(b)) was

extracted from the Mackey-Glass time series data set, which has been used in different

works that apply AIS to anomaly detection problems [15, 25, 24] (for a more detailed
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Figure 3.4: Coverage of space by a set of detectors generated by NS algorithm using
r -contiguous matching (with r = 7). Black dots represent self-set points, and gray
regions represent areas covered by detectors.

explanation of this data set, see Subsection 4.6.1.1). The original data set has four

features extracted using a sliding window. We used only the first and the fourth

features.

3.4.1 Experiments with the spherical cluster data set

Figure 3.4 shows a typical coverage of the non-self space corresponding to a set of

detectors generated by the NS algorithm with r -contiguous matching for the first

data set. The non-covered areas in the non-self space are known as holes [28] and

are due to the characteristics of r -contiguous matching. In some cases, these holes

can be good: since they are expected to be close to self strings, the set of detectors

will not detect small deviations from the self set, making the NS algorithm robust to

noise. However, when we map the holes from the representation (self/non-self) space

to the problem space, they are not necessarily close to the self set, as shown in Figure

3.4. This result is not surprising; as we saw in the previous section (Section 3.3), the

binary matching rules fail to capture the concept of proximity in this two-dimensional

space.

We run the NS algorithm using different matching rules and varying the r value.

Figure 3.5 shows the best coverage generated using standard (no Gray) binary rep-
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resentation. The improvement in the coverage generated by r -contiguous matching

(Figure 3.5(a)) is due to the higher value of r (r = 9), which produces more spe-

cific detectors. The coverage with the r -chunk matching rule (Figure 3.5(b)) is more

consistent with the shape of the self set because of the high specificity of r -chunk

detectors. The outputs produced by the NS algorithm with Hamming and R&T

matching rules are the same. These two rules do not seem to do as well as the other

matching rules (Figure 3.5(c)). However, by changing the encoding from binary to

Gray (Figure 3.5(d)), the performance can be improved, since the Gray encoding

changes the detector shape, as was shown in the previous section (Section 3.3). The

change in the encoding scheme, however, does not affect the performance of the other

rules for this particular data set.

The r -chunk matching rule produced the best performance in this data set, fol-

lowed closely by the r -contiguous rule. This is due to the shape of the areas covered

by r-chunk detectors which adapt very well to the simple structure of this self set,

one localized, circular cluster.

3.4.2 Experiments with the Mackey-Glass data set

The second data set has a more complex structure than the first one, where the data is

spread with a certain pattern. The NS algorithm should be able to generalize the self

set with incomplete data. The NS algorithm was run with different binary matching

rules, with both encodings (binary and Gray), and varying the value parameter r

(the different values are shown in Table 3.1). Figure 3.6 shows some of the best

results produced. Clearly, the tested matching rules were not able to produce a good

coverage of the non-self space. The r -chunk matching rule generated satisfactory

coverage of the non-self space (Figure 3.6(b)); however, the self space is covered

by some lines resulting in erroneously detecting the self as non-self (false alarms).

The Hamming-based matching rules generated an even more stringent result (Figure

3.6(d)) that covers almost the entire self space. The parameter r, which works as
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(a) (b)

(c) (d)

Figure 3.5: Best space coverage by detectors generated with NS algorithm using dif-
ferent matching rules. Black dots represent self-set points, and gray regions represent
areas covered by detectors. (a) r -contiguous matching, r = 9, binary coding. (b)
r -chunk matching, r = 10, binary coding. (c) Hamming matching, r = 12, binary
coding (same as R&T matching, r = 10/16). (d) Hamming matching, r = 10, Gray
coding (same as R&T matching, r = 7/16).
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(a) (b)

(c) (d)

Figure 3.6: Best coverage of the non-self space by detectors generated with negative
selection. Different matching rules, parameter values and codings (binary and Gray)
were tested. (a) r -contiguous matching, r = 9, Gray coding. (b) r -chunk matching,
r = 8, Gray coding. (c) r -chunk matching, r = 7, Gray coding. (d) Hamming
matching, r = 13, binary coding (same as R&T matching, r = 10/16).

a threshold, controls the detection sensitivity. A smaller value of r generates more

general detectors (i.e. covering a larger area) and decreases the detection sensitivity.

However, for a more complex self set, changing the value of r from 8 (Figure 3.6(b))

to 7 (Figure 3.6(c)) generates a coverage with many holes in the non-self area, and

still with some portions of the self covered by detectors. So, this problem is not with

the setting of the correct value for r, but a fundamental limitation on of the binary

representation that is not capable of capturing the semantics of the problem space.

The performance of the Hamming-based matching rules is even worse; it produces a

coverage that overlaps most of the self space (Figure 3.6(d)).
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A better measure to determine the quality of the non-self space coverage with a

set of detectors can be produced by matching the detectors against a test data set.

The test data set is composed of both normal and abnormal elements as described in

[25]. The results are measured in terms of the detection rate (percentage of abnormal

elements correctly identified as abnormal) and the false alarm rate (percentage of the

normal detectors wrongly identified as abnormal). An ideal set of detectors would have

a detection rate close to 100%, while keeping a low false alarm rate. Table 3.1 accounts

the results of all the performed experiments that combine different binary matching

rules, different threshold or window size values (r), and two types of encoding. The

results are also shown graphically in Figure 3.7 (binary encoding) and Figure 3.8 (Gray

encoding). In general, the results are very poor. None of the configurations managed

to deliver a good detection rate with a low false alarm rate. The best performance,

which is far from good, is produced by the coverage depicted in Figure 3.6(b) (r -chunk

matching, r = 8, Gray coding), with a detection rate of 73.26% and a false alarm

rate of 47.47%. These results are in contrast with other previously reported [15, 95];

however, it is important to notice that the test set used on those experiments only

contained abnormal data; so, no new normal data was presented during testing. In

our case, the normal samples in the test data are, in general, different from those

in the training set, though they are generated by the same process. Hence, the NS

algorithm has to be able to generalize the structure of the self set in order to be able to

classify correctly previously unseen normal patterns. But, is this a problem with the

matching rule or a more general issue in the NS algorithm? In fact, the NS algorithm

can perform very well on the same data set if the right matching rule is employed. We

used a real value representation matching rule and followed the approach proposed

in Chapter 5[24] on the second data set. The performance over the test data set was

detection rate, 94%, false alarm, 3.5%. These results are clearly superior to all the

results reported in Table 3.1.
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Table 3.1: Results of different matching rules in NS using the the Mackey-Glass test
data set. (r: threshold parameter, ND: number of detectors, D%: detection rate,
FA%: false alarm rate).

Binary Gray
r ND D% FA% ND D% FA%

r-contiguous 7 0 40 3.96% 1.26%
8 343 15.84% 16.84% 361 16.83% 16.67%
9 4531 53.46% 48.48% 4510 66.33% 48.23%
10 16287 90.09% 77.52% 16430 90.09% 75.0%
11 32598 95.04% 89.64% 32609 98.01% 90.4%

r-chunk 4 0 2 0.0% 0.75%
5 4 0.0% 0.75% 8 0.0% 0.75%
6 18 3.96% 4.04% 22 3.96% 2.52%
7 98 14.85% 16.16% 118 18.81% 13.13%
8 549 54.45% 48.98% 594 73.26% 47.47%
9 1942 85.14% 72.97% 1959 88.11% 67.42%
10 4807 98.01% 86.86% 4807 98.01% 86.86%
11 9948 100% 92.92% 9948 100% 92.92%
12 18348 100% 94.44% 18348 100% 94.44%

Hamming 11 0 0
12 1 0.99% 3.03% 7 10.89% 8.08%
13 2173 99% 91.16% 3650 99.0% 91.66%
14 29068 100% 95.2% 31166 100% 95.2%

Rogers & 8/16 0 0
Tanimoto 9/16 1 0.99% 3.03% 7 10.89% 8.08%

10/16 2173 99% 91.16% 3650 99% 91.66%
11/16 29068 100% 95.2% 31166 100% 95.2%
12/16 29068 100% 95.2% 31166 100% 95.2%
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3.5 Summary

In this chapter, we discussed different binary matching rules used in the negative

selection (NS) algorithm. The primary applications of NS have been in the field of

change (or anomaly) detection, where the detectors are generated in the complement

space which can detect changes in data patterns. The main component of NS is the

choice of a matching rule, which determines the similarity between two patterns in

order to classify self/non-self (normal/abnormal) samples. There exists a number of

matching rules and encoding schemes for the NS algorithm. This chapter examines

the properties (in terms of coverage and detection rate) of each binary matching rule

for different encoding schemes.

Experimental results showed that the studied binary matching rules cannot pro-

duce a good generalization of the self space, which results in a poor coverage of the

non-self space. The reason is that the affinity relation implemented by the matching

rule at the representation level (self/non-self ) space cannot capture the affinity rela-

tionship at the problem space. This phenomenon is observed in our experiments with

a simple real two-dimensional problem space.

The main conclusion of this chapter is that the matching rule for NS algorithm

needs to be chosen in such a way that it represents accurately the affinity relationship

in the problem space. Another factor to take into account is the type of application.

For instance, in change detection applications, where the complete knowledge of the

self space is available, the poor generalization capabilities of binary matching rules

does not seem to be a major issue. In contrast, in anomaly detection applications, like

those in computer security where we cannot expect ever to have a complete training

set, it is crucial to count on matching rules that can capture the semantics of the

problem space.

The results shown in this chapter provide a justification to explore new representa-

tion and matching rules for the NS algorithm; this is the main goal of the subsequent

chapters. Particularly, our effort is directed to investigate methods to generate good
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sets of detectors in real valued spaces. This type of representation also opens the pos-

sibility to integrate NS with other AIS techniques like those inspired by the immune

memory mechanism [18, 64].

49



r-contiguous r-chunk Hamming

r =8 r = 6 r = 12

r = 9 r = 7 r = 13

r = 10 r = 8 r = 14

r = 11 r = 9 r = 15

Figure 3.7: Coverage of the non-self space by detectors generated with negative selec-
tion. Different matching rules and parameter values were tested using binary encod-
ing. The results using Hamming maytching rule are same as the results using R&T
rule.
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r-contiguous r-chunk Hamming

r =7 r = 6 r = 12

r = 8 r = 7 r = 13

r = 9 r = 8 r = 14

r = 10 r = 9 r = 15

Figure 3.8: Coverage of the non-self space by detectors generated with negative selec-
tion. Different matching rules and parameter values were tested using Gray encoding.
The results using Hamming maytching rule are same as the results using R&T rule.
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Chapter 4

Negative Selection with Detection

Rules

4.1 Introduction

In the previous chapter, it was shown that binary matching rules have limitations in

terms of capturing the semantics of some complex self/non-self spaces. Additionally,

there are other issues found to exist that have prevented the NS algorithm from being

applied more extensively:

• Scalability: in order to guarantee good levels of detection, a large number of

detectors has to be generated (depending on the size of the self). For some

problems, the number of detectors could be unmanageable [92].

• The low-level detector representation prevents the extraction of meaningful do-

main knowledge. This makes it difficult to analyze reasons for reporting an

anomaly.

• A sharp distinction exists between the normal and abnormal. This divides the

space into two subsets: self (the normal) and the non-self (abnormal). An

element in the space is considered to be abnormal if there exists a detector

that matches it. In reality, the normalcy is not a crisp concept. A natural
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way to characterize the self space is to define a degree of normalcy; this can be

accomplished, for instance, by defining the self as a fuzzy set.

• Other immune-inspired algorithms use higher level representation (e.g. real

valued vectors). A low level representation, like binary, makes it difficult to

integrate the NS algorithm with other immune algorithms.

In this chapter, we propose a higher level representation for the detectors (antibod-

ies) that allows the extraction of knowledge through the application of NS algorithms.

Specifically, the self/non-self space corresponds to a subset of R
n, the unitary hyper-

cube [0, 1]n, and the detectors are hyper-rectangles contained in this space, which

can be interpreted as anomaly detection rules. The added structure to detectors ne-

cessitates the use of a more sophisticated detector generation algorithm; we used an

evolutionary algorithm for this purpose.

An additional issue this work tries to address is the crisp distinction between self

and non-self. The proposed algorithm divides the non-self space into different levels.

The idea is that the technique not only detects anomalous samples, but also estimates

the amount of deviation from the normal.

The proposed algorithm was first presented in 2002, where it was used to detect

anomalies in network traffic [21]. The algorithmic details are presented in Section 4.2.

Experimental results are reported in Section 4.3. Additionally, an improved detector

evolution algorithm [22] is introduced in Section 4.4. We extended the detector rep-

resentation to support fuzzy anomaly detection rules [23]. This work is presented in

Section 4.5.

4.2 Negative selection with detection rules (NSDR)

Instead of using binary encoding for the negative selection algorithm [10], our ap-

proach uses real-valued representation to characterize the self/non-self space and
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(a) (b)

Figure 4.1: Self/non-self space. (a) Approximation of the non-self space by rectangu-
lar interval rules. (b) Levels of deviation from the normal in the non-self space.

evolves a set of detectors that can cover the (non-self) complementary subspace (as

shown in Figure 4.1). The basic structure of these detection rules is as follows:

R1: If Cond1 then non self

...
...

...

Rm: If Condm then non self

where,

• Condi =x1 ∈ [lowi
1, highi

1] and . . . and xn ∈ [lowi
n, highi

n]

• (x1, ..., xn) is a feature vector

• [lowj
i , highj

i ] specifies the lower and upper values for the feature xi in the con-

dition part of the rule Rj.

The condition part of each rule defines a hypercube in the self/non-self space, [0.0, 1.0]n.

Then, a set of these rules tries to cover the non-self space with hypercubes. For the

case n = 2, the condition part of a rule represents a rectangle. Figure 4.1(a) illustrates

an example of this kind of cover for n = 2.

The non-self characteristic function (crisp version, see Subsection 2.3.1) generated

by a set of rules R = {R1, ..., Rm} is defined as follows:
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χnon self,R(−→x ) =





1 if ∃Rj ∈ R such that −→x ∈ Rj

0 otherwise

We used a genetic algorithm to evolve rules to cover the non-self space. These

rules constitute the complement of the normal values of the feature vectors. A rule

is considered good if it does not cover positive samples and its area is large. These

criteria guide the evolution process performed by the genetic algorithm.

As was described previously, a good characterization of the abnormal (non-self)

space should be non-crisp. Then, the non-self space can further be divided in different

levels of deviation. In Figure 4.1(b), these levels of deviation are shown as concentric

regions around the self zones.

In order to characterize different levels of abnormality, we considered a variability

parameter (called v) to the set of normal descriptors samples, where v represents the

level of variability that we allow in the normal (self) space. A higher value of v means

more variability (a larger self space); a lower value of v represents less variability (a

smaller self space). Figure 4.2 shows two sets of rules that characterize self spaces with

a large and small value of v. Figure 4.2(a) shows a covering using a small variability

parameter v. Figure 4.2(b) shows a covering using a larger value of v. The variability

parameter can be assumed as the radius of a hypersphere around the self samples.

Figure 4.2(c) shows the levels of deviation defined by two coverings.

In the non-self space, we use a genetic algorithm with different values of v to

generate a set of rules that can provide complete coverage. A set of rules looks like:
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(a) (b)

(c)

Figure 4.2: A set of normal samples is represented as points in 2-D space. The circle
around each sample point represents the allowable deviation. (a) Rectangular rules
cover the non-self (abnormal) space using a small value of v. (b) Rectangular rules
cover the non-self space using a large value of v. (c) Level of deviation defined by
each v, where level 1 corresponds to non-self cover in (a) and level 2 corresponds to
non-self cover in (b).
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R1: If Cond1 then Level 1

...
...

...

Ri: If Condi then Level 1

Ri+1: If Condi+1 then Level 2

...
...

...

Rj: If Condj then Level 2

...
...

...

The different levels of deviation are organized hierarchically such that level 1

contains level 2, level 2 contains level 3, and so forth. This means that an element

in the self/non-self space can be matched by more than one rule, but the highest

level reported will be assigned. This set of rules generates a non-crisp characteristic

function for the non-self space:

µnon self(
−→x ) = max({l | ∃Rj ∈ R , −→x ∈ Rj and l = level(Rj)} ∪ {0}),

where level(Rj) represents the deviation level reported by the rule Rj.

4.2.1 Genetic algorithm in detection rule generation

The genetic algorithm attempts to evolve ‘good’ rules [96, 97, 98] that cover the non-

self space. The goodness of a rule is determined by various factors: the number of

normal samples that it covers, its area, and the overlapping with other rules. This is

clearly a multi-objective, multi-modal optimization problem. We are not interested

in one solution but a set of solutions that collectively can solve the problem (covering

of the non-self region).

A niching technique is used with GAs to generate different rules. The input to the

GA is a set of feature vectors S ′ = {x1, ..., xl}, which are normal behavior samples.

Each element xj in S’ is an n-dimensional vector xj = (xj
1, ..., x

j
n).

The algorithm for the rule generation is shown in Figure 4.3, where
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Rule Generation

ruleSet <−− {}
numAttempts <−− 0

|ruleSet| < maxRules
and

numAttempts < maxAttempt

RunGA(S,v)
R <−− best evolved rule

Fitness(R) > minFitness

return ruleSet

ruleSet <−− ruleSet {R}

numAttempts <−− 0
numAttempts <−− numAttempts +1

no

noyes

yes

Figure 4.3: NSDR rule generation using a genetic algorithm with sequential niching.

S’ : self samples training set;

v : level of variability;

maxRules : maximum number of rules in the solution set;

minFitness : minimum fitness allowed for a rule to be included in the

solution set;

maxAttempts : maximum number of attempts to try to evolve a rule with

a fitness greater or equal to minFitness.

The algorithm tries to generate a set of rules (ruleSet) using a GA (procedure

RunGA()). Each rule in ruleSet is generated with different runs of the GA. The
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rule must have a fitness value of at least minFitness. If after a maximum number of

attempts(maxAttempts) it cannot generate a good rule, the algorithm stops (typical

values for maxAttempts lie between 3 and 5 runs).

The procedure RunGA() executes a tournament selection based GA. Its execution

time is O(num gen · pop size · ftime), where num gen is the number of generations,

pop size is the population size, and ftime is the execution time of the fitness evaluation.

In this case, ftime = O(|S ′|) where |S ′| is the size of the self sample set (see Section

4.2.1.2). Therefore, the execution time of the NSDR algorithm is O(m · num gen ·

pop size · |S ′|), where m is the number of generated rules.

4.2.1.1 Chromosome representation

Each individual (chromosome) in the genetic algorithm represents the condition part

of a rule, since the consequent part is the same for all the rules (the descriptor belongs

to the non-self). However, the levels of deviation in the non-self space are determined

by the variability factor (v).

