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Abstract – The normal and the abnormal behaviors in 
networked computers are hard to predict, as the boundaries 
cannot be well defined. This prediction process usually 
generates false alarms in many anomaly based intrusion 
detection systems. However, with fuzzy logic, the false alarm 
rate in determining intrusive activities can be reduced, where a 
set of fuzzy rules is used to define the normal and abnormal 
behavior in a computer network, and a fuzzy inference engine 
can be applied over such rules to determine intrusions. This 
paper proposes a technique (genetic algorithm) to generate 
fuzzy rules (instead of manual design) that are able to detect 
anomalies and some specific intrusions. Experiments were 
performed with DARPA data sets [1], which have information 
on computer networks, during normal behavior and intrusive 
behavior. This paper presents some results and reports the 
performance of generated fuzzy rules in classifying different 
types of intrusions.    
 
Index terms – Intrusion detection, fuzzy classification, rule 
generation, and genetic algorithms 
 

I. INTRODUCTION 

The number of intrusions into computer systems is 
growing because new automated hacking tools are 
appearing every day, and these tools along with various 
system vulnerability information are easily available on 
the web. The problem of intrusion detection has been 
studied extensively in computer security ([2], [3], [4], and 
[5]), and has received a lot of attention in machine 
learning and data mining ([6], [7], and [8]). Basically, 
there are two models of intrusion detection [5]: 
 
Anomaly Detection: This model first build the normal 
profile that contains metrics derived from the system 
operation. While monitoring the system, current 
observation is compared with the normal profile in order 
to detect changes in the patterns of utilization or behavior 
of the system.  
Signature or Misuse Detection: This technique relies on 
patterns of known intrusions to match and identify 
intrusions. In this case, the intrusion detection problem is 
a classification problem. 
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However, there exist several approaches in implementing 
an intrusion detection system that use one or both the 
above-mentioned models: 
 
1. Using data mining techniques over system audit data to 
extract consistent and useful patterns of program and user 
behavior, in order to build classifiers that can recognize 
anomalies [8]. The data mining techniques that are 
primarily used include classical association rules and the 
frequent episodes learning. 
 
2. Using temporal association rules, in terms of multiple 
time granularities [9]. The temporal association rules 
technique generates fuzzy and classical rules [10]. 
 
3. Using short sequences of system calls performed by 
running programs as discriminators between normal and 
abnormal operating characteristics [11]. The discriminator 
uses the Hamming distance between short sequences of 
system calls. If the distance of a particular sequence to the 
normal sequences is higher than a threshold then the 
sequence is considered abnormal. 
 
4. Distributing the detection task among multiple 
independent entities (autonomous agents) that work 
collectively [6]. The functionality of each agent is not 
defined but it can be simple or complex according to the 
specific detection task that an agent is assigned. If an 
agent detects some anomalies or intrusions, the agent 
sends messages to other agents to define, in a distributed 
manner, the action to take. 
 
5. Using genetic programming to build autonomous agents 
that detect intrusions. The learning model uses feedback, 
and the process evolves agents over the scenario of 
intrusions and normal behavior [7].  
 
6. Emulating mechanisms of the natural immune systems 
to detect anomalies in a distributed manner [12]. It 
combines two anomaly detection methods: using profiles 
of user behavior and correlation of user behavior with 
network statistical behavior. The decision support 
component uses an ART neural network and a Fuzzy 
Controller.  
 
In this paper, we show the applicability of genetic 
algorithms to evolve a simple set of fuzzy rules (fuzzy 
classifier) that can solve some well-studied intrusion 
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detection problems. In this approach, genetic algorithms 
can find good and simple fuzzy rules to characterize 
intrusions (abnormal) and normal behavior of network 
systems. As the difference between the normal and the 
abnormal activities are not distinct, but rather fuzzy, fuzzy 
logic can reduce the false signal rate in determining 
intrusive activities. 
 
The subsequent sections are organized as follows. Section 
2 briefly describes the basic fuzzy logic and fuzzy 
classifiers concepts used in this paper, section 3 presents 
the proposed approach to solve some intrusion detection 
problems, section 4 describes experiments and analysis of 
results, and section 5 draws some conclusions.   

