
 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00  2002 IEEE

Abstract – The normal and the abnormal behaviors in
networked computers are hard to predict, as the boundaries
cannot be well defined. This prediction process usually
generates false alarms in many anomaly based intrusion
detection systems. However, with fuzzy logic, the false alarm
rate in determining intrusive activities can be reduced, where a
set of fuzzy rules is used to define the normal and abnormal
behavior in a computer network, and a fuzzy inference engine
can be applied over such rules to determine intrusions. This
paper proposes a technique (genetic algorithm) to generate
fuzzy rules (instead of manual design) that are able to detect
anomalies and some specific intrusions. Experiments were
performed with DARPA data sets [1], which have information
on computer networks, during normal behavior and intrusive
behavior. This paper presents some results and reports the
performance of generated fuzzy rules in classifying different
types of intrusions.

Index terms – Intrusion detection, fuzzy classification, rule
generation, and genetic algorithms

I. INTRODUCTION

The number of intrusions into computer systems is
growing because new automated hacking tools are
appearing every day, and these tools along with various
system vulnerability information are easily available on
the web. The problem of intrusion detection has been
studied extensively in computer security ([2], [3], [4], and
[5]), and has received a lot of attention in machine
learning and data mining ([6], [7], and [8]). Basically,
there are two models of intrusion detection [5]:

Anomaly Detection: This model first build the normal
profile that contains metrics derived from the system
operation. While monitoring the system, current
observation is compared with the normal profile in order
to detect changes in the patterns of utilization or behavior
of the system.
Signature or Misuse Detection: This technique relies on
patterns of known intrusions to match and identify
intrusions. In this case, the intrusion detection problem is
a classification problem.

 Intelligent Security System Research Lab, Division of
Computer Sciences, Mathematical Sciences Department, The
University of Memphis, Memphis, TN 38152. Jonatan Gomez is
also a faculty of Universidad Nacional de Colombia.

However, there exist several approaches in implementing
an intrusion detection system that use one or both the
above-mentioned models:

1. Using data mining techniques over system audit data to
extract consistent and useful patterns of program and user
behavior, in order to build classifiers that can recognize
anomalies [8]. The data mining techniques that are
primarily used include classical association rules and the
frequent episodes learning.

2. Using temporal association rules, in terms of multiple
time granularities [9]. The temporal association rules
technique generates fuzzy and classical rules [10].

3. Using short sequences of system calls performed by
running programs as discriminators between normal and
abnormal operating characteristics [11]. The discriminator
uses the Hamming distance between short sequences of
system calls. If the distance of a particular sequence to the
normal sequences is higher than a threshold then the
sequence is considered abnormal.

4. Distributing the detection task among multiple
independent entities (autonomous agents) that work
collectively [6]. The functionality of each agent is not
defined but it can be simple or complex according to the
specific detection task that an agent is assigned. If an
agent detects some anomalies or intrusions, the agent
sends messages to other agents to define, in a distributed
manner, the action to take.

5. Using genetic programming to build autonomous agents
that detect intrusions. The learning model uses feedback,
and the process evolves agents over the scenario of
intrusions and normal behavior [7].

6. Emulating mechanisms of the natural immune systems
to detect anomalies in a distributed manner [12]. It
combines two anomaly detection methods: using profiles
of user behavior and correlation of user behavior with
network statistical behavior. The decision support
component uses an ART neural network and a Fuzzy
Controller.

In this paper, we show the applicability of genetic
algorithms to evolve a simple set of fuzzy rules (fuzzy
classifier) that can solve some well-studied intrusion

Evolving Fuzzy Classifiers for Intrusion Detection

Jonatan Gomez and Dipankar Dasgupta

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00  2002 IEEE

detection problems. In this approach, genetic algorithms
can find good and simple fuzzy rules to characterize
intrusions (abnormal) and normal behavior of network
systems. As the difference between the normal and the
abnormal activities are not distinct, but rather fuzzy, fuzzy
logic can reduce the false signal rate in determining
intrusive activities.