The condition part of the rule is determined by the low and high limits for each

dimension. The chromosome that represents these values consists of an array of float

numbers. Uniform crossover and Gaussian mutation operators are used.

4.2.1.2 Fitness evaluation

Given a rule R with a condition part (x1 ∈ [low1, high1] and . . .and xn ∈ [lown, highn]),

we say that a feature vector xj = (xj
1, ..., x

j
n) satisfies the rule (represented for xj ∈ R),

if the hypersphere with center xj and radius v intercepts the hyper-rectangle defined

by the points (lowi, ..., lown) and (high1, ..., highn).

The raw fitness of a rule is calculated considering the following two factors:

• The number of elements in the training set S’ that are covered by the rule:

num elements(R) = {xi ∈ S | xi ∈ R}
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• The volume of the subspace represented by the rule:

volume(R) =

n∏

i=1

(highi − lowi)

The raw fitness is defined as:

raw fitnessR = volume(R)− C · num elements(R)

where, C is the coefficient of sensitivity. It specifies the amount of penalization that

a rule suffers if it covers some normal samples. So, the bigger the coefficient (C ), the

higher the imposed penalty. The raw fitness can also take negative values.

Since the coverage of the non-self space is accomplished by a set of rules, it is

necessary to evolve multiple rules. In order to evolve different rules, a sequential

niching algorithm is applied.

4.2.1.3 Sequential niching algorithm

The idea is to run the GA multiple times [99] to generate different rules so as to cover

the entire non-self region. In each run, we want to generate a new rule, that is, a

rule that can cover a portion of the non-self region. The raw fitness of each rule is

modified according to the overlap with the previously chosen rules. The following

pseudo-code segment shows how the final fitness of the rule R is calculated.

fitnessR ← raw fitnessR

for each Rj ∈ ruleSet do

fitnessR ← raw fitnessR − volume(R ∩Rj)

end-For

Where volume() calculates the volume of the subspace specified by the argument.
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4.3 NSDR using sequential niching experimenta-

tion

In this section, we test the proposed approach with network traffic data. The idea is

to examine if the system is able to detect some attacks subsequently, when the system

is trained with normal traffic patterns.

In order to evaluate the ability of the proposed approach to produce a good esti-

mation of the level of deviation, we implemented a simple (but inefficient) anomaly

detection mechanism. It uses the actual distance of an element to the nearest neigh-

bor in the Self set as an estimation of the degree of abnormality. This technique is

described in Section 4.3.2.

4.3.1 Data set (MIT-Darpa 99)

This data set is a version of the 1999 DARPA intrusion detection evaluation data

set generated and managed by MIT Lincoln Labs [100]. These data represent both

normal and abnormal information collected in a test network, where simulated attacks

were performed. The purpose of these data is to test the performance of intrusion

detection systems. The data sets contain complete weeks with normal data (not

mixed with attacks). This provides enough samples to train the detection system.

The data set is composed of network traffic data (tcpdump, inside and outside

network traffic), audit data (bsm), and file systems data. For our initial set of ex-

periments, we used only the outside tcpdump network data for a specific computer

(e.g., hostname: marx), and then we applied the tool tcpstat to get traffic statistics.

We used the first week’s data for training (attack free), and the second week’s data

for testing, which include some attacks. Some of these were network attacks, and the

others were inside attacks. Only the network attacks were considered for our testing.

These attacks are described in Table 4.1 and the attack time-line is shown in Figure

4.4.
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Table 4.1: Second week attacks description

Day Attack Name Attack Type Start Duration

1 Back DOS 9:39:16 00:59

2 Portsweep PROBE 8:44:17 26:56

3 Satan PROBE 12:02:13 02:29

4 Portsweep PROBE 10:50:11 17:29

5 Neptune DOS 11:20:15 04:00

0 1000 2000 3000 4000 5000 6000

Back
Satan

Portsweep

Portsweep

Neptune

Time
(minutes)

Attack

Figure 4.4: Network attacks on the second week.

Three parameters were selected to detect some specific type of attacks. These

parameters were sampled each minute (using tcpstat) and normalized. Table 4.2 lists

six time series Si and Ti for training and testing, respectively.

The set S of normal descriptors is generated from a time series R = {r1, r2, ..., rn}

in an overlapping sliding window fashion:

S = {(r1, ..., rw), (r2, ..., rw+1), ..., (rn−w+1, ..., rn)},

where w is the window size. In general, from a time series with n points, a set of n -

w + 1 of w -dimensional descriptors can be generated. In some cases, we used more

Table 4.2: Data sets and parameters used
Name Description Week Type

S1 Number of bytes per second 1 Training

S2 Number of packets per second 1 Training

S3 Number of ICMP packets per second 1 Training

T1 Number of bytes per second 2 Testing

T2 Number of packets per second 2 Testing

T3 Number of ICMP packets per second 2 Testing
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than one time series to generate the feature vectors. In those cases, the descriptors

were put side-by-side in order to produce the final feature vector. For instance, if we

used the three time series S1, S2, and S3 with a window size 3, a set of 9-dimensional

feature vectors was generated.

4.3.2 Positive characterization (PC) approach

In this approach, we used the positive samples to build a characterization of the Self

space. In particular, we did not assume a model for the Self set. Instead, we used

the positive sample set itself1 for a representation of the Self space. The degree

of abnormality of an element is calculated as the distance from itself to the nearest

neighbor in the Self set. We chose to define the characteristic function of the Non Self

set, since its definition is more natural, and the derivation of the Self set characteristic

function is straightforward.

µnon self(−→x ) = D(−→x , Self) = min{d(−→x ,−→s ) : −→s ∈ Self}

Here, d(x, s) is a Euclidean distance metric (or any Minkowski metric2). D(−→x , Self)

is the nearest-neighbor distance, that is, the distance from x to the closest point in Self.

Then, the closer an element −→x is to the self set, the closer the value of µnon self(
−→x )

is to 0.

The crisp version of the characteristic function is the following:

µnon self,t(
−→x ) =





1 if µself(−→x ) > t

0 if µself(−→x ) ≤ t
=





1 if D(−→x , Self)) > t

0 if D(−→x , Self)) ≤ t

In a dynamic environment, the parameter values that characterize normal system

behavior may vary within a certain range over a period of time. The term (1 - t)

1This approach is known as lazy learning or instance based learning [101]. It is used commonly
in classification algorithms.

2In our experiments, we also used the D∞ metric defined by: D∞(−→x ,−→y ) = max(|x1−y1|, ..., |xn−
yn|).
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Figure 4.5: Behavior of the parameter number of packets per second. (a) Training
(self) set corresponding to the first week. (b) Testing set corresponding to the second
week.

represents the amount of allowable variability in the self space (the maximum distance

that a point can be from the Self samples to be considered as normal).

This positive characterization can be implemented efficiently using spatial trees.

In our implementation, a KD-Tree [102, 103, 104] was used. A KD-tree represents a

set of k -dimensional points and it is a generalization of the standard one-dimensional

binary search tree. The nodes of a KD-Tree are divided into two classes: internal

nodes, which partition the space with a cut plane defined by a value in one of the k

dimensions, and external nodes (leaves), which define ‘buckets’ (resulting in hyper-

rectangles) where the points are stored.

This representation allows answering queries in an efficient way. The amortized

cost of a nearest-neighbor query is O(log N) [103]. We used a library (that implements

the KD-Tree structure) developed at the University of Maryland [105].

4.3.2.1 Positive characterization experiments

In each experiment, the training set was used to build a KD-tree to represent the self

set. Then, the distance (nearest neighbor) from each point in the testing set to the

self set was measured to determine deviations.
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Figure 4.6: Distance from the testing set (T2) to the self set (S2) (µnon self(−→x )).
(a) Using window size 1. (b) Using window size 3 and Euclidean distance. (c) Using
window size 3 and D∞ distance.
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For this set of experiments, the variables were considered independently; that is,

the feature vectors were built using only one variable (time series) each time. Figure

4.5 shows an example of the training and testing data sets for the parameter number

of packets per second. Figure 4.6(a) represents the non-self characteristic function

µnon self(
−→x ), that is, the distance from the test set to the training set for the same

parameter. In this case, the window size used to build the descriptors was 1. Figures

4.6(b) and 4.6(c) show µnon self(
−→x ) for using a window size of 3. In Figure 4.6(b),

the Euclidean distance is used, and in Figure 4.6(c), the D∞ distance is used.

The plots (in Figure 4.6) of the non-self characteristic function show some peaks

that correspond to significant deviations from the normal. It is easy to check that

these peaks coincide with the network attacks present on the testing data (Table 4.1

and Figure 4.4). We conclude the following from these results:

• Using only one parameter is not enough to detect all five attacks. Figure 4.6

shows how the function µnon self(
−→x ) detects deviations that correspond to at-

tacks; however, none of the parameters is able to detect, independently, all five

attacks.

• A higher window size increases the sensitivity; this is reflected in the higher

values of deviation.

• A higher window size allows for the detection of temporal patterns. For the

time series T1 and T3, increasing the window size does not modify the number

of detected anomalies. But, for the time series T2, when the window size is

increased from 1 (Figure 4.6(a)) to 3 (Figures 4.6(b) and 4.6(c)), one additional

deviation (correspondent to attack 5) is detected. Clearly, this deviation was

not caused by a value of this parameter (number of bytes per second) out of

range; otherwise, it would be detected by the window size 1. There was a

temporal pattern that was not seen in the training set, and that might be the

reason why it was reported as an anomaly.
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Figure 4.7: Distance from test sets to the self set (µnon self(−→x )) using S1,S2,S3.
(a) Window size 1. (b) Window size 3.

• The change of the distance metric from Euclidean (Figure 4.6(b)) to D∞ (Figure

4.6(c)) does not modify the number and type of the deviations detected.

As we found in previous experiments, to detect the four attacks it is necessary to take

into account more than one parameter. In the following experiments, we used three

parameters to build the feature vector in order to test whether the PC technique can

detect all the attacks. Accordingly, we performed two experiments by varying the

sliding window size:

• Window size 1:

Feature vector structure: {r1
j , r

2
j , r

3
j}, where ri

j is taken from the time series Ti.

• Window size 3:

Feature vector structure: {r1
n, r

1
n+1, r

1
n+2, r

2
n, r2

n+1, r
2
n+2, r

3
n, r3

n+1, r
3
n+2}, where ri

j

is taken from the time series Ti.

Figure 4.7 shows the non-self characteristic function for feature vectors conformed

with samples of three time series. In all cases, there are five remarkable anomalies

that correspond to five attacks. Like previous experiments, an increase in the size of

the window increases the sensitivity of the anomaly detection function. However, this
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could generate more false positives. In order to measure the accuracy of the anomaly

detection function, it is necessary to convert them to a crisp version. In this case,

the output of the function will be normal or abnormal. This output can be compared

with attack information to calculate how many anomalies (caused by an attack) were

detected accurately.

According to Definition 3 (Subsection 2.3.1), the crisp version of the anomaly

detection function µnon self(
−→x ) is generated by specifying a threshold (t), indicating

the frontier between normal and abnormal. Clearly, the value of t will affect the

capabilities of the system to detect accurately. A very large value of t will allow

large variability on the normal (self), increasing the rate of false negatives; a very

small value of t will restrict the normal set, causing an increase on the number of

detections, but also increasing the number of false positives (false alarms). In order

to show this trade-off between the false alarm rate and the detection rate, ROC

(receiver operating characteristics) diagrams [106] are drawn. The anomaly detection

function µnon self,t(
−→x ) is tested with different values of t, the detection and false

alarm rates are calculated, and this generates a set of points that constitutes the

ROC diagram. The detection and false alarm rates are calculated using the following

equations:

Detection rate =
TP

TP + FN
(4.1)

False alarm rate =
FP

TN + FP
, (4.2)

where:

TP : true positives – anomalous elements identified as anomalous;

TN : true negatives – normal elements identified as normal;

FP : false positives – normal elements identified as anomalous; and

FN : false negatives – anomalous elements identified as normal.

The Figure 4.8 shows the ROC diagrams for the µnon self(
−→x ) functions shown

in Figure 4.7. In general, the behavior of these four functions is very similar: high

detection rates with a small false alarm rate. The anomaly detection functions that
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Figure 4.8: ROC diagrams for the µnon self(−→x ) function shown on Figure 4.7. (a) Full
scale. (b) Detail of the upper-left corner.

use window size 3 show a slightly better performance in terms of detection rates.

This could be attributed to the higher sensitivity, produced by a larger window, to

temporal patterns. However, this causes more false alarms. A possible explanation

is that after an attack, some disturbance may still remain in the system, and the

function with the larger window size was able to detect it.

The positive characterization technique has shown to work well on the performed

experiments. The main drawback of this technique is its memory requirements, since

it is necessary to store the samples that constitute the normal profile. The amount

of data generated by network traffic can be large, making this approach unfeasible.

This is the main motivation for the negative characterization approach (NSDR), com-

pressing the information of the normal profile without significant loss in accuracy.

4.3.3 Experimentation and results

In order to test the negative characterization approach (NSDR), we used the MIT-

Darpa 99 data set [100] (mentioned in Section 4.3.2.1). We used as training set the

time series S1, S2, and S3, and as testing set the time series T1, T2, and T3, with

window sizes of 3 and 1, respectively (the time series are described in Table 4.2).
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Table 4.3: Number of generated rules for each deviation level

Level Radius Avg. Num. Rules Avg. Num. Rules

(Window size = 1) (Window size = 3)

1 0.05 1.1 19.5

2 0.1 1.1 20.7

3 0.15 1 26

4 0.2 1.1 28
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Figure 4.9: Indicates the deviations in the testing set detected by the evolved rule
set. (a) For window size 1. (b) For window size 3.

The parameters for the genetic algorithm were population size 100, number of

generations 1500, mutation rate 0.2, crossover rate 1.0, and coefficient of sensitivity:

1.0 (high sensitivity).

The genetic algorithm was run with variability parameter (v) equal to 0.05, 0.1,

0.15, and 0.2, respectively. Then, the elements in the testing set were classified using

rules generated for each level (different value of v). This process was repeated 10

times and the results reported correspond to the average of these runs.

Table 4.3 shows the number of rules generated by the genetic algorithm for each

level. There is a clear difference between the number of rules when the window size

changes; the number of rules changes with the size of the window as the pattern space

becomes larger.
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Table 4.4: Best true positive rates for the different techniques with a maximum false
alarm rate of 1%

Detection Technique Window size 1 Window size 3

Positive Characterization (Euclidean) 92.8% 96.4%
Positive Characterization (D∞) 92.8% 92.8%
Negative Characterization 82.1% 87.5%

Figure 4.9 shows two typical attack profiles produced by evolved rules applied to

the testing set. With a window size of 1, three out of five attacks are detected, while

with a window size of 3, four out of five attacks are detected.

The negative characterization technique (NSDR) is more efficient (in time and

space) compared to the positive characterization (PC). In the case of a window size

of 1, the PC needs to store 5202*3=15,606 floating-point values; the NSDR technique

only has to store 4*6 = 24 floating points values, so the compression ratio is ap-

proximately 1000:1.5. In the case of the window size of 3, the ratio is 46,728:1,698,3

approximately 100:8. It seems to be a trade-off between compactness of the rule set

representation and accuracy. Validity of these arguments is observed in our results.

Figure 4.10 shows how the rate of true positives (detection rate) changes according

to the value of the threshold t. In both cases, the PC technique has better perfor-

mance than the NSDR one but only by a small difference. In general, the NSDR

technique shows detection rates similar to the more accurate (but more expensive)

PC technique. Table 4.4 summarizes the best true positive rates (with a maximum

false alarm of 1%) accomplished by the two techniques.

Esponda et al. [107] suggested that this comparison between the PC technique

and the NSDR method is not meaningful since the two methods are quite different.

However, the PC technique provides a point reference that facilitates the evaluation

of the performance of the NSDR technique.

3The number of floating point numbers needed by the positive characterization is equal to (5192
samples)*(9 dimensions) = 46,728. The number of floating points numbers needed by the negative
characterization is (94 rules)*(18 floating values per rule) = 1,698.
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Figure 4.10: Comparison of the true positives rate of the detection function
µnon self,t(−→x ) generated by positive characterization (PC) and negative characteri-
zation (NSDR) for different values of t. (a) Window size 1. (b) Window size 3.

As was mentioned before, the proposed NSDR technique produces a good estimate

of the levels of deviation. In order to evaluate this estimate, a detailed comparison

of the NSDR output levels and PC distance range was performed. The results are

illustrated in Table 4.5 in the form of a confusion matrix. For each element in the

testing set, the function µnon self(−→x ) generated by the NSDR is applied to determine

the level of deviation. This level of deviation is compared with the distance range

reported by the PC algorithm. Each row (and column) corresponds to a range or

level of deviation. The ranges are specified in square brackets. A perfect output from

the NSDR algorithm should generate only values in the diagonal.

The results in Table 4.5 suggest that the NSDR approach better approximates

the deviation reported by PC using D∞ distance. To support this claim precisely, we

measured the number of testing samples for the all possible differences between the

PC reported level and the NSDR reported level. A difference of zero means that the

reported levels are the same, a difference of one means that the results differ by one

level, etc. The results for two distances and two window sizes are reported in Table

4.6.
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Table 4.5: Confusion matrix for PC and NSDR reported deviations. The values of
the matrix elements correspond to the number of testing samples in each class. The
diagonal values represent correct classification

PC output level NSDR output level

No deviation Level 1 Level 2 Level 3 Level 4

Euclidean [0.0,0.05] [0.05,0.1] [0.1,0.15] [0.15,0.2] [0.2,..]

[0.0,0.05] 5131 0 0 0 0

[0.05,0.1] 4 1 0 0 0

[0.1,0.15] 0 2.9 2.1 0 0

[0.15,0.2] 0 22 2 0 0

[0.2,..] 0 0 6.9 10.5 9.6

D∞
[0.0,0.05] 5132 0 0 0 0

[0.05,0.1] 3 7.8 0.2 0 0

[0.1,0.15] 0 18.1 3.9 0 0

[0.15,0.2] 0 0 6.9 9.5 0.6

[0.2,..] 0 0 0 1 9

Table 4.6: The difference between PC and NSDR reported levels for test data set. It
is expressed as a percentage of the abnormal feature vectors (distance greater than
0.05). A difference of zero means that the level reported by PC and NSDR are the
same, a difference of one means that the results differ by 1 level, etc.