II. FUZZY CLASSIFIERS FOR INTRUSION DETECTION 

The intrusion detection problem (IDP) is a two-class 
classification problem: the goal is to classify patterns of 
the system behavior in two categories (normal and 
abnormal), using patterns of known attacks, which 
belongs to the abnormal class, and patterns of normal 
behavior. With fuzzy rules, the solution to classification 
problem is based on fuzzy logic concepts. 

A. Fuzzy Logic 

In fuzzy logic [13], fuzzy sets define the linguistic 
notions, and membership functions define the truth-value 
of such linguis tic expressions. Table 1 shows the 
difference between classic sets and fuzzy sets. 
 

FUZZY SETS CLASSIC SETS 
In fuzzy sets, an object 
can partially be in a set. 

In classic sets, an object is 
entirely in a set or is not. 

The membership degree 
takes values between 0 
and 1. 

The membership degree 
takes only two values, either 
0 or 1. 

1 means entirely in the 
set, 0 means entirely not 
in the set, other values 
mean partially in the set. 

1 means entirely in the set, 0 
means entirely not in the set. 
Other values are not allowed. 

Table 1: Comparisson between fuzzy sets and classic sets  

The degree of membership of an object in a fuzzy set is 
defined as a function where the universe of discourse (set 
of values that the object can take) is the domain, and the 
interval [0,1] is the range. Figure 1 shows an example of 
the membership function (triangular), which is in wide 
use. 
 

 
 
 

 
 

Figure 1: Triangular membership function 
 
In figure 1, the object x has 0.6 degree of membership to 
the fuzzy set low, i.e., x belongs to the fuzzy set and does 
not belong to the fuzzy set at the same time. A collection 
of fuzzy sets, called fuzzy space, defines the fuzzy 
linguistic values or fuzzy-classes that an object can belong 
to. A standard fuzzy space is shown in figure 2. 

 

 

Figure 2: Fuzzy space with five fuzzy sets 
 
With fuzzy spaces, fuzzy logic allows an object to belong 
to different classes at the same time. This concept is 
helpful when the difference between classes is not well 
defined. This is the case in the intrusion detection task, 
where the differences between the normal and abnormal 
classes are not well defined. 
 
With these linguistic concepts, atomic and complex fuzzy 
logic expressions can be built. An atomic fuzzy 
expression is an expression: 
 

parameter is [not] fuzzyset 
 

Where, parameter is an object, and fuzzyset is a fuzzy set 
that belongs to the defined fuzzy space for the parameter. 
The truth-value (TV) of an atomic expression is the 
degree of membership of the parameter to the fuzzy set. 
Because TVs are expressed by numbers between 0 and 1, 
(0 means entirely false, 1 means entirely true, and others 
values means partially true), the fuzzy expression 
evaluation process is reduced to arithmetic operations. 
Also, for each classical logic operator (and, or, negation), 
there is a common fuzzy logic arithmetic operator (shown 
in table 2): 
 



 Proceedings of the 2002 IEEE 
 Workshop on Information Assurance 
 United States Military Academy, West Point, NY  June 2001 
 

ISBN 555555555/$10.00   2002 IEEE 

LOGIC OPERATOR FUZZY OPERATOR 
p AND q min{p, q} 
P OR q max{p, q} 
NOT p 1.0-p 

 
Table 2: Fuzzy logic operators 

  
Fuzzy rules have the form:  
IF condition THEN consequent [weight] 

Where, 
• condition is a complex fuzzy expression, i.e., a 

logic expression that uses fuzzy logic operators 
and atomic fuzzy expressions 

• consequent is an atomic expression, and 
• weight is a real number that defines the 

confidence of the rule.  
 