The subsequent sections are organized as follows. Section
2 briefly describes the basic fuzzy logic and fuzzy
classifiers concepts used in this paper, section 3 presents
the proposed approach to solve some intrusion detection
problems, section 4 describes experiments and analysis of
results, and section 5 draws some conclusions.

II. FUZZY CLASSIFIERS FOR INTRUSION DETECTION

The intrusion detection problem (IDP) is a two-class
classification problem: the goal is to classify patterns of
the system behavior in two categories (normal and
abnormal), using patterns of known attacks, which
belongs to the abnormal class, and patterns of normal
behavior. With fuzzy rules, the solution to classification
problem is based on fuzzy logic concepts.

A. Fuzzy Logic

In fuzzy logic [13], fuzzy sets define the linguistic
notions, and membership functions define the truth-value
of such linguis tic expressions. Table 1 shows the
difference between classic sets and fuzzy sets.

FUZZY SETS CLASSIC SETS
In fuzzy sets, an object
can partially be in a set.

In classic sets, an object is
entirely in a set or is not.

The membership degree
takes values between 0
and 1.

The membership degree
takes only two values, either
0 or 1.

1 means entirely in the
set, 0 means entirely not
in the set, other values
mean partially in the set.

1 means entirely in the set, 0
means entirely not in the set.
Other values are not allowed.

Table 1: Comparisson between fuzzy sets and classic sets

The degree of membership of an object in a fuzzy set is
defined as a function where the universe of discourse (set
of values that the object can take) is the domain, and the
interval [0,1] is the range. Figure 1 shows an example of
the membership function (triangular), which is in wide
use.

Figure 1: Triangular membership function

In figure 1, the object x has 0.6 degree of membership to
the fuzzy set low, i.e., x belongs to the fuzzy set and does
not belong to the fuzzy set at the same time. A collection
of fuzzy sets, called fuzzy space, defines the fuzzy
linguistic values or fuzzy-classes that an object can belong
to. A standard fuzzy space is shown in figure 2.

Figure 2: Fuzzy space with five fuzzy sets

With fuzzy spaces, fuzzy logic allows an object to belong
to different classes at the same time. This concept is
helpful when the difference between classes is not well
defined. This is the case in the intrusion detection task,
where the differences between the normal and abnormal
classes are not well defined.

With these linguistic concepts, atomic and complex fuzzy
logic expressions can be built. An atomic fuzzy
expression is an expression:

parameter is [not] fuzzyset

Where, parameter is an object, and fuzzyset is a fuzzy set
that belongs to the defined fuzzy space for the parameter.
The truth-value (TV) of an atomic expression is the
degree of membership of the parameter to the fuzzy set.
Because TVs are expressed by numbers between 0 and 1,
(0 means entirely false, 1 means entirely true, and others
values means partially true), the fuzzy expression
evaluation process is reduced to arithmetic operations.
Also, for each classical logic operator (and, or, negation),
there is a common fuzzy logic arithmetic operator (shown
in table 2):

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00  2002 IEEE

LOGIC OPERATOR FUZZY OPERATOR
p AND q min{p, q}
P OR q max{p, q}
NOT p 1.0-p

Table 2: Fuzzy logic operators

Fuzzy rules have the form:
IF condition THEN consequent [weight]

Where,
• condition is a complex fuzzy expression, i.e., a

logic expression that uses fuzzy logic operators
and atomic fuzzy expressions

• consequent is an atomic expression, and
• weight is a real number that defines the

confidence of the rule.

The following is an example of a fuzzy rule:

R: IF x is HIGH and y is LOW THEN
 pattern is normal [0.4]

The TV of the fuzzy rule is calculated as the product of
the condition truth-value by the weight, i.e.:

TV(R) = TV(condition) * weight

For the previous example, if the degree of membership of
the parameter x to the fuzzy set HIGH is 0.2, the degree of
membership of y to LOW is 0.4 and the weight is 0.4 then
the truth-value of the fuzzy rule is:

TV(R) = TV(x is HIGH and y is LOW) * 0.4
 = min{0.2, 0.4} * 0.4 = 0.2 * 0.4 = 0.08

B. Fuzzy classifiers and the intrusion detection
problem

In intrusion detection, there are m+1 classes where every
object should be classified. Among these classes, there is
one special class called the normal class and m classes
called the abnormal classes (based on known intrusions or
attacks). The data set used by the learning algorithms
consists of a set of objects, each object with n+1
attributes. The first n attributes define the object
characteristics (monitored parameters) and the last
attribute defines the class that the object belongs to (the
classification attribute).