Difference between PC Euclidean distance D∞ distance

and NSDR reported level

0 20.8% 50.3%

1 31.8% 49.7%

2 47.3% 0.0%

3 0.0% 0.0%

4 0.0% 0.0%
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The results are very different when different distances are used for the PC algo-

rithm. Clearly, when the D∞ distance is used in the PC, results of the comparison

improved. Despite the fact that only 50.3% of the outputs from the NSDR algorithm

are same as the PC algorithm, 100% of the NSDR outputs are in the range of 0 or

1 level of difference from the PC. The distance metric determines the structure of a

metric space. For instance, in a Euclidean space, the set of points that are at the

same distance from a fixed point corresponds to a circle (a hypersphere in higher

dimensions). In the D∞ metric space, this set of points corresponds to a rectan-

gle (hyper-rectangle). Therefore, the rectangular rules used by the NSDR approach

are better suited to approximate the structure of the D∞ metric space, and this is

reflected in the experimental results.

4.3.4 Analysis of results

We investigated genetic algorithms to evolve detectors in the complement pattern

space to identify any changes in the normal behavior of monitored behavior patterns.

This technique (NSDR) is used to characterize and to identify different intrusive

activities by monitoring network traffic, compared with another approach (PC). We

used a real-world data set (MIT-Lincoln Lab) that has been used by other researchers

for testing different approaches. The following are some preliminary observations:

• When PC and NSDR approaches are compared, PC appears to be more precise,

but it requires more time and space resources. The negative characterization is

less precise but requires fewer resources.

• Results demonstrate that the NSDR approach to detector generation is feasible.

It was able to detect four of the five attacks detected by the positive charac-

terization (with a detection rate of 87.5% and a maximum false alarm rate of

1%).

• The best results were produced when we used window size of 3. We observed

that a bigger window size makes the system more sensitive to deviations.
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4.4 NSDR using deterministic crowding

The purpose of the genetic algorithm is to evolve ‘good’ rules to cover the non-self

space. In general, one rule is not enough; instead, a set of rules that solve the problem

cooperatively is necessary. In Section 4.2, we used a genetic algorithm combined

with a sequential niching technique [99]. That approach was useful in evolving good

detection rules. The main drawback of that approach is that the genetic algorithm

must be run multiple times to generate multiple rules. The approach proposed in

this section uses a niching technique, deterministic crowding [108], that allows the

generation of multiple rules in a single run.

4.4.1 The algorithm

The NSDR algorithm using deterministic crowding (DC) is shown in Figure 4.11. The

main inputs to the algorithm are a set of n-dimensional feature vectors S = {x1, ..., xl},

which represents samples of the normal behavior of the parameter; the number of

different levels of deviation (num levels); and the allowed variability for each level

{v1, ..., vnumLevels}. Additional parameters to the algorithm are the population size

(pop size) and the number of generations (num gen).

The execution time of this algorithm is O(num levels · num gen · pop size · |S ′|),

where |S ′| is the number of self samples and is included in the expression since the

time complexity of the fitness calculation is O(|S ′|). Notice that the time complexity

depends on the number of levels and not on the number of rules; this makes this

algorithm more efficient than the NSDR algorithm based on sequential niching (see

Subsection 4.2.1).

The chromosome representation and the fitness function used are the ones de-

scribed in Subsections 4.2.1.1 and 4.2.1.2, respectively.
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NS-Detector-Rules(S ′, num_levels, {v1, ..., vnumLevels})
S′ : set of self samples

num_levels : number of deviation levels

{v1, ..., vnumLevels} : allowed variability for each level

1:for i = 1 to num_levels

2: initialize population with random individuals

3: For j = 1 to num_gen

4: For k = 1 to pop_size/2

5: select two individuals,(parent1, parent2), with uniform

probability and without replacement

6: apply crossover to generate an offspring (child)
7: mutate child

8: If dist(child, parent1) < dist(child, parent2)
∧fitness(child) > fitness(parent1)

10: Then parent1← child

11: ElseIf dist(child, parent1) ≥ dist(child, parent2)
12: ∧fitness(child) > fitness(parent2)
13: Then parent2← child

14: EndIf

15: EndFor

16: EndFor

17: extract the best individuals from the population

and add them to the final solution

18:EndFor

Figure 4.11: Negative selection with detection rules (NSDR) algorithm using deter-
ministic crowding (DC).
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4.4.1.1 Individual’s distance calculation

A good measure of distance between individuals is important for deterministic crowd-

ing niching, since it allows the algorithm to replace individuals with closer individuals.

This allows the algorithm to preserve niche formation.

The distance measure used in this work is the following:

dist(c, p) =
volume(p)− volume(p ∩ c)

volume(p)
,

where c is a child, and p is its parent.

Note that the distance measure is not symmetric. The purpose is to give more

importance to the area of the parent that is not covered. The justification is as follows:

if the child covers a high proportion of the parent, that means that the child is a good

generalization of it, but if the child covers only a small portion, then it is not so.

4.4.2 NSDR using deterministic crowding experimentation

The proposed algorithm was tested with the data set presented in Section 4.3.1. We

used as the training set the time series S1, S2 and S3, and as the testing set the time

series T1, T2 and T3, with a window size of 3. This means that the size of the feature

vectors was 9.

The parameters for the genetic algorithm were population size 200, number of

generations 2000, mutation rate 0.1, and coefficient of sensitivity 1.0 (high sensitivity).

The genetic algorithm was run with variability for each level equal to 0.05, 0.1,

0.15, and 0.2, respectively. Then, the elements in the testing set are classified using

rules generated for each level (radius). This process is repeated 10 times and the

results reported correspond to the average of these runs.
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Table 4.7: Number of generated rules for each deviation level

Level Radius Avg. Num. Rules

Seq. Niching Det. Crowding
1 0.05 19.5 7.75

2 0.1 20.7 8.25

3 0.15 26 10

4 0.2 28 10

4.4.2.1 Results and discussion

Table 4.7 shows the number of rules generated by the genetic algorithm with the

previous technique (NSDR with SN) and with the new DC scheme (NSDR with DC).

The new technique produces less rules. This suggests the possibility that the new

technique is discarding some good rules and therefore ignoring some niches. However,

the performance of the set of rules generated by each technique is apparently similar.

This exhibits that the new technique is able to find a set of more compact rules

producing the same performance. This can be explained by the fact that sequential

niching is more sensitive to the definition of the distance between individuals than

deterministic crowding.

Another notable point is the efficiency of the DC technique. The DC technique

only needs four runs (one per level) to generate a rule set. For the previous technique,

it is necessary to run the GA as many times as the number of rules we want to generate.

This is a clear improvement on computational time.

In Section 4.3.3, it is shown that the NSDR technique produces a good estimate of

the level of deviation when this is calculated using D∞ distance. Table 4.8 shows the

confusion matrix for the NSDR technique using sequential niching and deterministic

crowding. For each element in the testing set, the function µnon self(−→x ) generated

by the NSDR is applied to determine the level of deviation. This level of deviation is

compared with the distance range reported by the PC algorithm (using D∞ distance).

Each row (and column) corresponds to a range or level of deviation. The ranges are
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Table 4.8: The values of the matrix elements correspond to the number of testing
samples in each class. The diagonal values represent correct classification

PC output NSDR output level

level Seq. niching

0 1 2 3 4

1: [0.0,0.05] 5132 0 0 0 0

2: [0.05,0.1] 3 7.8 0.2 0 0

3: [0.1,0.15] 0 18.1 3.9 0 0

4: [0.15,0.2] 0 0 6.9 9.5 0.6

5: [0.2,..] 0 0 0 1 9

Det. crowding

0 1 2 3 0

1: [0.0,0.05] 5132 0 0 0 0

2: [0.05,0.1] 3 4 4 0 0

3: [0.1,0.15] 0 0 22 0 0

4: [0.15,0.2] 0 0 0 17 0

5: [0.2,..] 0 0 0 0 10

specified on square brackets. A perfect output from the NSDR algorithm will generate

values only in the diagonal.

In the two cases, the values are concentrated around the diagonal. The two tech-

niques produced a good estimate of the distance to the self set. However, the NSDR

approach with deterministic crowding appears to be more precise. One possible ex-

planation of this performance difference seems to be the fact that the sequential

niching requires derating the fitness function for each evolved rule. This arbitrary

modification in the fitness landscape can prevent evolving better rules.

4.5 Extending NSDR to use fuzzy rules

The purpose of this section is to extend the algorithm described in the previous section

to evolve fuzzy rules instead of crisp rules. That is, given a set of self samples, the

algorithm will generate fuzzy detection rules in the non-self space that can determine

if a new sample is normal or abnormal. As it will be shown later, the use of fuzzy
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rules improves the accuracy of the method and produces a measure of deviation from

the normal that does not need to partition the non-self space.

4.5.1 Anomaly detection with fuzzy rules

A fuzzy detection rule has the following structure:

If x1 ∈ T1 ∧ . . . xn ∈ Tn then non self,

where

(x1, . . . xn): element of the self/non-self space being evaluated;

Ti: fuzzy set;

∧: fuzzy conjunction operator (in this case, min()).

The fuzzy set Ti is defined by a combination of basic fuzzy sets (linguistic values).

Given a set of linguistic values S = {S1, . . . , Sm} and a subset T̂i ⊆ S associated to

each fuzzy set Ti,

Ti =
⋃

Sj∈ bTi

Sj,

where
⋃

corresponds to a fuzzy disjunction operator. We used the addition operator

defined as follows:

µA∪B(x) = min{µA(x) + µB(x), 1}.

An example of fuzzy detection rules in the self/non-self space with dimension

n = 3 and linguistic values S = {L, M, H}:

If x1 ∈ L ∧ x2 ∈ (L ∪M) ∧ x3 ∈ (M ∪H) then non self

In our experiments, the basic fuzzy sets correspond to a fuzzy division of the real

interval [0.0, 1.0] using triangular and trapezoidal fuzzy membership functions. Figure
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4.12 shows an example of such a division using five basic fuzzy sets representing the

linguistic values Low, Medium-Low, Medium, Medium-High and High.

 Proceedings of the 2002 IEEE 
 Workshop on Information Assurance 
 United States Military Academy, West Point, NY  June 2001 
 

ISBN 555555555/$10.00   2002 IEEE 

detection problems. In this approach, genetic algorithms 
can find good and simple fuzzy rules to characterize 
intrusions (abnormal) and normal behavior of network 
systems. As the difference between the normal and the 
abnormal activities are not distinct, but rather fuzzy, fuzzy 
logic can reduce the false signal rate in determining 
intrusive activities. 
 
The subsequent sections are organized as follows. Section 
2 briefly describes the basic fuzzy logic and fuzzy 
classifiers concepts used in this paper, section 3 presents 
the proposed approach to solve some intrusion detection 
problems, section 4 describes experiments and analysis of 
results, and section 5 draws some conclusions.   

II. FUZZY CLASSIFIERS FOR INTRUSION DETECTION 

The intrusion detection problem (IDP) is a two-class 
classification problem: the goal is to classify patterns of 
the system behavior in two categories (normal and 
abnormal), using patterns of known attacks, which 
belongs to the abnormal class, and patterns of normal 
behavior. With fuzzy rules, the solution to classification 
problem is based on fuzzy logic concepts. 

A. Fuzzy Logic 

In fuzzy logic [13], fuzzy sets define the linguistic 
notions, and membership functions define the truth-value 
of such linguis tic expressions. Table 1 shows the 
difference between classic sets and fuzzy sets. 
 

FUZZY SETS CLASSIC SETS 
In fuzzy sets, an object 
can partially be in a set. 

In classic sets, an object is 
entirely in a set or is not. 

The membership degree 
takes values between 0 
and 1. 

The membership degree 
takes only two values, either 
0 or 1. 

1 means entirely in the 
set, 0 means entirely not 
in the set, other values 
mean partially in the set. 

1 means entirely in the set, 0 
means entirely not in the set. 
Other values are not allowed. 

Table 1: Comparisson between fuzzy sets and classic sets  

The degree of membership of an object in a fuzzy set is 
defined as a function where the universe of discourse (set 
of values that the object can take) is the domain, and the 
interval [0,1] is the range. Figure 1 shows an example of 
the membership function (triangular), which is in wide 
use. 
 

 
 
 

 
 

Figure 1: Triangular membership function 
 
In figure 1, the object x has 0.6 degree of membership to 
the fuzzy set low, i.e., x belongs to the fuzzy set and does 
not belong to the fuzzy set at the same time. A collection 
of fuzzy sets, called fuzzy space, defines the fuzzy 
linguistic values or fuzzy-classes that an object can belong 
to. A standard fuzzy space is shown in figure 2. 

 

 

Figure 2: Fuzzy space with five fuzzy sets 
 
With fuzzy spaces, fuzzy logic allows an object to belong 
to different classes at the same time. This concept is 
helpful when the difference between classes is not well 
defined. This is the case in the intrusion detection task, 
where the differences between the normal and abnormal 
classes are not well defined. 
 
With these linguistic concepts, atomic and complex fuzzy 
logic expressions can be built. An atomic fuzzy 
expression is an expression: 
 

parameter is [not] fuzzyset 
 

Where, parameter is an object, and fuzzyset is a fuzzy set 
that belongs to the defined fuzzy space for the parameter. 
The truth-value (TV) of an atomic expression is the 
degree of membership of the parameter to the fuzzy set. 
Because TVs are expressed by numbers between 0 and 1, 
(0 means entirely false, 1 means entirely true, and others 
values means partially true), the fuzzy expression 
evaluation process is reduced to arithmetic operations. 
Also, for each classical logic operator (and, or, negation), 
there is a common fuzzy logic arithmetic operator (shown 
in table 2): 
 

Figure 4.12: Partition of the interval [0,1] in basic fuzzy sets.

Given a set of rules {R1, . . . , Rk}, each one with a condition part Condi, the degree

of abnormality of a sample x is defined by

µnon self(x) = max
i=1,...k

{Condi(x)} ,

where Condi(x) represents the fuzzy true value produced by the evaluation of Condi

in x and µnon self(x) represents the degree of membership of x to the non-self set;

thus, a value close to zero means that x is normal and a value close to 1 indicates

that x is abnormal.

4.5.2 Negative selection with fuzzy detection rules (NSFDR)

To generate the fuzzy rule detectors, we will use the same evolutionary algorithm

described in the Subsection 4.4.1 (NSDR with DC). However, the use of fuzzy rules

does not require the generation of rules for different levels of deviation. Thus, all

the rules are generated in a simple run of the deterministic crowding algorithm. Fig-

ure 4.13 shows the NSFDR algorithm. The time complexity of the algorithm is

O(num gen · pop size · |Self ′|).
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NS-Fuzzy-Detector-Rules(Self ′)

Self ′ : set of self samples

1: initialize population with random individuals

2: For j = 1 to num_gen

3: For k = 1 to pop_size/2

4: select two individuals,(parent1, parent2), with uniform

probability and without replacement

5: apply crossover to generate an offspring (child)
6: mutate child

7: If dist(child, parent1) < dist(child, parent2)
∧fitness(child) > fitness(parent1)

8: Then parent1← child

9: ElseIf dist(child, parent1) ≥ dist(child, parent2)
10: ∧fitness(child) > fitness(parent2)
11: Then parent2← child

12: EndIf

13: EndFor

14: EndFor

15: extract the best individuals from the population

and add them to the final solution

Figure 4.13: Negative selection with fuzzy detection rules (NSFDR) algorithm.

The use of fuzzy rules requires changes on the chromosome representation, fitness

evaluation, and distance calculation. These changes are described below.

4.5.2.1 Chromosome representation

Each individual (chromosome) in the genetic algorithm represents the condition part

of a rule, since the consequent part is same for all rules (the sample belongs to non-

self). As it was described before, a condition is a conjunction of atomic conditions.

Each atomic condition, xi ∈ Ti, corresponds to a gene in the chromosome that is

represented by a sequence (si
1, . . . , s

i
m) of bits, where m = |S| (the size of the set of

linguistic values), and si
j = 1 if and only if Sj ⊆ Ti. That is, the bit si

j is ‘on’ if

and only if the corresponding basic fuzzy set Sj is part of the composite fuzzy set Tj.

Figure 4.14 shows the structure of a chromosome which is n ×m bits long (n is the

dimension of the space and m is the number of basic fuzzy sets).
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Figure 4.14: Structure of the chromosome representing the condition part of a rule.
Each gene represents an atomic condition xi ∈ Ti and each bit si

j is ‘on’ if and only
if the corresponding basic fuzzy set Sj is part of the composite fuzzy set Tj.

4.5.2.2 Fitness evaluation

The fitness of a rule Ri is calculated by taking into account the following two factors:

• The fuzzy true value produced when the condition part of a rule, Condi, is

evaluated for each element x from the self set:

selfCovering(R) =

∑

x∈Self ′

Condi(x)

|Self ′|

• The fuzzy measure of the volume of the subspace represented by the rule:

volume(R) =

n∏

i=1

measure(Ti),

where measure(Ti) corresponds to the area under the membership function of

the fuzzy set Ti.

The fitness is defined as follows:

fitness(R) = C · (1− selfCovering(R)) + (1− C) · volume(R),

where C, 0 ≤ C ≤ 1, is a coefficient that determines the amount of penalization that

a rule suffers if it covers normal samples. The closer the coefficient to 1, the higher

the penalization. In our experimentation, we used values between 0.8 and 0.9.

4.5.2.3 Individual’s distance calculation

In this work, we use the Hamming distance because there is a strong relation between

each bit in the chromosome with a single fuzzy set of some particular attribute in
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the search space. For example, if the sj
i bit (see Figure 4.14) in both parent and

child fuzzy rule detectors is set to one, both individuals include the atomic sentence

xi ∈ sj, i.e. they use the jth fuzzy set to cover some part of the ith attribute. Then,

the more bits the parent and the child have in common, the more common area they

will cover.

4.6 NSFDR experimentation

We applied the fuzzy algorithm (Negative Selection with Fuzzy Detection Rules -

NSFDR) and the crisp version (NSDR using DC) to three different data sets as

shown in Table 4.9.

The algorithms were run 1000 iterations with a population size of 200 individuals.

The mutation probability was fixed to 0.1, and the NSDR algorithm was run four

times, each time with a different level of deviation (0.1, 0.2, 0.3, and 0.4). The crisp

detectors (hyper rectangles) generated by each run are combined to define the final

set of detectors produced by the NSDR.

Table 4.9: Data sets used for experimentation

Data Set Training Testing

Normal Abnormal

Mackey-Glass 497 396 101

MIT-Darpa 99 4000 5136 56

MIT-Darpa 98 1474 19056 396745

In order to asses the performance of both methods, we calculate the detection rate

(DR, Equation 4.1) and false alarm rate (FA, Equation 4.2) and plot the result using

ROC curves (as described in Subsection 4.3.2.1 on page 68). Also, the reported DR

was obtained for each algorithm when the FA was fixed to 3%.
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4.6.1 Experiments with Mackey-Glass time series

4.6.1.1 Data set and preprocessing

The Mackey-Glass series [109] has been used as a test set for different anomaly detec-

tion approaches [110, 15, 111]. Although it is generated by a deterministic differential

equation, it exhibits a chaotic behavior that makes its prediction difficult.