The following is an example of a fuzzy rule: 
 

R: IF x is HIGH and y is LOW THEN 
    pattern is normal [0.4] 

 
The TV of the fuzzy rule is calculated as the product of 
the condition truth-value by the weight, i.e.: 
 

TV( R ) = TV( condition ) * weight 
 

For the previous example, if the degree of membership of 
the parameter x to the fuzzy set HIGH is 0.2, the degree of 
membership of y to LOW is 0.4 and the weight is 0.4 then 
the truth-value of the fuzzy rule is: 
 

TV( R ) = TV( x is HIGH and y is LOW ) * 0.4  
     = min{0.2, 0.4} * 0.4 = 0.2 * 0.4 = 0.08 

B. Fuzzy classifiers and the intrusion detection 
problem 

In intrusion detection, there are m+1 classes where every 
object should be classified. Among these classes, there is 
one special class called the normal class and m classes 
called the abnormal classes (based on known intrusions or 
attacks). The data set used by the learning algorithms 
consists of a set of objects, each object with n+1 
attributes. The first n attributes define the object 
characteristics (monitored parameters) and the last 
attribute defines the class that the object belongs to (the 
classification attribute).  
 
Accordingly, fuzzy classifier system for solving intrusion 
detection problem should have a set of m+1 rules, one for 
the normal class and m for the abnormal classes, where 
the condition part is defined by the monitored parameters 
and the consequent part is an atomic expression for the 
classification attribute. For example, 
 

RNormal : IF x is HIGH and y is LOW THEN 
pattern is normal [0.4] 

RAbnormal-1 : IF x is MEDIUM and y is HIGH THEN 
pattern is abnormal1 [0.6] 

 . . . 
RAbnormal-m : IF x is LOW THEN 

pattern is abnormalm [0.6] 
 
 
There are several techniques to determine the class that an 
object belongs to. One of these techniques is the 
maximum technique, which classifies the object as the 
class in the consequent part of the rule that has the 
maximum truth-value, i.e.: 
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Where, 

N represents the normal class,  
Ai the i-th abnormal class, 
RN is the rule for the normal class, and 
RA-i is the rule for the i-th abnormal class 
 

If k  number of rules produced have the same maximum 
truth-value, then one of these rules can be picked 
randomly. 

III. EVOLVING FUZZY CLASSIFIERS  

We used a genetic algorithm to generate fuzzy classifiers 
for intrusion detection using datasets with patterns of the 
system behavior during normal and under intrusive 
(abnormal) conditions.  
 
In a genetic search, a set of chromosomes (population), 
each chromosome codifying a possible solution for the 
given problem, is evolved using a set of genetic operators 
(mutation, crossover, selection). Each chromosome has 
probability to be modified by one of these genetic 
operators, and this probability depends on the adaptability 
of the chromosome. The following steps outline the basic 
structure of the genetic algorithm (GA): 
 

1. [Start] Generate random population of n 
chromosomes 

2. [Fitness] Evaluate the fitness f(x)  
3. [New population] Create a new population  
4. [Selection] Select two parent chromosomes from a 

population according to their fitness (the better 
fitness, the bigger chance to be selected)  

5. [Crossover] With a crossover probability swap 
genetic material between the parents to form a new 
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offspring (children). If no crossover was 
performed, offspring is an exact copy of parents.  

6. [Mutation] With a mutation probability mutate 
new offspring at each locus (position in 
chromosome).  

7. [Accepting] Place new offspring in a new 
population  

8. [Replace] Use new generated population for a 
further run of algorithm  

9. [Test] If the end condition is satisfied, stop, and 
return the best solution in current population  

10. [Loop] Go to step 2  
 
There are several approaches to evolve fuzzy classifiers 
with GAs [14], [15], [16]. We used the approach proposed 
by Gomez in [17], where, an adaptive-parameter genetic 
algorithm with special operators (gene addition, gene 
deletion) is used for each class (normal and abnormal 
classes). Figure 3 illustrates the steps to produce a fuzzy 
rule for the class k using a GA.  
 

   

GA Based Rule Gen eration Module   

Data set   
0.1 0.3 0.4 0.1   1   
0.4 0.8 0.2 0.1   2   

Best Individual    
1##10#01… :  k   

  

Population   
  
1##10#01..   
100##101..   