Accordingly, fuzzy classifier system for solving intrusion
detection problem should have a set of m+1 rules, one for
the normal class and m for the abnormal classes, where
the condition part is defined by the monitored parameters
and the consequent part is an atomic expression for the
classification attribute. For example,

RNormal : IF x is HIGH and y is LOW THEN
pattern is normal [0.4]

RAbnormal-1 : IF x is MEDIUM and y is HIGH THEN
pattern is abnormal1 [0.6]

 . . .
RAbnormal-m : IF x is LOW THEN

pattern is abnormalm [0.6]

There are several techniques to determine the class that an
object belongs to. One of these techniques is the
maximum technique, which classifies the object as the
class in the consequent part of the rule that has the
maximum truth-value, i.e.:









≠=∀<

∧<
=∀>

=

ijmjRTVRTV

RTVRTVifA
miRTVRTVifN

class

iAjA

iANi

iAN

..1)()(

)()(
..1)()(

__

_

_

Where,

N represents the normal class,
Ai the i-th abnormal class,
RN is the rule for the normal class, and
RA-i is the rule for the i-th abnormal class

If k number of rules produced have the same maximum
truth-value, then one of these rules can be picked
randomly.

III. EVOLVING FUZZY CLASSIFIERS

We used a genetic algorithm to generate fuzzy classifiers
for intrusion detection using datasets with patterns of the
system behavior during normal and under intrusive
(abnormal) conditions.

In a genetic search, a set of chromosomes (population),
each chromosome codifying a possible solution for the
given problem, is evolved using a set of genetic operators
(mutation, crossover, selection). Each chromosome has
probability to be modified by one of these genetic
operators, and this probability depends on the adaptability
of the chromosome. The following steps outline the basic
structure of the genetic algorithm (GA):

1. [Start] Generate random population of n
chromosomes

2. [Fitness] Evaluate the fitness f(x)
3. [New population] Create a new population
4. [Selection] Select two parent chromosomes from a

population according to their fitness (the better
fitness, the bigger chance to be selected)

5. [Crossover] With a crossover probability swap
genetic material between the parents to form a new

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00  2002 IEEE

offspring (children). If no crossover was
performed, offspring is an exact copy of parents.

6. [Mutation] With a mutation probability mutate
new offspring at each locus (position in
chromosome).

7. [Accepting] Place new offspring in a new
population

8. [Replace] Use new generated population for a
further run of algorithm

9. [Test] If the end condition is satisfied, stop, and
return the best solution in current population

10. [Loop] Go to step 2

There are several approaches to evolve fuzzy classifiers
with GAs [14], [15], [16]. We used the approach proposed
by Gomez in [17], where, an adaptive-parameter genetic
algorithm with special operators (gene addition, gene
deletion) is used for each class (normal and abnormal
classes). Figure 3 illustrates the steps to produce a fuzzy
rule for the class k using a GA.

GA Based Rule Gen eration Module

Data set
0.1 0.3 0.4 0.1 1
0.4 0.8 0.2 0.1 2

Best Individual
1##10#01… : k

Population

1##10#01..
100##101..

Genetic
Operators

Fitness
Evaluation
Class k

Best Rule
If x is low and … then pattern is class - k

(

Figure 3: Steps to generate a fuzzy rule for class k using a
GA

Because, the variable segment in this fuzzy rule is the
condition part (the consequent and the confidence weight
are fixed), only this segment is encoded as a linear
chromosome with variable length that uses complete
expression trees.

For example, the expression:

(x is C ∧ w is not D) ∨ z is E

can be represented without parenthesis and using
complete expression trees as:

x is C ∨ z is E ∧ w is not D

With complete expression tree, the chromosome is
defined as a set of n genes, each gene is composed of an
atomic condition <variable> is [not] <set> and a logic
operator, as is shown in figure 4.