The differential equation that defines the series is the following:

dx

dt
=

ax(t− τ)

1 + xc(t− τ)
− bx(t) (4.3)

The parameter τ controls the complexity of the series dynamics, ranging from

periodic to chaotic behavior.

In order to generate the training and testing data sets, Equation 4.3 is solved

numerically using the fourth-order Runge-Kutta method with an integration step of

0.02, a sampling rate of 12, and an initial value vector with all its elements equal to

1.1. The parameter values used for the equation are: a = 0.2, b = 0.1, and c = 10,

which are the general choice in the literature [15, 110].

The normal samples were produced from a time series with 500 elements generated

using τ = 30 and discarding the first 1000 samples to eliminate the initial value effect.

The resulting time series is shown in Figure 4.15(a).
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Figure 4.15: Mackey-Glass time series. (a) normal, using τ = 30; (b) with an anomaly,
τ = 17 from 300 to 400.
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The test data (Figure 4.15(b)) is generated as before using τ = 30, but starting

with different initial conditions. An abnormality is introduced between time 300 to

400 by changing the parameter τ to 17. It is important to note that this experimental

setting is different from the one used by Dasgupta and Forrest [15]. In that work,

the anomalous time series is identical to the normal one, with the exception of the

portion between 1000 and 1500. In our case, the two series are completely different

since they were generated using different initial conditions. This makes the problem

more challenging for the anomaly detection algorithm, since it has to be able to learn

the structure of the normal set and not just memorize the samples.

The features are extracted using a sliding overlapping window of size n. If the

time series has the values: x1, x2, ..., xm, the feature set generated from it will be the

following:

(x1, x2, ... xn)

(x2, x3, ... xn+1)

...
...

...
...

(xm−n+1 xm−n+2 ... xm)

So, from a time series with m elements and using a sliding window of size n, we

can generate (m-n+1 ) samples. In our experiments, we used n = 4. All the vector

components are normalized to the interval [0,1].

4.6.1.2 Results and analysis

The proposed approach (NSFDR) performs better than the crisp algorithm (NSDR),

see Figure 4.16. This behavior can be attributed to the fuzzyfication of the search

space, because the fuzzy rule detectors provide a better characterization of the normal-

abnormal boundaries.

Table 4.10 compares the performance of the tested algorithms over the Mackey-

Glass data set. When the FA rate is fixed to 3%, the NSFDR algorithm is able to
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Figure 4.16: ROC curves generated by the two algorithms tested with the Mackey
Glass data set.

Table 4.10: Comparative Performance in the Mackey-Glass Problem

Algorithm DR% # Detectors

NSFDR 95.05 14

NSDR 93.07 78

detect a higher percentage of abnormal samples than the NSDR algorithm. However,

the main advantage of the fuzzy method seems to be the smaller number of detectors

that it generates. This suggest that the fuzzyfication of the search space allows a

simple characterization of the abnormal (non-self) space.

4.6.2 Experiments with network traffic data

We used the MIT-Darpa 99 data set described in Subsection 4.3.1. Additionally, we

used the data set corresponding to the 1998 version of the DARPA intrusion detection

evaluation also prepared and managed by MIT Lincoln Labs [100]. The data set was

generated by processing the original tcpdump data to extract 42 attributes (33 of them

numerical) that characterize the network traffic. This set was used in the KDD Cup

99 competition and is available at at the University of California Machine Learning
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Figure 4.17: ROC curves generated by the two algorithms tested with the MIT-Darpa
98 data set.

repository4 [112]. Even though the data set corresponds to a 10% of the original data,

its size is still considerably big (492,021 records).

We generated a reduced version of the 10% data set including only the numerical

attributes. Therefore, the reduced 10% data set is composed by 33 attributes. The

attributes were normalized between 0 and 1 using the maximum and minimum values

found. Of the normal samples, 80% were picked randomly and used as training data

set, while the remaining 20% was used along with the abnormal samples as a testing

set. Five fuzzy sets were defined for the 33 attributes. One percent of the normal

data set (randomly generated) was used as a training data set. Henceforth we will

call this data set MIT-Darpa 98.

4.6.2.1 Results and analysis (MIT-Darpa 98)

The NSFDR algorithm shows a better performance than the NSDR algorithm (Figure

4.17). The results of the NSDR algorithm are competitive only for a high FA rate

(greater than 4%). Table 4.11 compares the performance of the tested algorithms and

some results reported in the literature. The result produced by the NSFDR algorithm

and reported in table 4.11 is the closest value to the optimal point (0,1). Amazingly,

the number of detectors using fuzzyfication is very small compared to the number of

4http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Table 4.11: Comparative performance in the MIT-Darpa 98 data set

Algorithm DR% FA% # Detectors

NSFDR 98.22 1.9 14

NSDR 96.02 1.9 699

EFRID[113] 98.95 7.0 -

RIPPER-AA[114] 94.26 2.02 -

detectors using the crisp characterization. This suggest that the fuzzy representation

could handle high dimensionality better (the dimensionality of this data set is 33

attributes).

According to Table 4.11, the performance of NSFDR is comparable with the per-

formance of approaches reported in the literature and in many cases performs better.

For example, when NSFDR is compared with RIPPER-AA, the FA rate is almost

the same (close to 2%), but NSFDR has a higher DR (4% more abnormal samples

detected). Now, compared with the crisp approach (NSDR) the performance is also

superior (2.2% more abnormal samples detected). Clearly, the fuzzy characterization

of the abnormal space reduces the number of false alarms while the detection rate is

increased.

4.6.2.2 Results and analysis (MIT-Darpa 99)

The performance of the NSDR algorithm is better than the performance of NSFDR

algorithm for very small values of the FA rate. However, if the FA rate is allowed to

be at most 2%, the NSFDR is clearly superior (Figure 4.18).

Table 4.12 compares the performance of the tested algorithms over the MIT-Darpa

99 data set (for a FA rate less than 3%). Again, the fuzzy method (NSFDR) generates

a smaller set of rules without sacrificing the performance. This supports our claim

that the fuzzy representation permits a more compact representation of the self/non-

self space.
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Figure 4.18: ROC curves generated by the two algorithms tested with the MIT-Darpa
99 data set.

Table 4.12: Comparative Performance in the MIT-Darpa 99 Problem

Algorithm DR% # Detectors

NSFDR 94.63 7

NSDR 89.37 35

4.7 Summary

In this chapter, we investigate a technique to perform anomaly detection based on

the negative selection algorithm (NSDR). This technique uses a genetic algorithm

to generate good anomaly detectors rules. In order to test this technique, a set of

experiments to detect anomalies in network traffic data were performed. We used

a real world data set (MIT-Lincoln lab), used by different researchers in computer

security, for testing. The following are some preliminary observations:

• The immuno-genetic algorithm was able to produce good detectors that gave a

good estimation of the amount of deviation from the normal. This shows that it

is possible to apply the negative selection algorithm to detect anomalies on real

network traffic data. The real representation of the detectors was very useful in

this work.
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• The proposed algorithm is efficient; it was able to detect four of the five attacks

detected by the positive characterization (with a detection rate of 87.5% and

a maximum false alarms rate of 1%), while only using a fraction of the space

(when compared to positive characterization).

• The use of deterministic crowding as a niching technique improved the results

obtained using sequential niching. While keeping the performance, in terms of

a high detection rate, the new algorithm generated a smaller set of rules that

estimated the amount of deviation in a more precise way. The new technique is

also more efficient in terms of computational power since it is able to generate

multiple rules for each individual run of the GA.

In Subsection 4.5, the NSDR technique was extended to generate fuzzy rules. The

experiments performed showed that the proposed approach performs better than the

previous one and is comparable with other results reported in the literature. The

following are the main advantages of the new approach:

• It provides a better definition of the boundary between normal and abnormal.

The previous approach used a discrete division of the non-self space, whereas

the new approach does not need such a division since the fuzzy character of the

rules provide a natural estimate of the amount of deviation from the normal.

• It shows an improved accuracy on the anomaly detection problem. This can

be attributed to the fuzzy representation of the rules that reduces the search

space, allowing the evolutionary algorithm to find better solutions.

• It generates a more compact representation of the non-self space by reducing

the number of detectors. This is also a consequence of the expressiveness of the

fuzzy rules.
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Chapter 5

A Hybrid Immune Learning

Algorithm for Anomaly Detection

5.1 Introduction

In the previous chapter, we presented an approach that allows the extraction of high-

level knowledge expressed in the form of If-Then rules (crisp and fuzzy) by using an

evolutionary NS algorithm. The purpose of this chapter is also to exploit the regu-

larities of the self/non-self space to produce a high-level anomaly detection function.

The new approach also works in a self/non-self space represented as a subset of R
n.

However, this approach is quite different from the previous one:

• The detectors are represented as points in [0, 1]n. They do not have additional

structure and there is not a high-level interpretation for them (unlike the pre-

vious approach where the detectors where interpreted as rules).

• The detectors are generated by a heuristic algorithm based on negative selection

(not evolutionary), which tries to sparse the detectors in the non-self space.

• The detectors are not used directly to detect anomalous elements; instead, a

high-level anomaly detection function is generated by a hybrid immune system
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that combines the detector generator algorithm with a conventional classifica-

tion algorithm.

In Section 5.2, we discuss the application of conventional machine learning techniques

to solve the anomaly detection problem. Also, this section discusses the advantages

and disadvantages of negative detection approach. This discussion will provide the

context for a hybrid immune learning algorithm for anomaly detection [26, 24] (in

Section 5.3) that combines the NS algorithm and a classification technique. The

hybrid immune-based approach uses a real-valued negative selection algorithm (RNS)

[26, 24], as presented in Section 5.4. Section 5.5 illustrates the hybrid approach to

extract high-level knowledge expressed in terms of fuzzy classifier rules [24]. In Section

5.6, the proposed technique is compared against other anomaly detection methods

[25, 26] including one based on self-organizing maps (explained in Subsection 5.6.1).

5.2 Anomaly detection and learning

The anomaly detection problem can be viewed as a learning task that tries to induce

from a training set a general function that can discriminate between normal and

abnormal samples (see Section 2.3). However, in many anomaly detection problems,

only normal samples are available for training. This means that the application of

a conventional classification algorithm is not straightforward. The next subsection

discusses some approaches to solve the anomaly detection problem from a machine

learning perspective.

5.2.1 Anomaly detection problem from a machine learning

perspective

In general, a two-class classification method uses a set of samples (from both classes)

to build a model that can discriminate between the two classes. Usually, the model

defines a boundary between the classes. But, what happen if samples only from the
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normal class are available for training? It would not be clear as to where to put the

decision boundary. For instance, a model that classifies everything as normal will be

according to the training samples, but it is clearly useless. A better approach will

look for a more specific model that can fit the training samples.

Notice that if no assumption about the shape/structure of the self set is made,

the most specific model is the set of self samples itself. That is, a new sample is

classified as normal only if the sample is in the training set. This is not useful for

many applications; so, it is necessary to make an assumption (inductive bias) about

the type of model of normal (self) that we want to induce1.

The problem, then, is reduced to find a model that fits the training samples and

is consistent with the inductive bias. The candidate-elimination algorithm [116] can

be used to find it. The basic idea of the algorithm is to represent the set of feasible

hypotheses (set of consistent models, also called version space) using two limits: the

general boundary (set of more general hypotheses) and the specific boundary (set

of more specific hypotheses). A positive (normal) sample will change the specific

boundary to make it more general and a negative sample will change the general

boundary set to make it more specific. The algorithm can be applied even if no

negative samples are available. In this case, the general boundary set is not changed.

But, this is not a problem since we are interested in the most specific model. The

main drawback of this approach is that it is only feasible if the space of possible

models is simple, e.g. small number of discrete features.

Another possibility is not to assume a model at all. Instance based classification

methods, like nearest neighbor classification [101], use the training samples to perform

classifications; thus, they do not need to assume a model. A nearest neighbor classifier

assigns the class to a new sample depending on the classes of its nearest neighbors in

the training set. If we apply this algorithm to a training set composed only of normal

samples, all the new samples will be classified as normal. However, it is possible to

1Notice that the inductive bias is necessary, since, as it was pointed out by Mitchell [115], “a
learner that makes no a priori assumptions regarding the identity of the target concept has not a

rational basis for classifying any unseen instances.”
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extend this algorithm to use only normal samples: a new sample is classified as normal

or abnormal depending on the distance to the nearest neighbor in the training set; if

the distance exceeds a given threshold, the sample is classified as normal, otherwise

it is abnormal. This method is similar to the one described in Subsection 4.3.2.

The inductive bias of this method is: if an element is close to a normal sample,

it is highly probable that it is normal. The main drawback of this method is that it is

necessary to store all the training samples; the cost of this can be prohibitive for many

practical applications. This problem can be solved if the set of training samples is

represented in a more compact way. For instance, a clustering method can be applied

and then the cluster information can be used instead of normal samples to perform

the classification task. A method based on this approach is described in Subsection

5.6.1.

5.2.2 Positive or negative detection?

The approaches described in the previous subsection build models of the normal set

(positive detection). It is also possible to accomplish the same goal by building models

of the abnormal set (negative detection), as in the NS algorithm (Subsection 2.2.1).

Negative detection does not seem to be as natural as positive detection in cases where

the normal is relatively small. So, what is the justification to do negative detection?

Esponda and Forrest [117] provided three main reasons:

• There is practical evidence that the negative detection approach works since it

has been applied with some success to solve practical problems.

• From an information theory point of view, to characterize the normal space is

equivalent to characterize the abnormal space.

• Negative detection is more suitable for distributed anomaly detection. That is,

it is possible to divide a set of negative detectors in subsets an apply them in a

distributed fashion, since the activation of only one negative detector is enough
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to classify a sample as abnormal. If we use positive detection, it is necessary

to apply all the positive detectors before it can be concluded that a sample is

abnormal.

The third reason appears to be the strongest one. However, if the description of

the normal set is compact enough, it would be more efficient to have multiple, re-

dundant copies of the positive detectors to perform distributed anomaly detection.

Accordingly, negative detection is more suitable than positive detection for performing

distributed detection but only if the normal subspace is not very small.

Keogh et al. [111] argued that “a major limitation of the approach (negative

selection) is that is is only defined when the space of self is not exhaustive.” The

authors provided an example of random walk data series, where the self set can have

all possible patterns, causing the non-self set to be an empty set. Notice that this

is also a possible issue for the positive detection strategy and, in general, for any

learning strategy that tries to induce a model of the normal profile from samples.

So, the problem is not associated to the algorithm itself, rather the set of features

selected to represent the system behavior, which are not useful to characterize the

system or process normalcy. For instance, in the case of the random walk time series,

a set of features that includes high-level statistical characteristics of the time series

may perform better than a set of features based on a sliding window.

5.3 Proposed hybrid immune learning approach

The NS algorithm has been used mainly to perform negative detection, i.e. the

detectors generated by the algorithm are used directly to identify elements in the

abnormal (non-self) space. As it was discussed in the previous section, this approach

is useful in some specific applications (distributed anomaly detection and a not very

small normal subspace).

In this section, we propose a different use of the NS algorithm to perform anomaly

detection. This approach uses neither negative nor positive detection; rather, the
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approach tries to find the boundary (crisp or fuzzy) between normal and abnormal

classes. This approach can be useful even if we are not performing distributed anomaly

detection or when the normal set is small.

The basic idea is to use the RNS algorithm (to be presented in the next section)

to generate non-self samples. Then, apply a classification algorithm to find a charac-

teristic function of the self (or non-self). This characteristic function corresponds to

the anomaly detection function (see Section 2.3.1).

Figure 5.1 illustrates the basic building blocks of the approach. During the training

stage, the input corresponds to the normal samples (feature vectors) that are used

by the RNS algorithm [24] to generate abnormal samples. Subsequently, the normal

and abnormal samples are used as input to a supervised algorithm that produces a

classifier. This classifier corresponds to the anomaly detection function and is used

during the testing phase to classify new samples as normal or abnormal.

Anomaly
Detection
Function

Samples
New

Algorithm
Classification

Normal
Samples

Samples

Abnormal

Abnormal

Detection

Normal

Negative Selection
Real−Valued

Training

Figure 5.1: A hybrid immune system for anomaly detection that generates an anomaly
characterization function from normal samples.

It is important to highlight that this technique allows the use of a supervised

algorithm for a task that traditionally requires an unsupervised method (as it was

discussed in Subsection 5.2.1). The main advantages of this approach are:
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• The classification problem has been studied for a long time. There are differ-

ent efficient algorithms that have been extensively tested and applied to solve

problems in different fields.

• The approach does not require the modification of the classification algorithm.

It allows a modular composition that makes easier to use widely available and

well tested existing implementations of supervised algorithms.

• The classification problem is closer to the problem of anomaly detection than

unsupervised learning problems, like clustering. Clustering methods group the

input data based on the principle of maximizing the intraclass similarity and

minimizing the interclass similarity. On the other hand, the main objective that

drives a classification algorithm is to improve the accuracy of the classifier, that

is, to improve the ability to distinguish between classes. This is clearly more

related with the anomaly detection goal of maximizing the detection rate while

keeping a low false alarm rate.

• It is possible to use real abnormal samples, if available, by combining them

with the ones generated by the RNS algorithm and feeding them together to

the classification algorithm.

The inductive bias of this method is the same as the inductive bias of the nearest

neighbor method described in Subsection 5.2.1: an element close to a normal sample

is likely to be normal. This assumption is reasonable for many applications, if the

distance metric is well chosen.

There is no specific restriction on the kind of classification algorithm that can be

used. For instance, in Section 5.5, we use a fuzzy rule evolver system, and in Section

5.6, a neural network based classifier is employed.

The abnormal samples generated by the RNS algorithm can be thought of as

artificial anomalies [24]. The idea of generating artificial anomalies was also proposed

by Fan et al. [114] independently. Unlike our work, the method proposed by Fan et al.
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is addressed to generate artificial anomalies by perturbing real data samples (normal

and abnormal). The perturbation is performed by randomly choosing a feature of a

given sample and assigning a random value. The generated artificial anomalies are

combined with the real data and fed to a learning algorithm. The artificial-anomaly

generation method assumes that each feature takes a discrete set of values; hence,

the algorithm cannot be directly applied to real-valued data. Moreover, the approach

appears to be ad-hoc, whereas NS algorithm provides a systematic way of generating

such anomaly detectors.

5.4 Real-valued negative selection (RNS)

As in the previous chapter, the self/non-self space, U , corresponds to a subset of

R
n. A detector (antibody) is defined by an n-dimensional vector that corresponds

to the center and by a real value that represents its radius; therefore, a detector can

be seen as a hypersphere in R
n. The detector-antigen matching rule is expressed by

the membership function of the detector, which is a function of the detector-antigen

Euclidean distance and the radius of the detector (see Equation 5.1).