Genetic  
Operators   

Fitness  
Evaluation   
Class  k   

Best Rule    
If  x  is low and … then pattern is class  - k  

(  
 

Figure 3: Steps to generate a fuzzy rule for class k using a 
GA 

 
Because, the variable segment in this fuzzy rule is the 
condition part (the consequent and the confidence weight 
are fixed), only this segment is encoded as a linear 
chromosome with variable length that uses complete 
expression trees.  
 

For example, the expression:  
 

(x is C ∧  w is not D) ∨  z is E 
 
can be represented without parenthesis and using 
complete expression trees as: 
 

x is C ∨  z is E ∧  w is not D  
 
With complete expression tree, the chromosome is 
defined as a set of n genes, each gene is composed of an 
atomic condition <variable> is [not] <set> and a logic 
operator, as is shown in figure 4.  
 

Gen1 ... Genn Genn+1 

ac1 op1 ... can opn acn+1 * 
var1 ro1 set1  ... varn ron setn  varn+1 ron+1 setn+1 * 

 
Figure 4: Representation of the condition part of  a fuzzy 

rule using operator precedences. 
 vari, roi, seti, and opi are the variable, relational operator, 

set and logic operator of the i-th gene. 
 
An example expression encoded in the chromosome using 
operator priority is as follows: 
 

Gen1 Gen2 Gen3 

Ac1 op1 Ac2 op2 ac3 op3 
X YES C ∨ Z YES E ∧ W NOT D ∗ * 

 
Figure 5: Codification of the expression X is C or Z is E 

and W is not D 
 
Gomez used the fuzzy confusion matrix to calculate the 
fitness of a chromosome [17]. In the fuzzy confusion 
matrix, the fuzzy truth degree of the condition represented 
by the chromosome and the fuzzy negation operator are 
used directly. In our case, the fitness of a chromosome for 
a specific class is evaluated according to the set of 
following equations: 
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Here,  
TP, TN, FP, and FN are the true positive, true negative, 
false positive, and false negative values for the codified 
rule respectively, 
predicted is the fuzzy value of the condition part of the 
codified rule, 
p is the number of samples of the evolved class and q is 
the number of samples of the remaining classes samples 
in the training data set, that are used by each 
chromosome in the genetic algorithm, 
w1, w2, and w3 are the assigned weights for each rule 
characteristic respectively, 
class_datai is a element of the subset of training 
samples of the evolved class, and, other_class_datai is 
a element of the subset of remaining classes (not 
evolved by the genetic algorithm) in training samples. 

 
Accordingly, the best chromosome in the population is 
chosen and the fuzzy rule:  if <condition> then pattern is 
<class>, is added to the fuzzy classifier.   

IV.  EXPERIMENTATION 

A. Test Data Set 

Tests were conducted using ten percent of the kdd-cup’99 
data set [1], in order to evaluate the performance of the 
proposed approach to generate comprehensible fuzzy 
classifiers for intrusion detection problems. This data set 
is a version of the 1998 DARPA intrusion detection 
evaluation data set prepared and managed by MIT 
Lincoln Labs [18]. In this data set, forty-two attributes (or 
fields) that usually characterize network traffic behavior 
compose each record. Also, the number of records in the 
10% data set is very large (492021). 
 
This data set contains 22 different types of attacks that 
can be classified in four main intrusion classes, as is 
shown in table 3. Also, the proportion of samples per 
class is not uniform, for example from class U2R the 
number of samples in the training data set is 59 while 
from class DOS the number of samples is 391458. 
 

CLASS SUB-CLASSES  SAMPLES  
Normal  95278 (19.3%) 
U2R buffer_overflow, 

loadmodule, multihop, perl, 
rootkit 

59 (0.01%) 

R2L ftp_write, guess_passwd, 
imap, phf, spy, warezclient, 
warezmaster 

1119 (0.23%) 

DOS back, land, Neptune, pod, 
smurf, teardrop 

391458(79.5%) 

PRB ipsweep, nmap, portsweep, 
satan 

4107 (0.83%) 

 
Table 3: Classes in the 10 % of the KDDCup 99 data set 

B. Preprocessing 

We normalized the original 10% KDD-cup99 data set, 
where each numerical value in the data set is normalized 
between 0.0 and 1.0 according to the following equation: 
 

MINMAX
MINxx
−

−=  

 
Where,  

x is the numerical value, MIN is the minimum value for 
the attribute that x belongs to, and MAX is the 
maximum value. 