Gen1 ... Genn Genn+1

ac1 op1 ... can opn acn+1 *
var1 ro1 set1 ... varn ron setn varn+1 ron+1 setn+1 *

Figure 4: Representation of the condition part of a fuzzy

rule using operator precedences.
 vari, roi, seti, and opi are the variable, relational operator,

set and logic operator of the i-th gene.

An example expression encoded in the chromosome using
operator priority is as follows:

Gen1 Gen2 Gen3

Ac1 op1 Ac2 op2 ac3 op3
X YES C ∨ Z YES E ∧ W NOT D ∗ *

Figure 5: Codification of the expression X is C or Z is E

and W is not D

Gomez used the fuzzy confusion matrix to calculate the
fitness of a chromosome [17]. In the fuzzy confusion
matrix, the fuzzy truth degree of the condition represented
by the chromosome and the fuzzy negation operator are
used directly. In our case, the fitness of a chromosome for
a specific class is evaluated according to the set of
following equations:

∑
=

=
p

i
idataclasspredictedTP

1

)_(

∑
=

−=
q

i
idataclassotherpredictedTN

1

)]__(1[

∑
=

=
q

i
idataclassotherpredictedFP

1

)__(

∑
=

−=
p

i
idataclasspredictedFN

1

)]_(1[

FNTP
TP

ysensitivit
+

= ,

FPTN
TN

yspecificit
+

=

10
_

1
lengthchrom

length −= ,

lengthwyspecificitwysensitivitwfitness *** 321 ++=

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00  2002 IEEE

Here,
TP, TN, FP, and FN are the true positive, true negative,
false positive, and false negative values for the codified
rule respectively,
predicted is the fuzzy value of the condition part of the
codified rule,
p is the number of samples of the evolved class and q is
the number of samples of the remaining classes samples
in the training data set, that are used by each
chromosome in the genetic algorithm,
w1, w2, and w3 are the assigned weights for each rule
characteristic respectively,
class_datai is a element of the subset of training
samples of the evolved class, and, other_class_datai is
a element of the subset of remaining classes (not
evolved by the genetic algorithm) in training samples.

Accordingly, the best chromosome in the population is
chosen and the fuzzy rule: if <condition> then pattern is
<class>, is added to the fuzzy classifier.

IV. EXPERIMENTATION

A. Test Data Set

Tests were conducted using ten percent of the kdd-cup’99
data set [1], in order to evaluate the performance of the
proposed approach to generate comprehensible fuzzy
classifiers for intrusion detection problems. This data set
is a version of the 1998 DARPA intrusion detection
evaluation data set prepared and managed by MIT
Lincoln Labs [18]. In this data set, forty-two attributes (or
fields) that usually characterize network traffic behavior
compose each record. Also, the number of records in the
10% data set is very large (492021).

This data set contains 22 different types of attacks that
can be classified in four main intrusion classes, as is
shown in table 3. Also, the proportion of samples per
class is not uniform, for example from class U2R the
number of samples in the training data set is 59 while
from class DOS the number of samples is 391458.

CLASS SUB-CLASSES SAMPLES
Normal 95278 (19.3%)
U2R buffer_overflow,

loadmodule, multihop, perl,
rootkit

59 (0.01%)

R2L ftp_write, guess_passwd,
imap, phf, spy, warezclient,
warezmaster

1119 (0.23%)

DOS back, land, Neptune, pod,
smurf, teardrop

391458(79.5%)

PRB ipsweep, nmap, portsweep,
satan

4107 (0.83%)

Table 3: Classes in the 10 % of the KDDCup 99 data set

B. Preprocessing

We normalized the original 10% KDD-cup99 data set,
where each numerical value in the data set is normalized
between 0.0 and 1.0 according to the following equation:

MINMAX
MINxx
−

−=

Where,

x is the numerical value, MIN is the minimum value for
the attribute that x belongs to, and MAX is the
maximum value.

For each numerical attribute we assign the fuzzy space as
shown in figure 6.