The input to the algorithm is a set of self samples represented by n-dimensional

points (vectors). The algorithm tries to evolve another set of points (called antibodies

or detectors) that cover the non-self space. This is accomplished by an iterative

process that updates the position of the detector driven by two goals2:

• Move the detector away from self points.

• Keep the detectors separated in order to maximize the covering of non-self space.

The logical steps of the algorithm are shown in Figure 5.2, which are described in

a more detailed way in Figure 5.3.

The parameter r specifies the radius of detection of each detector. Accordingly, for

an antigen a to be detected by a detector d, the distance between d and a should

2This approach is similar to the NS greedy algorithm [44], but in a real-valued space.

99



’d.age’++ ’d.age’ = 0

Discard ’d’
Move ’d’ away
from self

Move ’d’ away
from other
detectors

any self point?
Does ’d’ match

For each detector ’d’

NoYes

NoYes
’d.age’ > ’t’ ?

Figure 5.2: An illustration of an iteration of the real-valued negative selection algo-
rithm.

be at most r. Since we do not want the detectors to match self points, the shortest

allowable distance for a good detector to the self set is r. Therefore, the parameter r

also specifies the allowed variability in the self space.

In order to determine if a detector d matches a self point, the algorithm calculates

the k-nearest neighbors of d in the self set. It then calculates the median distance

of these k-neighbors. If this distance is less than r, the detector d is considered to

match self. This strategy makes the algorithm more robust to noise and outliers.

The function µd(x) is the matching membership function of the detector d. It

indicates the degree of matching between x, an element of the self/non-self space,

and d. It is defined as:

µd(x) = e−
‖d−x‖2

2r2 (5.1)

Each detector has an assigned age that is increased at each iteration, if it is inside

the self set. If the detector becomes old, i.e. it reaches the maturity age t and has

not been able to move out of the self space, it will be replaced by a new randomly
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Real-Valued-Negative-Selection(r,η,t,k)

r : radius of detection

η : adaptation rate, i.e., the rate at which the detectors

will adapt on each step

t : once a detector reaches this age it will be considered

to be mature

k : number of neighbors to take into account

1: While stopping criteria is not satisfied

2: For each detector d do

3: NearCells←k-nearest neighbors of d in the Self set

4: NearCells is ordered with respect to the distance to d

5: NearestSelf ← median of NearCells

6: If dist(d,NearestSelf) < r Then

7: dir ←
P

c∈NearCells(d−c)

|Pc∈NearCells(d−c)|
8: If age of d > t Then . detector is old

9: Replace d by a new random detector

10: Else

11: Increase age of d

12: d← d + η · dir

13: EndIf

14: Else

15: age of d← 0

16: dir =
P

d′∈Detectors µd(d′)(d−d′)

|Pd′∈Detectors µd(d′)(d−d′)|
17: d = d + η · dir

18: EndIf

19: EndFor

20: EndWhile

Figure 5.3: Real-valued negative selection (RNS) algorithm.

101



generated detector. The age is reset to zero when the detector is outside of the self

space.

The parameter η represents the size of the step used to move the detectors. In

order to guarantee that the algorithm will converge to a stable state, it is necessary

to decrease this parameter in each iteration in such a way that limi→∞ ηi = 0. We

use the following updating rule

ηi ← ηoe
−i
τ ,

where η0 is the initial value of the adaptation rate, and τ is a parameter that controls

its decay.

The stopping criteria is based on a pre-specified number of iterations, num iter.

This produces a time complexity of O(num iter ·numab ·(numab+ |S ′|)), where numab

is the number of detectors and |S ′| is the number of self samples.

5.5 Applying the hybrid immune learning approach

to extract high level knowledge

The purpose of this section is to illustrate the application of the hybrid immune

system approach (presented in Section 5.3) to the extraction of high level knowledge

from a set of normal samples. The high level knowledge is expressed in terms of fuzzy

rules.

For this experiment, we work with a classical data set used extensively in the

pattern recognition literature, the Iris data set3 [118]. In this set, there are three

different classes of flowers: setosa, virginica and versicolor. Each element in the data

set is described by four attributes.

The classification algorithm used is an evolutionary algorithm to generate fuzzy

classifier rules [96]. This algorithm uses a genetic algorithm with a linear representa-

tion of tree structures in order to evolve complex fuzzy rule sets.

3This particular version of the data set was obtained from the University of California Machine
Learning repository [112] at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/iris.
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Three different experiments were performed in each case using one class as normal

and the other two as abnormal. The training set was only composed by elements of

the normal class, and no elements from the other classes were included.

The parameters used by the RNS algorithm were r = 0.1, η = 1.0, t = 10, and

k = 5. The number of detectors was 200 and the number of iterations was 200. The

fuzzy classifier rule evolution algorithm was run using a population of 200 individuals

during 100 iterations.

The following is an example of a rule produced by the algorithm when the class

virginica was considered as normal:

If (x2 ∈ M ∨ x1 /∈ S) ∧ (X3 ∈M ∧ x1 /∈ML ∧ x1 /∈ L) Then Normal

An important characteristic of these kinds of rules is the comprehensibility. This

allows extraction of useful high-level knowledge. These results are comparable to the

ones produced by the same algorithm using training samples from all the classes [96].

The main difference is that in the present work we only used examples from one class

in the training phase, which introduces more complexity to the problem.

As it was explained previously, the condition part of the rule is used as the anomaly

detection function µself (see Subsection 2.3.1). In order to quantify the anomaly

detection capability of the evolved functions, we used the crisp (t-cuts) version µself,t.

This allows us to determine the accuracy of the anomaly detection. The accuracy is

given in terms of the detection rate (Equation 4.1) and false alarm rate (Equation

4.2).

Figure 5.4 shows the increase of the detection rate for the anomaly detection

function evolved µself,t, when the threshold t is increased. When the threshold is

equal to zero, everything is reported as normal. When the value is increased, the

number of detections increases; however, the number of false alarms also increases.

Figure 5.5 shows the trade-off between detection rate and false alarm rate using

ROC curves (as described in Subsection 4.3.2.1 on page 68). In all the cases, high
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Figure 5.4: Evolution of the detection rate of µself,t when the threshold t is varied
from 0 to 1.
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Figure 5.5: ROC curve for the evolved anomaly detection function µself,t (the curves
corresponding to setosa and virginica overlap).

detection percentages were reached even for small false alarm rates. Some illustrative

results are shown in Table 5.1.

5.6 Comparing the hybrid immune learning ap-

proach with other anomaly detection techniques

In order to test the proposed hybrid immune anomaly detection technique, we applied

it to four different data sets. Each data set is divided in two subsets: the training

data set, which contains only normal samples, and the test data set, which contains

104



Table 5.1: Accuracy of the evolved anomaly detection function when a maximum
false alarm rate of 2% is allowed. (TP=True Positives, FP=False Positives, TN=True
Negatives, FN=False Negatives)

Normal TP FP TN FN Detection
Class Rate

Setosa 100 0 50 0 100%
Virginica 95 1 49 5 95%
Versicolor 88 1 49 12 88%

a mixture of normal and abnormal samples. We use a multi-layer perceptron (MLP)

trained with back-propagation [119] as the classification algorithm. In the remaining

part of this chapter, we refer this technique as Hybrid Neuro-Immune System (HNIS).

In order to compare the performance, we also apply binary negative selection

(BNS) using the NS greedy algorithm (see Section 2.2.1) and an anomaly detection

technique based on self-organizing maps (SOM) (to be explained in the next subsec-

tion) to the same data sets. These techniques are compared in terms of classification

accuracy using ROC curves as described in page Subsection 4.3.2.1.

The sensitivity of the system is controlled by a threshold that determines when a

new sample is normal or abnormal. By varying this threshold, we can obtain different

values for the detection and false alarm rates which are used to plot ROC curves.

In the case of HNIS and SOM techniques, whose output is a continuous value, the

threshold is a value between 0 and 1.

The output of the BNS technique is not continuous, being just 0 (normal) or 1

(abnormal); so, it does not make sense to apply a threshold to the output. It is

possible to use the parameter r, which defines the size of the matching window, as a

threshold that we can vary to produce different points of the ROC curve. However, we

have to be careful when interpreting the results, since, unlike the other two methods,

each point of the ROC curve will correspond to a different set of detectors.
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5.6.1 Anomaly detection using self-organizing maps

A self-organizing map (SOM) is a type of neural network that uses competitive learn-

ing [119, 120]. A SOM is able to capture the important features contained in the input

space and provides a structural representation that preserves a topological structure.

The output neurons of a SOM are organized in a one- or two-dimensional lattice. The

weight vectors of these neurons represent prototypes of the input data that can be

interpreted as the centroids of clusters of similar samples.

In our experiments, we used SOM to cluster the normal samples. After the network

is trained, the generated clusters are used to determine if a new sample is normal or

abnormal. The basic idea is: if a new sample is ‘close’ enough to a normal cluster, it

is considered normal; otherwise, it is classified as abnormal.

In general, we have a distance function dist(s, K) that measures how close the

sample s is to the cluster, K. To determine the abnormality of a new sample, the

following function is used:

χabnormal(s) =





1 if dist(s, Normal) ≥ t

0 otherwise
, (5.2)

where,

dist(s, Normal) = min{dist(s, Ki) |Ki ∈ C} , (5.3)

and C is the set of clusters (found by the SOM algorithm) that represents the

normal sub-space.

If we think the function dist(s, Normal) is a kind of membership function4 of the

abnormal subspace, the function χabnormal(s) corresponds to the crisp version of it.

In this case, the value t represents a threshold that defines the boundary between the

normal and abnormal classes (see Subsection 2.3.1).

4Strictly speaking, this is not a membership function since it is not bounded. However, we can
apply, for instance, a sigmoid function to make it bounded.
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In order to determine a good distance measure dist(s, K), we tested three options

(in all the cases wK, neuron weights, represents the centroid of the cluster K ):

• Euclidean distance. This is the natural (or naive) choice since the SOM

algorithm uses it to determine if a sample belongs to a given cluster:

dist(s, K) = ‖s− wK‖ (5.4)

• Normalized distance. The idea is to take into account the size of the cluster.

Some clusters can be very sparse and others can have all the elements concen-

trated around the centroid. A measure of the size is the standard deviation.

So, the standard deviation of the distance to the centroid of all the elements in

a cluster (σK) is calculated and it is used to normalize the distance:

dist(s, K) =
‖s− wK‖

σK
(5.5)

• D∞ Minkowsky distance. The Euclidean distance gives the same importance

to all the features. So, it is possible that a sample with a non-negligible deviation

in one feature will be considered as having the same overall deviation as a

pattern with small deviations on many features. The D∞ distance only takes

into account the maximum of the differences for all the features:

dist(s, K) = max{|si − wKi
| for i = 1, . . . , n} (5.6)

5.6.2 Mackey-Glass time series experiments

We used the Mackey-Glass time series data set described in Subsection 4.6.1.1.
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5.6.2.1 Experimental settings

For the HNIS technique, the RNS algorithm was run using as input the training data

to generate 400 detectors. The parameter values for the algorithm were: r = 0.1,

η = 1, t = 5, and k = 1. The number of iterations was set to 400. The MLP used had

4 inputs and 1 output. Three different architectures were tested with 6, 12, and 16

hidden neurons. The parameters of the back-propagation algorithm were: learning

rate 0.05, momentum 0.9, and number of iterations 4000.

For the BNS algorithm, the data was converted to binary strings assigning 5 bits

to each feature and using binary and gray coding. This produced binary strings of

length 20. The value of r was varied from 6 to 12. The greedy algorithm was run

setting the failure probability to 0.

Three different SOM topologies were used: 4 input nodes with an output layer of

4×3, 4×6 and 6×6 neurons, respectively. The weights were initialized using random

vectors. The SOM training algorithm was run for 1000 iterations using a Gaussian

neighborhood. The initial and final learning rate were 0.1 and 0.005 respectively. The

initial σ value was 5 and the final was 0.2.

5.6.2.2 Results

Figure 5.6 shows a typical output of three techniques when applied to the testing set.

An output value close to “0” means normalcy. Each figure corresponds to the best

result found by each method. Despite the fact that in all cases the output shows an

increased activity in the abnormal region, there are peaks in the normal region that

do not allow to establish a clear boundary between normal and abnormal. In order

to smooth the anomaly detection function, a moving average filter was applied. The

new output Ôt is calculated from the old output Ot using the following formula:

Ôt =

∑s
i=1 Ot−i

s
, (5.7)
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Figure 5.6: Output value produced by the anomaly function when applied to the
Mackey-Glass testing set. (a) HNIS (12 hidden neurons). (b) BNS (r = 8, Gray
coding). (C) SOM (6×6, D∞ distance).
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Figure 5.7: Output value, smoothed using Equation 5.7, produced by the anomaly
function when applied to the Mackey-Glass testing set. (a) HNIS (12 hidden neurons,
s = 5). (b) BNS (r = 8, Gray coding, s = 10). (C) SOM (6×6, , D∞ distance,
s = 10).

where s is the smoothing factor and indicates the size of the averaging window. The

filter was applied to the output produced by each technique. Different values of s were

tested, choosing the value that produced the best result for each individual technique.

Figure 5.7 shows the smoothed versions of the outputs in Figure 5.6.

The following subsections shows more details of the results produced by each

technique.

BNS results The number of detectors generated by the NS greedy algorithm are

summarized in Table 5.2. These values coincide with the values predicted by the

theoretical analysis described by D’haeseleer et al. [44].
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Table 5.2: Number of detectors produced by BNS (greedy) algorithm when applied
to the Mackey-Glass training set

Number of detectors
r Binary encoding Gray encoding
6 0 0
7 13 19
8 90 79
9 300 301
10 736 750
11 1683 1705
12 3691 3709

The performance of the different set of detectors is shown in the ROC curves in

Figure 5.8. It is important to note that it is possible to generate these ROC curves for

each detector because of the smoothing process. This generates a continuous anomaly

function that takes values between 0 and 1; so, it makes sense to use a threshold to

decide when a given sample is normal or abnormal.

The results using Gray coding are in general better than the results produced with

Binary coding. This is explained by the fact that Gray coding is more compatible

with the kind of matching rule used by the BNS algorithm, r -contiguous matching.

This is a fact that has been addressed by Dasgupta and Majumdar [121]. The best

result is produced with a set of detectors generated using r = 8. An increase in r

does not improve the performance, as it is shown by the ROC curves for r = 9 to

r = 12, which are bound by the ROC curve generated with r = 8.

SOM results As it was discussed in Section 5.6.1, three different distance measures

were proposed to calculate the anomaly detection function defined in Equation 5.2.

Figure 5.9(a) shows the ROC curves corresponding to these distance measures. D∞

Minkowsky distance (Equation 5.6) shows a slight advantage over other distance mea-

sures. Figure 5.9(b) shows ROC curves for different topologies of the SOM network.

A higher number of neurons produces a most accurate classification; however, the
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Figure 5.8: ROC curves for BNS algorithm applied to Mackey-Glass test data set.

difference between the curves is not big; this suggests that a further increase in the

network complexity may not improve the accuracy.
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Figure 5.9: ROC curves for SOM anomaly detection applied to Mackey-Glass test
data set. (a) Different distance measures using 6×6 topology. (b) Different topologies
using D∞ distance.

HNIS results Figure 5.10 shows the ROC curves corresponding to different MLP

topologies. The figure shows that an increase from 6 to 12 neurons improves the

classification accuracy of the system. Accordingly, 12 neurons seem to be enough,

since an increase to 16 does not produce any significant improvement in accuracy.
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Figure 5.10: ROC curves for HNIS anomaly detection applied to Mackey-Glass test
data set for different MLP topologies: 6, 12, and 16 hidden neurons.
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Figure 5.11: Best ROC curves produced by each method for the Mackey-Glass test
data set.

5.6.2.3 Results comparison and discussion

The best performing configurations from each approach are compared in Figure 5.11.

The configurations are: HNIS, 12 hidden neurons; BNS, Gray coding and r = 8; and

SOM, 6×6 output layer and D∞ distance. Clearly, HNIS has a better performance

than other two methods. This shows that, at least for this specific data set, the

combination of RNS with a MLP is able to capture the structure of the normal space,

producing an anomaly detection function that can discriminate the normal and the

abnormal new samples.

In contrast to the results reported by Dasgupta and Forrest [11], the performance

of the BNS algorithm is very poor. This may be because of the experimental settings
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used in our current work; the normal samples in the test data set are different from to

those presented during training. This indicates that the anomaly detection algorithm

should be able to generalize the structure of the normal set based on a limited subset

of samples. Our hypothesis is that the binary (low-level) representation along with the

r -contiguous matching rule (used by BNS) may not capture the high-level structure

of the problem space.

5.6.3 Network traffic data experiments

We used MIT-Darpa 98 and MIT-Darpa 99 data sets as described in Subsections 4.6.2

and 4.3.1, respectively.

5.6.3.1 Experimental settings

The experimental settings for all the techniques are the same as the ones described in

Section 5.6.2.1. The only differences are: for the MIT-Darpa 98 data set, the HNIS

used 1000 detectors instead of 400, and for the MIT-Darpa 99 data set, three different

MLP topologies were tested with 5, 9, and 18 hidden neurons, respectively.

5.6.3.2 Results comparison and discussion (MIT-Darpa 98)

The BNS algorithm was not able to generate a good set of detectors. We ran it for

different values of r ranging from 6 to 12. The algorithm did not produce detectors

for values of r less or equal to 8; however, for r = 9 the algorithm produced more than

2× 108 detectors before it had to be manually stopped. This happened even with a

failure probability as high as 0.5. Our hypothesis is that the high dimensionality of

the space along with the small variability of the normal set makes it very difficult to

cover the non-self space using the greedy algorithm. This result is similar to the one

reported by Kim and Bentley [92].

Figure 5.12 shows the best ROC curves produced by the HNIS and SOM anomaly

detection techniques. The configurations are: HNIS, 12 hidden neurons and SOM,

114



 0.8
 0.82
 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 0  0.05  0.1  0.15  0.2

D
et

ec
tio

n 
R

at
e

False Alarm Rate

HNIS
SOM

Figure 5.12: Best ROC curves produced by HNIS and SOM methods for the MIT-
Darpa 98 test data set.

4×6 using D∞ distance. The performance of the two techniques was similar with a

slight advantage of the SOM technique. The performance of the HNIS is remarkable,

in a problem that seems to be very difficult for a technique that generates non-self

detectors in such a high dimensional space. It is clear that 1000 detectors are not

enough to cover this space; however, the experiments showed that they were enough

to train a classifier (MLP) that could effectively discriminate between normal and

abnormal samples in the testing set.