 
For each numerical attribute we assign the fuzzy space as 
shown in figure 6. 
 

 
 

Figure 6: Fuzzy space for numerical attributes in the 
KDD-cup99data set 

 
For non-numerical attributes like logged-in we used the 
categorical values as crisp sets (fuzzy sets that do not 
overlap each other). Figure 7 shows the fuzzy space 
associated to the logged-in attribute. For example, a value 
of false for this attribute has a degree of membership to 
the crisp set FALSE equal to 1.0 and degree of 
membership to the fuzzy set TRUE equal to zero. 
 

 
 

Figure 7: Fuzzy space for the non-numerical attribute 
logged-in 

C. Experimental Setting 

We randomly selected a 20% of the total set for testing 
and the remaining 80% for training. The testing data set 
was built using a 20% of all the samples of each class in 
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the data set. The score of the trained classifier was 
calculated as the classification accuracy over the testing 
set. 
 
We used adaptive parameter settings in genetic algorithm 
as proposed by Gomez in [19], where each genetic search 
was initialized with a random population of individuals, 
with length between one and six genes. We performed 
several tests with different values of fitness function 
weights.  
 
Because the combined proportion of samples from the 
normal class and the DOS class are almost 99% of the 
data set, we evolved a fuzzy rule for the DOS attack 
independently using only the normal and the DOS records 
in the training data set. Each individual in the population 
uses a number of samples from the data set that is 
proportional to the number of samples of that class 
present in the dataset. The proportion of samples from 
each class is given by the proportion of samples of each 
class in the training dada set. 
 
For each of the remaining classes (U2R, R2L, PRB, and 
normal), we evolved one fuzzy rule using the training set 
without the DOS class samples. In this case, however the 
numerical proportion in which each class is present in the 
dataset is not used to choose the number of samples used 
for that class. Rather a uniform number of samples is 
considered for each of these classes. 
 
The reported results were obtained using a population size 
of 200 and a maximum of 200 iterations. Each individual 
used only 2000 records from the training dataset and a 
proportional random assignment of the fitness function 
weights as is explained by Gomez in [17]. These values 
showed good performance in the evolution of fuzzy 
classifiers for the intrusion detection problem. 

D. Results and Analysis 

The proposed approach was able to generate simple fuzzy 
rules (the longest fuzzy rule contains only five atomic 
expression). The following are some fuzzy rules that were 
evolved in a sample run: 

i f (dst_host_srv_count is not low or 
     protocol_type is not tcp) and protocol_type is not icmp then 
record_type is normal [1.0] 
i f dst_host_srv_count is low and flag is not S0 and  
    protocol_type is not icmp and  
   dst_host_srv_rerror_rate is not level-4 
then record_type is U2R [1.0] 
i f (dst_host_srv_count is low or is_guest_login is true) and flag is not 
REJ and dst_host_same_srv_rate is not low and duration is not level-
4 then record_type is R2L [1.0] 
i f count is not low or same_srv_rate is low  
then record_type is DOS [1.0] 
if dst_host_same_srv_rate is low and flag is not SF or  
    protocol_type is icmp  
then record_type is PRB [1.0] 

 
There are two elements that define the cost function of an 
intrusion detection system: the false alarm (FA) rate (the 
system produces an alarm in a normal condition), and the 
detected attacks rate (DR) (the system considers an 
abnormal behavior as normal). The performance of the 
proposed approach: Evolving Fuzzy Rules for Intrusion 
Detection (EFRID) is shown in table 4.  
 

Algorithm FA % DR % Complexity 
EFRID 7.0 98.95 O(n) 
RIPPER-Artificial 
Anomalies [20] 

2.02 94.26 O(n*log2n) 

SMARTSIFTER [21] - 82.0 O(n2) 
 

Table 4:  Comparison of the proposed approach with 
RIPPER and SMARTSIFTER 

 
Thus table 4 compares the performance of EFRID against 
other methods (RIPPER, SMARTSIFTER). Our approach 
resulted in DR of 98.95 compared to 94.26 in R. 
 