Figure 6: Fuzzy space for numerical attributes in the
KDD-cup99data set

For non-numerical attributes like logged-in we used the
categorical values as crisp sets (fuzzy sets that do not
overlap each other). Figure 7 shows the fuzzy space
associated to the logged-in attribute. For example, a value
of false for this attribute has a degree of membership to
the crisp set FALSE equal to 1.0 and degree of
membership to the fuzzy set TRUE equal to zero.

Figure 7: Fuzzy space for the non-numerical attribute
logged-in

C. Experimental Setting

We randomly selected a 20% of the total set for testing
and the remaining 80% for training. The testing data set
was built using a 20% of all the samples of each class in

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00  2002 IEEE

the data set. The score of the trained classifier was
calculated as the classification accuracy over the testing
set.

We used adaptive parameter settings in genetic algorithm
as proposed by Gomez in [19], where each genetic search
was initialized with a random population of individuals,
with length between one and six genes. We performed
several tests with different values of fitness function
weights.

Because the combined proportion of samples from the
normal class and the DOS class are almost 99% of the
data set, we evolved a fuzzy rule for the DOS attack
independently using only the normal and the DOS records
in the training data set. Each individual in the population
uses a number of samples from the data set that is
proportional to the number of samples of that class
present in the dataset. The proportion of samples from
each class is given by the proportion of samples of each
class in the training dada set.

For each of the remaining classes (U2R, R2L, PRB, and
normal), we evolved one fuzzy rule using the training set
without the DOS class samples. In this case, however the
numerical proportion in which each class is present in the
dataset is not used to choose the number of samples used
for that class. Rather a uniform number of samples is
considered for each of these classes.

The reported results were obtained using a population size
of 200 and a maximum of 200 iterations. Each individual
used only 2000 records from the training dataset and a
proportional random assignment of the fitness function
weights as is explained by Gomez in [17]. These values
showed good performance in the evolution of fuzzy
classifiers for the intrusion detection problem.

D. Results and Analysis

The proposed approach was able to generate simple fuzzy
rules (the longest fuzzy rule contains only five atomic
expression). The following are some fuzzy rules that were
evolved in a sample run:

i f (dst_host_srv_count is not low or
 protocol_type is not tcp) and protocol_type is not icmp then
record_type is normal [1.0]
i f dst_host_srv_count is low and flag is not S0 and
 protocol_type is not icmp and
 dst_host_srv_rerror_rate is not level-4
then record_type is U2R [1.0]
i f (dst_host_srv_count is low or is_guest_login is true) and flag is not
REJ and dst_host_same_srv_rate is not low and duration is not level-
4 then record_type is R2L [1.0]
i f count is not low or same_srv_rate is low
then record_type is DOS [1.0]
if dst_host_same_srv_rate is low and flag is not SF or
 protocol_type is icmp
then record_type is PRB [1.0]

There are two elements that define the cost function of an
intrusion detection system: the false alarm (FA) rate (the
system produces an alarm in a normal condition), and the
detected attacks rate (DR) (the system considers an
abnormal behavior as normal). The performance of the
proposed approach: Evolving Fuzzy Rules for Intrusion
Detection (EFRID) is shown in table 4.

Algorithm FA % DR % Complexity
EFRID 7.0 98.95 O(n)
RIPPER-Artificial
Anomalies [20]

2.02 94.26 O(n*log2n)

SMARTSIFTER [21] - 82.0 O(n2)

Table 4: Comparison of the proposed approach with
RIPPER and SMARTSIFTER

Thus table 4 compares the performance of EFRID against
other methods (RIPPER, SMARTSIFTER). Our approach
resulted in DR of 98.95 compared to 94.26 in R.

In EFRID, each individual in the population used less than
1% of the data-set, the number of individuals per iteration
is 200, the number of iterations is 200, and the genetic
algorithm is run 5 times (one per each class). Then the
number of times that the data set is used is bounded by
2000 times, but because there are some individuals per
iteration that are not feasible (the result of the genetic
operator can be a not valid fuzzy rule), this value is less
than 2000. We calculated the average number of times
that the data set is accessed (875.4 times). Therefore
EFRID is a linear algorithm respect to the size of the data
set.