5.6.3.3 Results comparison and discussion (MIT-Darpa 99)

Figure 5.13 shows the best ROC curves produced by the three techniques. The con-

figurations are: HNIS, 5 hidden neurons; SOM, 4×6 output layer using D∞ distance;

and BNS, r = 6 with binary or Gray coding. The SOM method is clearly better that

the other two methods. However, the other two methods also produced good results

that have a detection rate over 93% with a false alarm rates as small as 1%. The

HNIS method can reach a detection rate as accurate as the one produced by SOM

(98%), but only if the false alarm rate is increased to 13%. Notice that this trade-off

cannot be applied to the BNS. However, the BNS produces a very good detection

rate (95%) with a very small false alarm rate.
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Figure 5.13: Best ROC curves produced by each method for Darpa 99 test data set.

5.6.4 Wisconsin breast cancer experiments

5.6.4.1 Data set

This data set correspond to a breast cancer data set created at the University of

Wisconsin Hospitals [122]. This particular data set was obtained from the University

of California Machine Learning repository5. Each data record is conformed by ten

numerical attributes and the label (benign or malign). The data is composed by 699

records, but 16 of them have missing values. (we did not use these records.) The data

was normalized to fit the interval [0,1] , and we partitioned it in two sets, training and

testing. The training set contains 271 benign records. The testing set is composed of

412 mixed benign and malign records.

5.6.4.2 Experimental settings

The experimental settings for all three techniques are the same as the ones described

in Section 5.6.2.1.

5.6.4.3 Results comparison and discussion

The best ROC curves produced by each method are shown in Figure 5.14. These

curves are produced by the following configurations: HNIS, 18 hidden neurons and

5Original database at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/

breast-cancer-wisconsin.
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Figure 5.14: Best ROC curves produced by each method for Wisconsin breast cancer
test data set.

SOM, 4×6 output layer using Euclidean distance. In the case of BNS, there are three

good configurations: r = 7 with Gray coding, r = 8 with Gray coding, and r = 4

with binary coding. It is important to note that the points in the ROC diagram for

the BNS method are generated by three different runs of the algorithm, whereas the

points for the other two methods correspond to only one run in each case. All of the

methods are able to produce high detection rates. The HNIS method has a slight

advantage over the SOM method, mainly for small false alarm rates. For false alarm

rates higher than 7%, the performance of all the methods is similar.

5.7 Summary

In this chapter, we presented a hybrid anomaly detection technique (HNIS) that

combines an immune inspired algorithm, real-valued negative selection (which is also

presented), and a conventional classification algorithm. This method does not use

positive or negative detection. Rather, it tries to find a boundary between normal

and abnormal classes.

The hybrid method is compared against binary negative selection (BNS), using

the greedy algorithm with r -contiguous matching [44], and an anomaly detection

technique based on self-organizing maps (SOM).
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In general, the performance of HNIS and SOM methods was good. In two exper-

iments, HNIS outperformed SOM, and in two other, the results were opposite. In all

the cases, the difference was small. BNS performed well in two of the experiments;

however, it failed to produce acceptable results in two other cases. The MIT-Darpa

98 data set is one of the data sets where BNS failed. This is consistent with the results

reported by Kim and Bentley [92]; these results were used by them to support the

claim that negative selection algorithm suffers from “severe scaling problems”. How-

ever, our work shows that the problem is not with the negative selection algorithm

itself, rather the kind of representation (binary) and matching rule (r-contiguous)

that were used. This was also suggested by Balthrop et al. [93].

Another important characteristic of the proposed approach is that it can learn the

structure of the self set using only a subset of normal samples. In some applications,

mainly in change detection, it is assumed that the self set is complete; however, in

many real anomaly detection applications, this is not the case. Hence, an anomaly

detection algorithm must be able to produce a good approximation of the structure

of the self/non-self space, even if a portion of the self set is available during training.

The experiments with the Mackey-Glass data set (Section 5.6.2) are a good example

of this.

Finally, the use of a more expressive representation for the detectors allows the

combination of negative selection with other learning methods. Our previous work

demonstrated the feasibility of combining negative selection with a classification algo-

rithm (a MLP trained with back-propagation). A very interesting experiment would

be to combine it with other immune inspired techniques, like those based on immune

network theory. This would open the doors for the construction of an unified artificial

system that combines different types of immune mechanisms.
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Chapter 6

Mathematical Foundation of a New

RNS Algorithm

The previous chapter presented a Real-Valued Negative Selection (RNS) algorithm

that is based on some heuristics that try to distribute the antibodies (detectors) in

the non-self space in order to maximize the covering. Some of the drawbacks of this

approach are the following:

• The number of antibodies needed to cover the non-self space, as well as the

radius of each antibody, are not known in advance; hence, it is necessary to

determine them by a trial-and-error procedure.

• There is no guarantee that the algorithm will converge to an optimal or close-

to-optimal space coverage with minimum overlap.

The purpose of this chapter is to present a new RNS algorithm based on mathematical

foundation. This will give more criteria to setup the algorithmic parameters and to

assess the expected performance.

The new algorithm is based on two main ideas:

• To estimate of the volume of the self space, which, by complementarity, is also

an approximation of the volume of the non-self space. Using this volume, it is
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possible to calculate how many antibodies of a given radius are needed to cover

the non-self space. The algorithm used is based on Monte Carlo integration

[123, 124], a method with a well-established mathematical background.

• To use a well known optimization algorithm, simulated annealing [125, 126], to

find a good distribution of the antibodies that maximizes the coverage of the

non-self space.

The following sections describe the details of the algorithm as well as the theoretical

analysis.

6.1 Randomized real valued negative selection (RRNS)

algorithm

Similar to the algorithm proposed in the previous chapter (RNS, Figure 5.3 on

page 101), the objective of this algorithm is to generate a set of antibodies that

cover the non-self space. The approach followed to developed this algorithm is dif-

ferent from the approach followed in the previous chapter; the main difference is the

improved mathematical foundation. The algorithm is called randomized because it is

based on an important class of randomized algorithms called Monte Carlo methods

[123, 127, 124]. Specifically, it uses Monte Carlo integration to estimate the volume

of the self (and non-self) space and simulated annealing [125, 126] to optimize the

distribution of antibodies in the non-self space.

The input to the algorithm is a set of samples from the self set, S ′; the allowed

variability in the self set, rself ; the antibody radius, rab; and a set of parameters, Π.

The global structure of the algorithm is shown in Figure 6.1.

A typical execution of the algorithm for a two-dimensional set is shown in Fig-

ure 6.2. The algorithm is composed by two main functions: Calculate-Init-

Antibody-Set (Section 6.2, Figure 6.4), which estimates the volume of the non-

self space in order to produce a good initial set of antibodies (Figure 6.2(b)), and
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RR-Negative-Selection(S ′, rself , rab, Π)

S′ : set of self samples

rself : self variability threshold

rab : antibody radius

Π : additional parameters

1: D ←Calculate-Init-Antibody-Set(S ′, rself, rab)

2: D′ ←Optimize-Antibody-Distribution(D, rab, S′, rself)

3: Return D′

Figure 6.1: Randomized real-valued negative selection (RRNS) algorithm.

(a) (b) (c)

Figure 6.2: A typical execution of the RRNS algorithm (Figure 6.1) for a small 2-
dimensional self set. (a) Input self set. (b) Initial set of antibodies generated by
function Calculate-Init-Antibody-Set (Figure 6.4). (c) Final set of antibodies
produced by function Optimize-Antibody-Distribution (Figure 6.9).

Optimize-Antibody-Distribution (Section 6.3, Figure 6.9), which distribute the

antibodies uniformly in the non-self space based on simulated annealing optimization

(Figure 6.2(c)). These two functions will be discussed in the following sections.

6.2 Determining the number of antibodies

Let Vd be the volume covered by an individual antibody and let Vnon-self be the

volume of the non-self space. A rough approximation of the number of antibodies is

given by:

numab =
Vnon-self

Vd
. (6.1)
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(a) (b)

Figure 6.3: Covering of a rectangular region using circular antibodies. (a) Without
overlapping. (b) With overlapping.

This is a very optimistic approximation since it does not take into account the

fact that, in general, it is impossible to cover a given volume with spherical antibodies

without allowing some overlapping. Figure 6.3(a) shows an example of a covering of

a square using four non-overlapping antibodies. It is clear that the covering can be

improved if some overlapping is allowed. Figure 6.3(b) shows such a covering with

overlapping antibodies.

If overlapping is allowed, the effective covering volume is not anymore the volume

of the hypersphere that defines an antibody, but a smaller value. We define the

covering volume of an antibody as the volume of the inscribed hypercube. The main

reason to choose this definition is that there is a straightforward way to cover an

n-dimensional region using hypercubes without holes. In Figure 6.3(b), the inscribed

hypercubes (in this case, squares) are drawn with dashed lines. It is easy to see that

this kind of construction can be extended to a higher dimension.

Accordingly with the previous discussion, the effective volume covered by an an-

tibody d with radius r is defined as:

Vd =

(
2r√
n

)n

. (6.2)
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Using Equations 6.1 and 6.2, it is possible to calculate a good approximation of

the number of antibodies with a given radius needed to cover the non-self space. This

will require knowledge of the volume of the non-self space. This is the problem that

we will address in the remaining part of this section.

6.2.1 Calculating the volume of the self (non-self) set

As in the previous chapters, the self/non-self space, U , corresponds to the unitary

hypercube, [0, 1]n. Clearly, the volume of the self/non-self space is equal to 1.0;

therefore, the volume of the non-self space is defined as:

Vnon-self = 1− Vself.

As discussed in Chapter 5, the input to the NS algorithm is a subset of the self

set. Thus, in general, the area of the self space is not known. We will assume a

model of the self set, Ŝ, that is defined in terms of a set of self samples, S ′. The basic

assumption in this definition is that an element that is close enough to a self sample

is considered to be self. The closeness is specified formally by a variability threshold,

rself, that defines the minimum distance between a self sample and an element x,

such that x can be considered part of the self set. The self set model, Ŝ, is defined as

follows:

Ŝ :=
{
x ∈ U | ∃s ∈ S ′, ‖s− x‖ ≤ rself

}
.

We define Vself as the volume of Ŝ, which is calculated as:

VbS :=

∫

U

χbS(x)dx ,

where χbS corresponds to the characteristic function of the set Ŝ defined by

χbS(x) :=





1 if x ∈ Ŝ

0 if x /∈ Ŝ
.
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We can produce an estimate of VbS using random sampling. The basic idea is to

generate a sequence {xi}i=1..m of random samples uniformly distributed in U . The

expected value of χbS(xi) is

E
[
χbS(xi)

]
=

∫

U

χbS(x)dx = VbS;

therefore, an estimate of E
[
χbS(xi)

]
is automatically an estimate of VbS. As it is well

known, a good estimate of the mean of a random variable (expected value) is the

mean of a set of samples; so, we will use the average of
{
χbS(xi)

}
i=1..m

as an estimate,

V̂bS, of the self volume:

VbS ≈ V̂bS =

∑m
i=1 χbS(xi)

m
. (6.3)

The estimation of a defined integral by averaging a set of random samples is

known as Monte Carlo integration [123, 124]. The main advantage of this method,

and contrary to other non-probabilistic methods, is that it is possible to calculate

an interval of confidence for the estimated integral. We will use this approach to

assess how good the volume estimate produced by Equation 6.3 is. Specifically, we

want to find an error bound, ε, such that Pr(|V̂bS − VbS| < ε) is close to 1.0. In

order to determine it, we can use the central limit theorem [128] that states that the

distribution of the random variable

Z =
V̂bS − VbS√
var(V̂bS)

=
V̂bS − VbS√

var(χbS(xi))/m
,

where var(·) is the variance, tends to N (0, 1) (standard normal distribution) when

m→∞ . Therefore,

Pr(−3 ≤ Z ≤ 3) ≈ 0.998

⇒ Pr(−3 ≤ cV bS−V bS√
var(χ bS(xi))/m

≤ 3) ≈ 0.998

⇒ Pr(|V̂bS − VbS| ≤ 3
√

var(χbS(xi))/m) ≈ 0.998.

(6.4)
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The variance of χbS(xi) is

var(χbS(xi)) = E
[(

χbS(xi)
)2

]
− E

[
χbS(xi)

]2
= VbS − V 2

bS . (6.5)

Using Equations 6.4 and 6.5, we can calculate a superior bound, ε, for the error:

ε = 3

√
var(χbS(xi))

m
= 3

√
VbS − V 2

bS
m

≈ 3

√
V̂bS − V̂bS

2

m
. (6.6)

Finally, the confidence interval for the self volume estimate, V̂bS, is given by:

Pr


|V̂bS − VbS| < 3

√
V̂bS − V̂bS

2

m


 ≈ 0.998. (6.7)

6.2.2 Algorithm to calculate an initial set of antibodies

Now that we know how to calculate the area of the self (non-self) space, it is straight-

forward to calculate the number of antibodies that are needed to cover the non-self

space and to generate an initial set of antibodies located in the non-self space. The

process is shown in Figure 6.4.

The algorithm receives as input the set of samples from self (S ′), the variability

radius of the self set (rself), the radius of each antibody (rab), the maximum allowed

error (εmax), and a minimum number of iterations that have to be performed (mmin).

The purpose of the last parameter, mmin, is to produce a good initial estimate of the

error (ε) by enforcing a minimum number of iterations. This prevents a premature

stop of the algorithm due to a poor initial estimation of ε. Notice that the algorithm

can be easily modified to receive as input the number of antibodies instead of the

antibody radius (rab). In that case, line 13 must be replaced by

rab ←
n

√
1− V̂bS
numab

·
√

n

2
. (6.8)
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Calculate-Init-Antibody-Set(S ′, rself, rab, εmax, init_iter)

S′ : set of self samples

rself : self variability threshold

rab : antibody radius

εmax : maximum allowed error

mmin : initial number of iterations

n : dimension of the self/non-self space

1: num_hits← 0
2: m← 0
3: Repeat

4: m← m + 1
5: x←uniformly distributed random sample from [1, 0]n

6: y ←Nearest-Neighbor(S ′, x)

7: If ‖x− y‖ ≤ rself

8: Then num_hits← num_hits + 1
9: EndIf

10: V̂bS ← num_hits
m . Eq. 6.3

11: ε← 3

√
cV bS−

cV bS
2

m . Eq. 6.6

12: Until m ≥ mmin and ε ≤ εmax

13: numab ←
⌊

1−cV bS“
2rab√

n

”n

⌋
. Eq. 6.2

14: D ← Ø
15: Repeat

16: x←uniformly distributed random sample from [1, 0]n

17: y ←Nearest-Neighbor(S ′, x)

18: If ‖x− y‖ ≥ rself

19: Then D ← D ∪ {x}
20: EndIf

21: Until |D| = numab

22: Return D

Figure 6.4: Algorithm to calculate the initial antibody set.
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The function Nearest-Neighbor used in lines 6 and 17 is defined as follows:

Nearest-neighbor(S ′, x) = arg min
y∈S′
‖x− y‖ .

If we perform a sequential scan on S ′, the function can be calculated in O(N) time,

where N = |S ′|. It is possible to speed-up this query by using a spatial access method

such as an R*-tree [129, 130]. Despite the fact that the worst case time complexity

of nearest neighbor queries using this kind of methods is still O(N), they are much

more efficient than sequential scanning for large values of N .

The number of iterations of the loop in lines 3 to 12, m, is determined by the area

of the self set and the maximum error as follows:

m =
9(VbS − V 2

bS )

ε2
.

Notice that the quantity VbS − V 2
bS is maximum when VbS = 0.5; hence the value

9/(4ε2) is a strict upper bound for m.

The number of iterations of the loop in lines 15 to 21 depends on the number of

antibodies to be generated, numab, and the probability that a randomly generated

antibody will be in the non-self space, which is same as the non-self volume, 1 −

VbS. The expected number of iterations is thus O(numab

1−V bS
). In general, the number of

iterations for this loop is not expected to be large since, for practical problems, the

number of antibodies is not going to be large, and the volume of the non-self space

(1− VbS) is not expected to be close to 0. Furthermore, it is possible to store some of

the points that fail the test in line 7 in D; this will reduce the number of iterations

needed to generate numab antibodies. In conclusion, the time of the algorithm is

expected to be dominated by the first part (lines 1 to 12), i.e. the expected time is

in the order O(N
ε2

), where N = |S ′|.
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6.3 Improving the antibody distribution

Figure 6.2(b) shows a typical distribution of the antibodies generated by the algorithm

from the previous section (Figure 6.4) for a small two-dimensional self set. Clearly,

the distribution is far from optimal, which is not surprising since the unique goal of

the algorithm is just to produce a set of antibodies that do not match any self point.

The purpose of this section is to develop a procedure that improves the distribution

of the antibodies produced by the Calculate-Init-Antibody-Set algorithm (Figure

6.4) in order to optimize the covering of the non-self space.

The problem of finding a good distribution of the antibodies can be better stated

as an optimization problem:

Maximize:

V (D) = V olume {x ∈ U | ∃d ∈ D, ‖x− d‖ ≤ rab} , (6.9)

restricted to:

{s ∈ S ′ | ∃d ∈ D, ‖s− d‖ ≤ rab} = Ø (not covering of self), (6.10)

where,

D : set of antibodies with a fix cardinality numab,

rab : antibody radius, and

S ′ : input self set.

The function defined in Equation 6.9 represents the amount of the self/non-self

space covered by a set of antibodies, D, which corresponds to the volume covered

by the union of the hyper-spheres associated with each antibody. The restriction

specified in Equation 6.10 tells that no antibody can match any self point.

The evaluation of the function V (D) can be a costly process; in fact, the only

practical way to do it is using a Monte Carlo integration method similar to the one

used in the previous section (6.2). Instead, we will use a simplified version of this

optimization problem, which we will show, experimentally, to be equivalent.
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The remaining part of this section describes an optimization algorithm to solve

this problem. The technique is based on a very well known Monte Carlo based

optimization method, simulated annealing, which is adapted to solve this particular

problem.

This is not the first time that simulated annealing has been used in an AIS. De

Castro and Von Zuben [53] proposed a technique to initialize feed-forward neural

networks weights. The basic idea is to represent the network weights by antibodies

which correspond to n-dimensional real-valued vectors. The antibodies are dispersed

in the space by maximizing an energy function that takes into account the inverse

of the inter-antibody affinity. This approach is substantially different to the one

proposed here; it does not use the concept of self/non-self distinction, and its main

goal is producing diversity instead of performing anomaly detection.

6.3.1 Simulated annealing

The simulated annealing technique was initially proposed by Kirkpatrick et al. [125]

borrowing inspiration from the physical annealing of solids. The physical process is

more or less as follows: a solid is heated to a high temperature, then, it is slowly

cooled until some desired properties of the solid are obtained; these properties are

related to a low energy state.