In EFRID, each individual in the population used less than 
1% of the data-set, the number of individuals per iteration 
is 200, the number of iterations is 200, and the genetic 
algorithm is run 5 times (one per each class). Then the 
number of times that the data set is used is bounded by 
2000 times, but because there are some individuals per 
iteration that are not feasible (the result of the genetic 
operator can be a not valid fuzzy rule), this value is less 
than 2000. We calculated the average number of times 
that the data set is accessed (875.4 times). Therefore 
EFRID is a linear algorithm respect to the size of the data 
set. 
 
The classification accuracy of EFRIDS is shown in table 5 
along with the performance achieved by the winner group 
in the KDDCup’ 99 contest [22]. However, these results 
are not comparable as different data sets were used for 
testing. So, this information is for reference only. 
 

CLASS EFRID WINNER ENTRY 
Normal 92.78% 94.50% 

U2R 88.13% 13.2% 
R2L 7.41% 8.4% 
DOS 98.91% 97.10% 
PRB 50.35% 83.30% 

 
Table 5:  Accuracy of EFRID and the winner entry in the 

KDDCup’ 99 contest 
 
In the simplest form, intrusion detection problem can be 
considered as a two-class classification problem, where 
the positive class is the abnormal class and the negative 
class is the normal class. We have applied the Receiver 
Operating Characteristic (ROC) analysis to evaluate the 
performance of the evolved classifiers [23]. In the ROC 
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analysis, for classifier systems that produce a continuous 
output with respect to some parameter α, the coordinate 
point (FP, TP)α is plotted in the coordinate system. Here, 
TP is the true positive rate (the percentage of abnormal 
behavior classified as abnormal) and FP is the false 
positive rate (the rate of false alarms).  
 
To generate the ROC curve for the intrusion detection 
problem from the evolved fuzzy classifier, we varied α 
between 0.0 and 1.0 and assigned to the normal rule the 
confidence weight 1-α and to the abnormal rules the 
confidence weight α. 
 
The plotted points define the ROC curve for the given 
classifier. This ROC curve can be used to determine when 
a classifier is good or bad. If the ROC curve of a classifier 
A dominates the ROC curve of the classifier B then 
classifier A is better than classifier B [24]. The ROC curve 
for an intrusion detection classifier shows how the fuzzy 
rule confidence value affects the rate of alarms and the 
rate of detected abnormal activities. The ROC curve for 
the evolved fuzzy classifier systems is shown in figure 7. 
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Figure 3: ROC curve for the evolved fuzzy classifier 
 
According to the ROC curve it is possible to reduce the 
false alarm rate to 5% with a detection rate of 98.5% if the 
confidence value of the abnormal class rule is set to 0.1 
and the confidence value of the normal rule is set to 0.9. 
 

V. CONCLUSIONS 

Our experiments showed that the proposed approach 
works well in detecting different attacks. The accuracy of 
fuzzy classifiers was good and comparable to those 
reported in the literature. Also, the accuracy can further be 
improved applying specific strategies to generate the 
fuzzy space for each monitored parameter.  
 

The evolved fuzzy rules are not complex as no more than 
five attributes are used in each rule. It allows 
characterization of the normal and abnormal behaviors in 
a simple way. Simpler fuzzy rules have a clear advantage 
in real applications. First, they yield rules that are easier to 
interpret, hence score high on interpretability. Second, 
they yield a classifier rule that is faster in deployment. 
This is especially crucial for data involving a large 
number of attributes.  
 
The importance of fast response is even more crucial in 
network security applications: In automatic intrusion 
detection systems, a fast classifier can mean all the 
difference between being able to detect and stop the 
intruder’s behavior in time , as compared to detecting the 
user’s behavior, but responding too late because of a slow 
detection process. We emphasize that training is the most 
time consuming part of our system, it is a linear time 
algorithm over the data set size but it is one of the most 
efficient (see table 4).  
 
The main contribution of the present work is the design of 
a classification process for the intrusion detection 
problem. It allows application of fuzzy logic and genetic 
algorithms for the detection of various types of attacks. 
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