The classification accuracy of EFRIDS is shown in table 5
along with the performance achieved by the winner group
in the KDDCup’ 99 contest [22]. However, these results
are not comparable as different data sets were used for
testing. So, this information is for reference only.

CLASS EFRID WINNER ENTRY
Normal 92.78% 94.50%

U2R 88.13% 13.2%
R2L 7.41% 8.4%
DOS 98.91% 97.10%
PRB 50.35% 83.30%

Table 5: Accuracy of EFRID and the winner entry in the

KDDCup’ 99 contest

In the simplest form, intrusion detection problem can be
considered as a two-class classification problem, where
the positive class is the abnormal class and the negative
class is the normal class. We have applied the Receiver
Operating Characteristic (ROC) analysis to evaluate the
performance of the evolved classifiers [23]. In the ROC

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00  2002 IEEE

analysis, for classifier systems that produce a continuous
output with respect to some parameter α, the coordinate
point (FP, TP)α is plotted in the coordinate system. Here,
TP is the true positive rate (the percentage of abnormal
behavior classified as abnormal) and FP is the false
positive rate (the rate of false alarms).

To generate the ROC curve for the intrusion detection
problem from the evolved fuzzy classifier, we varied α
between 0.0 and 1.0 and assigned to the normal rule the
confidence weight 1-α and to the abnormal rules the
confidence weight α.

The plotted points define the ROC curve for the given
classifier. This ROC curve can be used to determine when
a classifier is good or bad. If the ROC curve of a classifier
A dominates the ROC curve of the classifier B then
classifier A is better than classifier B [24]. The ROC curve
for an intrusion detection classifier shows how the fuzzy
rule confidence value affects the rate of alarms and the
rate of detected abnormal activities. The ROC curve for
the evolved fuzzy classifier systems is shown in figure 7.

Roc Curve

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3

False Alarms

D
et

ec
ti

o
n

 R
at

e

Figure 3: ROC curve for the evolved fuzzy classifier

According to the ROC curve it is possible to reduce the
false alarm rate to 5% with a detection rate of 98.5% if the
confidence value of the abnormal class rule is set to 0.1
and the confidence value of the normal rule is set to 0.9.

V. CONCLUSIONS

Our experiments showed that the proposed approach
works well in detecting different attacks. The accuracy of
fuzzy classifiers was good and comparable to those
reported in the literature. Also, the accuracy can further be
improved applying specific strategies to generate the
fuzzy space for each monitored parameter.

The evolved fuzzy rules are not complex as no more than
five attributes are used in each rule. It allows
characterization of the normal and abnormal behaviors in
a simple way. Simpler fuzzy rules have a clear advantage
in real applications. First, they yield rules that are easier to
interpret, hence score high on interpretability. Second,
they yield a classifier rule that is faster in deployment.
This is especially crucial for data involving a large
number of attributes.

The importance of fast response is even more crucial in
network security applications: In automatic intrusion
detection systems, a fast classifier can mean all the
difference between being able to detect and stop the
intruder’s behavior in time , as compared to detecting the
user’s behavior, but responding too late because of a slow
detection process. We emphasize that training is the most
time consuming part of our system, it is a linear time
algorithm over the data set size but it is one of the most
efficient (see table 4).

The main contribution of the present work is the design of
a classification process for the intrusion detection
problem. It allows application of fuzzy logic and genetic
algorithms for the detection of various types of attacks.

VI. ACKNOWLEDGES

This work was supported by the Defense Advanced
Research Projects Agency (no. F30602-00-2-0514) and
National Sciences Foundation (no. NSF-EIA-9818323).

VII. REFERENCES

[1] KDD-cup data set. http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html
[2] R. Heady, G. Luger, A. Maccabe, and M. Sevilla. The
Architecture of a Network-level Intrusion Detection
System, Technical report, CS90-20. Dept. of Computer
Science, University of New Mexico, Albuquerque, NM
87131.
[3] E. Amoroso, "Intrusion detection", Intrusion.net
Books, January 1999.
[4] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel,
and E. Stoner, "State of the practice of intrusion detection
technologies", Technical Report CMU/SEI99 -TR-028,
ESC-99-028, Carnegie Mellon, Software Engineering
Institute, Pittsburgh, Pennsylvania, 1999.
[5] S. Axelsson, "Intrusion detection systems: A survey
and taxonomy", Technical Report No 99-15, Dept. of
Computer Engineering, Chalmers University of
Technology, Sweden, March 2000.
[6] J. Sundar, J. Garcia-Fernandez, D. Isaco, E. Spafford,
and D. Zamboni, "An architecture for intrusion detection