In the algorithm, the energy corresponds to the function to minimize, C(s), whose

domain is the space of states of a system. The system is randomly perturbed by

moving it from the current state, si, to a new state, sj. If C(sj) < C(si), the

transition is accepted; otherwise, its acceptance is defined by a random process. The

probability of accepting this transition is a function of the temperature: the higher

the temperature, the higher the probability of accepting a worse state. This step

is repeated a number of times until the system reaches thermal equilibrium. This

perturbation process is known as the Metropolis algorithm [124, 131], and it belongs
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to a broader class of algorithms called Monte Carlo methods [124]. The simulated

annealing algorithm is shown in Figure 6.5.

In order to apply this algorithm to solve a specific problem, it is necessary to

define the following elements:

• The set of possible configurations (states) of the system, States.

• The neighborhood of each state. For each state si ∈ States, it is defined a set

Nsi
⊆ States that contains all the states where it is possible to move from si.

It is indispensable that ∀si, sj ∈ States sj ∈ Nsi
⇔ si ∈ Nsj

, i.e. if it is possible

to perform a transition from a state i to a state j, it has to be possible to move

back from j to i.

• A cost function C : States→ R.

• A stopping criterion for the inner loop (thermal equilibrium). The inner loop

can be seen as a sequence of transitions on a Markov chain [132]. The equilib-

rium is reached when the probability distribution of the states approaches the

Boltzmann distribution. In a practical application, a common heuristic is to

perform a number of iterations that depends on the size of the problem [126].

• A cooling schedule, i.e. a process that determines the sequence of temperatures:

T0, T1, ..., Tm. This can be decomposed in:

– An initial temperature T0. The idea is to have an enough high temperature

such that the acceptance ratio, χ0, is close to 1 (in [125], χ0 = 0.8). Johnson

et al. [133] proposed the following rule:

T0 =
∆C

(+)

ln(χ−1
0 )

, (6.11)

where ∆C
(+)

is the average increase in cost for a number of random tran-

sitions.
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Simmulated Annealing

End

i ← 0

Scurrent ← Snew

Scurrent ← Snew

Ti ← g(Ti−1)

i ← i + 1

Snew ← perturbate Scurrent

∆C ← C(Snew)− C(Scurrent)

Equilibrium?

Stop?

random[0,1)
e
−∆C

Ti >

∆C < 0

Yes

Yes No

No

Yes

No

Yes

No

Figure 6.5: Simulated annealing algorithm.
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– Decrement of the temperature, Ti+1 ← g(Ti). A frequently used update

rule is given by

Ti+1 ← α · Ti, (6.12)

where α ∈ [0.8, 0.99].

– A stopping criterion for the outer loop. A simple option is to specify

a fixed number of iterations. A more elaborated strategy will look for

the successive changes in the configuration and stop if a given number of

consecutive configuration is the same.

6.3.2 An algorithm to optimize the volume covered by the

antibody set

As we mentioned at the beginning of this section, the algorithm that optimizes the

covering of the non-self space is based on the simulated annealing technique. In order

to describe it, we will follow the list of elements presented in the previous subsection.

6.3.2.1 Set of system configurations

The main input to this algorithm is the set of antibodies produced by the Calculate-

Init-Antibody-Set algorithm (Figure 6.4). The algorithm modifies the coordinates

of the antibodies looking for a configuration that optimizes the covering of non-self.

In consequence, the configuration of the system is given by the coordinates of the

antibody set. Notice that the number of antibodies is fixed, no antibodies are created

or eliminated in this algorithm. The set of system states is defined as follows:

States = {(d1, . . . dnumantib
) | di ∈ [0, 1]n}.
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6.3.2.2 State neighborhood

A perturbation of the system corresponds to a change on the position of an individual

antibody to a place close to its current position. The neighborhood of a state s =

(d1, . . . dnumab
) is defined as follows:

Ns = {(d1, . . . dnumab
) | ∃i ∀j 6= i, dj = dj and

∥∥di − di

∥∥ ≤ rpert}, (6.13)

where rpert is a parameter of the algorithm that represents the maximum distance to

move an individual antibody. In other words, a state s′ is a neighbor of s (s′ ∈ Ns),

if s′ differs from s only in one antibody, di, which has been moved maximum an rpert

distance.

6.3.2.3 The cost function

The original function to optimize corresponds to the volume covered by the antibody

set (Equation 6.9); however, to calculate it can be very costly. Therefore, we need an-

other function which is easier to calculate, and such that its optimization corresponds

to the optimization of the covered volume. Intuitively, to maximize the covering

produced by a set of antibodies, it is necessary to reduce their overlapping, i.e., to

increase the inter-antibody distance. The following equation defines an approximate

measure of overlapping between two antibodies:

Overlapping(di, dj) = e

−‖di−dj‖2
r2
ab . (6.14)

The overlapping function is shown in Figure 6.6 along with two antibodies with

radius rab = 1. The maximum value, 1, is reached when the distance between the two

antibodies is 0. When the distance is equal to 2rab, the value of the function is very

close to 0. Notice that this function can be interpreted as the matching function of

the antibody.
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Figure 6.6: Overlapping function for two antibodies with radius rab = 1.

Based on Equation 6.14, the overlapping of a set D = {d1, . . . , dnumab
} of antibod-

ies is defined as

Overlapping(D) =
∑

i6=j

e

−‖di−dj‖2
r2
ab , i, j = 1, . . . numab. (6.15)

Now, the question is if minimizing Overlapping(D) is the same as maximizing

V (D) (Equation 6.9). In general, it is not true; however, we will show in the next

section that in the practice they are equivalent.

The original optimization problem includes a restriction, not covering of the self

set (Equation 6.10). Simulated annealing does not provide a direct way to include

restrictions; therefore, it is necessary to include a term in the cost function that

penalizes configurations that violate this restriction. Then, the function to optimize

is defined as follows:

C(D) = Overlapping(D) + β · SelfCovering(D), (6.16)

where, the second term corresponds to the penalization factor for violating the no-

self-covering restriction, and is defined by

SelfCovering(D) =
∑

s∈S′

∑

d∈D

e

−‖d−s‖2
„

rab+rself
2

«2

. (6.17)
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Calculate-Cost-Difference(D, index, d, rab, S′, rself , β)

D = {d1, . . . , dnumab
}: initial antibody set

index: index of the antibody affected

by the transition

d: new position of the antibody

rab: antibody radius

S′: set of self samples

rself: self variability threshold

β: Self covering penalization

coefficient

1: SelfCovering ← 0
2: For each s ∈ S ′

3: SelfCovering ←e

−‖d−s‖2
„

rantib+rself
2

«2

− e

−‖dindex−s‖2
„

rantib+rself
2

«2

4: EndFor

5: Overlapping ← 0
6: For each di ∈ (D − {dindex})

7: Overlapping ← e

−‖d−di‖
2

r2
ab − e

−‖dindex−di‖
2

r2
ab

8: EndFor

9: Return Overlapping + β · SelfCovering

Figure 6.7: Algorithm to calculate the cost difference produced by a transition that
changes the position of an antibody dindex to d.

Notice that this function is based on the same principle used to define the Over-

lapping function (Equation 6.15). Each individual term on the sum measures the

amount of matching between an antibody and a self element.

The term β in equation 6.16 specifies the relative importance of self-covering with

respect to the inter-antibody overlapping. It controls the amount of penalization in

the cost function caused by violating the no-self-covering restriction.

An advantage of this cost function is that in each step of the algorithm it is not

necessary to calculate all the terms in Equations 6.15 and 6.16. It is only required

to evaluate the terms that involve the antibodies affected by the transition. The

function that calculates the difference of the cost function for a given transition is

presented in Figure 6.7. The main inputs are the set of antibodies, D; the index of

the antibody that is going to be moved, index; and the new position of this antibody,

d. The complexity of the algorithm is clearly O(|S ′|+ numantib).
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6.3.2.4 Stopping criterion for the inner loop

A common heuristic [126] to determine the number of iterations for the inner loop is

to make it proportional to the size of the problem to solve. Another heuristic is to

impose a minimum limit to the number of accepted transitions, accepted transitions

[126]. In our implementation, we chose to use a combination of the two heuristics:

we imposed a minimum value of accepted transitions which depends proportionally

on the size of the problem (given by the number of antibodies, numab). Additionally,

we imposed a maximum number of iterations for the inner loop, innermax to avoid

extremely long Markov chains [133, 125, 126]. The two values are defined as follows:

accepted transitions = ηmin · numab, (6.18)

innermax = 2 · ηmin · numab, (6.19)

where, ηmin is a input parameter to the algorithm. This parameter can be interpreted

as the expected number of times that each antibody is going to be moved for a given

value of the temperature.

6.3.2.5 Cooling schedule

The initial value of the temperature is calculated using Equation 6.11 as suggested

by Johnson et al. [133, 126]. In order to calculate ∆C
(+)

, we generate a fix number

of random transitions on the initial antibody configuration and calculate the average

of those that produce an increase in the energy. This process is shown in Figure 6.8.

NUM ITER is a constant that determines the number of iterations. It will

determine the precision of the estimate. Since we do not need a high precision for

the initial temperature, a value of NUM ITER = 100 will be enough. The constant

χ0 refers to the desired initial acceptance rate; the idea is to make it close to 1. We

chose to use χ0 = 0.8 as it was used by Kirkpatrick et al. [125]. The complexity of
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Calculate-Init-T()D, rantib, S′, rself , rpert, β)

D = {d1, . . . , dnumantib
}: initial antibody set

rab: antibody radius

S′: set of self samples

rself: self variability threshold

rpert: neighborhood radius

β: Self covering penalization

coefficient
Constants
NUM_ITER: number of iterations

χ0: acceptance rate

1: ∆C(+) ← 0
2: For i← 1 to NUM_ITER

3: index← random element {1, .., numab}
4: d← random element {v ∈ [0, 1]n | ‖dindex − v‖ ≤ rpert}
5: ∆C ← Calculate-Cost-Difference(D, index, d, rab, S′, rself , β)

6: If ∆C > 0 Then

7: ∆C(+) ← ∆C(+) + ∆C

8: EndIf

9: EndFor

10: ∆C
(+) ← ∆C

(+)

NUM_ITER

11: Return ∆C
(+)

ln(χ−1
0 )

Figure 6.8: Algorithm to calculate the initial value of the temperature, T0.
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the Calculate-Init-T function (Figure 6.8) is then the same as the complexity of

the function Calculate-Cost-Difference (Figure 6.7), that is, O(|S ′|+ numab).

The temperature is decreased in each iteration of the outer loop using Equation

6.12. The neighbor radius, rpert, is also decreased along with the temperature using

an analogous updating rule:

rperti ← αpert · rperti−1
. (6.20)

The number of outer loop iterations is given as a parameter to the algorithm.

6.3.2.6 Optimization algorithm for antibody distribution

The antibody distribution algorithm is shown in Figure 6.9. The main inputs to the

algorithm are the initial antibody set (generated by the Calculate-Init-Antibody-

Set algorithm, Figure 6.4), D; the set of self samples, S ′; and the number of iterations,

numiter. The shape of antibodies and self elements is determined by the antibody

radius, rab, and the self variability threshold, rself , respectively. The number of iter-

ations on the inner loop (lines 5 to 20) is controlled by the parameter, ηmin, which

expresses the minimum number of accepted transitions as a percentage of the number

of antibodies (see Equation 6.18). The temperature decay rate, α, and the neigh-

borhood radius decay rate, αpert, control how the temperature and the neighborhood

radius are going to be changed (see Equations 6.12 and 6.20) in each iteration of the

outer loop. Finally, the parameter β specifies the relative importance of covering self

points when calculating the cost function (see Figure 6.7).

The number of iterations in the inner loop (lines 5 to 20) is at most 2 · ηmin ·

numab. The time of each iteration is dominated by the time of the Calculate-

Cost-Difference function, which is O(|S ′| + numab) (see Subsection 6.3.2.3 on

page 135) . Therefore, the time of each iteration of the outer loop (lines 3 to 23) has

order O(numab · (|S ′| + numab)). In general, we expect the number of antibodies to
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Optimize-Antibody-

Distribution(D, rab, S′, rself , numiter, ηcoef , , α, αpert, β)

D = {d1, . . . , dnumantib
} : initial antibody set

S′ : set of self samples

numiter : number of iterations

rantib : antibody radius

rself : self variability threshold

ηmin : minimum accepted transitions %

α : Temperature decay rate

αpert : Neighborhood radius decay rate

β : Self covering importance coefficient

1: rpert ← 2 · rantib

2: T ← Calculate-Init-T(D, rantib, S′, rself , rpert, β)

3: For i← 1 to numiter

4: η ← 0, steps← 0
5: Repeat

6: index← random element {1, .., numantib}
7: d← random element {v ∈ [0, 1]n | ‖dindex − v‖ ≤ rpert}
8: ∆C ← Calculate-Cost-Difference(D, index, d, rab, S′, rself , β)

9: If ∆C < 0
10: Then . accept transition

11: η ← η + 1
12: dindex ← d

13: Else

14: If e
−∆C

T > random [0, 1)
15: Then . accept transition

16: η ← η + 1
17: dindex ← d

18: EndIf

19: EndIf

20: Until η ≥ ηmin · numab or steps > 2 · ηmin · numab

21: T ← α · T
22: rpert ← αpert · rpert

23: EndFor

24: Return D

Figure 6.9: Algorithm to optimize the distribution of antibodies in order to improve
the covering of the non-self space.
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be, at most, in the same order of magnitude as the size of the self set. Thus, the time

of the algorithm is expected to be O(numiter · numab · |S ′|).

6.3.2.7 Algorithm convergence

The simulated annealing algorithm can be seem as the simulation of an inhomogeneous

Markov chain [126], that is, a Markov chain where the transition probability matrix

changes with the time. In this case, the transition probability matrix change is due

to the decrease of the temperature.

Several researchers have proved that the simulated annealing algorithm converges

to an optimal state if the following conditions are satisfied:

1. the Markov chain associated with the next state generation probability matrix,

Gij, is irreducible and

2. the cooling schedule is such that Ti = Γ
ln(i+1)

, where Γ is a problem dependent

constant.

The matrix Gij represents the probability of generating the next state sj from the

current state si and is defined by the neighborhood sets in the following way:

Gij =





1
|Nsi
|
, if sj ∈ Nsi

0 otherwise
.

The irreducibility property indicates that for all pairs of states (si, sj) there is a

positive probability of reaching sj from si in a finite number of transitions:

∀si, sj, ∃m : (Gm)ij > 0,

which is equivalent to

∀si, sj, ∃l1, . . . , lm : sl1 ∈ Nsi
∧ sj ∈ Nslm

∧ (∀k, 1 ≤ k < m : slk+1
∈ Nslk

).
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It is not difficult to verify that this is satisfied by the neighborhood sets defined

in Equation 6.13.

The second condition is clearly not satisfied by the algorithm. However, this is

easy to solve by changing the temperature updating rule. This updating rule is very

slow, and, in general, of no practical use for real applications. This means that there

is a trade-off between optimality and efficiency, which we preferred to solve in favor

of the efficiency.

6.3.2.8 Implementation considerations

The most costly operation in Optimize-Antibody-Distribution function (Figure 6.9)

is to calculate ∆C (a task that is performed by Calculate-Cost-Difference func-

tion, Figure 6.7). The reason is that it has to visit each element in both the self set and

the antibody set in order to calculate the change in the measures SelfCovering(D)

and Overalpping(D). It is important to notice that, in general, each individual term

of the sum (in Equations 6.14 and 6.17) has a significant value if it corresponds

to the overlapping of two antibodies (or one antibody and a self element) that are

close enough; otherwise, the term is almost 0. Specifically, if ‖d1 − d2‖ > 2 · rab,

Overlapping(d1, d2) ≈ 0 (see Equation 6.14). This means that to calculate the change

in Overlapping(D), when a specific antibody di is moved to a new position d, it is

enough to take into account those antibodies dj such that

min(
∥∥di − dj

∥∥ ,
∥∥d− dj

∥∥) < 2 · rab. (6.21)

In order to take advantage of this, it is necessary to use an appropriate data

structure that performs range queries efficiently. A multidimensional access method

[134] such as an R*-tree [129] will do the work. To execute the query more efficiently,

it is necessary to transform it in a rectangular query. In this case, we take the

minimum hyper-rectangle that encloses the region defined by Equation 6.21. This

is illustrated in Figure 6.10. The hyper-rectangle is defined by the coordinates of
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di

d

Figure 6.10: The dashed rectangle enclose the antibodies affected by the movement
of antibody di to a new position d. The rectangle corresponds to the boundaries of
the region defined by Equation 6.21.

the two opposite corners: (min(di
1, d1) − 2 · rantib, . . . , min(di

n, dn) − 2 · rantib) and

(max(di
1, d1) + 2 · rantib, . . . , max(di

n, dn) + 2 · rantib), where the subindex refer to the

individual components on each dimension.

Notice that the use of these types of data structures will speed up the algorithm,

only if the size of the self and the antibody sets is large enough to compensate the

overhead of creating and maintaining the structure. Also, this does not change the

complexity of the algorithm since the worst case time of a range query is still linear

on the size of the set.

6.4 RRNS experimentation

The purpose of this section is to validate experimentally some of the assumptions

made while developing the algorithm presented in this chapter. Section 6.3 formulates

the problem of antibody distribution as an optimization problem corresponding to

maximizing the non-self volume covered by a set of antibodies (V (D), Equations 6.9

and 6.10). The Optimize-Antibody-Distribution algorithm (Figure 6.9) solves a

modified optimization problem: to minimize the function C(D) defined by Equation

6.16. This function is composed by a term that measures the amount of overlapping
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Figure 6.11: (a) Evolution of the area covered by the antibodies. (b) Evolution of the
inter-antibody overlapping measured by Equation 6.15.

between antibodies and a term that penalizes the covering of self points. The main

assumption is that minimizing C(D) is approximately equivalent to maximizing V (D).

The intuition behind this assumption is that the less overlapping in a set of antibodies,

the larger the volume covered by them.

Figure 6.11 shows the evolution of the area covered by a set of antibodies and their

overlapping when the Optimize-Antibody-Distribution (Figure 6.9) is applied

to an initial set of random antibodies in the unitary square. The overlapping, which

is the objective function minimized by the algorithm, goes down with the successive

iterations. This means that the antibodies are moving apart. This causes an increase

in the area covered by them, as shown in Figure 6.11(a). The area curve is not as

smooth as the overlapping curve; this can be explained by the fact that the area

is estimated (using Monte Carlo integration, ε = 0.01), whereas the overlapping is

calculated exactly.