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2001

ISBN 555555555/$10.00  2002 IEEE

using autonomous agents", Tech. Rep. 98/05, Purdue
University, 1998.
[7] M. Crosbie, "Applying genetic programming to
intrusion detection", In Proceedings of the AAAI 1995
Fall Symposium series, November 1995.
[8] W. Lee, S. J. Stolfo, and K. W. Mok, "Mining audit
data to build intrusion detection models", Proc. Int. Conf.
Knowledge Discovery and Data Mining (KDD'98), pages
66-72, 1998.
[9] Y. Li, N. Wu, S. Jajosia, and X. S. Wang, "Enhancing
profiles for anomaly detection using time granularities",
Center for secure information systems. To appear in
Journal of Computer Security, 2002.
[10] S. Bridges and R. Vaughn, “Fuzzy data mining and
genetic algorithms applied to intrusion detection”,
Proceedings twenty third National Information Security
Conference, October 1-19, 2000.
[11] S. A. Hofmeyr, A. Somayaji, and S. Forrest,
"Intrusion detection using sequences of systems call",
Journal of Computer Security, 6:151-180, 1998.
[12] D. Dasgupta and H. Brian, "Mobile security agents
for network traffic analysis", Published by the IEEE
Computer Society Press in the proceedings of DARPA
Information Survivability Conference and Exposition II
(DISCEX-II), June 12-14, 2001, Anaheim, California.
[13] Zadeh, L.A., "Fuzzy sets" in Information and
Control, 8: 338-352, 1965
[14] C.E. Bojarczuk, H.S. Lopes, and A.A. Freitas
“Discovering comprehensible classification rules using
genetic programming: a case study in medical domain”.
Proceedings Genetic and Evolutionary Computation
Conference GECCO99, 1999.
[15] H. Ishibuchi and T. Nakashima “Linguistic rule
extraction by genetic-based machine learning”.
Proceedings Genetic and Evolutionary Computation
Conference GECCO00, 2000.
[16] J. Liu and J. Kwok “An extended genetic rule
induction algorithm”. Proceedings of the Congress on
Evolutionary Computation Conference, 2000.
[17] J. Gomez, D. Dasgupta, O. Nasraoui, and F.
Gonzalez, and, “Complete Expression Trees for Evolving
Fuzzy Classifier Systems with Genetic Algorithms”, To
appear in the proceedings of the North American Fuzzy
Information Processing Society Conference NAFIPS-
FLINTS 2002. June 2002.
[18] Lincoln Laboratory MIT. http://www.ll.mit.edu/
[19] J. Gomez, and D. Dasgupta, “Using Competitive
Operators and a Local Selection Scheme in Genetic
Search”, Submitted as Late-breaking paper to the
Evolutionary Computation Conference GECCO02, 2002
[20] W. Fan, W. Lee, M. Miller, S. J. Stolfo, and P. K.
Chan, “Using artificial anomalies to detect unknown and
know network intrusions”, Proceedings of the First IEEE
International Conference on Data Mining, 2001.
[21] K. Yamanishi, Jun-ichi Takeuchi and G. Williams,
“On-line unsupervised outlier detection using finite
mixtures with discounting learning algorithms”,

Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 320-324, 2000.
[22] Results of the KDD' 99 Classifier learning contest,
http://www-cse.ucsd.edu/users/elkan/clresults.html.
[23] F. Provost, and T. Fawcett, “Analysis and
visualization of classifier performance: comparison under
imprecise class and cost distributions”, Proceedings of the
Third International Conference on Knowledge Discovery
and Data Mining, 1997.
[24] F. Provost, and T. Fawcett, “The case against
accuracy estimation for comparing induction algorithms”,
Proceedings of the Fifteenth International Conference on
Machine Learning, 1998.