The previous experiment suggests that, in fact, the algorithm is able to maximize

the area covered by minimizing the inter-antibody overlapping. However, this is just

one experiment in a 2-dimensional space. In order to build a stronger experimen-

tal evidence, we performed the following experiment: a random set of antibodies is

generated close to the center of the unitary hypercube, then the function Optimize-
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Figure 6.12: The graphics show the overlapping-versus-volume relation for a set
of antibodies produced by the successive application of Optimize-Antibody-

Distribution function (Figure 6.9). (a) Dimension = 2. (b) Dimension = 5. (c) Di-
mension = 10.

Antibody-Distribution (Figure 6.9) is applied for a given number of iterations, the

volume covered and the inter-antibody overlapping (Equation 6.15) are measured; this

process is repeated 30 times, each time starting with a new random set of antibodies.

Figure 6.12 shows the overlapping-versus-volume graphics corresponding to the

data generated by the experiment for space dimension 2, 5, and 10. It is easy to

see that there is a clear inverse relationship between the volume covered by a set of

antibodies and their inter-antibody overlapping. As it is shown by the graphics, the

relationship is not necessarily linear; however, it does not affect the algorithm since

it is enough that the volume increases monotonically when the overlapping decreases.

144



Table 6.1: Parameter values for the RRNS and RNS algorithms

RRNS parameters
numantib 100

rself 0.1
ε 0.005

ηmin 0.3
α 0.95

αpert 0.95
β 1

RNS parameters
r 0.04838
η 1
t 5
k 1

An interesting question is: how does the new algorithm (RRNS) compare to the

previous algorithm (RNS) in terms of the optimization of the volume covered by the

set of antibodies? It is important to take into account that the RNS algorithm was not

developed to optimize explicitly a function, neither the volume nor the overlapping.

The algorithm is based on heuristic rules that try to move the antibodies away from

each other and from the self points. An indirect result of this is an increase in the non-

self area covered by the set of antibodies. Therefore, we expect the RRNS algorithm

to perform better than the RNS algorithm in terms of the optimization of the area

covered by the generated set of antibodies.

To perform the comparison, we chose a simple data set that allows us to perform

many runs of both algorithms. The multiple runs eliminate any dependence of the

results on the initial conditions. The data set to use corresponds to a subset of the

Mackey-Glass time series data set (Subsection 4.6.1.1), which includes the first and

the fourth features (the data set is shown in Figure 3.3(b)). This set is used as input

to both algorithms along with the parameters specified in Table 6.1.

Notice that the RRNS is able to calculate the antibody radius if the number of

antibodies is given (Equation 6.8); this is not the case for RNS. Therefore, to make

the comparison fairer, we used the antibody radius calculated by the RRNS algorithm
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Figure 6.13: Evolution of the non-self covered volume when RNS and RRNS al-
gorithms are applied to the same self set. The points represent the average of 30
experiments and the length of the vertical lines represent three times the standard
deviation. (a) Real-valued negative selection (RNS). (b) Randomized real-valued neg-
ative selection (RRNS).

as input for the RNS algorithm. The parameters shown are the ones that produced

the best results for each algorithm.

The algorithms were run for a fix number of iterations (300 for RRNS and 100 for

RNS). After each iteration, the volume covered by the set of antibodies was calculated

using a Monte Carlo integration method similar to the one used in the Calculate-

Init-Antibody-Set algorithm (Figure 6.4). In this case, the value of the error was

ε=0.005. The process was repeated 30 times. Figure 6.13 shows the evolution of the

covered volume for each one of the algorithms.

The points in the curve represent the average volume for the 30 experiments,

and the length of vertical lines correspond to three times the standard deviation. In

both cases, the covered volume increases with the successive iterations. The RRNS

algorithm produces a larger covering volume, as was expected.

According to Figure 6.13, the RRNS uses more iterations. However, the two

algorithms are very different, and the type and the amount of calculations performed

during each iteration varies from one algorithm to the other. A better comparison will

use the time instead of the iteration number. Figure 6.14 shows such a comparison.

146



 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000
V

ol
um

e

Time (msecs.)

RRNS
RNS

Figure 6.14: Evolution of the non-self covered volume against the time for RNS and
RRNS algorithms.

Clearly, the RRNS employs less time on each iteration. This makes more evident the

advantage that the new algorithm has in terms of maximizing the covering of the

non-self space.

6.5 Summary

This chapter presented a new algorithm to generate antibodies in the non-self space:

the Randomized Real-Valued Negative Selection (RRNS) algorithm (Figure 6.1). The

algorithm is based on Monte Carlo simulation techniques; this gives it the appellative

of randomized. The algorithm improves the RNS algorithm proposed in the previous

chapter by providing a mathematical support that facilitates:

• the production of a good estimate of the number of antibodies of a given radius

needed to cover the non-self space, and

• the provision of a guarantee, at least theoretically, that the algorithm will con-

verge to an optimal configuration.

The RRNS algorithm has two main parts:
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• the initial antibody set generation algorithm (function Calculate-Init-Antibody-

Set, Figure 6.4), which uses Monte Carlo integration to estimate the number

of antibodies needed to cover the non-self set, and

• the antibody distribution optimization algorithm (function Optimize-Antibody-

Distribution, Figure 6.9), which uses simulated annealing (also a Monte Carlo

method) to optimize the covering of the non-self space.

The second part minimizes a cost function that represents the amount of inter-

antibody overlapping. The main assumption is that minimizing the overlapping is

equivalent to maximize the volume covered by the set of antibodies. In Section 6.4,

this assumption was validated experimentally.

The RRNS algorithm is clearly better than the RNS algorithm in terms of the-

oretical support. However, this does not mean that it has to be better in terms of

performance. In some cases, heuristic algorithms outperform other algorithms with

better theoretical support. This is not the case with the RRNS algorithm; the ex-

periments showed that it outperforms the RNS, since it produces a better covering of

the non-self space with the same, or less, computational effort.

In conclusion, the algorithm designed in this chapter, RRNS, represents an ad-

vance with respect to the original RNS algorithm in terms of theoretical support and

performance.
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Chapter 7

Conclusions and Future Work

The initial goal that motivated the work in this dissertation was to improve the

performance of the NS algorithm and to extend its range of applicability. As was

shown in Chapter 3, the binary representation used by current implementations of

the NS algorithm has limitations. The following are some of the main limitations:

• Binary matching rules are not able to capture the semantics of some complex

self/non-self spaces. This prevents the NS algorithm from producing a good

generalization of the non-self space.

• The low-level binary detector representation prevents the extraction of mean-

ingful domain knowledge. This makes it difficult to analyze reasons for reporting

an anomaly.

• For some problems, a large number of detectors could be needed to guarantee

a good level of detection. This represents a scalability issue.

• The binary representation makes it difficult to integrate the NS algorithm with

other immune algorithms, which use higher-level representations (such as real-

valued vectors).

• The binary representation provides a crisp distinction between normal and ab-

normal. Many problems require a ‘softer’ distinction; that is, the output of the
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anomaly detection system must be a degree of abnormality rather than a binary

normal-abnormal output.

This research effort concentrated on exploring a new representation for the self/non-

self space and algorithms that can overcome these limitations. We chose to use a

multi-dimensional real-valued representation of the self/non-self space. The main

reasons to do so were as follows:

• it has enough expressive power to represent data on a wide range of problems,

• it is possible to exploit the structure of the R
n metric space to design efficient

detector generation algorithms, and

• this representation is compatible with the representation used by other AIS

approaches such as those based on idiotypic immune network theory, which

open up scopes for integration.

7.1 Main contributions

A new representation of the self/non-self space requires different detectors (antibod-

ies) and matching schemes. Different options are explored :

• hypercubes, which can be interpreted as an anomaly detection rules;

• fuzzy rules, which are a generalization of the crisp rules defined by the hypercube

representation; and

• hyper-sphere-shaped detectors.

The new types of detectors require new algorithms to generate them. We designed

and implemented different alternatives:

• Hypercube detectors
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– Negative Selection with Detection Rules (NSDR) using sequential niching

(Section 4.2). This is a genetic algorithm that uses a sequential niching

technique to evolve a set of detectors (rules) that cover the non-self space.

– Negative Selection with Detection Rules (NSDR) using deterministic crowd-

ing (Section 4.4). This algorithm improves the performance of the previous

one by using a different niching technique, deterministic crowding.

• Fuzzy rules

– Negative Selection with Fuzzy Detection Rules (NSFDR) (Section 4.5).

This algorithm uses a similar strategy to NSDR using a deterministic

crowding algorithm to generate fuzzy rule detectors.

• Hyper-spheres

– Real-valued Negative Selection (RNS) (Section 5.4). The algorithm applies

a heuristic process that changes iteratively the position of the detectors

driven by two goals: to maximize the coverage of the non-self subspace

and to minimize the coverage of the self samples.

– Randomized Real-valued Negative Selection (RRNS) (Chapter 6). This

algorithm has a good mathematical foundation that solves some of the

drawbacks of the RNS algorithm. Specifically, it can produce a good es-

timate of the optimal number of detectors needed to cover the non-self

space, and the maximization of the non-self coverage is done through an

optimization algorithm with proved convergence properties.

– Additionally, we proposed a hybrid immune learning algorithm that com-

bines the RNS algorithm with conventional classification algorithms to

perform anomaly detection (Section 5.3). This method does not use pos-

itive or negative detection; rather, it tries to find a boundary between

normal and abnormal classes. One of the advantages of this approach is
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that it permits the use of a supervised technique for a task that tradi-

tionally requires an unsupervised method (as was discussed in Subsection

5.2.1).

We performed multiple experiments applying the proposed algorithms to different

data sets. In general, the results showed that the new representation has advantages

over the binary representation approach, and its performance is competitive with

other anomaly detection techniques. The following are some of the main advantages

of this representation:

• It allows the NS algorithm to generalize, that is, to induce the structure of the

self set using only a subset of normal samples.

Chapter 3 showed that binary matching rules cannot capture the structure of a

complex self set. Experiments in Sections 4.6 and 5.6 showed that real-valued

NS algorithms (NSFDR and RNS) are able to produce a good detection rate

while keeping a low false alarm rate, outperforming binary negative selection,

even if only a subset of the self set is available for training.

• It facilitates the process of extracting high-level knowledge from normal data.

The low-level binary representation is not able, in many cases, to represent

high-level knowledge of the problem space. The detector representation schemes

proposed in this work, such as crisp if-then rules in the NSDR algorithm (Section

4.2) or fuzzy if-then rules in the NSFDR algorithm (Section 4.5), provide a

natural way to represent this high-level knowledge. Also, it is possible to use

the hybrid immune learning algorithm proposed in Section 5.3 to extract that

knowledge by combining the RNS algorithm with a conventional classification

algorithm such as a fuzzy rule evolver (Section 5.5) or a neural network (Section

5.6).

• It can produce a non-crisp distinction between self and non-self.

152



The fuzzy rules produced by the NSFDR algorithm (Section 4.5) or the hybrid

immune learning algorithm (Section 5.5) represent a fuzzy characterization of

the non-self set. Also, the hybrid immune learning algorithm can produce a

non-crisp characterization by using an appropriate classification technique; for

instance, in Section 5.6, a neural network was used. This type of network

can generate a continuous output in the range [0,1] that assesses the level of

abnormality of a sample. This non-crisp distinction between self and non-self

facilitates the construction of more flexible anomaly detection systems that can

be tuned up to increase or to decrease their sensitivity without re-training.

• It makes the NS algorithm to scale better.

Our experiments with one high-dimensional data set (Subsections 4.6.2 and

5.6.3) showed that it is possible to use the NS selection algorithm in problems

where it is unfeasible to apply the binary version of the NS algorithm. Even

though these are preliminary results, they constitute an incentive to explore

more general detector representation that can overcome the evident scalability

issues of the binary NS algorithm.

7.2 Future work

Our experiments showed that the proposed algorithms outperform binary NS on dif-

ferent aspects. Also, they showed that they can produce results that are comparable

with those produced by other anomaly detection strategies based on positive detec-

tion. However, it is necessary to perform a more extensive experimentation using

different types of data sets and applying other anomaly detection methods in order

to assess the real strength of the proposed algorithms.

The hybrid immune learning algorithm proposed in Section 5.3 uses a conventional

classification algorithm. In our experiments, we tested it with a genetic-based fuzzy

rule generation algorithm (Section 5.5) and with a multi-layer perceptron trained
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with back-propagation (Section 5.6). There is a great variety of classification meth-

ods; hence, it would be interesting to test additional classification methods in order

to determine which ones produce better results when combined with this hybrid ap-

proach.

The algorithm proposed in Chapter 6 (RRNS) provides a good mathematical

framework that can serve as a basis for the development of better antibody generation

algorithms. Specifically, the efficiency of the initial antibody set generation algorithm

(Section 6.2) may be improved by using a Quasi-Monte Carlo integration method

[135], which can reduce the number of iterations needed to produce a good estimate

of the non-self volume. These methods replace the random numbers used by Monte

Carlo integration with more uniformly distributed deterministic sequences that are

known as low-discrepancy sequences (LDS). The use of LDS may produce a better,

more uniform initial antibody distribution. Another possibility for improvement is

to use a better optimization algorithm for distributing the antibodies in the non-

self space. Currently, we are using simulated annealing, which has some interesting

theoretical properties; however, there are more efficient optimization algorithms that

can be used instead.

The natural immune system combines multiple strategies and mechanisms in order

to defend the body against antigens: anomaly detection, clustering, pattern classifica-

tion, dynamic learning, associative memory, etc. (see Subsection 2.1.2). Most of the

current immune-inspired techniques use only a partial subset of immunological prin-

ciples (see Section 2.2). The integration of different mechanisms in a unified model

may provide a better problem solving capability through the synergetic interaction

between components. For instance, an AIS that combines self/non-self discrimination

(anomaly detection) and idiotypic networks (immune memory) could have very inter-

esting characteristics that are not exhbited by AISs that implement only one of these

mechanisms. Such an AIS has not been implemented yet, and one of the reasons is

that the AISs that implement self/non-self discrimination (efficiently) use a binary

representation that is not compatible with the real-valued representation used by AIS
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inspired on idiotypic networks. In this dissertation, we have shown that it is possible

(and desireable) to use a real-valued representation to implement an efficient system

that performs self/non-self discrimination. Therefore, an interesting extension of this

work is to combine the algorithms proposed in this dissertation with some of the

current idiotypic-network-based AISs [18, 20, 57, 64].
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[97] D. Dagupta and F. González, “Information assuarance in computer networks,”

ch. An intelligent decision support system for intrusion detection and response,

pp. 1–14, Springer-Verlag, Inc., 2001.

[98] D. Dasgupta and Z. Michalewicz, Evolutionary algorithms in engineering appli-

cations. New York: Springer-Verlag, Inc., 1997.

[99] D. Beasley, D. Bull, and R. Martin, “A sequential niche technique for multi-

modal function optimization,”Evolutionary Computation, vol. 1, no. 2, pp. 101–

125, 1993.

[100] “1999 Darpa intrusion detection evaluation.” MIT Lincoln Labs, 1999.

[101] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” IEEE

Transactions on Information Theory, vol. 13, pp. 21–27, 1967.

[102] J. Bentley, “Multidimensional binary search trees used for associative searching,”

Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[103] J. Bentley, “K-D trees for semidynamic point sets,” in Proc. 6th Annu. ACM

Sympos. Comput. Geom, pp. 187–197, 1990.

[104] J. Friedman, J. Bentley, and R. Finkel, “An algorithm for finding best matches

in logarithmic expected time,” ACM Transactions on Mathematical Software,

vol. 3, no. 3, pp. 209–226, 1977.

[105] D. Mount and S. Arya,“ANN: a library for approximate nearest neighbor search-

ing,” in 2nd Annual CGC Workshop on Computational Geometry, 1997.

168



[106] F. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy estimation

for comparing induction algorithms,” in Proceedings of 15th International Con-

ference on Machine Learning (J. Shavlik, ed.), (San Francisco, CA), pp. 445–

453, Morgan Kaufmann, 1998.

[107] F. Esponda, S. Forrest, and P. Helman, “A formal framework for positive and

negative detection schemes.” Draft version, July 2002.

[108] S. W. Mahfoud, “Crowding and preselection revisited,” in Parallel problem solv-

ing from nature 2 (R. Männer and B. Manderick, eds.), (Amsterdam), pp. 27–36,

North-Holland, 1992.

[109] M. Mackey and L. Glass, “Oscillation and chaos in physiological control sys-

tems,” Science, vol. 197, pp. 287–289, 1977.

[110] T. Caudell and D. Newman, “An adaptive resonance architecture to define

normality and detect novelties in time series and databases,” in IEEE World

Congress on Neural Networks, (Portland, OR), pp. 166–176, 1993.

[111] E. Keogh, S. Lonardi, and B. Chiu, “Finding surprising patterns in a time series

database in linear time and space,” in Proceedings of the 8th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD ’02)
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Summary of Data Sets Used for

Experiments

1. Data set name: Mackey-Glass

• Number of features: 4

• Training set size: 497

• Testing set size: 497

• Description: Chaotic time series generated by a differential equation.

• Source: The differential equation is solved numerically using the fourth-

order Runge-Kutta method. The features are extracted by sliding a win-

dow (of size four) through the time series (see Subsection 4.6.1.1)

2. Data set name: IRIS

• Number of features: 4

• Training set size: 40

• Testing set size: 110

• Description: Three different type of flowers described by four features.

• Source: Initially created by Fisher [118]. This particular version of the

data set was obtained from the University of California Machine Learning

Repository [112] (ftp://ftp.ics.uci.edu/pub/machine-learning-

databases/iris).
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3. Data set name: MIT-Darpa 98

• Number of features: 32

• Training set size: 1,474

• Testing set size: 415,978

• Description: Network traffic data generated in a controlled environment.

• Source: Data set used for the KDD Cup 99 competition available at the

University of California Machine Learning Repository [112] (http://kdd.

ics.uci.edu/databases/kddcup99/kddcup99.html).

4. Data set name: MIT-Darpa 99

• Number of features: 9

• Training set size: 4,000

• Testing set size: 5,192

• Description: Network traffic data generated in a controlled environment.

• Source: The original tcpdumd data was obtained from MIT Lincoln Lab

[100]. It was processed to extract nine traffic features (see Subsection

4.3.1).

5. Data set name: Wisconsin Breast Cancer

• Number of features: 9

• Training set size: 271

• Testing set size: 412

• Description: The features describe characteristics of the cell nuclei present

in the digitized image of a fine needle aspirate of a breast mass.

• Source: Created at the University of Wisconsin Hospitals [122]. This par-

ticular data set was obtained from the University of California Machine
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Learning repository [112]

(ftp://ftp.ics.uci.edu/pub/machine-learning-databases/breast-cancer-

wisconsin).
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